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ABSTRACT 
Simulating traffic flow is an important problem in transport planning. The most popular 
simulation approaches for large scale scenarios today are aggregated models. Unfortunately, 
these models lack temporal and spatial resolution. On the other hand, microsimulations are 
very interesting for the simulation of traffic flow as they are capable of very accurately 
simulating features that require both high temporal and spatial resolution including traffic 
jams and peak hours. So far, most of the microscopic approaches come at high computational 
costs and therefore require expensive large computers to run them within reasonable time. In 
this work we present how it is possible to reduce these costs by using a queue-based model 
and an event-driven approach jointly. Our approach makes it possible to run large scale 
scenarios with more than one million simulated person-days on networks with 10k links in 
less than ten minutes on single CPU desktop computers present in most offices today.  
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INTRODUCTION 

The simulation of traffic flow is an important problem in transport planning, as it represents 
the final joint between the intangible description of travel demand and the emergence of flow 
densities, volumes and travel speeds. In today’s practice traffic flow is most often simulated 
using aggregated models as these models are easy to use and well established in the 
community, but compared to aggregated models the microsimulation of traffic flow has 
certain outstanding advantages: 

• Very high spatial and temporal resolution. This makes it possible that features 
as traffic jams and rush-hours can be captured much more accurately. 

• Traffic is described in a very natural way: The cars that travel, the roads and 
the intersections are simulated directly. 

• Microsimulations of traffic flow can be easily coupled with other microscopic 
approaches such as agent based demand modeling. 

• It is possible to make inverse analyses to find out where certain cars are 
coming from and why they can be found on a certain specific location of the 
road network. 

However, these properties come at the price of high computational burden. This very 
often makes it necessary to use complex software architectures together with large parallel 
computers which in turn makes these methods expensive. The other option is to use 
microsimulations only for small applications and switch to the above-mentioned aggregated 
methods for large scale problems. Unfortunately, these methods often differ to such an extent 
that it is nearly impossible to transfer know how from one field to another.  

It is the aim of this work to present a new event-driven queue-based approach that 
makes the microsimulation of large scale traffic flow problems feasible on affordable, desktop 
computer hardware and within reasonable time.  

RELATED WORK 

In this section we will give a selection of previous work that is somehow related to our 
microsimulation. There exists a large range of different traffic flow simulation approaches. 
The physically based microsimulations (e.g. AIMSUN(1, 2), MITSSIM(3, 4), VISSIM(5)) 
generally try to capture as many traffic flow phenomena as possible. They simulate car 
following and lane changing behavior and use a continuous representation of space and 
constant very small time-steps to simulate the cars on the roads. 

A different microscopic but less physical simulation approach is represented by 
cellular automata (e.g. (6)) as they are used for example in TRANSIMS(7, 8, 9). Here, cars 
move through cells that they can occupy like particles. Although in cellular automata we have 
a coarser level of detail, features like densities and travel speeds still emerge from the simple 
interactions of the cars and are not computed at an aggregated level. This changes when we 
move on to mesoscopic modeling. In mesoscopic models (e.g. METROPOLIS(10, 11), 
DynaMIT(12, 13), DYNASMART(14, 15)), while the demand side of traffic is still 
represented microscopically the supply side is computed on the aggregated level. 

The highest level of abstraction can be found in the macroscopic models that compute 
all traffic quantities on the aggregated level. One example of a model that simulates traffic as 
a one dimensional incompressible fluid is NETCELL(16).  

The work presented here builds on the approach of MATSIM-T(17) which while using 
simplified, queue-based dynamics to be computationally efficient still estimates all quantities 
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microscopically and therefore has to be located somewhere between the mesoscopic 
approaches and cellular automata. 

It can be observed that time-step based approaches have been more popular in the past 
than event-driven approaches. It is not clear why this is the case but one reason might be the 
more straightforward implementation of time-step based simulations.  

CLASSIFICATION OF MICROSIMULATION METHODS OF TRAFFIC FLOW 

Cellular Automata 

Cellular automata are used in traffic flow microsimulation to accurately model the behavior of 
cars traveling on a road network (see for instance (6)). The basic idea is to discretize space in 
cells of equal size each of which can be occupied by at most one vehicle. The cars drive 
through these cells by looking forward and judging from the space available in front of them 
they decide how fast they should go. The advantage of cellular automata is their simplicity 
while retaining a fair amount of spatial resolution and therefore the general ability to simulate 
many interesting phenomena like car following and lane changing as demonstrated in (6, 7). 
An additional advantage is that link capacities are generated from the properties of the links 
and the behavior of the drivers.  

