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1 Introduction

Currently, there is an ongoing debate in the traffic flow community concerning
the correct empirical and theoretical description of the observations reported
in [2]. Mainly three candidates are striving to describe the empirical obser-
vations. Following a good tradition, we will call those different approaches
hypotheses in the following. Their final goal is to explain (or, a bit more cau-
tious, to describe) the various traffic flow patterns. The different models itself
will be described in this text from the perspective of microscopic traffic flow
(car-following) models, and we rely on the most simple of those models. These
simple models are not capable to deliver a thorough microscopic description
of traffic flow (which still needs to be worked out) [4]; this would require to
incorporate lane-change phenomena as well as the tactical level of decision
making of human drivers [5, 6]. Nevertheless, it is hoped for that they cap-
ture the main macroscopic features, i.e. the patterns of traffic flow observed in
reality. For microscopic models, a number of reviews are available, see [7, 8, 9].

Microscopically, car-following is described as an ordinary differential equa-
tion (ODE) or one of its discretizations (in time, or in time and space):

v̇ = f(g, v, V, . . .) (1)

Here, v is the speed of the vehicle under consideration, V is the speed of
the vehicle in front and g is the net headway to this vehicle. Of course, the
model can be stochastic, in which case the equation (1) turns into a stochastic
differential equation (SDE). More likely than not, there is a delay of the
reaction of the driver to the current state, in which case one ends up with a
delay differential equation (DDE). Note, however, that this delay time needs
not to be fixed in reality, and when a driver reacts in an anticipatory fashion
to the conditions in front, the delay time might even change sign.
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With equation (1), the three different hypotheses about the nature of
traffic flow can be discussed in very simple terms. Consider stationary states
of equation (1), defined as v̇ = 0. It is plausible, that this can be realized only
if v = V , with this information the equation

f(g, v, v) = 0

can be solved in very general terms. If the equilibrium equation has solutions
at all (this is not necessary, it is possible to construct functions f(g, v, V )
without this feature), then the stability of those solutions can be discussed.

The simplest case is that all possible solutions (g∗, v∗) of f(g∗, v∗, v∗) = 0
are stable, and that they organize along a one-dimension curve v∗(g∗). This
corresponds to a model where the macroscopic behaviour of traffic flow dis-
plays just one phase, and especially the equilibrium curve f(g∗, v∗, v∗) = 0
of the microscopic model can be transformed into the so called fundamental
diagram of the traffic engineers, which relates traffic flow q = v∗

g∗+ℓ
with traf-

fic density k = 1
g∗+ℓ

. Here, the variable ℓ is the average generalized length of
the vehicles, i.e. the physical length of the vehicle plus the distance a driver
holds to the vehicle in front when standing in a jam. Empirically, the funda-
mental diagram is easily accessible, at least the traffic flow q and the average
speed v can be measured directly by double induction loops. Since q = kv,
under certain circumstances the fundamental diagram in the (k, q)–plane can
be derived from these data. Upon averaging such a cloud of data into bins
along the k-axes, a curve 〈q〉(k) (〈·〉 averages all data-points with the same
density k) can be constructed empirically. It is another discussion, whether
this averaging is really sensible from a statistical or a dynamical point of view.
Nevertheless, in most cases the curve 〈q〉(k) of the fundamental diagram de-
viates only slightly from a piecewice linear function. We will come back below
to microscopic models which have this feature, let us note in passing that the
first-order fluid-dynamical Lighthill Whitham Richards theory [14, 15] belongs
to this model class.

There is a second class of traffic flow models, where at least some of the
solutions of f(g∗, v∗, v∗) = 0 are unstable. In this case, the corresponding
model displays two phases, a so called free flow phase and a jammed or con-
gested phase. Just as is stated by the theory of first-order phase transitions,
there is a mixed regime where a system consists of a mixture of free flow
and jammed flow, respectively. To be precise, one should put ”phases” and
”phase-transitions” in quotation marks, since very often these terms are used
in an alarmingly sloppy manner. (Examples are: the order parameter which is
linked to any first-order phase transition is not identified at all, its behaviour
at the phase transition is not discussed or analyzed, and so on.) Often, a
“phase” is just a “regime”: having two phases means having (at least) three

regimes : (i) the regime where the free flow phase is homogeneous; (ii) the
regime where the jammed phase is homogeneous; and (iii) the inhomogeneous
regime where the free flow phase and the jammed phase occur simultaneously.
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This is the case for the most simple set-up; in more complicated cases (e.g.
for an on-ramp) even richer phase (or regime?) diagrams are possible [1, 3].

