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Abstract— This work addresses a behavioral state estimation
problem using multi-agent traffic simulations. Firstly, a model
of individual route and activity location choice is presented
which can be simulated by a combination of a time variant
best path algorithm and dynamic programming, yielding a
behavioral pattern that minimizes a traveler’s perceived cost.
Secondly, an estimation method is presented that adjusts
this individual behavior to anonymous measurements of link-
related traffic characteristics using an algorithm for optimized
microscopic traffic assignment which itself is a novel tool with
potentially broad applicability.

I. I NTRODUCTION

A. Problem statement

The problem of traffic monitoring and prediction has
been considered by many researchers. Various approaches
are data-driven [9], [10], [23], while others adjust structural
models to real world measurements. The latter group can
further be classified with respect to what quantities are
estimated: Some consider the problem of estimating physical
traffic flow properties such as densities, velocities, or flow
parameters [13], [22], while others (including this work)
concentrate on the underlying demand itself and consider the
physics of traffic flow as a dependent effect [2], [14], [20].
The second point of view is closer to the real problem’s
structure, since traffic demand is the cause of road usage.
Still, estimation of traffic demand and network link related
quantities are two aspects of the same problem and ultimately
should not be separated [1].

This article describes a method for traffic state estimation
that uses multi-agent simulations. We combine a flexible
but little formalized representation of individual mobility
behavior as implemented in the MATSim project [17] with
well understood methods of system engineering [12]. This
allows us to consider the problem of estimating agents’
route and activity location choice in a Bayesian setting by
combining for every agent an a priori activity plan for a given
day with anonymous traffic measurements such as flows or
densities into a most likely a posteriori plan.

Our work appears to be the first in this field which esti-
mates fully individualized behavior from anonymous traffic
measurements. The choice of this objective is justified by the
observation that traffic demand results from heterogeneous
individual mobility needs. Thus, no validated individualized
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Fig. 1. Simulation

knowledge should be aggregated away during the formalizing
steps of setting up a mathematical estimation problem.

The remainder of this article is organized as follows. A
conceptual overview is given in the second part of this sec-
tion. The deterministic modeling and simulation problem is
discussed in Section II, with a focus on behavioral issues and
some necessary background on the used traffic flow model.
The incorporation of uncertainty into the model then allows
to formulate the Bayesian estimation problem formulation
in Section III, where a solution method is presented as well.
First experimental results are discussed in Section IV and
finally the article is concluded in Section V.

B. Conceptual overview

The traffic model is decomposed into a microscopic rep-
resentation of traveler behavior and a mixed micro/macro
mobility simulation. Some aspects of the implemented sim-
ulation logic are depicted in Figure 1. In an attempt to
realize their individual activity plans, travelers consider their
long- and short-term observations of the traffic system when
performing actions within their physical environment. Tech-
nically, an agent modifies its current path by sending an
object representing its perceived cost of network link usage to
a router, which then returns the resulting best path. Note that
this cost is individually perceived and can contain perception
errors as well as incomplete knowledge.

The behavioral estimation procedure results from rea-
sonable mathematical inference but can be conveniently
illustrated as in Figure 2. The simulation structure is not
changed at all. The estimation algorithm compares the output
of the mobility simulation and a traffic surveillance system.
Based on this comparison, it modifies the cost perception any
agent sends to the router in such a way that it corresponds to
the agent’s behavioral improbability. The resulting behavior
is different insofar as it is not optimal with respect to the



Fig. 2. Estimation

agent’s goals any more, but rather to a more general objective
function representing the state estimation quality.

II. M ODELING AND SIMULATION

The estimation methodology proposed in subsequent sec-
tion III requires a formal description of the traffic model.
Here, such a representation is given for both the physical
model of traffic flow and the mental representation of travel
behavior.

A. Mobility simulation

The physical model combines microscopic and macro-
scopic aspects: Traffic flow dynamics are represented by
a macroscopic model. At diverges, this macroscopic model
splits aggregated flows according to turning fractions that
result from observations of individual behavior in the fol-
lowing way: Massless vehicles passively float in the macro-
scopic traffic stream. Only at diverges they actively choose
their next link. The macroscopic model counts, filters, and
normalizes these turning moves, which yield the required
splitting fractions. Formally,

x(0) = x0

x(k + 1) = f [x(k),u(k), k], (1)

where x(k) is the macroscopic model’s state vector at
discrete timek, f is the state transition function representing
its dynamics, andu(k) is a control vector expressing the
influence of individual behavior onto the macroscopic model:
For every possible turning moveij from link i to link j it
contains one componentuij(k) that represents the number
of vehicles having made this turn at timek by

uij(k) =
∑

µ

uµ
ij(k)

uµ
ij(k) =

{
1 if individual µ made turnij at k;
0 otherwise.

(2)

Approximate Jacobians∂f/∂x and ∂f/∂u are available
due to the macroscopic nature of this model. Thus, from
∂f [k + ∆k]/∂uµ

ij(k) aggregated traffic dynamics can be lin-
earized with respect to any individual’s path choice being
expressed as a sequence of turning moves [5], [6].

