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Abstract— This paper presents a framework for simulation 
of within-day re-planning for the MATSim project. Three 
major building blocks are presented, each of which represents 
specific aspects of driver behavior. These components comprise 
(i) the provision of descriptive information in the form of link 
travel costs, (ii) prescriptive information in the form of routes, 
and (iii) a model of driver satisfaction. An exemplary model is 
presented, which focuses on en-route re-planning under 
different types of information provision. In this model driver 
perception is constrained to link traversal costs and decisions 
are made by application of a standard shortest path algorithm. 
The satisfaction of a traveler is modeled with a scoring (utility) 
function that evaluates routes as well as activities travelers are 
aiming at. The framework’s applicability is tested with a simple 
fictive network and a real-world network of Greater Berlin. 

I. INTRODUCTION 
n the field of transport planning, engineers agree that the 
problems of transportation are no more a matter of 

extending the infrastructure with concrete and steel, but 
rather a matter of the efficient use of existing transport 
networks [1]. Advanced Traveler Information Systems 
(ATIS) are intended to fill in here by providing accurate 
information through a variety of devices. 

An important aspect is the response of drivers to provided 
information. Since deployment of ATIS technologies is still 
in an early state, practical experiences are limited. To gain 
more insights into travelers’ decision making in-laboratory 
experiments such as FASTCARS ([2] and [3]) and IGOR [4] 
have been proposed. 

Behavioral models derived from the results of these 
laboratory experiments can be used in large-scale 
simulations to evaluate ATIS technologies. Travel time 
savings have been observed in several studies ([5], [6], [7] 
and [8]), varying from three to 30 percent depending on 
market penetration and network topology. Beside the 
lowering of travel time itself, the reduction of its uncertainty 
deserves to receive just as much attention.  

As a contribution to the research in this field, this paper 
presents a basic framework that enhances the MATSim 
toolkit (“Multi-Agent Transport Simulation Toolkit”, 
www.matsim.org) by capabilities of within-day and en-route 
re-planning. The framework is integrated in the so-called 
„mental layer” of agent behavior and defines a set of 
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interfaces in which specific implementations can model 
specific behavioral patterns. In detail, the behavior of an 
agent is represented by modules, each of which reflects a 
certain behavioral aspect. The modularity allows to easily 
exchange certain building blocks or even complete 
behavioral implementations and thus to compare and 
evaluate different models. 

The framework allows to model ATIS strategies, 
corresponding driver reactions, and finally to analyze the 
interaction between ATIS, drivers and traffic conditions. 

The remainder of this article is organized as follows: In 
section II, a short introduction to MATSim is given and in 
section III, the abstract agent model and its conceptual 
background are presented. Section IV describes an 
exemplary model and its implementation and section V 
verifies the frameworks applicability by means of two 
scenarios. The paper closes with a discussion and an outlook 
in section VI. 

II. MATSIM OVERVIEW 
MATSim is a multi-agent based transport simulation 

which originally envolved from TRANSIMS [9] and pursues 
an activity-based approach to demand generation. Unlike 
other transportation simulation packages MATSim is 
throughout agent-based and generates individual activity 
plans as input to the network loading rather than (time-
dependent) origin-destination matrices as typically used in 
dynamic traffic assignment. More details about the demand 
generation in MATSim can be found in [10] and [11]. 

Specifically, a plan contains the agent’s intended schedule 
of activities for the day, and the travel legs connecting the 
activities. A leg holds several attributes describing the travel 
from one activity to another such as departure time, expected 
arrival time, route and transportation mode. Activities 
contain type attributes such as home, work, education, 
leisure as well as further information regarding activity 
timing. 

The initial plans are generated by disaggregating census 
data. Next, there is a mechanism that allows the agents to 
learn and optimize their plans. The system iterates between 
plan generation (the mental layer, also referred as strategic 
layer) and traffic flow simulation (the physical layer). The 
system remembers several plans per agent and scores the 
performance of each plan with a fitness function. Between 
two iterations agents are able to modify plans with the use 
of genetic algorithms. Those plans are modified by mutation 
and recombination, e.g. recalculating new routes or varying 
departure times, while “bad” plan instances are eventually 
discarded. 
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This day-to-day re-planning mechanism, or more generally 
period-to-period re-planning since a plan must not 
necessarily be constrained to one day, is continued until the 
plans are “relaxed”, i.e. in an approximate user equilibrium. 

 

 
Fig. 1. The system iterates between plan generation/modification and traffic 
flow simulation until an approximate user equilibrium is reached. 
 