The final case to be discussed is at the heart of three phase theory. This
theory assumes, that the function f(g∗, v∗, v∗) = 0 has for a certain range of
distances g∗ ∈ [g1(v

∗), g2(v
∗)] multiple solutions, in fact infinitely many. These

points cannot be stable points but are marginally stable, and that means that
even a very small amount of noise drives them through the (g∗, v∗)–plane.
Translated back in the fundamental diagram, this means that even in the
absence of noise, a cloud of points is existent in the (k, q)–plane. To make
those models really three-phase, there is another instability point needed:
above a certain density, all those points become unstable and then different
mixtures of the three phases (free, synchronized, jam) become a possibility.
This makes the behaviour of those models very rich, and along with this,
very complicated. As with the two-phase models, in more complicated cases
a plethora of ”phases” (regimes?) is observed in those models.

Note that on a quantitative level the two-phase and the three-phase models
display different states (”phases”, regimes) which strongly resemble empiri-
cally observed patterns of traffic flow.

2 Models used

To our knowledge, there is so far not a single model which can be parameter-
ized to yield one, two, or three phase behaviour. There are, however, models
which can be parameterized to change between one and two-phase behaviour.
Since this contribution is not aiming at the most realistic model, we look
for simple possibilities. One the simpler one/two-phase models is the optimal
velocity model (OVM) [10], while the simplest known three-phase model is
the CA model introduced in [12], named KKW in the following. However, for
the scenario below this KKW model turned out to be too simple, since not
all parameters could be tweaked to the values needed for this scenario, so a
more complex three phase model had to be used [3]. The two models used
in this paper are deterministic models, with one exception: an open scenario
will be regarded, with a feeding of the models which is a Poissonian source
of vehicles. Although it might be very optimistic to assume real traffic to be
deterministic, this greatly simplifies matters since the observed patterns are
very clear and not covered by noise.

2.1 OVM

The OVM model used here is not the one originally introduced in [10], but a
slightly modified version of it. Let xn(t) the position of vehicle n at time t,
and vn(t) its velocity. To stay as simple as possible, consider one lane traffic,
so the vehicles are ordered by their positions, xn(t) < xn−1(t). As a further
simplification, introduce the net headway between two vehicles as gn(t) :=
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xn−1(t) − xn(t) − ℓ, where ℓ is the vehicle length. Again, to simplify matter,
all the vehicles have the same length. Then the differential equation of the
models reads:

σv̇n(t) = F (gn(t)) − vn(t) (2)

Here, σ is a relaxation time, F (gn(t)) is the optimal velocity function, which
is modelled as piecewise linear [11]:

F (g) =











0 if g < g1

g − g1

τ
if g1 ≤ g < g2

vmax if g ≥ g2

(3)

The parameters in this equation are g1 the minimum headway (can be zero),
the maximum speed vmax, the preferred headway τ of the driver and the
maximum look-ahead distance g2, which of course is determined by g2 =
g1 + vmaxτ .

In all simulations to follow, the model equations will be integrated numer-
ically by the following second order scheme

v(t + h) = v(t) +
h

σ
(F (g(t)) − v(t)) , (4)

x(t + h) = x(t) +
h

2
(v(t + h) + v(t)) , (5)

where the index has been dropped to improve readability. The parameter h
is the step-size, which is usually set to h = 0.2 s. To minimize numerical
problems (the model is not crash-free), in any time-step the state of each
vehicle is forced to follow the generalized CA crash-free condition, v < g/h.
In most of the following simulations, this is really needed.

As is well-known, this model possess an equilibrium solution v̇n(t) = 0, ∀n.
It is given by:

v∗ = F (g∗) =
g∗ − g1

τ
(6)

and it becomes unstable, if the following condition for the putative equilibrium
distance g∗ is fulfilled [10]:

σ >
1

2F ′(g∗)
=

τ

2
(7)

Provided, of course, that g1 < g∗ < g2 is fulfilled, outside of this range the
solution to the model is stable.In the simulations below, the parameters of the
model are fixed at g1 = 0, ℓ = 6.5 m and τ = 1.3 s with the exception of σ
which is either 1.0 s (unstable) or 0.5 s (stable) to switch from one-phase to
two-phase mode.
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2.2 Kerner’s SA (speed adaptation) model (SAM)

The three-phase model in this field is provided by the recently published speed
adaptation model [3], which will be called SAM in the rest of this text. This
model is an ODE model, which in its simplest version reads:

v̇ =







afree if g > gjam and v > vmin,f

async if g > gjam and v ≤ vmin,f

ajam if g ≤ gjam

(8)

ẋ = v (9)

(again the equation without subsript is used, to improve readability) where
the different accelerations are defined as:

afree = Afree(Ffree(g) − v) + k(v, V )(V − v) (10)

async = Asyn(FSync(g) − v) + k(v, V )(V − v) (11)

ajam = −kjamv. (12)

with the three remaining functions:

k(v, V ) =

{

k1(1 − λ(v)) + k2λ(v) if v ≤ V
kacc else

(13)

λ(v) =
1

1 + exp((v/vcrit − 1)/ǫ)
(14)

Fsync(g) =
g − gjam

τSync

(15)

Ffree(g) = vmax tanh

(

g

vmaxτ

)

. (16)

The same parameters as in [3] have been used, with the exception of vmax = 33
m/s which has been set to the same value as for the OV model.