Fig. 3. Example of a plan with location choice

This plan comprises a three-stage sequence
residence→work→leisure→residence, which could be typical for an
employed person’s weekday. In this example, the residence stage is only
possible at home, while work can be performed either at the office or at
home, assuming that working at home is feasible for this agent. The leisure
activity is possible either at home or at a shopping mall. Theagent values
the choice of each activity location within every stage according to (a)
the direct benefit a choice of this location provides and (b) the expected
benefit it can expect from the remainder of its daily plan if itis continued
at this location. For example, when finishing work at 16:00 and comparing
the mall and the home location for the leisure stage, a home-working agent
has to take into account the cost of traveling to the mall and back home
which does not arise if the agent stayed home.

B. Behavioral model

1) A model of daily plans:Every agentµ has an indi-
vidual plan for a given day, which is comprised as follows:
The complete day is segmented intonµ +1 temporal stages.
Every such stage0 ≤ a ≤ nµ is provided with a setLµ

a

of one or more locations (network links) and a discrete start
time stepkµ

a with 0 = kµ
0 < kµ

1 < . . . < kµ
nµ . Formally,

stagea is nothing but a fixed temporal interval[kµ
a , kµ

a+1)
during whichµ wants to be at one of the locations inLµ

a . It
can be interpreted as anactivity such as “work”, “leisure” or
“shopping”, while its location set can be understood as the
activity locationswhere the individual expects facilities for
execution of the according activity, e.g. different malls for
a shopping activity. An example of such an activity plan is
given in Figure 3. Note that the underlying network in which
the example locations are situated is not not drawn, but only
the logical multi-stage structure.

Every plan is anchored at its individual’s unique home
location lµ0 = lµhome, where it starts and ends:Lµ

0 = Lµ
nµ =

{lµhome}. Individual µ values the choice of locationl ∈ Lµ
a

for activity a by Rµ
a(l); the cost of choosing this location is

Cµ
a (l) = −Rµ

a(l).
A route of individualµ starting at linki and time stepk0

to link j is denoted byUµ(i, j, k0). It will be convenient to
represent it by

U
µ(i, j, k0) = {uµ(k)}k≥k0

= {(uµ
rs(k))}k≥k0

(3)

whereuµ
rs(k) is defined as in (2). We only considerfeasible

routes in the sense that turning decisions are only made if the
previous route led to a location where this turning move is



physically possible. This property will in the following only
be stated verbally (“U is feasible”), since a formalization
would only increase notational overhead.

For individualµ, the cost of traversingUµ(i, j, k0) is

Cµ[Uµ(i, j, k0)] =
∑

k≥k0

∑

rs

cµ
rs(k)uµ

rs(k)

=
∑

k≥k0

cµ(k)T uµ(k), (4)

which is additive in the nonnegative turning movement costs
cµ
rs(k) as perceived byµ. Link traversal costs can easily be

incorporated by adding them to the turning move cost of en-
tering the according link. Column vectorcµ(k) is comprised
of turning move costscµ

rs(k) in the same order asuµ(k) is
comprised of turning move indicatorsuµ

rs(k). SuperscriptT
denotes the transpose. The minimal cost path forµ between
i andj when starting atk0 is denoted byUµ

opt(i, j, k0) and
its cost byCµ

opt(i, j, k0) = Cµ[Uµ
opt(i, j, k0)].

During execution of their daily plans, individuals are aware
of future effects their current activity location choice might
have: Not the most attractive (least cost) activity location
is chosen, but rather that location, which minimizes the
expected cost for the entire remainder of the day. Since any
individual’s sequence of possible activity locations is known
and finite, dynamic programming can be employed to solve
this decision problem, as it will be shown in the next section.

2) Simulation of daily round trips:In order to describe
the combined route and activity location choice problem as
a multi-stage decision process, a residual costV µ

a (j) is in-
troduced. It is defined as the minimal cost to be experienced
when starting activitya at locationj ∈ Lµ

a and continuing
in an optimal manner:

V µ
a (j) = −Rµ

a(j) + min
l∈L

µ

a+1

{Cµ
opt(j, l, k

µ
a+1

) + V µ
a+1

(l)} (5)

for a < nµ, while Rµ
0 (lµhome) and V µ

nµ(lµhome) can be
arbitrarily set to0 since they have no influence on the final
result.

For µ being located onany link i at time stepk and
heading for activitya, the task of optimally completing its
round trip can now be stated as the problem of finding a next
activity locationlµa ∈ Lµ

a with minimal costCµ
opt(i, l

µ
a , k) +

V µ
a (lµa ), being given by

lµa = arg min
j∈L

µ

a

{
Cµ

opt(i, j; k) + V µ
a (j)

}
. (6)

This can be achieved by calculation of asinglebest path from
i to an imaginary destinationd which directly succeeds all
locationsj ∈ Lµ

a by means of likewise imaginary connecting
links of costV µ

a (j). This simplification is possible since the
next activity’s end time is known and fixed, and from there
on the traveler is back on his/her pre-computed path. This
yields the best next activity location (which is the last real
node on the obtained path) as well as the best path itself.
See Figure 4 for an example.

