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Abstract— We describe two new and practically relevant simu- A. Simulation Scheme

lation techniques related to the Kinematic Wave Model. Firgly, i i i . . i .
we demonstrate how the well-known Godunov solution scheme Discrete time network simulation is straightforward if a
can be run on variable time scales in a computationally very uniform time step lengthi” is used. Every link with maximal
efficient way. Secondly, we demonstrate how the resulting velocity ¢ is disassembled into cells of

macroscopic traffic flow model can be run in conjunction with

a microscopic model of driver behavior while maintaining high minimal discretization length- 7'0. (1)

computational performance. ] ) ]
The amount of macroscopic vehicles stored in celat

discrete simulation time step is denoted by, (k).
Sendingand receivingfunctions §2*! (z;(k)) and " (x(k))

This article describes two features of a newly developetd higspecify the maximum rates (in vehicles per second) at which
performance mixed micro/macro mobility simulation basedehicles can enter and leave cellduring time stepk

on the Kinematic Wave Model (KWM) [18], [21]. depending on its current occupaney(k). These functions

Firstly, in Section Il the well-known Godunov solution constitute a generalization of the fundamental diagranj [14
approach to the KWM is applied to a simulation system tha/y_here the sending function corresponds _tq the fun.damerlltal
runs different model components on variable time scalegiagram’s uncongested half and the receiving functiondo it

Simulation performance is considerably improved by th€éongested complement [15]. It is phrased that sending and
latter feature. receiving function constitute thieoundariesof a cell.

Secondly, it is shown in Section 1l how this macroscopicalculation of actually transmitted flows is the task of net-
model can be run in combination with a microscopic repreork elements we denote asnnectos. One such connector
sentation of individual travelers. This coupling (i) preses 1S Placed between every set of adjacent cells. Phenomeno-
the analytical features of the macroscopic model, (ii) gign Iog|_cal_ constraints can be incorporated in its workmgs. Of
icantly reduces vehicle discretization noise, and (jiijimaa M&jor importance to this work are flow splitting fractions at

tains the high computational speed of the aforementionétiverges. Parametet;; (k) specifies which proportion of the
simulation scheme on variable time scales. flow leaving upstream cellat time stepk enters downstream

cell j. The actually transmitted outflow (inflow) rate of a
cell ¢ as calculated by its downstream (upstream) connector
at time stepk is denoted byg?“!(k) € [0,G" (z;(k))]
(¢i"(k) € [0,¢(x:(k))]). Various phenomenological spec-

Il. RUNNING THE KINEMATIC WAVE MODEL ON ifications of this general flow transmission formalism are
VARIABLE TIME SCALES possible [8], [12], [15].

|. INTRODUCTION

Due to the twofold purpose of this article, further introduc
tory notes are given in the according sections of the text.

The arguably best known approaches for numerical simul&onceptually, a simulation step (tick) then consists of two
tion of the KWM are theCell-Transmission Mode(CTM)  parts:

[7], [8] and theSTRADAmodel [2], [3]. Both are based on 1) Every connector calculates vehicle transmissions be-
the numerical Godunov scheme, e.g. [17]. Due to space re-  tween its adjacent cells.

strictions the workings of these models can only concefytual  2) Every cell updates its occupancy (in vehicles) accord-
be recapitulated. Reference [15] is recommended as a more  ing to these transmissions.

comprehensive introduction. . . .
P Simulation of a heterogeneous urban network requires rel-

The possibility to improve the computational speed of thetively small cells to model densely meshed regions. This
CTM by variation of its spatio temporal discretization hagalls for a small7 and in tumn implies an unnecessarily
already been recognized shortly after the model's appeararprecise modeling of longer road segments. The use of larger
[16]. This problem is reconsidered in this work and enhancegklls running on the same temporal grid somewhat mildens
towards combined micro/macro simulation. this problem. However, a significant share of urban network
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upstream and downstream boundaries are provided. Given2h Connector Flow Rate UpdateConsider a connectot
individually chosen time step length and an appropriate spaith a setP. of preceding and a se. of succeeding cells.

