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Abstract— This work addresses a behavioral state estimation Fig. 1. Simulation
problem using multi-agent traffic simulations. Firstly, a model Souation
of individual route and activity location choice is presened eop < path of minimum cost
which can be simulated by a combination of a time variant Bt (e
. . . . . algorithm
best path algorithm and dynamic programming, yielding a | percelved cost

behavioral pattern that minimizes a traveler's perceived ©st.
Secondly, an estimation method is presented that adjusts
this individual behavior to anonymous measurements of link
related traffic characteristics using an algorithm for optimized
microscopic traffic assignment which itself is a novel tool th
potentially broad applicability.

mobility
I. INTRODUCTION simulation

A. Problem statement

perception

The problem of traffic monitoring and prediction has . .
been considered by many researchers. Various approackBgWedge should be aggregated away during the formalizing
are data-driven [9], [10], [23], while others adjust sture steps of settllng up a rr!athematlgal estlm-atlon problem.
models to real world measurements. The latter group can '€ remainder of this article is organized as follows. A
further be classified with respect to what quantities aréonceptual overview is given in the second part of this sec-
estimated: Some consider the problem of estimating physiciPn- The deterministic modeling and simulation problem is
traffic flow properties such as densities, velocities, or flovfliscussed in Section I, with a focus on behavioral issues an
parameters [13], [22], while others (including this work)SOMe necessary backgrounq on .the used traffic flow model.
concentrate on the underlying demand itself and consieer tf| "€ incorporation of uncertainty into the model then allows
physics of traffic flow as a dependent effect [2], [14], [20]'_to form_ulate the Bayesian _est|mat|on problem formulation
The second point of view is closer to the real problemd Section I_II, where a solution method is presentgd as well.
structure, since traffic demand is the cause of road usagzé.rSt experimental results are discussed in Section IV and
still, estimation of traffic demand and network link relatedn@lly the article is concluded in Section V.
guantities are two aspects of the same problem and uItiynateé' Conceptual overview
should not be separated [1]. : . ) . .

This article describes a method for traffic state estimation '€ tr_afflc model is decomposed Into a MICroscopic rep-
that uses multi-agent simulations. We combine a f|exib|5ese_r1_tat|0_n of t_raveler behavior and a m_'XEd mlcro/ma_cro
but little formalized representation of individual mobjli MePpility simulation. Some aspects of the implemented sim-
behavior as implemented in the MATSim project [17] witht/ation logic are depicted in Figure 1. In an attempt to
well understood methods of system engineering [12]. Thialize their individual activity plans, travelers_ corgidheir
allows us to consider the problem of estimating agentéong' an_d shor_t-term _ob_serva_tlons o‘_c the trafflc system when
route and activity location choice in a Bayesian setting bgerformlng actions within their physical environment. fiec

combining for every agent an a priori activity plan for a give Nically, an agent modifies its current path by sending an

day with anonymous traffic measurements such as flows BPIECt representingits perceived cost of network link esiag
densities into a most likely a posteriori plan. a router, which then returns the resulting best path. Nate th

Our work appears to be the first in this field which esti_this cost is individually perceived and can contain pericgpt

mates fully individualized behavior from anonymous trafficerr_l(_)r:S abs \évell_ as Imcor_nple_te knowlegge. its
measurements. The choice of this objective is justified By th te)l € avkllora _estllma?on procs ure reEu ts from .real-
observation that traffic demand results from heterogeneo gnable mathematical inference but can be conveniently

individual mobility needs. Thus, no validated individuzid UStrated as in Figure 2. The simulation structure is not
changed at all. The estimation algorithm compares the outpu
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ning and Transport Telematics, Technische UniversitatliBeD-10587 Based on this comparison, it modifies the cost perception any
Berlin, Germany. Tel: +49-30-314-29520, fax: +49-30-2b269, mail: zgent sends to the router in such a way that it corresponds to
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Fig. 2. Estimation Fig. 3. Example of a plan with location choice
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agent’s goals any more, but rather to a more general obgectivhis plan comprises a three-stage sequence
function representing the state estimation quality. residence-work—leisure—residence, which could be typical for an

employed person’s weekday. In this example, the residetage ss only

possible at home, while work can be performed either at tfieeobr at

II. MODELING AND SIMULATION home, assuming that working at home is feasible for this agédre leisure

activity is possible either at home or at a shopping mall. @agent values

The estimation methodology proposed in subsequent sdfe choice of each activity location within every stage ado@ to (a)

. . . . the direct benefit a choice of this location provides and [ig) éxpected
tion 11l requires a formal _deS(_:”pt_lon of the traffic mOde_I'benefit it can expect from the remainder of its daily plan ifitcontinued
Here, such a representation is given for both the physicad this location. For example, when finishing work at 16:08 anmparing

model of traffic flow and the mental representation of travdhe mall and the home location for the leisure stage, a hoorkimg agent
behavior. has to take into account the cost of traveling to the mall aackthome

which does not arise if the agent stayed home.