In the same manner, an optimal round trip can be obtained
by one sweep through all activity stages:lµnµ = lµhome is

Fig. 4. Calculation of a single decision stage

Assume it is 16:00 o’clock: Figure 3’s agent is about to finishits work
stage and leave the office. The choice between going to the mall and
going home for leisure can technically be calculated as follows: Add an
imaginary destination node to the network and connect mall and home
node by likewise imaginary links to that destination. Attach the sum of
each activity’s immediate cost plus its residual cost to theaccording link.
Then, calculate a time variant best path through the network, with link
weights according to the agent’s perception of the current traffic situation.
The obtained best path does not only yield the subjectively optimal route
through the network but also the chosen next activity, whichis the last real
node in the path.

fix. Running backwards through stagesa = nµ − 1, . . . , 0
allows to calculate for every activity locationj of current
stagea the optimal next activity location (6) and its residual
cost (5). Having reacheda = 0, the optimal round trip
can then be obtained by moving forwards through all stages
and choosing the optimal next location as annotated during
the previous backwards sweep. This procedure is standard
dynamic programming.

The calculation of residual costs for all activity locations
requiresnµ best path tree calculations, each one connecting
all locations of a given stage to the single extra node behind
all locations of the next stage.

3) Within-day replanning:This calculation scheme can
efficiently be applied for simulation of within-day replan-
ning: Consider an individualµ, which so far followed a
pre-calculated route towards its next activity locationlµa .
Assume thatµ now faces a significant deviation between
the observed traffic situation and its historically learned
one (on which its pre-computed route is based). It appears
reasonable thatµ spontaneously replans its current decision
stage, while keeping its evaluation of subsequent activity
locations fixed. This is equivalent to direct application of
(6) in order to obtain a new route (and maybe a new
activity location) reflecting the current situation. The only
required computation for such a single-stage decision is the
calculation ofonebest path through one of the next temporal
stages’ locations towards the imaginary destination node
behind it, as previously explained.

Since we have shown that activity location choice can be
subsumed in a slightly modified route choice problem, the
following discussion will only treat the according best path
problem without explicitly mentioning location choice.



4) Discussion of model limitations:Economic theory
suggests that the marginal utility of conducting an activity
decreases over time. The model described above assumes
duration independent activity values implying zero marginal
utilities, which is realistic only for long activity durations.
Currently, we account for this by imposing a lower bound
on stage lengths when generating activity plans.

As long as departure times are fixed at stage transitions,
duration dependent activity values could be incorporated
by making the costs of the aforementioned imaginary links
behind activity locations time variant. Realistic modeling of
departure time choice however would require additional state
information representing the duration an agent has already
been conducting an activity [4].

III. E STIMATION

Section II describes a simulation model for traffic that
consists of two components: a traffic flow simulation, and
a limited model of human behavior, including route and
location choice. This section will now move on to what is
the core of the work presented here, which is how the above
models can be used for model-based data assimilation. The
task is, as usual, to use spatially and temporally incomplete
sensor information to (re)construct spatially and temporally
completesystem state information. Examples for sensor input
are loop detectors, aerial observation, or floating car data.

A. Optimized assignment

The data assimilation problem will be solved by finding
a trajectory of the dynamical system that is as close as
possible to the measurements while still being behaviorally
reasonable. For this purpose, consider for any agentµ the
following discrete-time optimal control problem:

Minimize Jµ(Uµ) =
∑K

k=1
ϕ[x(k), k]

+θµ
∑K−1

k=0
cµ(k)Tuµ(k)

subject to (i) x(0) = x0,
(ii) x(k + 1) = f [x(k),u(k), k],
(iii) u(k) = uµ(k) + u−µ(k),

(iv) U
µ = {uµ(k)}K−1

k=0
is feasible.

(7)
The dynamic system constraints (i) to (iii ) are identical

to (1) and (2) whereu−µ(k) represents the turning indicator
sum of all agentsbutµ. The verbal route feasibility constraint
(iv) is elaborated in section II-B.1.

FunctionalJµ is a sum of two terms. The once differen-
tiable real-valued functionϕ[x(k), k] is only dependent on
macroscopicsystem states. It is identical for all agents and
will later measure the “distance” of the dynamical system’s
trajectory to the measurements, i.e.ϕ is a quality measure
for the data assimilation.

The other addend,cµ(k)T uµ(k), has already been intro-
duced in eq. (4). It measuresµ’s subjectively perceived cost
of moving along a certain path through the network. The
nonnegative real-valued coefficientθµ expresses the weight
of µ’s individual cost avoidance compared to the need to
reproduce given measurements expressed by functionϕ.

Even without further specification, functionalJµ provides
a flavor of how a simulated agent is steered towards more
realistic behavior: If there are no measurements,ϕ disappears
and the agent only minimizes its subjectively perceived cost.
If there are measurements, the agent seeks to minimize a
compromize between measurement reproduction and its own
objectives.

If everyagentµ ∈ M from a given populationM is faced
with the task to optimize anindividual objective function
Jµ by optimally choosing its path through the network, one
obtains a noncooperative game. In the following, we consider
the problem of finding an (approximate) Nash equilibrium
of this |M|-player noncooperative game, i.e. a set of routes
{Uµ}µ for all µ ∈ M such that noµ can (significantly)
reduce its objective functionalJµ by unilaterally switching to
a different path. The bracketed confinements account for the
heuristic nature of the consecutively given solution algorithm
as discussed further below.