Although the mentioned properties are generally desirable the major drawback of this 
method is its computational cost. Its high temporal and spatial resolution is achieved by 
granting processor time to every simulated agent in every simulated time-step (usually one 
second). This becomes unpractical if the number of simulated agents rises above roughly 
100k, especially if it is desired to simulate the traffic flow iteratively say as part of an iteration 
search for a steady-state solution. If we want to stick with this kind of solution the only way 
to achieve sufficient speed for large problem sizes is to use massively parallel computers like 
it was done in (4). Unfortunately, many will not have sufficient funding to follow this 
approach. 

Queue-Based Simulations 

If the computational speed of cellular automata is not sufficient for a certain kind of 
application one way of achieving higher performance is to simplify the model by using a 
queue-based approach as it is used in MATSIM-T, see (9). Here, the basic assumption is that 
the main features of (at least) urban traffic can be described at the intersections as either the 
traffic is flowing more or less freely on the links or the cars are queuing in front of the next 
intersection and waiting for the car in front of them to move. Based on these assumptions 
cellular automata can be modified in the following way:  

• The cars traveling through the network are no longer simulated directly but 
instead we change perspective and the links between intersections are being 
simulated. 

• For every link there is a queue that stores the cars that enter the link. Also for 
each car the entry time is stored in this queue. 

• The capacity of a link as well the space available for cars are given as 
parameters 

• When a car wants to leave link A and wants to enter link B, in the next 
simulation time-step link A checks if the car is able to leave the link according 
to various constraints (capacity, free speed travel time, intersection precedence, 
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space available at the next link) and if all preconditions are met the car leaves 
link A and enters link B. 

The advantage of this model is that it reduces the amount of information computed as it no 
longer has to compute the fine grained stop and go interactions between following cars. As 
the basic simulation unit is the road segment and no longer the car we gain roughly a factor of 
10 to 100 compared to cellular automata.  

Event-Driven Queue-Based Simulations 

Although queue-based simulations are much faster than cellular automata it is still 
challenging in terms of computing time to simulate the traffic flow of a whole region 
microscopically. Consequently, it is desirable to find even faster ways of computing the same 
information.  

 The key observation is that queue-based simulations are inefficient in areas where the 
flow density is very low. Here, the links have to be simulated in every time-step although 
there is little to compute at all: In most of the time-steps the links only realize that there is no 
car in the position to leave the link and enter the next. These empty operations cost the 
simulation most computing time when simulating off-peak and nightly hours. Therefore, it is 
desirable to speed up the simulation of low density traffic. 

In order to achieve higher computational efficiency we chose to substitute the constant 
time-step for the direct treatment of actions happening on the road network. Each such action 
gets reflected by an event. Every time a car enters or leaves a link a corresponding event gets 
processed. This means that the number of events happening in a specific time period directly 
corresponds to the amount of traffic flow present on the network and consequently the 
computational effort is proportional to the traffic load. There are two main advantages of the 
event-driven approach:  

• The computational effort distributes over the simulated time of day equal to the 
traffic flow during any time of the day. As a result, most of the computational 
time is spent where traffic flow is maximal and almost no time is spent where 
the traffic network is empty. 

• The total computing time needed for the simulation of a certain travel demand 
(e.g. 1 million cars traveling from one part of a city to another) is almost 
independent of the total amount of simulated time needed to process the traffic 
demand of the scenario, i.e. it does not matter if the cars travel during 24 hours 
or one month. This is because the simulation cares only about the events to be 
simulated and the total number of events in both scenarios is the same. 