tial discretization, standard CTM logic facilitates a KWM-Its time step lengtlT,. is chosen such that (a) the connector
consistent numerical solution. Since all spatial dynamaies recalculates flow rates whenever an adjacent cell boundary
enclosed within the link, it it can be viewed from the outsideehanges and (b) such that the overall computational load is
as a discrete-time nonlineardinary dynamical system with minimized. This is achieved by choosinfg as the largest
two inputs (in- and outflows) and two outputs (upstreancommon divisor (Icd) of all adjacent cell time step durasion
and downstream boundaries). The same argument holds for

individual cells. Likewise, any point-like intersectionoatel T = lediep.us. (T7)- ®)
represented by a connector that is consistent with the KWMrbitrary cell time step durations might yield low computa-
constitutes for any chosen time step lengttmamoryless tional savings because of possibly sma&ll resulting from
nonlinear discrete-time system with upstream flow demandlis equation, so they are constrained to be powers of two.
and downstream flow supplies as inputs and resulting vehictgis turns the connector time step length into thimimum
transmissions as outputs. of its adjacent cell time step durations.

Adopting a technical point of view, these systems can im3) Cell State Update:Even if a celli's statexz; changes

mediately be joined: Outputs of systems with a large timenly everyT; seconds, its adjacent connectors might run at
step are held constant when needed as inputs for fasgehigher frequency. On the finest temporal scale this implies

ticking systems, and outputs o_f faster tICkIng .systems ar:Cei(mTi LT = wm(mT) 4)
averaged before they are fed into slower ticking systems. o
Since such holding and averaging affect system dynamics X in out

A ; i . 1 (mT; —q T; .
mainly in terms of a delay that is proportional to the invalve + SHZZO (¢5" (T + 1) = g7 (mT; +n))

time step lengths, a reasonable balance between addiyional b h di di ¢
introduced imprecision and computational speedup can peenote yp: (s:) the preceding (succeeding) connector o

achieved. This is confirmed by experimental results given iﬁe” i. Because of (3)Ti/T i "?‘”dT%/Ts_i are integer values
and allow for the following simplification:

Section II-A.4.

This simulation scheme is detailed in the following. A cell TifTpi =1

(connector) is denoted as “due” at discresémulationtime zi(mTi+Ti) = xi(mTi) + T, Z q;" (mT; + nTp,)

stepk if k is an integer multiple of itsndividual time step n=0

lengthT; (T.). A simulation time step’s duration is generally T/ Toi o1 .

assumed to be 1 second. Two procedures are executed at —Ts, Z ;" (mT; + nTy,). ()
n=0

everyk:
Therefore it is sufficient to notify cell every ledT),, Ts,)

1) Every celli that is due according to its individual seconds of possible flow rate changes. This is done inde-
time step lengthT; calculates supply and demandpendently by its upstream and downstream connector every
boundaries from its current occupancy and keeps the§%i and T,, seconds, when the appropriate addend in (5)
results constant for the nef} seconds. is transmitted to the cell. Since the cell's boundaries are

2) Every connector that is due according to its individual he|d constant for a possible longer duration according Jo (2
time step lengthl. calculates average flow rates thatyansmitted vehicles are intermediately cached by the cell

hold for the nexﬂ_“c secor_lds and no_tlfu_as Its adjacent4) Experimental Investigation of Simulation PrecisioA:

cells of the resulting vehicle transmissions. linear test network has been set up. It consists of a sequence
Sections 1I-A.1, 1I-A.2, and II-A.3 specify the technicgis of 5 identical links with a space capacity of 140veh/km,
of this simulation scheme. a flow capacity of 2000veh/h, a maximum velocity of 50

km/h, and a length of 444.46m each. The initial simulation

1) Cell Boundaries:Every celli has exactly one preceding poundaries resemble the original CTM validation settirig [7
one succeeding connector. Whilehas an individual time A |inear density gradient from zero to maximal density is
step lengtHl;, it is embedded in a system potentially runningyjaced onto the network, with zero density at its upstream
at a 1-second time scale. This requires its maximum in- anghd maximal density at its downstream end. No traffic is

outflow ratesq;" (x;(k)) and ¢7"‘(z;(k)) to be defined at ajiowed to enter or leave the network. The simulation is run
every second. Since these boundaries are static functiofg; a steady state is reached.

only of i’s occupancy, it is sufficient to specity;