1) A single agent:Firstly, the “best response” of a single
agentµ is calculated, i.e. a solution to its individual control
problem (7) under the assumption that all other agents leave
their current route choice unchanged such thatu−µ(k) in
constraint (iii) is constant.

Macroscopic traffic dynamics (1) are linear in good ap-
proximation with respect to a single agent’s behavior, since
individual control variablesuµ

ij ∈ {0, 1} are small compared
to actual turning counts in a congested network. Thus, it is
feasible to consider a linearization ofJµ(Uµ) with respect
to µ’s routing decisionsuµ(k), k = 0 . . .K − 1. This
linearization will be denoted bȳJµ(Uµ). While the difficulty
to account for the dynamic constraints in (7) can be dealt
with by well-known methods from control theory [18] as it
has already been elaborated in a traffic-related context [11],
we give a self-contained explanation in the following.

Denote

Jµ(k) = ϕ[x(K), K] +

K−1∑

c=k

(ϕ[x(c), c] + θ µcµ(c)T uµ(c))

(8)
for k = 1 . . .K. This is the remaining contribution toJµ

from time stepk on. It can be recursively written as

Jµ(k) =







ϕ[x(k), k] + θ µcµ(k)T uµ(k)
. . . + Jµ(k + 1) k = 1 . . .K − 1

ϕ[x(K), K] k = K.
(9)

As a first step, sensitivities with respect tostatesare com-
puted as

dJµ(k)

dx(k)
=







∂ϕ[x(k), k]

∂x(k)
+

dJµ(k + 1)

dx(k)
k = 1 . . .K − 1

∂ϕ[x(K), K]

∂x(K)
k = K.

(10)
Since the interplay between variables at differentk is fully
given by state equation (1),

dJµ(k + 1)

dx(k)
=

∂f [x(k),u(k), k]T

∂x(k)

dJµ(k + 1)

dx(k + 1)
(11)



for k < K, wherex(k + 1) = f [x(k), . . .] was used.
Now, sensitivities with respect tocontrol variablesof a

certain individualµ result from

dJµ

duµ(k)
= θ µcµ(k) +

∂f [x(k),u(k), k]

∂u(k)

T
dJµ(k + 1)

dx(k + 1)
,

(12)
where (i) ∂u(k)/∂uµ(k) yields an identity matrix and thus
disappears from the second addend, (ii ) ∂ϕ[x(k), k]/∂u(k)
disappears sinceu(k) influences no state earlier thanx(k +
1), and (iii ) cµ(k) itself is assumed to be invariant with
respect toµ’s route choice.

SensitivitiesdJµ/duµ(k) can therefore be obtained in a
two-pass-procedure:

1) Using eq. (11), solve eq. (10) recursively fork =
K . . . 1. Moving backwards through time introduces a
“far sightedness” into the calculation, which is neces-
sary to predict a given time step’s variations’ influence
onto future system states.

2) Determine the influence of controls by (12) fork =
0 . . .K − 1.

One obtains forJ̄µ, the linearized version ofJµ, the follow-
ing expression:

J̄µ(Uµ) = Jµ(Ū
µ
) +

K−1∑

k=0

(
dJµ

duµ(k)

)T

(uµ(k) − ūµ(k))

(13)
whereŪ

µ
= {ūµ(k)}k is the sequence of turning decisions

around which linearization took place. This can be re-written
as

J̄µ(Uµ) =
K−1∑

k=0

∑

ij

dJµ

duµ
ij(k)

uµ
ij(k) + const. (14)

where the constant addend contains all terms involving the
control trajectoryŪ

µ
around which linearization took place,

which is irrelevant to the considered minimization problem.
J̄µ(Uµ) is a sum of time variant costs

dµ
ij(k) =

dJµ

duµ
ij(k)

∣
∣
∣
∣
∣

insert eq. (12)

= θ µcµ
ij(k)+

∂f [x(k),u(k), k]

∂uij(k)

TdJµ(k + 1)

dx(k + 1)
(15)

multiplied with the turn indicatorsuµ
ij(k). For our problem,

this means that, for each turn taken by the driver along
the route given by theuµ

ij(k), the correspondingdµ
ij(k) are

summed up. In other words,̄Jµ(Uµ) is minimized when
driver µ takes the route that minimizes the sum of thedµ

ij(k)
along the way. This can be solved by a time-dependent
shortest path algorithm on a network where the original
network’s links comprise the new nodes and every possible
turning movement in the original network is represented by
a new link ij with time variant cost given bydµ

ij(k).
The dµ

ij(k) are additively comprised of two terms which
reflect the likewise additive structure of the originally non-
linear problem: the first addend in eq. (15) is the weighted
cost of taking turnij at time k as individually perceived

Algorithm 1 Many Agent Game
choose an initial routeUµ for every agentµ ∈ M;
for (n = 1 . . . N) do:

1) load all vehicles onto the network;
2) randomly choose a subsetM′ ⊂ M such that|M′| ≈ |M| ·

mn/N where m is the fraction of agents being allowed to
replan in iterationN (we used 0.005);

3) differentiate target functional for allµ ∈ M′ and obtain (14);
4) calculate a new trajectoryUµ for every µ ∈ M′ that

approximately minimizes̄Jµ(Uµ) as given in (14) by dynamic
best path algorithm;

by µ, while the second addend represents an additive cost
correction that accounts for the system-wide part of the
objective function.