A. Mobility simulation

The physical model combines microscopic and macrcE" Behavioral model

scopic aspects: Traffic rovy dynamic_s are represgnted bY1) A model of daily plans:Every agentu has an indi-

a macroscopic model. At diverges, this macroscopic modglqual plan for a given day, which is comprised as follows:
splits aggregated flows according to turning fractions thaghe complete day is segmented intt+ 1 temporal stages.
result from observations of individual behavior in the fO"Every such stag® < a < n* is provided with a setC*
lowing way: Massless vehicles passively float in the macrqsf one or more locations (network links) and a discrete start
scopic traffic stream. Only at diverges they actively choosgme stepk’ with 0 = ki < kI < ... < k".. Formally,
their next link. The macroscopic model counts, filters, andtageq is nothing but a fixed temporal intervat®, k., )

. . . . . a+1
normalizes these turning moves, which yield the requiregyring whichy wants to be at one of the locations 4. It
splitting fractions. Formally, can be interpreted as aativity such as “work”, “leisure” or

x(0) = xo “shopping”, while its location set can be understood as the

activity locationswhere the individual expects facilities for

x(k+1) = flx(k),u(k) k], @) execui/ion of the according activity, e.g.pdifferent malts f
where x(k) is the macroscopic model's state vector a@ shopping activity. An example of such an activity plan is
discrete timek, f is the state transition function representinggiven in Figure 3. Note that the underlying network in which
its dynamics, anda(k) is a control vector expressing the the example locations are situated is not not drawn, but only
influence of individual behavior onto the macroscopic modethe logical multi-stage structure.

For every possible turning movig from link i to link j it Every plan is anchored at its individual's unique home
contains one component;(k) that represents the numberlocationlij =1}/, ., where it starts and end£y = £/, =
of vehicles having made this turn at tinieby {l)¥ .} Individual 1 values the choice of locatiohe L/
. for activity a by R¥(1); the cost of choosing this location is
wik) = 3 ulj(k) (1) = —Re(D).
1

A route of individualy starting at linki and time stepkg
(2) tolink j is denoted by4" (i, j, ko). It will be convenient to
represent it by

Approximate Jacobian®f/0ox and 0f /0u are available L B B

due to the macroscopic ﬁature of thi/s model. Thus, from UG g ko) = (i (R)bizro = {(urs (R bizke - (3)
of[k + Ak|/0uj;(k) aggregated traffic dynamics can be lin-whereu! (k) is defined as in (2). We only considferasible
earized with respect to any individual’'s path choice beingoutes in the sense that turning decisions are only made if th
expressed as a sequence of turning moves [5], [6]. previous route led to a location where this turning move is

1 if individual ; made turnij at k;
0 otherwise



physically possible. This property will in the following yn Fig. 4. Calculation of a single decision stage
be stated verbally ¥ is feasible”), since a formalization
would only increase notational overhead.

For individual i, the cost of traversing(” (i, j, ko) is

CH U (i, 5, ko)] = D> i (k)utt(k)
k>ko T8
= > (k) u(k), (4)

k>ko
which is additive in the nonnegative turning movement costs
ct (k) as perceived by:. Link traversal costs can easily be
incorporated by adding them to the turning move cost of en-
tering the according link. Column vectef (k) is comprised
of turning move costg’ (k) in the same order as*(k) iS  Assume it is 16:00 o'clock: Figure 3's agent is about to finishwork
Comprised of turning move indicators; (k) Superscriptl“ stage and leave rhe office. The _choice between going to thé andl
d tes the t Th . | s t path.fbet going home for leisure can technically be calculated aval Add an
.eno e_S € ranspose' _e minimal Cost pa m CIWEEN  imaginary destination node to the network and connect mafl home
1 andj when starting ak is denoted b)ugpt(z,], ko) and  node by likewise imaginary links to that destination. Altaihie sum of
its cost bycﬂ t@"j, ko) = M [uﬂ t(i’j7 ko)] each activity’s immediate cost plus its residual cost to dbeording link.

op op .

. . . . T Then, calculate a time variant best path through the netwarth link
During execution of their daily plans, individuals are a@var yeights according to the agent's perception of the curnifid situation.

of future effects their current activity location choiceght The obtained best path does not only yield the subjectiveljn@l route

have: Not the most attractive (least cost) activity loaatio through the network but also the chosen next activity, wiikcthe last real

is chosen, but rather that location, which minimizes thgOde In the path.

expected cost for the entire remainder of the day. Since any

individual's sequence of possible activity locations ioWm ]

and finite, dynamic programming can be employed to sohi: Running backwards through stages= n* —1,....,0

this decision problem, as it will be shown in the next sectiorfllows to calculate for every activity location of current
2) Simulation of daily round tripsin order to describe stagea the optimal next activity location (6) and its residual

the combined route and activity location choice problem a0st (5). Having reached = 0, the optimal round trip

a multi-stage decision process, a residual dgstj) is in- can then b_e obtained_by moving forwards through all stages
troduced. It is defined as the minimal cost to be experienc d chor)srng the optimal next Iocat_|0n as annotarted during
when starting activity: at locationj € £/ and continuing the previous backwards sweep. This procedure is standard
in an optimal manner: dynamic programming.
The calculation of residual costs for all activity location
V(i) = —R&() +l€n£1Ln {COp (s L k) + Vil (D} (5) requiresn* best path tree calculations, each one connecting
o all locations of a given stage to the single extra node behind

for a < n#*, while Ry(l}, ) and V. (I}, ) can be all locations of the next stage.
arbitrarily set to0 since they have no influence on the final
result.