3 The Leutzbach scenario

There is a nice example in [13], which will be used in the following to discuss
the differences between the different models. A one-lane open road with a
stochastic inflow q is considered, which runs from x = 0 up to x = 20000 m.
At the position x = 15000 m an incident blocks the road completely for 10
minutes (T = 600 s), after that the incident is operated for another T = 600
seconds at a configurable capacity qout. This is modelled by an adaptive traffic
light which switches to green when a time interval 1/qout has been elapsed
since the last switch to green, and stays so until one vehicle has passed it.

Additionally to this description, the boundary conditions need to be taken
into account as follows: at the outflow end (x = 20000 m) a completely open
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Fig. 1. Space-time diagram of LWR-type of traffic. The shockwaves 1 to 4 are
included and labelled in the plot.

boundary is used, i.e. no speed limits nor a capacity constraint is put there.
This means, that no external disturbances enter the system. On the inflow end
(x = 0 m), vehicles are inserted randomly with a certain rate that corresponds
to a the inflow q. However, some pre-cautions must be taken to avoid strange
phenomena at the inflow end. In principle, vehicles should be inserted roughly
with the speed of the vehicle in front (vn−1) which is already in the system. To
do that, one must find a distance gn where f(gn, vn, vn−1) = 0, which in case
of the OVM model reads F (gn) = vn−1. Basically, this sets the acceleration
of the inserted vehicle to zero. This may lead to an insertion point which is
outside of the system, xn < 0. If the last vehicle is already outside of the
system, i.e. if xn−1 < 0, then no new vehicle is allowed to enter the system.
This effectively shuts down the inflow, although it is of course not a realistic
description of real traffic, it will be used here for convenience.

3.1 Results

The scenario described above generates five shock-waves, four of them are
important in what follows and are drawn in Fig. 1. As could be seen in Fig. 1,
the simulation of the OVM model described above reproduces almost exactly
the simulation results in line with LWR theory – for an appropriate choice of
the parameters, of course. The first wave (named wave #1 in Fig. 1) starts
at the beginning of the blockade, the second wave when the blockade is lifted
partially, and the third wave starts when the freeway is free again. The collision
of wave #1 with wave #2 produces a new wave #4, and all patterns vanish
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when this wave #4 finally collides with wave #3. Of course, for very small
inflow, i.e. if q < qout just two waves remain.

Just to make it clear: LWR and the OVM with the set of parameters
chosen for Fig. 1 is what physicists call a one-phase model.

The following set of figures demonstrates what happen upon the transition
from a one-phase model to a two-phase model. The OVM display this transi-
tion if the relaxation time σ gets large enough, i.e. if σ < τ/2. As has been
detailed above, this means microscopically that the solution v̇n = 0 becomes
unstable. The following plot displays the difference between a parameter set-
ting where OVM is one-phase and two-phase, respectively.
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Fig. 2. Space-time diagram, left panel is LWR similar with the relevant parameters
given by qin = 0.5, σ = 0.5, qout = 0.25; the right plot is with σ = 1.0, in the two
phase regime. Both plots look similar, because the inflow is below a critical value
where both models show marked differences. It is, however, difficult with plain LWR
to construct a convincing model where the wave front between a low and a medium
density area runs backward faster than the wave front between a medium and a
high density area, as it is the case in the plot on the right.

First of all, if the inflow is too small, there is no marked difference in
this scenario between a one-phase and a two-phase model (see Fig. 2). It is,
however, difficult with plain LWR to construct a convincing model where the
wave front between a low and a medium density area runs backward faster

than the wave front between a medium and a high density area, as it is the case
in the plot on the right. For this, one would need a fundamental diagram that
is convex (i.e. curved upward) on the congested branch (i.e. for densities above
the density of maximum flow). Such a fundamental diagram has, however, the
property that the upstream front of a jam (i.e. the deceleration wave) spreads
out over time – a feature that does not seem plausible with respect to reality.
This is discussed in more detail in [16].