In summary: Moving a traveller from its current path to
a path that is shortest in the network given by thedµ

ij(k) as
described above will reduce the linearized functionalJ̄µ and
therefore, in all likelihood, also the original functionalJµ.
Calculating one such best path for a single agent only solves
a linear problem approximation, similar to the linear step in
the Frank-Wolfe algorithm [19]. The nonlinear problem for
an entire population is discussed next.

2) Many agents:Having found an (approximate) solution
to a single agent’s optimal control problem, we now proceed
to discuss the problem of simultaneously minimizing the
objective functions of all agents. We propose Algorithm 1
for the solution of this problem.

This algorithm resembles a popular dynamic traffic assign-
ment (DTA) method that iteratively solves the equilibrium
problem by reassigning in every iteration a decreasing frac-
tion of demand to the currently best path, e.g. [21]. Our major
technical difference to a typical DTA is that our population
is fully disaggregated. This implies that (i) every link is a
possible origin or destination and (ii ) we do not calculate
path splits but assign a unique route to every traveler.

We have collected years of positive experience with this
type of assignment for “plain” simulation purposes, i.e. in
a setting where the common termϕ[. . .] in every agent’s
objective function (7) vanishes [16]. If, on the other hand,
only the common termϕ[. . .] remains, we obtain a game of
identical interests. For such a problem, fictitous play has been
proven to converge to an equilibrium in mixed strategies, i.e.
with a path choicedistribution for every agent [15], and also
been applied to the calculation of system optimal routings
[8]. However, since we constrain ourselves to pure strategies,
i.e. every agent memorizes only a single best route, not even
the existence of an equilibrium can be ensured. In light of
this, we conclude that for a first experimental investigation
Algorithm 1 is a reasonable choice.

The following section will provide a concrete application
of the proposed algorithm.

B. Bayesian problem formulation

The above section showed how a system trajectory can
be found which fulfills our dynamic model, as explained in



Section II, and at the same time minimizes a given func-
tional as much as possible. This functional should describe
“closeness” to a given set of spatio-temporal measurements.
A specific version of this functional will be developed in
the following, with the additional assumption that these
measurements can contain errors.

1) Modeling of anonymous traffic measurements:As a
first step, the macroscopic state equation (1) is supplemented
with an output equation

y(k) = g[x(k), ε(k), k], (16)

which maps system statesx(k) by a once differentiable
functiong onto macroscopic observablesy(k) such as flows,
velocities or densities. This is standard procedure in control
theory. The system outputy(k) is generated by sensors
such as inductive loops, floating cars, or traffic surveillance
cameras. Since these sensors are prone to various sources of
error, these influences are expressed by a random disturbance
vectorε(k) that turnsy(k) itself into a random variable.

Although our approach can handle the general formulation
(16), we will in the following adopt a more specific case,
that is more amenable to an intuitive understanding of
the formalism. Assume that only link-related outputs are
available and generated by

yi(k) = gi[xi(k)] + εi(k) (17)

with εi(k) being normally distributed with expectation0 and
known varianceσ2

i . By output i’s conditional probability
Pr(yi(k)|xi(k)) we denote the probability thatyi(k) lies
within a δ-environment aroundgi[xi(k)]:

Pr(yi(k)|xi(k)) = Pr(−δ ≤ εi(k) ≤ δ) (18)

with δ sufficiently small to allow with reasonable precision
for the first-order approximation

Pr(yi(k)|xi(k)) ≈
2δ

√

2πσ2
i

exp

(

−
(yi(k) − gi[xi(k)])2

2σ2
i

)

,

(19)
which can be subsumed in terms of trajectoriesY = {y(k)}k

andX = {x(k)}k as

Pr(Y |X ) =
∏

k

Pr(y(k)|x(k))

=
∏

k

∏

i

Pr(yi(k)|xi(k)), (20)

where stochastic independence between outputs on different
links or different time steps results from the simplified
assumption of univariate normal output errors (17). This is,
so far, the not unexpected result that all spatio-temporal mea-
surements can be probabilistically described when all spatio-
temporal system states{x(k)}k ar known – no behavioral
information{u(k)}k is needed directly.

Nevertheless, the states{x(k)}k are indirectly caused
by the travellers’ behaviours{u(k)}k. From recursive eq.
(1) one notes that indeedx(k) is fully defined by control
sequence{u(c)}k−1

c=0 , which directly results from the entire
populations’ path choice set{Uµ}µ via (2). This dependency

implies the existence of a conditional probability

Pr(Y |{Uµ}µ) = Pr(Y |X ({Uµ}µ)). (21)

This equation just states that the probability to obtain certain
measurements can be described as depending directly on the
travellers behavior. Note that this specific form is also a con-
sequence of the assumption that, once the travellers behavior
is known, the traffic dynamics will unfold deterministically.

This conditional probability can be linearized because of
all intermediate steps’ differentiability.