network

3) Within-day replanning:This calculation scheme can
, o ) efficiently be applied for simulation of within-day replan-
For 1 being located orany link 7 at time stepk and  ing. consider an individual, which so far followed a
heading for activitya, the task of optimally completing its e calculated route towards its next activity locatitin
round trip can now be stated as the problem of finding a nessyme that now faces a significant deviation between
activity locationl}; € L{; with minimal costCy,(i, 14, k) +  the observed traffic situation and its historically learned
V{(l3), being given by one (on which its pre-computed route is based). It appears
11 = arg min {C% (i, 5; k) + VI(j)} - (6) reasonable that spontaneously replans its current decision
JjeLy stage, while keeping its evaluation of subsequent activity
This can be achieved by calculation ofiaglebest path from locations fixed. This is equivalent to direct application of
i to an imaginary destinatiord which directly succeeds all (6) in order to obtain a new route (and maybe a new
locations; € Eé‘ by means of likewise imaginary ConnectingaCtiVity Iocation) reflecting the current situation. TheI)on
links of costV*(j). This simplification is possible since the required computation for such a single-stage decisionés th
next activity’s end time is known and fixed, and from therecalculation ofonebest path through one of the next temporal
on the traveler is back on his/her pre-computed path. Thi#ages’ locations towards the imaginary destination node
yields the best next activity location (which is the lastlreabehind it, as previously explained.
node on the obtained path) as well as the best path itself.Since we have shown that activity location choice can be
See Figure 4 for an example. subsumed in a slightly modified route choice problem, the
In the same manner, an optimal round trip can be obtainddllowing discussion will only treat the according bestipat
by one sweep through all activity stagd§,. = I/’ is  problem without explicitly mentioning location choice.

home



4) Discussion of model limitationsEconomic theory Even without further specification, functionéf provides
suggests that the marginal utility of conducting an activita flavor of how a simulated agent is steered towards more
decreases over time. The model described above assumeslistic behavior: If there are no measuremeptdisappears
duration independent activity values implying zero maagin and the agent only minimizes its subjectively perceived.cos
utilities, which is realistic only for long activity duraths. If there are measurements, the agent seeks to minimize a
Currently, we account for this by imposing a lower boundcompromize between measurement reproduction and its own
on stage lengths when generating activity plans. objectives.

As long as departure times are fixed at stage transitions, If everyagentu € M from a given populatiooM is faced
duration dependent activity values could be incorporatedith the task to optimize amndividual objective function
by making the costs of the aforementioned imaginary linkg* by optimally choosing its path through the network, one
behind activity locations time variant. Realistic modgliof  obtains a noncooperative game. In the following, we comside
departure time choice however would require additiondaéstathe problem of finding an (approximate) Nash equilibrium
information representing the duration an agent has already this | M|-player noncooperative game, i.e. a set of routes

been conducting an activity [4]. {Uu"}, for all p € M such that nop can (significantly)
reduce its objective functiondl* by unilaterally switching to
lIl. ESTIMATION a different path. The bracketed confinements account for the

Section Il describes a simulation model for traffic thaheuristic nature of the consecutively given solution atfon
consists of two components: a traffic flow simulation, ands discussed further below.
a limited model of human behavior, including route and 1) A single agentFirstly, the “best response” of a single
location choice. This section will now move on to what isagentu is calculated, i.e. a solution to its individual control
the core of the work presented here, which is how the abowsoblem (7) under the assumption that all other agents leave
models can be used for model-based data assimilation. THir current route choice unchanged such that'(k) in
task is, as usual, to use spatially and temporally incoraple€onstraint (iii) is constant.
sensor information to (re)construct spatially and temippra  Macroscopic traffic dynamics (1) are linear in good ap-
completesystem state information. Examples for sensor inpuyaroximation with respect to a single agent's behavior, sinc
are loop detectors, aerial observation, or floating car.dataindividual control variables;; € {0, 1} are small compared
to actual turning counts in a congested network. Thus, it is
A. Optimized assignment feasible to consider a linearization df*(U4") with respect

The data assimilation problem will be solved by findingl© #'s routing decisionsu”(k), k& = 0...K — 1. This
a trajectory of the dynamical system that is as close d#iearization will be denoted by* (14"). While the difficulty
possible to the measurements while still being behavipralfo account for the dynamic constraints in (7) can be dealt
reasonable. For this purpose, consider for any agetite With by well-known methods from control theory [18] as it

following discrete-time optimal control problem: has already been elaborated in a traffic-related conte}t [11
S x we give a self-contained explanation in the following.
Minimize JHU") =", o[x(k), k] Denote
+01 3y e (k) Tar (k) K1