When switching to an event-driven simulation one might be concerned about overhead costs 
added in situations where the system processes very many events at a time. These are the 
situations where time-step-based approaches usually are very efficient. It is to be expected 
that such situations will arise in certain scenarios and for these the queue-based approach with 
constant time-steps is the most efficient choice. However, it is to be noted that such a scenario 
would need to have full network load nearly everywhere. Our experience shows that in most 
simulation networks there is a fair amount of links that experience only little load even during 
rush-hours. It might be due to this fact that we have not found a scenario so far where the 
event driven approach is slower than the time-step-based approach even during the most 
heavily loaded minute of the day. In our tests the event-driven simulation obtains an overall 
speedup of 20 or more over the time-step-based implementation when simulation a 24 hours 
scenario.  
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A comparison of the spatial and temporal discretization schema of the simulation 
approaches described above is shown in Table 1. 

 

TABLE 1  Discretization Schema of Different Microsimulation Approaches 

 Spatial discretization  Temporal discretization 

Cellular Automata equidistant constant time-step 

Queue-based simulation road segments constant time-step 

Event-driven, queue-based simulation road segments adaptive, event-driven 

 

IMPROVED DYNAMICS OF THE EVENT-DRIVEN QUEUE-BASED APPROACH 

Apart from the changes that were made to our model in order to switch from fixed time-steps 
to event-driven information processing we have also incorporated a couple of behavioral 
changes to the road segment dynamics. We want to give an overview of these and briefly 
discuss the reasons for the modification. 

• Gaps, gap travel times: In the classical queue-based approach as it was in use 
in MATSIM-T so far (9) there is no concept of gaps between cars. Assume a 
full road segment. If the first car in the row is able to leave the road in one 
time-step the space available on the link will become visible upstream at the 
entry of the link exactly one time-step later. That is, congestion can dissolve 
much quicker than usually observed as the backward traveling speed of gaps is 
very high. In order to avoid that problem we have introduced a concept of 
backwards traveling gap on the road segments. These gaps travel in the 
opposite direction of the cars at a predefined and parameterized speed. In this 
way it is possible to reproduce the typical behavior of backward traveling gaps 
on links during unloading. 

• Capacity constraints at inlet: In the classical queue-based approach link 
capacities were only enforced at the downstream end of links. While this is 
certainly sufficient to reproduce the correct capacities on a linear sequence of 
road segments more complex behavior can be observed at intersections: 
Especially on converging Y-type connections with high capacity incoming 
roads and a relatively low capacity outgoing road one would expect to observe 
breakdowns at the bottleneck. However, without limiting the incoming 
capacity of a road segment the breakdown does not occur until much later 
downstream. To avoid this problem we have extended our model to take care 
of the inflow capacity as well. Note however that it is often not easy to get the 
corresponding data, and setting incoming and outgoing capacities identically 
often is an unsatisfactory choice as the incoming capacity is often close to the 
theoretical capacity of a link of a certain type while the outgoing capacity is 
often chosen taking traffic light timings into account. 

• Handling of gridlocks: One issue with all types of microscopic traffic flow 
simulations with predefined routes that is not very apparent at first are 
gridlocks. In heavily loaded road networks it is possible that individual agents 
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block each other when waiting for the next link on their individual routes to 
become free for them. At a certain point, this will result in a gridlock 
happening and this in turn will prevent the involved agents to arrive at their 
desired locations. It is therefore essential to incorporate some sort of handling 
of gridlocks into the simulation model. In our simulation the problem is solved 
using a guaranteed minimum capacity of each link. This can be for instance 
one percent of the nominal capacity or any constant desired. The simulation 
then simply guarantees that no matter whether a road segment is already full or 
not it will always accept incoming cars at least at this specified minimum rate. 
This can lead to over full links but effectively avoids the situation where car 
stay in the simulation forever. In our experiments, this method has proven to 
be practical and quite simple to implement. 

TECHNICAL DESCRIPTION OF THE SOFTWARE DESIGN 

In the following section we are going to present the different parts of our event-driven queue-
based microsimulation of traffic flow and we will explain how these parts work together in 
order to solve the simulation problem at hand.  

Description of Travel Demand 

Travel demand is the input for any microsimulation of traffic flow and therefore it is central to 
find a consistent description for it. In this work we use the same formalism as used in (10): 

• We use a population of agents each of which has a complete 24 hours activity 
plan. 

• An activity plan consists of an activity pattern describing the type and order of 
the activities executed, location choice information describing where in the 
world the activity in question should be executed, timing information defining 
the time of day when the activities are taking place, and routing information 
describing the sequence of road segments to take to travel between subsequent 
activities. 