2) Formulation of the estimation problem:Already at this
point, an estimation problem could be formulated: Modify
the (generalized) routes{u(k)}k such that the conditional
probability for the measurements that were obtained from re-
ality, Pr(Y |{Uµ}µ), is maximized. This will often, however,
lead to rather unrealistic routes: Travellers zig-zag through
the network just to be at measurement locations when needed
there. What is needed is, therefore, a formulation that allows
the simulated travellers to fulfill the measurements withina
plausible behavioral range, while at the same time allowing
for the measurements themselves to contain errors. In other
words: If a measurement cannot be fulfilled by modifying
travellers’ behavior within a plausible range, then the system
should decide that the measurement is probably erroneous.

a) A single agent: So far we made the behavioral
assumption that every individualµ chooses a best path
based on its individual cost perception. We abstain from
assumptions of how this perception is generated. This implies
that we have to take this perception as a deterministic feature
of the behavioral model and specifically cannot make any
assumption about a possible distribution from which it might
have been drawn. However, we need some kind of behavioral
uncertainty because otherwise there is no degree of freedom
left for estimation. Thus, we probabilistically relax the “best
response” assumption in such a way that better paths are
still prefered but there is now a nonzero probability that a
suboptimal path is chosen.

A convenient path choice probability formulation is

Pr(Uµ) =
exp(−θµCµ(Uµ))

∑

V exp(−θµCµ(V))
, (22)

where the normalizing denominator sumsover all possible
paths V from the individual’s current location to its des-
tinations.Note that this choice set will never be explicitly
generated.The larger parameterθµ is chosen, the more
careful is individualµ in choosing the best path. A possible
interpretation of this formulation as a multinomial logit
model is given in Section III-B.3.

Now it is assumed that some measurementsY are avail-
able. The a posteriori probabilityPr(Uµ|Y) that an individ-
ual chose pathUµ in consideration ofY is expressed via
Bayes’ theorem:

Pr(Uµ | Y) =
Pr(Y | U

µ) Pr(Uµ)

Pr(Y)
, (23)

wherePr(Y | U
µ) is equivalent to (21) with the route choice

of all individuals other thanµ being fixed. After taking the



logarithm of this function, we substitute (20) and (22):

ln Pr(Uµ | Y) =
∑

ik

ln Pr(yi(k)|xi(k)) − θµCµ(Uµ)

− ln
∑

V

exp(−θµCµ(V))−ln Pr(Y)

︸ ︷︷ ︸

independent ofUµ

(24)

Here and in the following equations one should keep in mind
that thexi(k) depend on theuij(k), which in turn are defined
by theuµ

ij(k) (cf. equation 21 and 2). Substituting (4) as well
as (19) and dropping all terms independent ofU

µ, we obtain

ln Pr(Uµ|Y) ∼= −
∑

ik

(yi(k) − gi[xi(k)])2

2σ2
i

−θµ
∑

ijk

cµ
ij(k)uµ

ij(k). (25)

We propose the maximization of this a posteriori prob-
ability as a point estimator forµ’s most likely behavior
given measurementsY , an a priori simulated cost perception
Cµ[Uµ], and a parameterθµ representing the precision ofµ’s
best path choice. For maximization, control problem (7)’s
objective functional is specified as

Jµ(Uµ) = − lnPr(Uµ|Y) (26)

and the linearization-based approximate optimization proce-
dure of Section III-A.1 is applied. The global term in the
objective functional of (7) then becomes

ϕ[x(k), k] =
∑

i

(yi(k) − gi[xi(k)])2

2σ2
i

, (27)

while the term that represents individualµ’s cost-avoidance,
θµ

∑

ijk cµ
ij(k)uµ

ij(k), has now been derived from the impre-
cise best response assumption (22).

In words, equation (25) states that the “quality measure”
for the assignment problem is now composed of two con-
tributions: (1) the quadratic “distance” between the system
trajectory and the measurements; and (2) the “real” gener-
alized cost of the path selected by the traveller. Implausible
paths, selected only to fulfill the measurements, will thus be
punished by large real generalized costs. The trade-off be-
tween the two contributions is given by the balance between
the σ2

i and theθµ. Plausibly, when the expected error of
a measurement,σ2

i , goes up, the weight of its contribution
goes down. Similarly, when a traveller places less emphasis
on a utility-maximizing solution by having aθµ close to zero,
then the weight of the behavioral contribution is reduced.

b) Many agents:If the behavior of more than one agent
is to be estimated simultaneously, the line of arguments given
above has to be taken with care. For clarification, assume
that there are no measurements. Since the imprecision in
any traveler’s best path calculation can be taken as an
independent random effect, the population’s prior behavioral
distribution is Pr({Uµ}µ∈M) =

∏

µ∈M Pr(Uµ). Without
measurements, the posterior equals the prior and the same
manipulations as before would yieldln Pr({Uµ}µ∈M|Y) ∼=

−
∑

µ∈M θµ
∑

ijk cµ
ij(k)uµ

ij(k). If, however, the mode of
this distribution was still used as an estimator, it would
predict a behavioral pattern in which all agentscooperated
in an attempt to minimize thesystem-widetravel cost, i.e.
a system optimum(SO). This contradicts the previously
described model of individual cost minimization which rather
calls for auser equilibrium(UE).

We therefore abstain from the formulation of a joint
behavioral distribution and rather propose to maximize every
agent’s behavioral a posteriori probability (25)individually
in a noncooperative game by means of Algorithm 1. In the
absence of measurements, this solution approach lets every
agent individually minimize its perceived costnoncoopera-
tively, which results in the desired UE.