The framework proposed in this paper enhances MATSim 
with capability of within-day re-planning. More specifically, 
agents are now not only able to adapt plans between one 
execution in the traffic flow simulation, but also to modify 
them during the traffic flow simulation. This enables the 
agents to spontaneously react to unforeseeable incidents 
during a day. Plans, which are modified during the traffic 
flow simulation can now be regarded as a new mutated 
instance for the plans generation and day-to-day learning 
process, although such a post-processing has not yet been 
investigated. 

 

 
Fig. 2. The traffic flow simulation is enhanced with within-day re-planning 
capabilities. Agents are now able to mutate their plans during the run of the 
traffic flow simulation. 

 
Technically, day-to-day and within-day re-planning are 

quite similar. The agent’s capabilities about how it can 

modify its plan are the same and will be discussed later. 
However, there are differences considering the knowledge the 
agent possesses. With day-to-day re-planning the agent acts 
based on the knowledge it accumulated over previous runs of 
the traffic flow simulation. Whereas with within-day re-
planning the agent accesses rather locally available 
information, such as current link travel times, and thus can 
react to unforeseeable fluctuations in the traffic system. 

To clearly distinguish between the packages of MATSim, 
the package for plans generation and day-to-day re-planning 
(represented by the box “plans generation” and “day-to-day re-
planning” in fig. 2) will be referred as the demand-modeling 
package and the part that enhances the within-day re-
planning capabilities (represented by the box “within-day re-
planning” in fig. 2) will be referred as the telematics 
package. For the purpose of this paper the telematics 
package will be used as a standalone system without the 
feedback of mutated plans to the demand-modeling package 
depicted in fig. 2. 

The following section describes the abstract agent model 
that enables the basic within-day re-planning capabilities. 

III. ABSTRACT MODEL DESCRIPTION 

A. Basic agent model 
The behavior of an agent is fully determined through its 

plan. The linkage between the mobility simulation in the 
physical layer and the mental agent representation is done by 
the so called basic agent class. The basic agent holds an 
activity plan and extracts the information required by the 
mobility simulation out this plan. In particular these are: (i) 
departure time, (ii) departure link, (iii) destination link and 
(iv) the agent’s desired next link (if the agent is en-route). 
Altering an agent’s behavior is possible only by 
modification of its plan. 

B. Agent brain 
Presented so far, agent behavior is constrained to 

execution of a predefined activity plan. In order to alter its 
behavior it needs to become intelligent. Intelligence is 
provided to the agent by equipping it with a brain object. 
The essential task of a brain is to do on the fly modification 
to the plan. Additionally, the brain is able to determine the 
agent’s desire to re-plan at all. Possible capabilities of a 
brain are departure time choice, activity location choice, 
variations in activity sequencing and route choice. 

An agent brain comprises three further components, each 
of which represents a certain aspect of the re-planning 
process. Descriptive information in the form of link travel 
costs are provided by a so called link cost provider, 
prescriptive information in the form of predefined routes are 
obtained from a route provider and the agent’s satisfaction is 
modeled by the contentment module. However, the ways in 
which these three components are combined are up to a 
concrete implementation of an agent brain. Figure 3 provides 
an overview. 



  

C. The re-planning process 
On can interpret the activity plan as the agent’s intention 

and the link cost provider as the agent’s believes. However, 
the abstract model does not specify any commitment rules 
which defines when to re-plan. Also the agent’s desires 
(maximizing utility, maintaining the plan, etc.) are not 
defined and are to be specified in a particular model and its 
implementation. 

The re-planning mechanism as it is processed by the agent 
brain can be separated in three quite typical steps [12]:  

1. Perception. The agent observes its current 
environment which basically is given by the 
current traffic state or retains information out if 
its memory. The sensor system through which 
the agent perceives or accesses its memory are 
represented by the link cost providers. 

2. Deliberation. The agent follows a certain strategy 
to fulfill its desires. Both, the strategy and the 
desires are to be specified in a particular model 
implementation. Note that the deliberation about 
to re-plan or not has already been done prior to 
these steps by a certain commitment rule. Once 
the re-planning process has been triggered the 
agent definitely wishes to do so. 

3. Execution. The agent modifies its plan according 
to its deliberation in the previous step so that the 
mobility simulation will move it through the 
network following its new plan. 