SUbjeCt to (’L) X(O) = Xy, JHE) = o[x(K). K <(c). ¢ poatt (N
) (k1) (k). (k). A, (k) = ¢[x(K), K] + C:Zk(w[ (c),c] +0 #c'(c) u*(c))
(i) (k) = u(k) +u " (k), 8)
(iv) u* = {u“(k)}kK:Bl is feasible. for k = 1... K. This is the remaining contribution tdg*

(7) from time stepk on. It can be recursively written as
The dynamic system constraint§ o (iii) are identical olx(k), k] + 6 #c* (k)T ut (k)

to (1) and (2) wherer—*(k) represents the turning indicator T (k) = ’ b Tk 1) k=1 . K—1
sum of all agentbut .. The verbal route feasibility constraint o[x(K), K] k= K.
(iv) is elaborated in section II-B.1. ’ 9)
~ Functional/* is a sum of two terms. The once differen-as 4 first step, sensitivities with respect statesare com-
tiable real-valued functio[x(k), k] is only dependent on ted as
macroscopicsystem states. It is identical for all agents ancEJ

will later measure the “distance” of the dynamical system’s Oplx(k),k] | dJ*(k+1) E—1. K_1

trajectory to the measurements, ie.is a quality measure 4/"(k) _ ox(k) dx(k)

for the data assimilation. dx (k) Iplx(K), K] b= K
The other addend;* (k)T u*(k), has already been intro- Ox(K) (10)

duced in eq. (4). It measuress subjectively perceived cost
of moving along a certain path through the network. Th
nonnegative real-valued coefficiefit expresses the weight
of u's individual cost avoidance compared to the need to  dJ*(k+1)  of[x(k),u(k),k]” dJ*(k + 1)

reproduce given measurements expressed by fungtion dx(k) - ox(k) dx(k +1) (11)

gince the interplay between variables at differkns fully
given by state equation (1),




for k < K, wherex(k + 1) = f[x(k),...] was used. Algorithm 1 Many Agent Game
Now, sensitivities with respect toontrol variablesof a  choose an initial routé{ for every ageny: € M;

certain individualy result from for (n =1...N) do:
1) load all vehicles onto the network;
ajt 0 e (k) + of[x(k), u(k), k] dJ"(k + 1) 2) randomly choose a subsét’ C M such thaj M’| = |M| -
dut (k) B ou(k) dx(k +1) ’ m"™/N wherem is the fraction of agents being allowed to
(12) replan in iterationV (we used 0.005);

where {) du(k)/0u*(k) yields an identity matrix and thus 3) differentiate target functional for ajt € M’ and obtain (14);
disappears from the second adderig, §p[x(k), k] /0u(k) 4) calculate a new trajectorgs” for every p € M’ that
disappears sinca(k) influences no state earlier thaitk + approximately minimizeg* (/") as given in (14) by dynamic
1), and (i) c*(k) itself is assumed to be invariant with best path algorithm;

respect tou's route choice.
SensitivitiesdJ* /du* (k) can therefore be obtained in a
two-pass-procedure: by i, while the second addend represents an additive cost
1) Using eq. (11), solve eq. (10) recursively for =  correction that accounts for the system-wide part of the
K ...1. Moving backwards through time introduces aobjective function.
“far sightedness” into the calculation, which is neces- In summary: Moving a traveller from its current path to
sary to predict a given time step’s variations’ influence path that is shortest in the network given by tgk) as

onto future system states. described above will reduce the linearized functioffaland
2) Determine the influence of controls by (12) fer= therefore, in all likelihood, also the original functional.
0...K —1. Calculating one such best path for a single agent only solves
One obtains fo/*, the linearized version of#, the follow- @ linear problem approximation, similar to the linear step i
ing expression: the Frank-Wolfe algorithm [19]. The nonlinear problem for
an entire population is discussed next.
7 iy~ [ dm T 2) M ts:Having found imate) soluti
Ty = JrU") + Z ( > (' (k) — @ (k)) ) Many agen’s. aving found an (approximate) solution
= dut (k) to a single agent’s optimal control problem, we now proceed

(13) to discuss the problem of simultaneously minimizing the
whereld" = {u*(k)} is the sequence of turning decisionsobjective functions of all agents. We propose Algorithm 1
around which linearization took place. This can be re-emitt for the solution of this problem.

as This algorithm resembles a popular dynamic traffic assign-
K-1 A ment (DTA) method that iteratively solves the equilibrium

JHU") = Z Z ———ul; (k) 4 const.  (14) problem by reassigning in every iteration a decreasing frac

k=0 ij dui; (k) tion of demand to the currently best path, e.g. [21]. Our majo

chhnical difference to a typical DTA is that our population
Is fully disaggregated. This implies thaf very link is a
possible origin or destination and)(we do not calculate
path splits but assign a unique route to every traveler.