3) Discussion of problem formulation:While the applica-
tion of Section III-A’s algorithm to the estimation problem
given above is straightforward, several remarks are given
here to clarify the algorithm’s working.

(i) Behavioral posterior distribution (25) results from the
simplifying assumption of univariate normal measurement
errors (17). More general distributions are possible.

(ii ) Path choice distribution (22) is formally identical
to a multinomial logit model. Its interpretation as this
specific random utility model implies the assumption of
independently and identically distributed errors in a traveler’s
perceptional error for every path. This alone is not a realistic
assumption, since the perception of overlapping paths may
be highly correlated [3]. One can, however, argue that
the individually simulatedcost perceptionCµ(Uµ) already
representsµ’s link related cost perception and the logit
model only expressesadditional error terms that arenot
link related. Thus, the problem of cost correlations among
different alternatives is taken care of by explicit simulation
of cost perception, while the logit model captures additional
path preferences that cannot be captured by the turning-move
related cost componentscµ

ij(k).
(iii ) Using the posterior’s mode as apoint estimatordis-

cards information contained in the full posteriordistribution.
Still, this discrepancy is mostly of theoretical concern: Avail-
able measurements do incorporate real-world randomness
and its resulting path-spread into the estimated behavior.
Furthermore, a congested assignment distributes paths across
various alternatives as well. Moreover, the obtained point
estimates have the following desirable properties: (a) in the
absence of measurements, the system reproduces a UE, (b) if
there are enough measurements to define a unique estimate,
a noninformative prior (in terms of very smallθµ) can be
chosen such that a Maximum Likelihood estimator results.
Case (b) is certainly desirable but in general unlikely since
usually there are many path combinations that generate the
same aggregated measurements.

(iv) The solution algorithm relies on repeated lineariza-
tions of (25) with respect to any agentµ’s path choice.
Specifically, eq. (14) turns into

J̄(Uµ) =
∑

k

∑

ij

(
θµcµ

ij(k) + λij(k)
)
uµ

ij(k), (28)



where real-valued coefficientsλij(k) result from the lin-
earization steps described in Section III-A.1 when applied
to the quadratic measurement error term, while the path cost
perception term is already linear. Equation (15) together with
eq. (14) defines theλij(k). These coefficients represent the
additive modifications to the individual cost perception as
described in Section I-B. Since they are identical for all
agents, they have to be calculated only once per iteration.

(v) Choosing a non-cooperative game as the solution
algorithm is a technically convenient choice: it is structurally
identical to a “plain” DTA procedure, with the only differ-
ence being the modifications in agents’ link cost perception.
This design fosters the integration of the estimation system
with an existing simulator with the only points of interference
being the individual agents’ best path calculations. Consid-
ering the high complexity of full-blown traffic simulation
systems, this feature appears to be of significant practical
relevance.

(vi) Both, planning (offline) and telematics (online) appli-
cations can be dealt with by the proposed method. The major
difference is the information about the network state that is
repeatedly given to the agents during the iterative estimation
procedure. If every agent is provided with global knowledge
of the system state as it resulted from the very last iteration,
the algorithm converges in the absence of measurements to-
wards a UE, and otherwise towards a statistically reasonable
compromise between a UE and the observed measurements.
If, on the other hand, the information updates given to the
agents are constrained to what is actually observable to
the agent in that moment, the algorithm does not converge
to a strict UE any more, but rather to a solution which
realistically regards for a randomly influenced within-day
situation. In the latter case, historical information contained
in the drivers’ activity plans must be used to complement
the local observations.

IV. EXPERIMENTS

A. Setting of the test case

We have set up an extensive test case for the proposed
method. The geographical zone of investigation is the city
of Berlin. Its traffic network is represented by a graph of
approximately 2400 links. The MATSim system has been
used to generate activity plans for a complete microscopic
representation of the Berlin population. The experiments
described here use a 10% sample of this population (approx.
170.000 agents). A simulation of the full population was
prevented only by the applied machine’s limited memory of
2GB.

We gained first experiences with this test case in a real-
world application during the soccer world championship
2006. Since we encountered severe problems with all kind
of data corruption (including errors in the network file,
unrealistic activity plans, unreliable measurements) during
this project, this article considers a setting in which most
uncertainties have been removed in order to study the method
itself rather than a specific scenario. Accordingly, the results
given here are to be understood as a preliminary study of

Fig. 5. Experiment (a)

No incorporation of measurements.̺ = 0.785.

algorithmic feasibility. Increasing realism with respectto
various sources of disturbances is subject of our ongoing
research.

All experiments use synthetically generated measurements
as follows: Plans from an imperfect MATSim traffic assign-
ment that did not reach a user equilibrium were loaded
onto the network using the same mobility simulation as
the estimator itself. For 10% of all links, we collected 5-
minute averages of the number of vehicles on these links as
measurement data. The experiments were run from 6am to
9am, which is the time of the strongest traffic variations in
the simulation because of the morning rush hour. Since the
imperfect MATSim result is not a user equilibrium, it can
be understood as a behavioral deviation from such, which is
exactly the type of situation our method has been designed
to handle.

