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Comparing traffic flow models with different number of ”phases”
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Abstract. By comparing microscopic traffic flow models with a different number of phases in the context
of a simple scenario, the similarities as well as the differences of the various traffic flow models can be
discussed. It turns out that there is a certain range of traffic flow conditions, where it is difficult to discern
the space-time patterns produced by the different models. However, there are some other regions in the
parameter space, where clear differences can be detected. Although the results obtained here cannot directly
transformed into a real test with real-world data, they may help to finally define realistic scenarios which
would result in a clear decision about which model describes reality best.

PACS. 89.40.Bb Land transportation – 64.60.Cn Order-disorder transformations – 47.54.-r Pattern se-
lection; pattern formation

1 Introduction

Currently, there is an ongoing debate in the traffic flow
community concerning the correct empirical and theoreti-
cal description of the observations reported in [?]. Mainly
three candidates are striving to describe the empirical ob-
servations. Following a good tradition, we will call those
different approaches hypotheses in the following. Their fi-
nal goal is to explain (or, a bit more cautious, to describe)
the various traffic flow patterns. The different models itself
will be described in this text from the perspective of mi-
croscopic traffic flow (car-following) models, and we rely
on the most simple of those models. These simple models
are not capable to deliver a thorough microscopic descrip-
tion of traffic flow (which still needs to be worked out) [?];
this would require to incorporate lane-change phenomena
as well as the tactical level of decision making of human
drivers [?,?]. Nevertheless, it is hoped for that they cap-
ture the main macroscopic features, i.e. the patterns of
traffic flow observed in reality. For microscopic models, a
number of reviews are available, see [?,?,?].

Microscopically, car-following is described as an ordi-
nary differential equation (ODE) or one of its discretiza-
tions (in time, or in time and space):

v̇ = f(g, v, V, . . .) (1)

Here, v is the speed of the vehicle under consideration, V
is the speed of the vehicle in front and g is the net headway
to this vehicle. Of course, the model can be stochastic, in

which case the equation (??) turns into a stochastic dif-
ferential equation (SDE). More likely than not, there is a
delay of the reaction of the driver to the current state, in
which case one ends up with a delay differential equation
(DDE). Note, however, that this delay time needs not to
be fixed in reality, and when a driver reacts in an antic-
ipatory fashion to the conditions in front, the delay time
might even change sign.

With equation (??), the three different hypotheses about
the nature of traffic flow can be discussed in very simple
terms. Consider stationary states of equation (??), defined
as v̇ = 0. It is plausible, that this can be realized only if
v = V , with this information the equation

f(g, v, v) = 0

can be solved in very general terms. If the equilibrium
equation has solutions at all (this is not necessary, it is
possible to construct functions f(g, v, V ) without this fea-
ture), then the stability of those solutions can be dis-
cussed.

The simplest case is that all possible solutions (g∗, v∗)
of f(g∗, v∗, v∗) = 0 are stable, and that they organize
along a one-dimension curve v∗(g∗). This corresponds to
a model where the macroscopic behaviour of traffic flow
displays just one phase, and especially the equilibrium
curve f(g∗, v∗, v∗) = 0 of the microscopic model can be
transformed into the so called fundamental diagram of
the traffic engineers, which relates traffic flow q = v∗

g∗+ℓ

with traffic density k = 1
g∗+ℓ

. Here, the variable ℓ is the

average generalized length of the vehicles, i.e. the physical
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length of the vehicle plus the distance a driver holds to
the vehicle in front when standing in a jam. Empirically,
the fundamental diagram is easily accessible, at least the
traffic flow q and the average speed v can be measured
directly by double induction loops. Since q = kv, un-
der certain circumstances the fundamental diagram in the
(k, q)–plane can be derived from these data. Upon averag-
ing such a cloud of data into bins along the k-axes, a curve
〈q〉(k) (〈·〉 averages all data-points with the same density
k) can be constructed empirically. It is another discussion,
whether this averaging is really sensible from a statistical
or a dynamical point of view. Nevertheless, in most cases
the curve 〈q〉(k) of the fundamental diagram deviates only
slightly from a piecewice linear function. We will come
back below to microscopic models which have this feature,
let us note in passing that the first-order fluid-dynamical
Lighthill Whitham Richards theory [?,?] belongs to this
model class.