. e for every Figure 1 shows the resulting space-time plots in various
simulation time step by

discretization settings. Plot (a) provides a good appraxim
z;(mTi+n) = z;(mT;)) meN, ne{0,...,Ti—1}. (2) tion to the exact solution. Initially, two shockwaves occur
an upstream shockwave moving at positive velocity and a
1This approach is conceptually similar to tmeethod of lineswhich downst_rearl]”n ShOCkwaf'V(he moving kat ndegatlv.e VelOCIty' .They
numerically integrates ordinary differential equationdaundary locations, merg_e n t € cgntgr 0 t € networ. an ’ persistas a St?t'onary
e.g. [17]. density discontinuity with all traffic being queued up in the



Fig. 1. Space Time Plots With Variable Spatio Temporal CEszations Fig. 2. Major Road Network of Greater Berlin
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Fig. 3. Effect of Network Time Constant
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Colors encode densities as follows: green is zero denséfjow

is half of maximum density, and red is maximum density. The )
parenthesized numbers below the links indicate their iddad time (@) Number of cells over (b) Histogram oflog,(7") for
step duration. log, (7). Since the network ge- all intersections in the network

ometry has a limiting effect on given a maximal allowed time

cell sizes,T' value beyonc2®s Step duration of 64 seconds.

do not result in an increased

downstream half of the network. For comparison, resultscoarsening_

with a much coarser but still homogeneous discretizatien ar

shown in plot (b).

The results with heterogeneous simulation time stepsynicel

reflect the workings of the underlying Godunov method: At

every simulation time step, the Godunov scheme solvesi® quite heterogeneous: the inner-urban area is modeled in
Riemann problem at all cell boundaries. Placing fast tigkinrelatively high resolution while the surrounding freewaygr
cells next to slower cells explicitly displays the resudtin is comprised of several links that are many kilometers long.
shockwaves as it can be seen in plot 1 (c). While thesgetwork time constanf’ denotes the largest allowed sim-
artifacts are unequivocally owed to the simulation schemglation time step duration in the network. It compromises
on variable time scales, they are put into relation by pldsetween a high simulation resolution (smdl) and high
(d). It shows the same result after it has been averaged @dmputational performance (largg). The network is dis-

a temporal grid according to the largest time step duratiogtetized such that link-specific simulation time step dorat
originally used. The artefact's are nicely smeared out evhilare the largest powers of two smaller thdh for which

the original shockwaves are maintained with precision qtl) still holds. Additionally, it was required that everyk
least comparable to plot (b). consists of at least two cells.

These results indicate that the overall simulation errer reFigure 3 (a) shows the effect af on the number of cells
mains in the order of the largest involved time step duratiofh the network. With increasin@, the number of cells
chosen, as it has been previously hypothesized. Artifats capproaches its minimum value @f x 2459. A histogram
occur at boundaries between slow and fast ticking cells bgf intersection connector time step lengths for= 64s is
can also be removed by temporal averaging before furthgfven in Figure 3 (b). The high number of intersections with
processing of simulation output. No amplification of a2  a relatively low time step constant is due to the finely meshed
is observed. interurban network which is precluded from a “slower”
simulation clock.

B. Network Discretization

. . I11. A MIXED MICRO/MACRO MOBILITY SIMULATION
1) Berlin Testcase:Our testcase is modeled after the road

network of Greater Berlin, see Figure 2. This networkiwo fundamentally different concepts can be encountered in
consists of 1083 nodes an2¥459 unidirectional links. It the literature dealing with coupled micro-macro simulaso



“Hybrid” approaches link simulations that work on diffeten Fig. 4. Particle Movement Across Many Cells
degrees of aggregation at well defined locations in the Al
network, e.g. [5], [10]. This approach is attractive if the N /
required simulation fidelity varies spatially. P, P,

“Mesoscopic” simulations move individual vehicles based o
aggregated laws of motion in order to increase computdtiona -
performance while retaining a microscopic representation
behavior [4], [6]. Simulation based dynamic traffic assign-

ment usually employs such models, e.g. [1], [9], [19], [20]. T;

The approach described here is a mesoscopic model with a Py J x
distinct macroscopic aspect.
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i
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A homogeneous velocity field is assumed so that a corredcleart
. trajectory is depicted by a straight line in the space/tirite. rhe
A. Particle Movement considered particle starts its move somewhere in the mioldte!l
. . . . i at space/time poin¥,. During its initial move of durationT;
1) Specification: Consider a setM of particles (a “pop- it traverses a small intermediate cell and finally arrives cel

ulation” of travelers, agents, or vehicles) floating thrbug;j at point Py. If the move was finished there, it would not be