Upon increasing the inflow above a value q > qc, where qc is the outflow
from a stable traffic jam (which is a number which is simply not available in
simple LWR), things start to change. This can be seen in Fig. 3. There are two
features which uniquely discern a two-phase from a one-phase model. First, the
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Fig. 3. Space-time diagram, this time with σ = 1.0. Left panel is with large inflow,
but small outflow from the incident (qin = 0.7, qout = 0.25); in this case, a different
pattern is observed, because the large inflow stabilizes the jam. By increasing the
outflow from the incident above the outflow from the jam (qout = 0.5), all relevant
patterns with the exception of the jam vanish.

large inflow can completely stabilize the jam. This means that the upstream
front of the jam runs faster upstream than the downstream front. While there
is just one single inflow in LWR where this can (marginally) happen, in the
case of a two-phase model there is a whole range of inflows qc < q < qmax,
with qmax the maximum possible flow that can be reached by the model or in
reality. Note, that this fact makes it very likely to observe such a phenomenon
with a two-phase model, while it is not very likely for a one-phase model.
The second feature is that there is a region in parameter space, where the
congestion caused by the partially lifted incident is completely suppressed,
see Fig. 3 (right) for an example. Of course, this may happen twice, i.e. for a
very small inflow, too, but especially the pattern observed in Fig. 3 (right),
where qout is still macroscopically smaller than qin, is impossible for a one-
phase model.

As could be expected, an even different picture is observed from the three
phase model, see Fig. 4 for an example. When the outflow from the partial
blockade is small, then directly upstream of the incident a homogeneous region
of traffic flow can be observed. This breaks down into a sequence of small
jams. What changes upon increasing of qout is the frequency between these
jam waves, it gets smaller until they finally vanish into a similar structure as
in the right part of Fig. 3. So, in this congested region there is an additional
substructure which is not apparent in two-phase models. Further analysis is
needed to confirm the detailed structure of this congested phase.

4 Discussion

With the help of a fairly simple scenario, the differences between one-phase,
two-phase, and three-phase models have been demonstrated. The idea behind
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Fig. 4. Space-time diagram, this time for the SAM model. The behaviour of this
model is different from the one- and two-phase models. The parameters (which were
not so easy to tweak) are qin = 0.5 for both figures, and qout = 0.22 in the left and
qout = 0.36 in the right plot. The parameters of the model had been set to the values
in [3]

this simple approach is to better understand which type of patterns is gen-
erated by which model class. Furthermore, similar approaches might help in
analyzing empirical patterns. E.g., there are clear differences in this simple
scenario between the different models, which could be observed empirically
and can therefore help to decide what reality all about is. Note, however, that
it might happen that reality is more colorful than the simple theories pre-
sented here: given a different driver collective on a different day, they might
as well ”decide” to organize as a one, two, three-phase traffic flow, just to
make life miserable for traffic flow theoreticians.

Be that as it is, the next step to be taken is to quantitatively (and not
only qualitatively) test these and other theories with real data. The most
promising candidate to do so is unfortunately not the scenario investigated
here, because it might be impossible to obtain enough examples to even draw
statistically meaningful answers, but the on-ramp scenario which is used in
almost all the publications related to the different phases of traffic flow.

References

1. M. Treiber, A. Hennecke, and D. Helbing Physical Review E 62, 1805-1824
(2000).

2. B. S. Kerner, Phys Rev E 65:046138 (2002).
3. B. S. Kerner, S. L. Klenov J. Phys. A: Math. Gen. 39 1775-1809 (2006),

doi:10.1088/0305-4470/39/8/002
4. P. Wagner, Europ. J. Phys. B 52, 427 (2006), DOI: 10.1140/epjb/e2006-00300-1
5. T. Toledo, H. N. Koutsopoulos, and M. Ben-Akiva Integrated Driving Be-

haviour Modeling, to be published in Transp. Res. C (2007).
6. P. Vortisch, private communication (2007).
7. D. Chowdhury, L. Santen, and A. Schadschneider, Phys. Rep. 329, 199 (2000).



10 Peter Wagner and Kai Nagel

8. D. Helbing, Rev. Mod. Phys. 73, 1067 (2001).
9. K. Nagel, P. Wagner, and R. Woesler, Oper. Res. 51 1 (2003).

10. M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y. Sugiyama, Physical
Review E, 51 1035 (1995).

11. K. Nakanishi, K. Itoh, Y. Igarashi, M. Bando Phys. Rev. E 55, 6519 (1997)
12. B. S. Kerner, S. L. Klenov, and D. W. Wolf, J. Phys. A: Math. Gen., 35,

9971(2002)
13. W. Leutzbach,Introduction to the Theory of Traffic, Springer, Berlin, (1988).
14. M. J. Lighthill and J. B. Whitham, Proceedings of the Royal Society A 229,

281 (1955).
15. P. I. Richards, Operations Research, 4, 42 (1956)
16. K. Nagel, P. Nelson: A critical comparison of the kinematic-wave model with

observational data. In: Transportation and Traffic Theory – Flow, Dynamics,
and Human Interaction (Proc. 16th ISTTT), ed by H. Mahmassani (Elsevier,
2005), pp 145–164