We have collected years of positive experience with this
_aJ insert eq. (12) type qf assignment for “plain” simulatioln purposes, i.e. in
- dul’-(k) ' a setting where the common tergy...] in every agent’s
' S objective function (7) vanishes [16]. If, on the other hand,
(k)+ Of[x(k), u(k), k| “d.J"(k + 1)( 5) only the common terny|...] remains, we obtain a game of

duj(k) dx(k +1) identical interests. For such a problem, fictitous play heenb
multiplied with the turn indicators./; (k). For our problem, ProVen to converge to an equilibrium in mixed strategies, i.
this means that, for each turn taken by the driver anng'th a path choicelistribution for every agent [15], and also
the route given by th@é‘j(k), the correspondingé‘j(l@) are been applied t_o the calculatlo_n of system optimal routmgs
summed up. In other words/*(24*) is minimized when [8]. However, since we constrain our_selves to pure stragegi
driver ;1 takes the route that minimizes the sum of #g(k) i.e. every agent memorizes (_)nly a single best route, not even
along the way. This can be solved by a time-dependem? existence of an eqwhbnum can be_ ensurepl. In I_|ght. of
shortest path algorithm on a network where the origindfliS: We conclude that for a first experimental investigatio
network’s links comprise the new nodes and every possibfd90rithm 1 is a reasonable choice. o
turning movement in the original network is represented by The following section will provide a concrete application
a new linkij with time variant cost given byl!; (k). of the proposed algorithm.

The dj;(k) are additively comprised of two terms which
reflect the likewise additive structure of the originallyrao
linear problem: the first addend in eq. (15) is the weighted The above section showed how a system trajectory can
cost of taking turnij at time k as individually perceived be found which fulfills our dynamic model, as explained in

where the constant addend contains all terms involving t
control trajectony{4”* around which linearization took place,
which is irrelevant to the considered minimization problem
JH(UM) is a sum of time variant costs

d;; (k)

KM
=40 Cij

B. Bayesian problem formulation



Section Il, and at the same time minimizes a given fundmplies the existence of a conditional probability
tional as much as possible. This functional should describe
“closeness” to a given set of spatio-temporal measurements PrY{u"},,) = PrY|X({U"},). (21)
A specific version of this functional will be developed inThis equation just states that the probability to obtairader
the following, with the additional assumption that theseneasurements can be described as depending directly on the
measurements can contain errors. travellers behavior. Note that this specific form is also a-co
1) Modeling of anonymous traffic measurements a sequence of the assumption that, once the travellers havi
first step, the macroscopic state equation (1) is suppleadents known, the traffic dynamics will unfold deterministigall
with an output equation This conditional probability can be linearized because of
. all intermediate steps’ differentiability.

y(k) = glx(k), e(k), k], (16) 2) Formulation of the estimation problemlready at this
which maps system states(k) by a once differentiable point, an estimation problem could be formulated: Modify
functiong onto macroscopic observablgék) such as flows, the (generalized) routesu(k)}, such that the conditional
velocities or densities. This is standard procedure inrcbnt probability for the measurements that were obtained from re
theory. The system outpu(k) is generated by sensorsality, Pr(Y|{L/"},), is maximized. This will often, however,
such as inductive loops, floating cars, or traffic survedan lead to rather unrealistic routes: Travellers zig-zag ulfo
cameras. Since these sensors are prone to various sourcethefetwork just to be at measurement locations when needed
error, these influences are expressed by a random dist@batitere. What is needed is, therefore, a formulation thatello
vectore(k) that turnsy (k) itself into a random variable.  the simulated travellers to fulfill the measurements within

Although our approach can handle the general formulatioplausible behavioral range, while at the same time allowing
(16), we will in the following adopt a more specific casefor the measurements themselves to contain errors. In other
that is more amenable to an intuitive understanding ofiords: If a measurement cannot be fulfilled by modifying
the formalism. Assume that only link-related outputs aréravellers’ behavior within a plausible range, then thaeays
available and generated by should decide that the measurement is probably erroneous.

a) A single agent: So far we made the behavioral
yi(k) = gilzi (k)] + ei(k) (17) assumption that every individual chooses a best path
with ;(k) being normally distributed with expectatiorand based on its individual cost perception. We abstain from
known variances?. By outputi’s conditional probability assumptions of how this perception is generated. This &spli
Pr(y;(k)|x;(k)) we denote the probability thay;(k) lies that we have to take this perception as a deterministic featu

within a -environment aroung; [z; (k)]: of the behavioral model and specifically cannot make any
assumption about a possible distribution from which it nhigh
Pr(yi(k)|zi(k)) = Pr(=0 < &;(k) < 0) (18)  have been drawn. However, we need some kind of behavioral
with § sufficiently small to allow with reasonable precisionUncertainty because otherwise there is no degree of freedom
for the first-order approximation left for estimation. Thus, we probabilistically relax thiee'st

05 (k) (k) response” assumption in such a way that better paths are
(k) — gilx; ; . .
Pr(y; (k)|z: (k) ~ _ exp (_ Yy 292 ) , o still prgfered but.there is now a nonzero probability that a
\/ 270} g; suboptimal path is chosen.