 

 
Fig. 3. Abstract agent model architecture. An agent is fed with an activity 
plan generated by the demand-modeling package. The plan can be modified 
by the brain with the help of a link cost provider, route provider and 
contentment module. The mobility simulation moves the agent through the 
network according to its plan. Information about instantaneous link travel 
times are provided by the traffic flow simulation. Additionally the brain can 
access the knowledge the agent accumulated in previous iterations. 
 

D. Types of information provision 
As mentioned above, the link cost provider and the route 

provider represent two types of information sources. From 

the conceptual side one can distinguish between intrinsic and 
extrinsic provision. However, technically these sources of 
information are dealt with in a unified way. 

An intrinsic link cost provider may represent the agent’s 
observation (what it can see by looking out of the window) 
or the historical knowledge an agent accumulated in 
previous trips. An extrinsic link cost provider may represent 
an in-vehicle device, which supplies the driver with travel 
times or messages broadcasted via radio. 

For route providers this differentiation is not as distinct as 
above. One may imagine an intrinsic route provider as a 
representation of the process of acquiring a route when the 
agent thinks by itself. The extrinsic counterpart may be an 
in-vehicle navigation device, internet-based services, 
variable destination signs (VDS) or even static guide posts. 

The simulation framework currently implemented 
provides three different types of basic link travel time 
information. 

Historical travel times represent the „typical“ state of the 
traffic network4 as expected by the traveler, reactive travel 
times (in literature also referred as naïve or instantaneous 
travel times) represent a current snapshot of the traffic 
network, and predictive travel times represent a forecast of 
the traffic state within a given time window.5 

Depending on the type of link travel costs that are 
supposed to be modeled, an implementation of a link cost 
provider may compose the three basic types to a new 
representation of link costs. Of course link cost providers are 
not restricted to the information generated by the mobility 
simulation. Static information may be read out of files or 
generated by other modules a priori. It would be even 
conceivable that a link cost provider operates its own sub-
simulation to generate specific information. 

 

IV. EXEMPLARY MODEL AND IMPLEMENTATION 
This section presents an exemplary model 

implementation.  Its purpose is to validate the frameworks 
applicability rather than to model realistic travelers’ 
behaviour. 

A. Model assumptions 
The model focuses on route switching, i.e. re-planning is 

only done en-route with modifications to the agent’s current 
route. 

The agents’ desire is to always maintain the timing of its 
plan, only being early is not considered as undesirable. The 
contentment module is now used as a part of a commitment 
rule, which decides when to re-plan. If the agent notices that 
it will be late (e.g. due to congestion) it becomes displeased 
and whishes to re-plan. To maintain its plan, the agent tries 
 

4 Historical travel times are the accumulated knowledge of previous 
iterations. As the relaxation process advances travel times are getting close 
to a user equilibrium. 

5 Such a prediction is generated once for all agents in a rolling-horizon 
manner by running the mobility simulation forward without re-planning and 
then switching back to the previously marked state. 



  

to find a faster route based on its believes of link costs. 
However, its available information is based on individual 
observations and estimation of its surroundings and thus is 
limited by the extent of its perceptivity. 

The re-planning process is triggered as follows: Agents 
are asked at each intersection by the simulation controller 
about their desire to re-plan. If an agent is displeased the re-
planning process is triggered. However, re-planning is 
computationally rather expensive (due to route searching) 
and thus the simulation controller does only allow a certain 
fraction of agents to re-plan. As the agent’s desire to re-plan 
increases the probability that the controller selects it 
increases, too. I.e., the simulation controller always tries to 
determine the fraction of agents in such a way that it will 
select the most displeased agents. 

In this case the simulation logic diverts from a truly agent-
orientated approach, since a traveller that does feel the need 
to re-plan would definitely do so in the real world. Truly 
agent-oriented implementations would use independent 
computing threads for each agent, and these threads might 
decide by themselves when they become active.  Current 
computers are, however, not able to process as many threads 
as agents (approx. 200,000 agents for large scenarios). 
Systems with much more lightweight micro-threads might 
be a way out and are a topic of ongoing research [13]. 

B. Link cost perception 
An agent has two ways to acquire information: It can 

observe its direct surroundings and it can estimate 
information that cannot directly be perceived. Estimation is 
based on current observation in combination with historical 
and common knowledge. Observations are based on the 
current state of the traffic network but are distorted by 
individual errors of perception. Consequently, to model the 
driver’s perception and estimation of link travel times the 
historical and reactive travel times are required.  