B. Experiments

Four exemplary experiments are discussed. The resulting
scatterplots are depicted in Figures 5, 6, 7, and 8, where
̺ is the coefficient of correlation and point coordinates are
(measured value / simulated value).

In experiment (a), the estimator is run without the use of
any measurements. As a result, it generates a best assumption
of traveler behavior given the MATSim activity plans by
iterating these plans until an approximate user equilibrium is
achieved. One observes significant deviation between simula-
tion and estimation. This can be explained by the working of
the estimation algorithm in the absence of any measurements:
In this case, only the behavioral a priori information is avail-
able, which results in a plain user equilibrium assignment
as explained above. Since the measurements were generated
from a non-equilibrium situation, but are not available to the
estimation procedure, the scatterplots represent nothingmore



Fig. 6. Experiment (b)

No incorporation of behavioral model.̺= 0.988.

Fig. 7. Experiment (c)

Reasonable combination of measurements and behavioral model. ̺ =

0.974.

but the measurements’ deviation from a user equilibrium.
In experiment (b), parameters were set such that the algo-

rithm attempted to reproduce the measurements by ignoring
behavioral a priori assumptions as much as possible: Only
measurement-induced cost corrections were visible to replan-
ning agents, while the cost of travel itself was completely
ignored. The very good measurement reproduction indicates
that the method works well. The not totally perfect fit is due
to various causes, some of which were deliberately accepted
while others are still under investigation. Unavoidable but to
some degree tunable causes of imprecision are: Incorporation

Fig. 8. Experiment (d)

Calculated with rolling horizon in real time.̺ = 0.959.

of various mathematical simplifications in the estimation
algorithm in order to keep up tractability; use of a random
solution mechanism with finite resolution; discretizationof
macroscopic quantities in time and space on a quite large
scale for reasons of computational performance; use of a
linearization based method that might converge only towards
a local optimum of the problem.

Experiment (c) incorporates the behavioral model with a
reasonable weight. As a result, the estimation algorithm ab-
stains from calculating routes that are very unrealistic given
an agent’s activity plan, even if such behavior yield a better
measurement fit. The reproduction quality of measurements
involved in the estimation is now slightly worse than in
experiment (b). The reason for this is the newly incorporated
influence of the estimator’s behavioral model, which contra-
dicts the unrealistic behavioral nature of the measurements.
Since in general measurements are just as error-prone as
simulation results, such a compromise is desirable. When
judging the estimation quality, it is important to keep in
mind that the scatterplots only depict one half of the entire
estimation problem; the behavioral fit based on the a priori
generated activity plans is not visualized.

Given the general setting as described in experiment
(c), the method’s real-time capabilities are investigatedin
experiment (d). While the previous experiments were run to
convergence, here a rolling horizon approach with a time
window of 30 minutes was used. The window moved for-
wards at 1-minute steps, which is approximately the duration
of one estimation iteration. During every iteration, a new path
was calculated for 3% of the entire population. The result is
slightly worse than that of experiment (c) but still indicates
a significant improvement over experiment (a).

The scatterplots for experiments (b) through (d) compare
simulation results only to measurements that also were made



available to the estimation algorithm (in-sample results). We
are currently inquiring the various factors that influence
the quality of out-of-sample results, such as measurement
quality, quantity, location, and type. An important issue is
the danger of over-fitting especially in the case of sparse
measurements. Let us just state here that we do observe
significant out-of-sample improvements, which are (as one
would expect) qualitatively between in-sample results and
estimation results obtained without the use of any measure-
ments, i.e. between experiments (c) and (a). However, we
made these recent observations in a different experimental
setting than used in the study presented here. Further inves-
tigations will provide more insight into this issue.

Even if much more experiments will be necessary to fully
understand all implications of the method, these experiments
assert the algorithm’s computational feasibility even in large-
scale scenarios.

V. SUMMARY AND OUTLOOK

We presented a novel method for behavioral traffic state
estimation based on a priori generated activity plans and
anonymous traffic measurements. First experiments indicate
that the method works with good precision in reasonable
time even for large problems. Still, since the experiments
conducted so far only used synthetically generated measure-
ments, many aspects are yet to be explored.

One major simplification was the generation of mea-
surements by the same mobility simulation the estimator
itself used. Since model-based assumptions about traffic flow
dynamics are currently incorporated as error-free information
in the estimation formulation, further investigations with real
world data might show that a relaxation of this assumption
will be necessary. Since methods for the adjustment of
physical traffic flow processes to measurements are available
from the systems engineering literature, an integration of
both estimation approaches appears reasonable as stated in
the introduction.

A similar statement holds for the occurrence of incidents,
which can be considered as structural deviations between
modeling assumptions about traffic dynamics and the real
situation. The implementation of an additional incident de-
tection module definitely would greatly increase the system’s
real-world applicability.

An improved a priori demand also implies a better es-
timation quality. As recent experiments have shown [7], a
brute force attempt to only reproduce measurements does not
provide a reasonable overall picture of the traffic situation,
which makes the incorporation of good behavioral a priori
assumptions necessary. This observation also suggests a nat-
ural operation scheme of the method in a traffic management
center: In continuous operations, the estimator could be
employed to track within-day fluctuations. If an additional
update of the agents’ activity plans on a daily basis was
realized, the overall system could incrementally improve a
transport planning simulation based on these plans as well.
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