A convenient path choice probability formulation is
which can be subsumed in terms of trajectopes- {y (k) }« o (4
and X = {x(k)}x as Pr(U") = exp(— D)) :
2oy exp(=0+CH(V))
Pr(y|x) = HPr .
where the normalizing denominator surmger all possible
pathsV from the individual's current location to its des-
HHPr (yi(k)|i(k)), (20) " tinations. Note that this choice set will never be explicitly
generated.The larger parametef* is chosen, the more
where stochastic independence between outputs on differg@areful is individual. in choosing the best path. A possible
links or different time steps results from the simplifiedinterpretation of this formulation as a multinomial logit
assumption of univariate normal output errors (17). Thjs isnodel is given in Section 111-B.3.
so far, the not unexpected result that all spatio-tempoes-m  Now it is assumed that some measureméytare avail-
surements can be probabilistically described when aliepat able. The a posteriori probabilifyr(4*|y) that an individ-
temporal system statefsc(k)}, ar known — no behavioral yal chose patti4” in consideration ofy is expressed via

(22)

information{u(k)} is needed directly. Bayes’ theorem:

Nevertheless, the statefx(k)}, are indirectly caused " u
by the travellers’ behaviour$u(k)},. From recursive eq. Pr(U" | Y) = Pr(y | U") Pr(d ), (23)
(1) one notes that indeexl(k) is fully defined by control Pr(y)

sequencgu(c)}*=}, which directly results from the entire wherePr(Y | L") is equivalent to (21) with the route choice
populations’ path choice s¢t"'},, via (2). This dependency of all individuals other than. being fixed. After taking the



logarithm of this function, we substitute (20) and (22): =2 uem O Dk cii(k)ug; (k). If, however, the mode of
u B . . s g1 this distribution was still used as an estimator, it would
InPr@"[y) = Zln Pr(yi(k)|zi(k)) —6"C*WU") predict a behavioral pattern in which all ageotoperated
ik in an attempt to minimize theystem-widdravel cost, i.e.
—In exp(—0"C*(V))~InPr(¥) (24) a system optimum(SO). This contradicts the previously
A% described model of individual cost minimization which rath
calls for auser equilibrium(UE).
) ) ] ~_ We therefore abstain from the formulation of a joint
Here and in the following equations one should keep in mingepayioral distribution and rather propose to maximizeyeve
that thez; (k) depend on the,;; (), which in turn are defined 4gent's behavioral a posteriori probability (28)ividually
by thew; (k) (cf. equation 21 and 2). Substituting (4) as welliy 3 noncooperative game by means of Algorithm 1. In the
as (19) and dropping all terms independerisf, we obtain  gpsence of measurements, this solution approach lets every

independent ot4"

(k) — gilxi(K)])? agent individually minimize its perceived cosbncoopera-
nPr@U"y) = - (i (F) 23_2[ il tively, which results in the desired UE.
ik ' 3) Discussion of problem formulationWhile the applica-
—0m " ek (k) (k). (25)  tion of Section IlI-A’s algorithm to the estimation problem
ijk given above is straightforward, several remarks are given

We propose the maximization of this a posteriori prophere to clarify the algorithm’s working.

ability as a point estimator fop’'s most likely behavior (i) Behavioral posterior distribution (25) results from the

given measuremeng®, an a priori simulated cost perceptionsimplifying assumption of univariate normal measurement

C*[U"], and a paramet#¥* representing the precision pfs ~ errors (17). More general distributions are possible.

best path choice. For maximization, control problem (7)’s (ii) Path choice distribution (22) is formally identical

objective functional is specified as to a multinomial logit model. Its interpretation as this
JEUP) = — I PrU”[Y) (26) specific random utility model implies the assumption of

- independently and identically distributed errors in aé¢tav's
and the linearization-based approximate optimizatiorcgro Perceptional error for every path. This alone is not a realis
dure of Section IlI-A.1 is applied. The global term in theassumption, since the perception of overlapping paths may

objective functional of (7) then becomes be highly correlated [3]. One can, however, argue that
k N2 the individually simulatedcost perceptiorC*(U*) already
o[x(k), k] = E (i(k) — gi[zi(K)]) (27) representsy’s link related cost perception and the logit
’ . 202 ’ iti
S i model only expresseadditional error terms that arenot

link related. Thus, the problem of cost correlations among
different alternatives is taken care of by explicit simidat

of cost perception, while the logit model captures addaion
énath preferences that cannot be captured by the turningemov
Jelated cost components; (k).

while the term that represents individygs cost-avoidance,
0" > ik ci; (k)uy;(k), has now been derived from the impre-
cise best response assumption (22).

