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Abstract— We describe two new and practically relevant simu-
lation techniques related to the Kinematic Wave Model. Firstly,
we demonstrate how the well-known Godunov solution scheme
can be run on variable time scales in a computationally very
efficient way. Secondly, we demonstrate how the resulting
macroscopic traffic flow model can be run in conjunction with
a microscopic model of driver behavior while maintaining high
computational performance.

I. I NTRODUCTION

This article describes two features of a newly developed high
performance mixed micro/macro mobility simulation based
on the Kinematic Wave Model (KWM) [18], [21].

Firstly, in Section II the well-known Godunov solution
approach to the KWM is applied to a simulation system that
runs different model components on variable time scales.
Simulation performance is considerably improved by the
latter feature.

Secondly, it is shown in Section III how this macroscopic
model can be run in combination with a microscopic repre-
sentation of individual travelers. This coupling (i) preserves
the analytical features of the macroscopic model, (ii) signif-
icantly reduces vehicle discretization noise, and (iii) main-
tains the high computational speed of the aforementioned
simulation scheme on variable time scales.

Due to the twofold purpose of this article, further introduc-
tory notes are given in the according sections of the text.

II. RUNNING THE K INEMATIC WAVE MODEL ON

VARIABLE TIME SCALES

The arguably best known approaches for numerical simula-
tion of the KWM are theCell-Transmission Model(CTM)
[7], [8] and theSTRADAmodel [2], [3]. Both are based on
the numerical Godunov scheme, e.g. [17]. Due to space re-
strictions the workings of these models can only conceptually
be recapitulated. Reference [15] is recommended as a more
comprehensive introduction.

The possibility to improve the computational speed of the
CTM by variation of its spatio temporal discretization has
already been recognized shortly after the model’s appearance
[16]. This problem is reconsidered in this work and enhanced
towards combined micro/macro simulation.
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A. Simulation Scheme

Discrete time network simulation is straightforward if a
uniform time step lengthT is used. Every link with maximal
velocity v̂ is disassembled into cells of

minimal discretization length= T v̂. (1)

The amount of macroscopic vehicles stored in celli at
discrete simulation time stepk is denoted byxi(k).

Sendingand receiving functions q̂out
i (xi(k)) and q̂in

i (x(k))
specify the maximum rates (in vehicles per second) at which
vehicles can enter and leave celli during time stepk
depending on its current occupancyxi(k). These functions
constitute a generalization of the fundamental diagram [14]
where the sending function corresponds to the fundamental
diagram’s uncongested half and the receiving function to its
congested complement [15]. It is phrased that sending and
receiving function constitute theboundariesof a cell.

Calculation of actually transmitted flows is the task of net-
work elements we denote asconnectors. One such connector
is placed between every set of adjacent cells. Phenomeno-
logical constraints can be incorporated in its workings. Of
major importance to this work are flow splitting fractions at
diverges. Parameterβij(k) specifies which proportion of the
flow leaving upstream celli at time stepk enters downstream
cell j. The actually transmitted outflow (inflow) rate of a
cell i as calculated by its downstream (upstream) connector
at time stepk is denoted byqout

i (k) ∈ [0, q̂out
i (xi(k))]

(qin
i (k) ∈ [0, q̂in

i (xi(k))]). Various phenomenological spec-
ifications of this general flow transmission formalism are
possible [8], [12], [15].

Conceptually, a simulation step (tick) then consists of two
parts:

1) Every connector calculates vehicle transmissions be-
tween its adjacent cells.

2) Every cell updates its occupancy (in vehicles) accord-
ing to these transmissions.

Simulation of a heterogeneous urban network requires rel-
atively small cells to model densely meshed regions. This
calls for a smallT and in turn implies an unnecessarily
precise modeling of longer road segments. The use of larger
cells running on the same temporal grid somewhat mildens
this problem. However, a significant share of urban network
computations is incurred by the intersection logic. Thus, a
simulation scheme that minimizes the number of simulation
ticks themselves is needed.