There is a second class of traffic flow models, where
at least some of the solutions of f(g∗, v∗, v∗) = 0 are un-
stable. In this case, the corresponding model displays two
phases, a so called free flow phase and a jammed or con-
gested phase. Just as is stated by the theory of first-order
phase transitions, there is a mixed regime where a sys-
tem consists of a mixture of free flow and jammed flow,
respectively. To be precise, one should put ”phases” and
”phase-transitions” in quotation marks, since very often
these terms are used in an alarmingly sloppy manner. (Ex-
amples are: the order parameter which is linked to any
first-order phase transition is not identified at all, its be-
haviour at the phase transition is not discussed or ana-
lyzed, and so on.) Often, a “phase” is just a “regime”:
having two phases means having (at least) three regimes :
(i) the regime where the free flow phase is homogeneous;
(ii) the regime where the jammed phase is homogeneous;
and (iii) the inhomogeneous regime where the free flow
phase and the jammed phase occur simultaneously. This
is the case for the most simple set-up; in more complicated
cases (e.g. for an on-ramp) even richer phase (or regime?)
diagrams are possible [?,?].

The final case to be discussed is at the heart of three
phase theory. This theory assumes, that the function f(g∗, v∗, v∗) =
0 has for a certain range of distances g∗ ∈ [g1(v

∗), g2(v
∗)]

multiple solutions, in fact infinitely many. These points
cannot be stable points but are marginally stable, and
that means that even a very small amount of noise drives
them through the (g∗, v∗)–plane. Translated back in the
fundamental diagram, this means that even in the absence
of noise, a cloud of points is existent in the (k, q)–plane.
To make those models really three-phase, there is another
instability point needed: above a certain density, all those
points become unstable and then different mixtures of the
three phases (free, synchronized, jam) become a possibil-
ity. This makes the behaviour of those models very rich,
and along with this, very complicated. As with the two-
phase models, in more complicated cases a plethora of
”phases” (regimes?) is observed in those models.

Note that on a quantitative level the two-phase and
the three-phase models display different states (”phases”,

regimes) which strongly resemble empirically observed pat-
terns of traffic flow.

2 Models used

To our knowledge, there is so far not a single model which
can be parameterized to yield one, two, or three phase be-
haviour. There are, however, models which can be param-
eterized to change between one and two-phase behaviour.
Since this contribution is not aiming at the most realis-
tic model, we look for simple possibilities. One the sim-
pler one/two-phase models is the optimal velocity model
(OVM) [?], while the simplest known three-phase model
is the CA model introduced in [?], named KKW in the fol-
lowing. However, for the scenario below this KKW model
turned out to be too simple, since not all parameters could
be tweaked to the values needed for this scenario, so a
more complex three phase model had to be used [?]. The
two models used in this paper are deterministic models,
with one exception: an open scenario will be regarded,
with a feeding of the models which is a Poissonian source
of vehicles. Although it might be very optimistic to assume
real traffic to be deterministic, this greatly simplifies mat-
ters since the observed patterns are very clear and not
covered by noise.

2.1 OVM

The OVM model used here is not the one originally intro-
duced in [?], but a slightly modified version of it. Let xn(t)
the position of vehicle n at time t, and vn(t) its velocity. To
stay as simple as possible, consider one lane traffic, so the
vehicles are ordered by their positions, xn(t) < xn−1(t).
As a further simplification, introduce the net headway be-
tween two vehicles as gn(t) := xn−1(t)−xn(t)− ℓ, where ℓ
is the vehicle length. Again, to simplify matter, all the ve-
hicles have the same length. Then the differential equation
of the models reads:

σv̇n(t) = F (gn(t)) − vn(t) (2)

Here, σ is a relaxation time, F (gn(t)) is the optimal ve-
locity function, which is modelled as piecewise linear [?]:

F (g) =











0 if g < g1
g − g1

τ
if g1 ≤ g < g2

vmax if g ≥ g2

(3)

The parameters in this equation are g1 the minimum head-
way (can be zero), the maximum speed vmax, the preferred
headway τ of the driver and the maximum look-ahead dis-
tance g2, which of course is determined by g2 = g1+vmaxτ .

In all simulations to follow, the model equations will
be integrated numerically by the following second order
scheme

v(t + h) = v(t) +
h

σ
(F (g(t)) − v(t)) , (4)

x(t + h) = x(t) +
h

2
(v(t + h) + v(t)) , (5)
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where the index has been dropped to improve readability.
The parameter h is the step-size, which is usually set to
h = 0.2 s. To minimize numerical problems (the model is
not crash-free), in any time-step the state of each vehicle
is forced to follow the generalized CA crash-free condit
ion, v < g/h. In most of the following simulations, this is
really needed.