Note that while we use a complete description of traffic demand the description of the activity 
type is not necessary for the simulation of traffic flow. 

The Model of Traffic Flow 

The basic idea of our model of traffic flow is that we only simulate transitions of agents from 
one road segment to the next. During the time spent on a specific road segment very little 
information about the position of the agent is available: Only the position in the queue is 
stored and the earliest time that the car could leave the link according to free speed 
limitations. When the agent arrives at the end of a road segment an event occurs and the agent 
leaves the road segment and enters the subsequent one according to the route stored in his 
complete activity plan. However, this can only happen if there is sufficient room left on the 
downstream link to take the oncoming agent. Otherwise the agent has to wait until sufficient 
space is available.  

The travel times derive from the behavior of the agents on the link: If a link is empty 
the travel time is equal to the time needed to drive down the link at free speed. The travel time 
can becomes longer if there are other agents traveling in front of the agent. In this case the 
agent cannot leave the link before all agents in front of it have left the link. The reason for 
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such a delay usually is a high demand coupled with limited outflow due to limited outflow 
capacities or a blocked road network downstream. That is, as expected high demand and low 
supply will automatically lead to large travel times. 

Actors during the Course of the Simulation 

In our simulation software there exist basically three elements that cooperate to compute the 
traffic flow through the network (see Figure 1). These three elements are: 

• The road segment that hold the cars during their travel. 
• The agent that represents the object moving through the road network and 

keeps all information about the travel demand. 
• The clock that takes care of registered timers and wakes up the agents at the 

right moment when there is an action to be taken. 

 

FIGURE 1  Interaction Processes Between Elements of the Traffic Flow Microsimulation. 
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FIGURE 2 The traffic flow protocol. 
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The Traffic Flow Protocol 

The actors mentioned above all interact and communicate according to a certain protocol 
which is most easily explained using an example that is illustrated in Figure 2 where one 
agent wants to travel along a certain sequence of road segments. The protocol consists of the 
following steps: 
1. The agent informs the road segment that it wants to enter. The road segment stores this 

request chronologically together with all other requests of this kind. 
2. As soon as it is clear when a gap will be available for the agent, the road segment 

sends this entry time to the agent. 
3. The agent registers a timer for this time with the clock. 
4. As soon as the timer expires, the clock sends a wake-up call to the agent and informs it 

about the time. 
5. The agent then enters the road segment. With this step the first part of the protocol 

finishes. Now the agent continues to travel down the road. Note that this does not need 
any actions to be taken by the road segment, the agent or the clock. 
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6. When the agent becomes first in the road queue, the road segment can compute the 
time when the agent is going to arrive at the end of the road segment and sends this 
information to the agent. 

7. Similar to step 3 the agent registers a timer with the clock. 
8. After the timer expires the clock calls the agent. 
9. Now the agent is at the front of the road segment. It then checks with its activity plan 

which is the next road segment to travel and registers there. 
10. When it is clear at what time there will be a gap available for the agent to enter the 

next link it receives a message with the predicted entry time. 
11. The agent again registers a timer for this time. 
12. When the timer expires the agent is woken up by the clock. 
13. The agent informs the last road segment that it is leaving. 
14. It also informs the next road segment that it enters. From here on steps 6 to 14 repeat 

until the last road segment of the trip is reached where step 14 is left out and the 
protocol stops. 
 

RESULTS 

Test Scenario 

The test scenario we use to demonstrate the properties of our simulation software consists of 
the following parts:  

• The road network of the federal states of Germany Berlin and Brandenburg. It 
consists of 11.6k nodes and 27.7k links. 

• The synthetic population of the area consists of 7.05M people. Each person has 
a complete daily activity plan with multiple activities and trips. That is, we are 
simulating 7.05M person-days. 

The average number of trips per agent in our demand is 2.02 and the average length of a trip 
is 17.5 links. This leaves us with an overall daily demand of 249M road segments to be 
traveled. 