Spatio-temporal dynamics within an isolated link are
uniquely defined if an initial density profile and future



upstream and downstream boundaries are provided. Given an
individually chosen time step length and an appropriate spa-
tial discretization, standard CTM logic facilitates a KWM-
consistent numerical solution. Since all spatial dynamicsare
enclosed within the link, it it can be viewed from the outside
as a discrete-time nonlinearordinary dynamical system with
two inputs (in- and outflows) and two outputs (upstream
and downstream boundaries). The same argument holds for
individual cells. Likewise, any point-like intersection model
represented by a connector that is consistent with the KWM
constitutes for any chosen time step length amemoryless
nonlinear discrete-time system with upstream flow demands
and downstream flow supplies as inputs and resulting vehicle
transmissions as outputs.1

Adopting a technical point of view, these systems can im-
mediately be joined: Outputs of systems with a large time
step are held constant when needed as inputs for faster
ticking systems, and outputs of faster ticking systems are
averaged before they are fed into slower ticking systems.
Since such holding and averaging affect system dynamics
mainly in terms of a delay that is proportional to the involved
time step lengths, a reasonable balance between additionally
introduced imprecision and computational speedup can be
achieved. This is confirmed by experimental results given in
Section II-A.4.

This simulation scheme is detailed in the following. A celli
(connectorc) is denoted as “due” at discretesimulationtime
stepk if k is an integer multiple of itsindividual time step
lengthTi (Tc). A simulation time step’s duration is generally
assumed to be 1 second. Two procedures are executed at
everyk:

1) Every cell i that is due according to its individual
time step lengthTi calculates supply and demand
boundaries from its current occupancy and keeps these
results constant for the nextTi seconds.

2) Every connectorc that is due according to its individual
time step lengthTc calculates average flow rates that
hold for the nextTc seconds and notifies its adjacent
cells of the resulting vehicle transmissions.

Sections II-A.1, II-A.2, and II-A.3 specify the technicalities
of this simulation scheme.

1) Cell Boundaries:Every cell i has exactly one preceding
one succeeding connector. Whilei has an individual time
step lengthTi, it is embedded in a system potentially running
at a 1-second time scale. This requires its maximum in- and
outflow ratesq̂in

i (xi(k)) and q̂out
i (xi(k)) to be defined at

every second. Since these boundaries are static functions
only of i’s occupancy, it is sufficient to specifyxi for every
simulation time step by

xi(mTi+n) ≡ xi(mTi) m ∈ N, n ∈ {0, . . . , Ti−1}. (2)

1This approach is conceptually similar to themethod of lineswhich
numerically integrates ordinary differential equations at boundary locations,
e.g. [17].

2) Connector Flow Rate Update:Consider a connectorc
with a setPc of preceding and a setSc of succeeding cells.
Its time step lengthTc is chosen such that (a) the connector
recalculates flow rates whenever an adjacent cell boundary
changes and (b) such that the overall computational load is
minimized. This is achieved by choosingTc as the largest
common divisor (lcd) of all adjacent cell time step durations

Tc = lcdi∈Pc∪Sc
(Ti). (3)

Arbitrary cell time step durations might yield low computa-
tional savings because of possibly smallTc resulting from
this equation, so they are constrained to be powers of two.
This turns the connector time step length into theminimum
of its adjacent cell time step durations.
3) Cell State Update:Even if a cell i’s statexi changes
only everyTi seconds, its adjacent connectors might run at
a higher frequency. On the finest temporal scale this implies

xi(mTi + Ti) = xi(mTi) (4)

+ 1s
Ti−1
∑

n=0

(

qin
i (mTi + n) − qout

i (mTi + n)
)

.