As is well-known, this model possess an equilibrium
solution v̇n(t) = 0, ∀n. It is given by:

v∗ = F (g∗) =
g∗ − g1

τ
(6)

and it becomes unstable, if the following condition for the
putative equilibrium distance g∗ is fulfilled [?]:

σ >
1

2F ′(g∗)
=

τ

2
(7)

Provided, of course, that g1 < g∗ < g2 is fulfilled, outside
of this range the solution to the model is stable.In the
simulations below, the parameters of the model are fixed
at g1 = 0, ℓ = 6.5 m and τ = 1.3 s with the exception
of σ which is either 1.0 s (unstable) or 0.5 s (stable) to
switch from one-phase to two-phase mode.

2.2 Kerner’s SA (speed adaptation) model (SAM)

The three-phase model in this field is provided by the
recently published speed adaptation model [?], which will
be called SAM in the rest of this text. This model is an
ODE model, which in its simplest version reads:

v̇ =







afree if g > gjam and v > vmin,f

async if g > gjam and v ≤ vmin,f

ajam if g ≤ gjam

(8)

ẋ = v (9)

(again the equation without subsript is used, to improve
readability) where the different accelerations are defined
as:

afree = Afree(Ffree(g) − v) + k(v, V )(V − v) (10)

async = Asyn(FSync(g) − v) + k(v, V )(V − v) (11)

ajam = −kjamv. (12)

with the three remaining functions:

k(v, V ) =

{

k1(1 − λ(v)) + k2λ(v) if v ≤ V
kacc else

(13)

λ(v) =
1

1 + exp((v/vcrit − 1)/ǫ)
(14)

Fsync(g) =
g − gjam

τSync

(15)

Ffree(g) = vmax tanh

(

g

vmaxτ

)

. (16)

The same parameters as in [?] have been used, with the
exception of vmax = 33 m/s which has been set to the
same value as for the OV model.

3 The Leutzbach scenario

There is a nice example in [?], which will be used in the
following to discuss the differences between the different
models. A one-lane open road with a stochastic inflow q
is considered, which runs from x = 0 up to x = 20000
m. At the position x = 15000 m an incident blocks the
road completely for 10 minutes (T = 600 s), after that
the incident is operated for another T = 600 seconds at a
configurable capacity qout. This is modelled by an adaptive
traffic light which switches to green when a time interval
1/qout has been elapsed since the last switch to green, and
stays so until one vehicle has passed it.
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Fig. 1. Space-time diagram of LWR-type of traffic. The shock-
waves # 1 to # 4 are included and labelled in the plot.

Additionally to this description, the boundary condi-
tions need to be taken into account as follows: at the out-
flow end (x = 20000 m) a completely open boundary is
used, i.e. no speed limits nor a capacity constraint is put
there. This means, that no external disturbances enter the
system. On the inflow end (x = 0 m), vehicles are inserted
randomly with a certain rate that corresponds to a the in-
flow q. However, some pre-cautions must be taken to avoid
strange phenomena at the inflow end. In principle, vehicles
should be inserted roughly with the speed of the vehicle
in front (vn−1) which is already in the system. To do that,
one must find a distance gn where f(gn, vn, vn−1) = 0,
which in case of the OVM model reads F (gn) = vn−1. Ba-
sically, this sets the acceleration of the inserted vehicle to
zero. This may lead to an insertion point which is outside
of the system, xn < 0. If the last vehicle is already outside
of the system, i.e. if xn−1 < 0, then no new vehicle is al-
lowed to enter the system. This effectively shuts down the
inflow, although it is of course not a realistic description
of real traffic, it will be used here for convenience.

3.1 Results

The scenario described above generates five shock-waves,
four of them are important in what follows and are drawn
in Fig. ??. As could be seen in Fig. ??, the simulation of
the OVM model described above reproduces almost ex-
actly the simulation results in line with LWR theory – for
an appropriate choice of the parameters, of course. The
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first wave (named wave #1 in Fig. ??) starts at the begin-
ning of the blockade, the second wave when the blockade
is lifted partially, and the third wave starts when the free-
way is free again. The collision of wave #1 with wave #2
produces a new wave #4, and all patterns vanish when
this wave #4 finally collides with wave #3. Of course, for
very small inflow, i.e. if q < qout just two waves remain.

Just to make it clear: LWR and the OVM with the set
of parameters chosen for Fig. ?? is what physicists call a
one-phase model.