In words, equation (25) states that the “quality measur
for the assignment problem is now composed of two con-" X I i ) ,
tributions: (1) the quadratic “distance” between the gyste (il) USing the posterior's mode asmint estimatordis-

trajectory and the measurements; and (2) the “real” gene(f‘:"rds information contained in the full posteraistribution
alized cost of the path selected by the traveller. ImplalasibSt'"’ this discrepancy is mostly of theoretical concernaik

paths, selected only to fulfill the measurements, will thas bable measurements do incorporate real-world randomness

punished by large real generalized costs. The trade-off pand its resulting path-spread into the estimated behavior.

tween the two contributions is given by the balance betwedrHthermore, a congested assignment distributes patbssacr
the o2 and the¢”. Plausibly, when the expected error of’2rious alternatives as well. Moreover, the obtained point
K3 N )

a measurement;?, goes up, the weight of its contribution estimates have the following desirable properties: (ahi t _
goes down. Similarly, when a traveller places less empha sence of measurements, the system r_eproduc_es a UE_’ (b) if
on a utility-maximizing solution by having@' close to zero, there are enough measurements to define a unique estimate,

then the weight of the behavioral contribution is reduced. & noninformative prior (in terms of very small’) can be
. chosen such that a Maximum Likelihood estimator results.
b) Many agentsif the behavior of more than one agent

s 0 b timated simult v the i ¢ . "Case (b) is certainly desirable but in general unlikely sinc
IS tobe estimated simultaneously, the lin€ o .a.Lrgu_mentsrglv usually there are many path combinations that generate the
above has to be taken with care. For clarification, assu me aggregated measurements

that there a,re no measurements. Since the imprecision m(iv) The solution algorithm relies on repeated lineariza-
any traveler's best path calculation can be taken as %ns of (25) with respect to any agepts path choice
independent random effect, the population’s prior behavio Specifically, eq. (14) t prns into y ag P '
distribution is Pr({t4" }ueat) = [T, Pr@*). Without ~SPECHCal: €4 urns 1

measurements, the posterior equals the prior and the same j(y*) = ZZ (01t (k) + Nij () ulh (K), (28)
manipulations as before would yield Pr({U"} ,c \|Y) = P '



where real-valued coefficients;; (k) result from the lin- Fig. 5. Experiment (a)
earization steps described in Section IlI-A.1 when applied

to the quadratic measurement error term, while the path cost | *";
perception term is already linear. Equation (15) togethigr w
eq. (14) defines the;; (k). These coefficients represent the
additive modifications to the individual cost perception as
described in Section I-B. Since they are identical for all
agents, they have to be calculated only once per iteration.

(v) Choosing a non-cooperative game as the solution
algorithm is a technically convenient choice: it is struatly
identical to a “plain” DTA procedure, with the only differ-
ence being the modifications in agents’ link cost perception
This design fosters the integration of the estimation sgste
with an existing simulator with the only points of interface
being the individual agents’ best path calculations. Gibnsi
ering the high complexity of full-blown traffic simulation
systems, this feature appears to be of significant practical
relevance.

(vi) Both, planning (offline) and telematics (online) appli-
cations can be dealt with by the proposed method. The major
difference is the information about the network state tBat i No incorporation of measurements= 0.785.
repeatedly given to the agents during the iterative estimat
procedure. If every agent is provided with global knowledge
of the system state as it resulted from the very last itematioalgorithmic feasibility. Increasing realism with respeot
the algorithm converges in the absence of measurements Y@rious sources of disturbances is subject of our ongoing
wards a UE, and otherwise towards a statistically reasenaldesearch.
compromise between a UE and the observed measurementsAll experiments use synthetically generated measurements
If, on the other hand, the information updates given to thas follows: Plans from an imperfect MATSim traffic assign-
agents are constrained to what is actually observable feent that did not reach a user equilibrium were loaded
the agent in that moment, the algorithm does not converg#to the network using the same mobility simulation as
to a strict UE any more, but rather to a solution whicHhe estimator itself. For 10% of all links, we collected 5-
realistically regards for a randomly influenced within-dayminute averages of the number of vehicles on these links as
situation. In the latter case, historical information @ned measurement data. The experiments were run from 6am to
in the drivers’ activity plans must be used to complemerﬂam, which is the time of the strongest traffic variations in
the local observations. the simulation because of the morning rush hour. Since the
imperfect MATSIim result is not a user equilibrium, it can
be understood as a behavioral deviation from such, which is
A. Setting of the test case exactly the type of situation our method has been designed

We have set up an extensive test case for the propos&dhandle.
method. The geographical zone of investigation is the cit
of Berlin. Its traffic network is represented by a graph o
approximately 2400 links. The MATSim system has been Four exemplary experiments are discussed. The resulting
used to generate activity plans for a complete microscop#catterplots are depicted in Figures 5, 6, 7, and 8, where
representation of the Berlin population. The experiments is the coefficient of correlation and point coordinates are
described here use a 10% sample of this population (apprdrieasured value / simulated value).

170.000 agents). A simulation of the full population was In experiment (a), the estimator is run without the use of
prevented only by the applied machine’s limited memory odny measurements. As a result, it generates a best assamptio
2GB. of traveler behavior given the MATSIim activity plans by

We gained first experiences with this test case in a redterating these plans until an approximate user equilibrisi
world application during the soccer world championshi@chieved. One observes significant deviation between aimul
2006. Since we encountered severe problems with all kirtebn and estimation. This can be explained by the working of
of data corruption (including errors in the network file,the estimation algorithm in the absence of any measurements
unrealistic activity plans, unreliable measurements)rdur In this case, only the behavioral a priori information isiava
this project, this article considers a setting in which mosable, which results in a plain user equilibrium assignment
uncertainties have been removed in order to study the methad explained above. Since the measurements were generated
itself rather than a specific scenario. Accordingly, thailtss from a non-equilibrium situation, but are not availablehe t
given here are to be understood as a preliminary study eftimation procedure, the scatterplots represent nothorg

IV. EXPERIMENTS

. Experiments



Fig. 6. Experiment (b) Fig. 8. Experiment (d)

No incorporation of behavioral modep, = 0.988. Calculated with rolling horizon in real timex = 0.959.