Observations are spatially limited to the agent’s current 
link and on its immediately succeeding links (i.e. all 
outgoing links of its downstream node). For these links the 
agent is aware of the reactive (instantaneous) travel times. 
However, to create behavioral diversity in a simple way the 
agent’s perception is distorted by two individual perception 
errors. The first is a white noise added to the reactive travel 
times while the second represents the uncertainty of 
appraising the correct travel time when the current traffic 
state differs from the habitual known. If, e.g., link travel 
times are twice as high as historically observed, an agent is 
more unsure about the real travel time than if observations 
match its historical knowledge.  

Travel times of unobservable links are scaled according to 
the agent’s current observation of link travel times compared 
to the historically learned. Additionally, scaled and 
perceived link travel times are corrected if they fall below 
the free flow travel time. 

C. Routing 
The routing is done with a time variant Dijkstra best path 

algorithm. The routing algorithm is supplied with link travel 

costs by a link cost provider as described in the previous 
section B. 

In the literature, route choice models are often realized as 
random utility models that account for the non-deterministic 
behavior of humans [14]. However, MATSim focuses on 
large-scale scenarios, and a discrete choice model for route 
choice appears quite expensive in terms of computational 
performance. Thus we choose a purely simulation-based 
approach, apply strict shortest path algorithms, and realize 
the non-deterministic behavior by randomization of link 
costs as described in the previous section. 

D. Contentment 
Our exemplary implementation of the agent brain uses a 

contentment module to determine the agent’s need to re-plan. 
Contentment is represented as a scalar value out of the 
interval [-1,1], where 1 means the agent is pleased, 0 the 
agent is indifferent, and -1 the agent is displeased. As an 
agent becomes displeased (i.e. values less than 0), its need to 
re-plan increases. 

The implementation for the contentment module used here 
is based on a scalar scoring (utility) function for plans 
introduced by Charypar and Nagel in [11]. This scoring 
function evaluates the quality of a plan by summing the 
utilities of all activities that are performed and all travel 
(dis)utilities. 

The utility for performing an activity is a logarithmic 
function of activity duration whereas the penalty, or more 
precise the negative utility for travel is modeled as a linear 
function of trip duration. 

The contentment of an agent is defined as the quotient of 
the expected plan score (based on the agent’s current beliefs 
of travel times) and the initial plan score (calculated from 
the demand-modeling package). 

V. SIMULATION 

A. Introduction 
To validated the applicability of the proposed framework, 

two scenarios with the above introduced model were run 
which will be described in the following: first a synthetic 
corridor example (called the “simple” scenario), and then a 
scenario based on real-world data from Berlin (called the 
“Berlin” scenario).  For both scenarios, the set-up is as 
follows: 
• As base case, a set of initial plans is given.  Plans 

contain departure times and routes for every agent.  
• These plans are then run through the simulation 

described in this paper.  A number of experiments have 
been conducted where the fraction of agents that are 
allowed to re-plan has been varied. This set of agents is 
chosen according to both, a global re-planning 
probability and the agents’ need to re-plan. This is done 
in such a way, that agents with high re-planning needs 
are preferred for re-planning. 

For the “simple” scenario, the initial plans are manually 
constructed.  For the “Berlin” scenario, they are taken from 



  

the MATSIM demand-modeling package.  The plans for the 
“Berlin” scenario can be considered relaxed, i.e. 
approximately in an user equilibrium. However, since the 
equilibrium is only approximate agents are still able to 
somewhat improve their performance. 

B.  “Simple” test scenario 

 
 
Fig. 4. Simple test network. The gray arrows denote the routes as defined in 
the initial plans. According to their initial plans agents depart at the six 
leftmost horizontal links and travel via the middle route to the three 
rightmost links. 
 

We first set up a simple test scenario with a grid shaped 
network including 41 links. All links are equal in their 
attributes (1000 m length, 1800 vehicles per hour max. flow 
and 7.5 m/s free speed). The demand consists of 6000 agents 
departing at 7:00 and traveling from the left to the right side 
(see fig. 4). 

According to their initial plans, all agents use the middle 
route. Because of its limited capacity, spillback occurs 
shortly behind the demand entry points. The resulting travel 
times are used as the historical traffic pattern. It is 
questionable if this is realistic since the historical travel 
times are not in user equilibrium. However, these simulation 
runs are to demonstrate the capabilities of the presented 
framework and rather than to simulate realistic travel 
behaviour. Furthermore this extreme case shows more 
clearly the effects of within-day re-planning. 