Denote bypi (si) the preceding (succeeding) connector of
cell i. Because of (3),Ti/Tpi

andTi/Tsi
are integer values

and allow for the following simplification:

xi(mTi + Ti) = xi(mTi) + Tpi

Ti/Tpi
−1

∑

n=0

qin
i (mTi + nTpi

)

−Tsi

Ti/Tsi
−1

∑

n=0

qout
i (mTi + nTsi

). (5)

Therefore it is sufficient to notify celli every lcd(Tpi
, Tsi

)
seconds of possible flow rate changes. This is done inde-
pendently by its upstream and downstream connector every
Tpi

and Tsi
seconds, when the appropriate addend in (5)

is transmitted to the cell. Since the cell’s boundaries are
held constant for a possible longer duration according to (2),
transmitted vehicles are intermediately cached by the cell.
4) Experimental Investigation of Simulation Precision:A
linear test network has been set up. It consists of a sequence
of 5 identical links with a space capacity of 140veh/km,
a flow capacity of 2000veh/h, a maximum velocity of 50
km/h, and a length of 444.46m each. The initial simulation
boundaries resemble the original CTM validation setting [7]:
A linear density gradient from zero to maximal density is
placed onto the network, with zero density at its upstream
and maximal density at its downstream end. No traffic is
allowed to enter or leave the network. The simulation is run
until a steady state is reached.

Figure 1 shows the resulting space-time plots in various
discretization settings. Plot (a) provides a good approxima-
tion to the exact solution. Initially, two shockwaves occur:
an upstream shockwave moving at positive velocity and a
downstream shockwave moving at negative velocity. They
merge in the center of the network and persist as a stationary
density discontinuity with all traffic being queued up in the



Fig. 1. Space Time Plots With Variable Spatio Temporal Discretizations

(a) All links have a time step
duration of of 1 second and

consist of 32 cells.

(b) All links have a time step
duration of 8 seconds and

consist of 4 cells.

(c) All but the second and
fourth link have an 8 second

time step.

(d) The same data as (c) but
averaged on a temporal grid

of 8 seconds.

Colors encode densities as follows: green is zero density, yellow
is half of maximum density, and red is maximum density. The
parenthesized numbers below the links indicate their individual time
step duration.

downstream half of the network. For comparison, results
with a much coarser but still homogeneous discretization are
shown in plot (b).

The results with heterogeneous simulation time steps nicely
reflect the workings of the underlying Godunov method: At
every simulation time step, the Godunov scheme solves a
Riemann problem at all cell boundaries. Placing fast ticking
cells next to slower cells explicitly displays the resulting
shockwaves as it can be seen in plot 1 (c). While these
artifacts are unequivocally owed to the simulation scheme
on variable time scales, they are put into relation by plot
(d). It shows the same result after it has been averaged on
a temporal grid according to the largest time step duration
originally used. The artefact’s are nicely smeared out while
the original shockwaves are maintained with precision at
least comparable to plot (b).

These results indicate that the overall simulation error re-
mains in the order of the largest involved time step duration
chosen, as it has been previously hypothesized. Artifacts can
occur at boundaries between slow and fast ticking cells but
can also be removed by temporal averaging before further
processing of simulation output. No amplification of artifacts
is observed.

B. Network Discretization

1) Berlin Testcase:Our testcase is modeled after the road
network of Greater Berlin, see Figure 2. This network
consists of 1083 nodes and2459 unidirectional links. It

Fig. 2. Major Road Network of Greater Berlin

Fig. 3. Effect of Network Time Constant

(a) Number of cells over
log

2
(T̂ ). Since the network ge-

ometry has a limiting effect on
cell sizes,T̂ value beyond26s
do not result in an increased
coarsening.

(b) Histogram of log
2
(T ) for

all intersections in the network
given a maximal allowed time
step duration of 64 seconds.

is quite heterogeneous: the inner-urban area is modeled in
relatively high resolution while the surrounding freeway ring
is comprised of several links that are many kilometers long.