Test Setup 

The test scenario was run on a server-system equipped with Dual Core AMD Opteron 
Processor 275 with 2.2GHz. Only one core was used during our test runs. The system was 
equipped with 4GiB of RAM of which roughly 3.2GiB were used. The input file for the 
synthetic population and the daily demand uses 5.4GiB of disk space and the output file 
generated which contains each event processed during the simulation consists of roughly 
17GiB. Note that one reason for the considerable sizes of our input and output files is the fact 
that we are using ASCII representations (XML in the case of the input files and line-based 
text files in the case of the output). 

Test Results 

We ran the test scenario on the machine mentioned above. An average run took an overall 
execution time of 53 minutes. This time divides into 8 minutes for the reading in and parsing 
of the input data (network, synthetic population and complete daily plans), 37 minutes for the 
execution of the plans (i.e. the actual simulation of traffic flow), and roughly 8 minutes for the 
generation of the output files. Summing everything up this results in an overall real-time ratio 
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of 27 for our test scenario on the described hardware. This means that our simulation ran 27 
times faster than real-time. Compared to our original queue-based microsimulation using 
fixed time-steps we gained a speedup of more than a factor of 20. Please note that the time 
needed for I/O could be easily reduced to about two minutes by switching to a binary 
representation of the input and output files. 

 

DISCUSSION AND OUTLOOK 

An interesting question is how to derive an estimate of the performance of the 
microsimulation at hand given the problem to be computed. Fortunately this is very easily 
possible as the main factor affecting the computational effort needed to simulate the traffic 
flow is the overall traffic volume. Judging from our test results, it can be estimated that the 
average simulation speed on the computer hardware described above is about 110k road 
segments per second (not including I/O). This can be now transferred into an estimate of 
runtime for a given problem: For instance let us assume a large scale traffic simulation 
problem of a population of one million agents each executing 3 trips a day. Let the average 
trip length be 15 road segments. The overall traffic volume is then given as 

45M153M1 =⋅⋅=⋅⋅= ltaV , where V  is the total traffic volume, a  is the number of agents 
in the population, t  is the average number of trips per agent, and l  is the average length of a 
trip in number of road segments. From vVr /= , where r  is the expected running time and v  
is the simulation speed in number of traveled road segments per second it follows that 

409s 45M/110ks -1 ≈=r . We therefore expect that such a simulation will take less than ten 
minutes to complete on today’s computing hardware. 

It is interesting to note that the factor limiting scenario sizes the most when using our 
microsimulation model is computer memory and not processor speed. Even though the large 
scenario used for our testing can be simulated in only 53 minutes on affordable hardware it 
needs roughly 3.2GiB of memory meaning that it is not possible to double the size of the 
scenario on a machine with 4GiB. This is not directly a problem of our implementation but 
comes from the sheer size of the data describing the demand. It would be interesting to 
investigate how much the memory requirements can be alleviated by using some sort of 
streaming of the travel demand: An agent could postpone loading its trips into memory until 
just before the moment when they are executed. Another possibility might be to use some sort 
of compression algorithm to reduce the memory size needed. 

A completely different way around the problem of memory sizes is parallelization. We 
are in the course of developing a parallel version of our microsimulation model that will make 
it possible to take advantage of a group of cheap computers to simulate large scenarios that 
would not fit on any of these computers alone. The other obvious advantage of such a parallel 
implementation is the expected higher execution speed. 

SUMMARY 

We have presented a microsimulation of traffic flow that uses a queue-based and an event-
driven approach jointly. Compared to cellular automata this means a certain reduction in 
spatial resolution that is rated to be acceptable compared to the large speedups gained by this 
approach. Compared to earlier queue-based approaches the fact that our simulation is event-
driven mainly means that we save time in areas of the road network where the traffic load is 
moderate to small. Over all a gain of 20 can be expected when compared to earlier queue-
based approaches.  
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On top of the accelerations of the method a couple of other modifications where 
undertaken. The simulation now accurately handles backward-traveling gaps, it limits the 
inflow capacities of all road segments in a meaningful way and it has a new way of handling 
gridlocks in the simulation by using a notion of guaranteed minimal capacities. 

The final simulation was tested with a large scale 24 hours scenario with seven million 
simulated person-days on a network with 28k links. The tests were undertaken on a single 
CPU workstation computer with a current processor and 4GiB of RAM of which 3.2GiB were 
used. The simulation took about 53 minutes to finish corresponding to an overall real-time 
ratio of 27. 
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