We run several simulations with different types of link 
cost providers to investigate the impact of descriptive 
information provision. Beside the model of agents’ link 
travel time perception presented in IV.B, we additionally 
provided the agents directly with historical, reactive and 
predictive travel times. As a comparison criterion we use the 
average deviation from user equilibrium, i.e. the difference 
of the route’s duration the agents actually experienced and 
the best route calculated a posteriori, and averaged this over 
all agents. In the “simple” scenario the average deviation is 
9:50 for a simulation run without within-day re-planning. 

Figure 5 shows results that one may not expect at first 
glance. Predictive information provision leads to less 
deviation from a user optimum than reactive information 
provision. But re-planning with historical travel times leads 
to better results than with reactive (instantaneous) travel 
times. The link cost provider which models the agent’s 
perception produces results that are between the ones of the 
historical and the reactive link cost provider. At this point 
the cause of the peak in the graph for historical travel times 
is unknown. 

 
Fig. 5. Comparison of link cost provider in the simple test scenario. ‘hist’ = 
historical, ‘react’ = reactive, ‘pred’ = predictive (with 30 mins prediction 
window) and ‘perceived’ = perceived travel times. 

 
The results with reactive information provision 

demonstrate the problem of overreaction. Overreaction 
describes the situation in which drivers overcompensate in 
response to information, again causing sub-optimal traffic 
conditions. This effect can be well observed with high re-
planning probabilities. 

C. “Berlin” test scenario 
To investigate the applicability of the framework in real 

world applications, a large-scale scenario with a reduced 
road network representing the metropolitan area of Berlin 
(Germany) has been set up. The network includes 
approximately 2400 links and is bounded by the Berlin 
beltway (fig. 6).  

 

 
Fig. 6. Reduced road network representing the metropolitan area of Berlin. 

 
Activity plans are now taken form the MATSim demand-

modeling package and represent a 10 percent sample of 
Berlin’s population (approx. 170,000 agents). 

The same investigations as with the simple test scenario 
have been conducted for the Berlin scenario. The average 
user equilibrium deviation without re-planning is 5:06. 

On qualitative inspection of fig. 7 we now observe the 
expected results: Better information leads to better results 
(“predictive” < “reactive” < “perceived” < “historical”). The 
phenomenon of overreaction with reactive information 
provision does not occur in this scenario. 

But in contrast to the simple scenario, increasing re-
planning probability does not always decrease the 
equilibrium deviation. With the use of historical or perceived 



  

travel times it even dramatically impairs results. Recall that 
the initial plans for the Berlin scenario have undergone 
several iterations in the MATSim demand-modeling package 
and are thus close to the user equilibrium. Accordingly, it is 
not possible to significantly improve the traffic state by 
providing additional information to drivers and as more 
agents are allowed to divert from their original route the 
traffic state moves further away from the equilibrium. 
 

 
Fig. 7. Comparison of link cost provider in the Berlin test scenario. ‘hist’ = 
historical, ‘react’ = reactive, ‘pred’ = predictive (with 30 mins prediction 
window) and ‘perceived’ = perceived travel times. 
 

Considering the results of the predictive information 
provider, the increasing values of user equilibrium deviation 
seem to be related to the accuracy of the prediction. For 
remembrance, the prediction is done by running the 
simulation forward without within-day re-planning. It is 
obvious that if more agents are allowed to re-plan, the 
experienced traffic state potentially differs more from the 
prediction as if fewer agents are allowed to re-plan.  

VI. CONCLUSION 
This work presented an agent-based framework to 

enhance MATSim with capability of within-day re-planning. 
The abstract model distinguishes between a module for link 
cost perception, route searching and contentment. Together, 
these modules represent an agent’s behavior. The framework 
provides flexible options for adjusting the behavior by 
choosing different implementations of the modules. For the 
particular model presented here, Dijkstra’s best path-
algorithm has been used for the route searching model, a 
scoring function to model the contentment, and historical, 
reactive, predictive travel times as well as combinations of 
them to model the perception of link costs. Beside the 
exemplary implementation, additional implementations 
modeling simple within-day destination choice [15] and 
guidance by means of variable message signs [16] exist in 
this within-day re-planning framework. 

Two test scenarios demonstrated the frameworks 
applicability. Although the exemplary model does not claim 
to mimic realistic behaviour the simulation results appear to 
be reasonable. Of course, further applications will require a 
more careful calibration and validation of the model. 

Altogether, it can be expected that the presented 

framework provides valuable insights into the effects of ITS 
measures not only in current and future traffic conditions, 
but also on driver contentment itself.  

Our future research will concentrate the decision making 
process considering travel time uncertainty and risk 
aversion. In this context it will be practicable to also deal 
with departure time choice which has been neglected in our 
early studies. 
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