Network time constant̂T denotes the largest allowed sim-
ulation time step duration in the network. It compromises
between a high simulation resolution (smallT̂ ) and high
computational performance (largêT ). The network is dis-
cretized such that link-specific simulation time step durations
are the largest powers of two smaller than̂T for which
(1) still holds. Additionally, it was required that every link
consists of at least two cells.

Figure 3 (a) shows the effect of̂T on the number of cells
in the network. With increasinĝT , the number of cells
approaches its minimum value of2 × 2459. A histogram
of intersection connector time step lengths forT̂ = 64s is
given in Figure 3 (b). The high number of intersections with
a relatively low time step constant is due to the finely meshed
interurban network which is precluded from a “slower”
simulation clock.

III. A MIXED MICRO /MACRO MOBILITY SIMULATION

Two fundamentally different concepts can be encountered in
the literature dealing with coupled micro-macro simulations.



“Hybrid” approaches link simulations that work on different
degrees of aggregation at well defined locations in the
network, e.g. [5], [10]. This approach is attractive if the
required simulation fidelity varies spatially.

“Mesoscopic” simulations move individual vehicles based on
aggregated laws of motion in order to increase computational
performance while retaining a microscopic representationof
behavior [4], [6]. Simulation based dynamic traffic assign-
ment usually employs such models, e.g. [1], [9], [19], [20].

The approach described here is a mesoscopic model with a
distinct macroscopic aspect.

A. Particle Movement

1) Specification:Consider a setM of particles (a “pop-
ulation” of travelers, agents, or vehicles) floating through
the network. Particles have no “mass” insofar as they do
not contribute to the macroscopic occupancy on a cell. It
is assumed that at the time of a particle’s entrance into the
network, an appropriate amount of macroscopic flow has also
been dismissed into the system, resulting in a mass balance
between particles and total macroscopic occupancy.

The macroscopic traffic flow model is expected to specify
a local velocity vi(k) on every cell i at every time step
k. At any time stepk of duration T , each particleµ
advances according to the local velocity of its current cell.
Particle locations within a cell are continuous variables and
movement is regarded as continuous in time as well: When
µ crosses a cell boundary during a single move of duration
T , it can freely choose its next cell (if there is more than one
downstream cell) and continue with the velocity encountered
there until its available move time ends.

2) Simulation on Variable Time Scales:The simulation
scheme on variable time scales can be extended to particle
movement. This requires the following completition of the
simulation procedure given in Section II-A:

1) Every cell i that is due according to its individual
time step lengthTi calculates supply and demand
boundaries from its current occupancy and keeps these
results constant for the nextTi seconds.

2) All particlesµ that currently reside on a celli that is
due are moved forwards according to the following
rules: (a) µ moves for a duration equal to its start
cell i’s time step lengthTi. It might cross several
cells during this move ifi has a largerTi than its
downstream cells. (b) Ifµ has used up its time of
movement and arrived on a cellj with Tj > Ti,
it continues its move until it has used up an overall
movement duration equal toTj. This continued move
never enters another cell because of condition (1) and
accounts for the expected waiting timeTj − Ti until
the particle is again due for movement.

3) Every connectorc that is due according to its individual
time step lengthTc calculates average flow rates that
hold for the nextTc seconds and notifies its adjacent
cells of the resulting vehicle transmissions.

Fig. 4. Particle Movement Across Many Cells

A homogeneous velocity field is assumed so that a correct particle
trajectory is depicted by a straight line in the space/time plot. The
considered particle starts its move somewhere in the middleof cell
i at space/time pointP0. During its initial move of durationTi

it traverses a small intermediate cell and finally arrives oncell
j at point P1. If the move was finished there, it would not be
continued untilTj − Ti seconds later from pointP ′

2 because of
cell j’s greater time step lengthTj . This would be incorrect as
the unstraight trajectory indicates. The particle has to account for
the waiting time on cellj by continuing its move for a duration
of anotherTj − Ti seconds which results in the required linear
trajectory through pointP2.