: u o ntinued until7; — T; seconds later from poinP; because of
the network. Particles have no “mass” insofar as they Gggll j’s greater time step lengtli;. This would be incorrect as

not contribute to the macroscopic occupancy on a cell. the unstraight trajectory indicates. The particle has toant for

is assumed that at the time of a particle’s entrance into thlee waiting time on cellj by continuing its move for a duration

network, an appropriate amount of macroscopic flow has al?é.anotherTj — T; seconds which results in the required linear
T . O jectory through point..
been dismissed into the system, resulting in a mass balance

between particles and total macroscopic occupancy.

The macroscopic traffic flow model is expected to specifyf N® workings of step 2 are depicted in Figure 4. Since the
a local velocity v;(k) on every celli at every time step Particle evaluates all traversed cells’ velocities at therts

k. At any time stepk of duration T, each particley time of its move, t.he simulation scheme is imprecise only
advances according to the local velocity of its current.celin the order of a time step length, just as the macroscopic
Particle locations within a cell are continuous variabled a Simulation scheme itself.

movement is regarded as continuous in time as well: When
1 crosses a cell boundary during a single move of duratiolﬁ'
T, it can freely choose its next cell (if there is more than one) Specification:Having stated the influence of macroscopic
downstream cell) and continue with the velocity encountteredynamics onto individual particles, the opposite problem
there until its available move time ends. of synchronizing the macroscopic traffic flow with particle
2) Simulation on Variable Time Scalesthe simulation behavior is considered next.

scheme on variable time scales can be extended to partigige route choice of particlg at time step is expressed by
movement. This requires the following completition of they vectoru® (k) = (ufj(k:)) of turning move indicatorsvhere
simulation procedure given in Section II-A: u,(k) is one if ;1 proceeds from celi to j at time stepk

,

1) Every celli that is due according to its individual @nd zero otherwise. Denoting hy; (k) the total number of
time step lengthT; calculates supply and demandpart'de?' that chose turmng movgat time stepk, the entire
boundaries from its current occupancy and keeps theB@Pulation’s route choice is expressed by a veettr) =
results constant for the net seconds. (uij (k) with u(k) = 5, c v (k).

2) All particles i that currently reside on a cellthat is  An additional state vectax“"*(k) = (z;;(k)) is introduced.
due are moved forwards according to the followingeach element:;; (k) represents the accumulated number of
rules: (a) x moves for a duration equal to its startparticles having moved from cell to j until time stepk.
cell i’s time step lengthT;. It might cross several The dynamics ok (k) are defined by
cells during this move ifi has a largerT; than its ont
downstream cells. (b) Ifx has used up its time of x™(0) = 0 ©)
movement and arrived on a cefl with T7; > T, x"M(k+1) = x(k)+u(k). (7)
it continues its move until it has used up an overalk,m, this, macroscopic turning fractions can immediately b
movement duration equal ;. This continued move jpioinaq through
never enters another cell because of condition (1) and
accounts for the expected waiting tinie — 7; until Bij(k) = x5 (k)/ inl(k). (8)
the particle is again due for movement. l

3) Every connector that is due according to its individual These flow splitting fractions can directly be fed into the
time step lengtf,. calculates average flow rates thatmacroscopic mobility simulation. While update equatioh (7
hold for the nextI’. seconds and notifies its adjacentassumes time-invariant turning probabilities, a strdight
cells of the resulting vehicle transmissions. ward approach to introduce time variance is to define an

Particle Route Choice



additional forgetting parameter € (0,1) in a modified Fig. 5. Precision of Micro/Macro Model Synchronization o$hort Link
turning counter update equation o

550

X (k4 1) = wx (k) + (1 — w)u(k). 9) .