The following set of figures demonstrates what happen
upon the transition from a one-phase model to a two-phase
model. The OVM display this transition if the relaxation
time σ gets large enough, i.e. if σ < τ/2. As has been
detailed above, this means microscopically that the solu-
tion v̇n = 0 becomes unstable. The following plot displays
the difference between a parameter setting where OVM is
one-phase and two-phase, respectively.
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Fig. 2. Space-time diagram, upper panel is LWR similar with
the relevant parameters given by qin = 0.5, σ = 0.5, qout =
0.25; the lower plot is with σ = 1.0, in the two phase regime.
Both plots look similar, because the inflow is below a critical
value where both models show marked differences. It is, how-
ever, difficult with plain LWR to construct a convincing model
where the wave front between a low and a medium density area
runs backward faster than the wave front between a medium
and a high density area, as it is the case in the plot on the
right.

First of all, if the inflow is too small, there is no marked
difference in this scenario between a one-phase and a two-
phase model (see Fig. ??). It is, however, difficult with
plain LWR to construct a convincing model where the
wave front between a low and a medium density area runs
backward faster than the wave front between a medium
and a high density area, as it is the case in the plot on
the right. For this, one would need a fundamental dia-
gram that is convex (i.e. curved upward) on the congested
branch (i.e. for densities above the density of maximum
flow). Such a fundamental diagram has, however, the prop-
erty that the upstream front of a jam (i.e. the deceleration
wave) spreads out over time – a feature that does not seem
plausible with respect to reality. This is discussed in more
detail in [?].

Upon increasing the inflow above a value q > qc, where
qc is the outflow from a stable traffic jam (which is a num-
ber which is simply not available in simple LWR), things
start to change. This can be seen in Fig. ??. There are
two features which uniquely discern a two-phase from a
one-phase model. First, the large inflow can completely
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Fig. 3. Space-time diagram, this time with σ = 1.0. Upper
panel is with large inflow, but small outflow from the incident
(qin = 0.7, qout = 0.25); in this case, a different pattern is
observed, because the large inflow stabilizes the jam. By in-
creasing the outflow from the incident above the outflow from
the jam (qout = 0.5, lower panel), all relevant patterns with
the exception of the jam vanish.
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stabilize the jam. This means that the upstream front of
the jam runs faster upstream than the downstream front.
While there is just one single inflow in LWR where this
can (marginally) happen, in the case of a two-phase model
there is a whole range of inflows qc < q < qmax, with qmax

the maximum possible flow that can be reached by the
model or in reality. Note, that this fact makes it very likely
to observe such a phenomenon with a two-phase model,
while it is not very likely for a one-phase model. The sec-
ond feature is that there is a region in parameter space,
where the congestion caused by the partially lifted inci-
dent is completely suppressed, see Fig. ?? (right) for an
example. Of course, this may happen twice, i.e. for a very
small inflow, too, but especially the pattern observed in
Fig. ?? (right), where qout is still macroscopically smaller
than qin, is impossible for a one-phase model.

As could be expected, an even different picture is ob-
served from the three phase model, see Fig. ?? for an
example. When the outflow from the partial blockade is
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Fig. 4. Space-time diagram, this time for the SAM model.
The behaviour of this model is different from the one- and
two-phase models. The parameters (which were not so easy to
tweak) are qin = 0.5 for both figures, and qout = 0.22 in the
upper and qout = 0.36 in the lower plot. The parameters of the
model had been set to the values given in [?].

small, then directly upstream of the incident a homoge-

neous region of traffic flow can be observed. This breaks
down into a sequence of small jams. What changes upon
increasing of qout is the frequency between these jam waves,
it gets smaller until they finally vanish into a similar struc-
ture as in the right part of Fig. ??. So, in this congested
region there is an additional substructure which is not ap-
parent in two-phase models. Further analysis is needed to
confirm the detailed structure of this congested phase.JamMax

4 Discussion

With the help of a fairly simple scenario, the differences
between one-phase, two-phase, and three-phase models
have been demonstrated. The idea behind this simple ap-
proach is to better understand which type of patterns is
generated by which model class. Furthermore, similar ap-
proaches might help in analyzing empirical patterns. E.g.,
there are clear differences in this simple scenario between
the different models, which could be observed empirically
and can therefore help to decide what reality all about is.
Note, however, that it might happen that reality is more
colorful than the simple theories presented here: given a
different driver collective on a different day, they might as
well ”decide” to organize as a one, two, three-phase traffic
flow, just to make life miserable for traffic flow theoreti-
cians.

Be that as it is, the next step to be taken is to quanti-
tatively (and not only qualitatively) test these and other
theories with real data. The most promising candidate to
do so is unfortunately not the scenario investigated here,
because it might be impossible to obtain enough examples
to even draw statistically meaningful answers, but the on-
ramp scenario which is used in almost all the publications
related to the different phases of traffic flow.
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