The workings of step 2 are depicted in Figure 4. Since the
particle evaluates all traversed cells’ velocities at the start
time of its move, the simulation scheme is imprecise only
in the order of a time step length, just as the macroscopic
simulation scheme itself.

B. Particle Route Choice

1) Specification:Having stated the influence of macroscopic
dynamics onto individual particles, the opposite problem
of synchronizing the macroscopic traffic flow with particle
behavior is considered next.

The route choice of particleµ at time stepk is expressed by
a vectoruµ(k) = (uµ

ij(k)) of turning move indicatorswhere
uµ

ij(k) is one if µ proceeds from celli to j at time stepk
and zero otherwise. Denoting byuij(k) the total number of
particles that chose turning moveij at time stepk, the entire
population’s route choice is expressed by a vectoru(k) =
(uij(k)) with u(k) =

∑

µ∈M
u

µ(k).

An additional state vectorxcnt(k) = (xij(k)) is introduced.
Each elementxij(k) represents the accumulated number of
particles having moved from celli to j until time stepk.
The dynamics ofxcnt(k) are defined by

x
cnt(0) = 0 (6)

x
cnt(k + 1) = x

cnt(k) + u(k). (7)

From this, macroscopic turning fractions can immediately be
obtained through

βij(k) = xij(k)/
∑

l

xil(k). (8)

These flow splitting fractions can directly be fed into the
macroscopic mobility simulation. While update equation (7)
assumes time-invariant turning probabilities, a straightfor-
ward approach to introduce time variance is to define an



additional forgetting parameterw ∈ (0, 1) in a modified
turning counter update equation

x
cnt(k + 1) = wx

cnt(k) + (1 − w)u(k). (9)

In the absence of newly observed turning moves this scheme
causes an exponential forgetting of previously learned
counts. An important property of this averaging is its infinite
memory: If no particles arrive at an intersection for a while,
turning counters remain strictly positive and thus ensure
well-defined flow splits (8).

2) Simulation on Variable Time Scales:If the macroscopic
mobility simulation runs on variable time step lengths, the
rows of eq. (9) are evaluated at likewise variable frequencies:

xij(mTi + n) ≡ xij(mTi) m ∈ N, n ∈ {0, . . . , Ti − 1}

xij(mTi + Ti) = wixij(mTi) (10)

+ (1 − wi)T
−1

i

Ti−1
∑

n=0

uij(mTi + n).

An individual weightwi is then necessary for every upstream
cell i in order to maintain the same degree of averaging
for all turning counters: If input signaluij(k) is Poissonian
with expectation and varianceλ, the variance ofxij(mTi)
approaches

lim
m→∞

VAR{xij(mTi)} = Tiλ(1 − wi)/(1 + wi). (11)

The network-wide time constant̂T defined in Section II-
B is now employed to postulate that (a) this output signal’s
variability must be independent of upstream celli’s time step
length and (b) identical to

VAR{T̂−1

T̂−1
∑

n=0

uij(mT̂ + n)} = T̂−1λ. (12)

Equating (11) and (12) results in

wi = (T̂ − Ti)/(T̂ + Ti). (13)

An infinite memory is still guaranteed if allTi are chosen
strictly smaller thanT̂ .

C. Examples and Model Discussion

These experiments investigate the proposed mixed mi-
cro/macro model’s precision as well as the accelerating
effect of the simulation scheme on variable time scales.
All experiments were conducted on a 1,7 GHz Pentium
4 machine with 1GB RAM and implemented in the Java
programming language.