Fig. 7. Experiment (c) of various mathematical simplifications in the estimation

algorithm in order to keep up tractability; use of a random
solution mechanism with finite resolution; discretizatioh
macroscopic quantities in time and space on a quite large
scale for reasons of computational performance; use of a
linearization based method that might converge only tosard
a local optimum of the problem.

Experiment (c) incorporates the behavioral model with a
reasonable weight. As a result, the estimation algorithm ab
stains from calculating routes that are very unrealisteqgi
an agent'’s activity plan, even if such behavior yield a bette
measurement fit. The reproduction quality of measurements
involved in the estimation is now slightly worse than in
experiment (b). The reason for this is the newly incorpatate
influence of the estimator’s behavioral model, which contra
dicts the unrealistic behavioral nature of the measuresnent
Since in general measurements are just as error-prone as
e i e e simulation results, such a compromise is desirable. When

judging the estimation quality, it is important to keep in
Reasonable combination of measurements and behaviora moet mind that the scatterplots only depict one half of the entire
0.974. estimation problem; the behavioral fit based on the a priori
generated activity plans is not visualized.

Given the general setting as described in experiment

but the measurements’ deviation from a user equilibrium. (c), the method’s real-time capabilities are investigaited

In experiment (b), parameters were set such that the alg&xperiment (d). While the previous experiments were run to
rithm attempted to reproduce the measurements by ignoriggnvergence, here a rolling horizon approach with a time
behavioral a priori assumptions as much as possible: Onfyindow of 30 minutes was used. The window moved for-
measurement-induced cost corrections were visible tanepl wards at 1-minute steps, which is approximately the dunatio
ning agents, while the cost of travel itself was completel@f one estimation iteration. During every iteration, a nethp
ignored. The very good measurement reproduction indicatégs calculated for 3% of the entire population. The result is
that the method works well. The not totally perfect fit is dueslightly worse than that of experiment (c) but still indiest
to various causes, some of which were deliberately acceptadsignificant improvement over experiment (a).
while others are still under investigation. Unavoidablé tiou The scatterplots for experiments (b) through (d) compare
some degree tunable causes of imprecision are: Incorpaoratisimulation results only to measurements that also were made




available to the estimation algorithm (in-sample resulg®
are currently inquiring the various factors that ianuence[l]
the quality of out-of-sample results, such as measurement
quality, quantity, location, and type. An important issse i [2
the danger of over-fitting especially in the case of sparse
measurements. Let us just state here that we do obseryg
significant out-of-sample improvements, which are (as one
would expect) qualitatively between in-sample results anq4]
estimation results obtained without the use of any measure-
ments, i.e. between experiments (c) and (a). However, wél
made these recent observations in a different experimental
setting than used in the study presented here. Further-inves]
tigations will provide more insight into this issue.

Even if much more experiments will be necessary to fully
understand all implications of the method, these experisnen [7]
assert the algorithm’s computational feasibility everarge-

scale scenarios. [8]

V. SUMMARY AND OUTLOOK E)
We presented a novel method for behavioral traffic state
estimation based on a priori generated activity plans aridd]
anonymous traffic measurements. First experiments ireicat
that the method works with good precision in reasonable
time even for large problems. Still, since the experimentdil
conducted so far only used synthetically generated measure

ments, many aspects are yet to be explored.

One major simplification was the generation of meal'?]
surements by the same mobility simulation the estimator
itself used. Since model-based assumptions about trafiic flg13]
dynamics are currently incorporated as error-free infaiona
in the estimation formulation, further investigationshwieal
world data might show that a relaxation of this assumptiof14]
will be necessary. Since methods for the adjustment of
physical traffic flow processes to measurements are availabl
from the systems engineering literature, an integration @f5]
both estimation approaches appears reasonable as stateP1 6‘!{1
the introduction.

A similar statement holds for the occurrence of incidents,
which can be considered as structural deviations betwe
modeling assumptions about traffic dynamics and the regk;
situation. The implementation of an additional incident de
tection module definitely would greatly increase the syéftem[19
real-world applicability.

An improved a priori demand also implies a better esl?0l
timation quality. As recent experiments have shown [7], a
brute force attempt to only reproduce measurements does
provide a reasonable overall picture of the traffic situatio
which makes the incorporation of good behavioral a prior[izz]
assumptions necessary. This observation also suggests a na
ural operation scheme of the method in a traffic managemﬁ%]
center: In continuous operations, the estimator could be
employed to track within-day fluctuations. If an additional
update of the agents’ activity plans on a daily basis was
realized, the overall system could incrementally improve a
transport planning simulation based on these plans as well.

] Y. Sheffi.
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