450

400

In the absence of newly observed turning moves this scheme
causes an exponential forgetting of previously learned
counts. An important property of this averaging is its iréni
memory: If no particles arrive at an intersection for a while
turning counters remain strictly positive and thus ensure
well-defined flow splits (8). 7

2) Simulation on Variable Time Scaletf. the macroscopic Microscopic and macroscopic density trajectory for a sHioit

mobility simulation runs on variable time step lengths, thef 25 m length under heavy congestion. The strong vehicle dis-
rows of eq. (9) are evaluated at likewise variable frequesici cretization noise corresponds to the discrete value domhihe
microscopic curve. The macroscopic curve removes most ®f th

350

micro
"\ macro

density [veh/km]
@
8

Tij (mT; +n) = Tij (mT;)meN, ne{0,...,T; — 1} discretization noise. Unrealistically high microscopiendities are
possible because of the massless particles. The macrostepd
i (mT; +T;) = wixi;(mT;) (10)  however is within bounds.
Ti—1
+ (1 —w)T Z uij (mT; + n).

only by the applied machine’s limited memory. The follow-
L . . ing experiments consider the morning rush hour from 6am to
An |nd.|V|duaI we|ghtwi. IS t.hen necessary for every upstrea_rr‘Dam. More than 16’000 particles are concurrently simdlate
cell i in o_rder to malr!ta|r_1 the same degr_ee OT ave_raglnguring the rush hour peak at approximately 9am. Since the
for all tuming counters: If input signak,; (k) is Poissonian simulated vehicles’ behavior is the outcome of a planning

with expectation and varianck, the variance ofz;;(mTs) simulation, the network time constant was chosen as large
approaches asb5 minutes.

Jim VAR{zi;(mTy)} = TiIA(1 — wi)/(1+w;). (11) 1) Precision of Micro/Macro CouplingMicroscopic behav-
. ior influences macroscopic flow splits via the turning counte
The network-wide time constarit' defined in Section II- mechanism while microscopic movement is guided by the
B is now employed to postulate that (a) this output signal'thacroscopic velocity field. The precision of this micro/mac

variability must be independent of upstream é&ltime step  model synchronization is investigated in the following.
length and (b) identical to

n=0

Figures 5 and 6 show microscopic and macroscopic traffic

T X . density trajectories for a short link of 25 meters length and
VAR{T" Z wij(mT +n)} =T\ (12) long link that is 1611 meters long. This difference is refiect
n=0 in the much greater variance of the microscopic density on

the smaller link. Both macroscopic density trajectorieskr

R R the microscopic trends with high precision and almost no
w; = (T —Ty) /(T +T5). (13) lag. The strong discretization noise on the shorter link is
significantly reduced. These results are representativiéo
network-wide precision of modeling. Further investigaso
(not shown because of space restrictions) indicate that the
coupling scheme preserves the total micro/macro vehicle
balance in the network with a negligible error of at most

These experiments investigate the proposed mixed m3-Per mille.

cro/macro model's precision as well as the acceleratinig is important to emphasize the difference between this
effect of the simulation scheme on variable time scalesnodel and a typical mesoscopic approach: The depicted
All experiments were conducted on a 1,7 GHz Pentiummacroscopic trajectories amot calculated as averages of
4 machine with 1GB RAM and implemented in the Javanicroscopic vehicle counts on a link. Rather, they imgdicit
programming language. result from continuously tracked turning fractions thatdgu

A synthetic population of 206’353 motorist travelers with@" appropriate amount of macroscopic flow across that link.
complete daily plans has been generated for the Berl2) Computational Performance:The imprecisions intro-
network introduced in Section II-B.1 [11]. This is a 10duced by the simulation scheme on variable time scales
percent sample of Berlin’s true motorist population. Sincean only be justified by their countervailing computational
simulations are run on a thinned out version of the full Berli benefits. Figure 7 shows the overall speedup (quotient of
network, the use of 2 (instead of 10) macroscopic vehiclsimulated time interval and duration of computation) using
units per particle already creates realistic congestitiepes. the same morning peak scenario as before. The maximal
The simulation of a larger microscopic sample is preventespeedup is90 for the considered2459 link network and

Equating (11) and (12) results in

An infinite memory is still guaranteed if all; are chosen
strictly smaller tharil".

C. Examples and Model Discussion



Fig. 6. Precision of Micro/Macro Model Synchronization oh@ng Link  continuity or differentiability of the macroscopic traffiow

b model are preserved despite of the microscopic vehicle
o — ’ representation. Reference [13] describes a first appicati
I ] of this algorithmically important property.
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