A synthetic population of 206’353 motorist travelers with
complete daily plans has been generated for the Berlin
network introduced in Section II-B.1 [11]. This is a 10
percent sample of Berlin’s true motorist population. Since
simulations are run on a thinned out version of the full Berlin
network, the use of 2 (instead of 10) macroscopic vehicle
units per particle already creates realistic congestion patterns.
The simulation of a larger microscopic sample is prevented

Fig. 5. Precision of Micro/Macro Model Synchronization on aShort Link

Microscopic and macroscopic density trajectory for a shortlink
of 25 m length under heavy congestion. The strong vehicle dis-
cretization noise corresponds to the discrete value domainof the
microscopic curve. The macroscopic curve removes most of the
discretization noise. Unrealistically high microscopic densities are
possible because of the massless particles. The macroscopic trend
however is within bounds.

only by the applied machine’s limited memory. The follow-
ing experiments consider the morning rush hour from 6am to
12am. More than 16’000 particles are concurrently simulated
during the rush hour peak at approximately 9am. Since the
simulated vehicles’ behavior is the outcome of a planning
simulation, the network time constant was chosen as large
as5 minutes.

1) Precision of Micro/Macro Coupling:Microscopic behav-
ior influences macroscopic flow splits via the turning counter
mechanism while microscopic movement is guided by the
macroscopic velocity field. The precision of this micro/macro
model synchronization is investigated in the following.

Figures 5 and 6 show microscopic and macroscopic traffic
density trajectories for a short link of 25 meters length anda
long link that is 1611 meters long. This difference is reflected
in the much greater variance of the microscopic density on
the smaller link. Both macroscopic density trajectories track
the microscopic trends with high precision and almost no
lag. The strong discretization noise on the shorter link is
significantly reduced. These results are representative for the
network-wide precision of modeling. Further investigations
(not shown because of space restrictions) indicate that the
coupling scheme preserves the total micro/macro vehicle
balance in the network with a negligible error of at most
3 per mille.

It is important to emphasize the difference between this
model and a typical mesoscopic approach: The depicted
macroscopic trajectories arenot calculated as averages of
microscopic vehicle counts on a link. Rather, they implicitly
result from continuously tracked turning fractions that guide
an appropriate amount of macroscopic flow across that link.

2) Computational Performance:The imprecisions intro-
duced by the simulation scheme on variable time scales
can only be justified by their countervailing computational
benefits. Figure 7 shows the overall speedup (quotient of
simulated time interval and duration of computation) using
the same morning peak scenario as before. The maximal
speedup is90 for the considered2459 link network and



Fig. 6. Precision of Micro/Macro Model Synchronization on aLong Link

Microscopic and macroscopic density trajectory for a1.6 km long
link under heavy congestion. Discretization noise has a weaker
effect since more particles go into the density calculation. The
microscopic signal trend is tracked very well by the macroscopic
curve.

Fig. 7. Speedup

Computational speedup overlog
2

of largest simulation time step
duration in the network.

an overall population of 206’353 travelers. It has been
accomplished one a single-CPU 1.7GHz Pentium4 machine.
Clearly, this system is ready for real-time simulation of large-
scale scenarios.

IV. SUMMARY

We presented a high performance micro/macro traffic flow
simulation. The model owes its ability to simulate large-scale
scenarios in multiple real time to the following features: (i)
Every link is simulated with an individual time step duration
that is optimally adjusted to its characteristics. (ii) The
macroscopic mobility simulation only moves non-destination
oriented flows. No care has to be taken e.g. of partial
densities as it would be the case if behavioral aspects were
represented macroscopically as well. (iii) The model does not
require a realistic number of particles. If, for example, only
a 10 percent sample of the complete population is loaded
onto the network, the macroscopic equivalent of 10 vehicles
is inserted into the system together with every particle.

Beyond its computational performance, the following fea-
tures of the model are noteworthy: (i) The macroscopic
model is coupled to the microscopic behavioral model
through a filtering mechanism that effectively removes ve-
hicle discretization noise. (ii) Analytical features suchas

continuity or differentiability of the macroscopic trafficflow
model are preserved despite of the microscopic vehicle
representation. Reference [13] describes a first application
of this algorithmically important property.
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