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Abstract— This paper presents a framework for simulation 
of route switching behavior within the MATSim project. The 
framework focuses on within-day replanning under different 
forms of information provision. Three major building blocks 
are presented, each of which represents specific aspects of 
driver behavior. These components comprise (i) the provision 
of descriptive information in the form of link travel costs, (ii) 
prescriptive information in the form of routes, and (iii) a model 
of driver satisfaction. An exemplary implementation is 
presented where driver perception is constrained to link 
traversal costs and decisions are made by application of a 
standard shortest path algorithm. The satisfaction of a traveler 
is modeled with a scoring (utility) function that evaluates routes 
as well as activities travelers are aiming at. The model’s 
functionality is tested with a simple fictive network and a real-
world network of Greater Berlin. 

I. INTRODUCTION 
n the field of transport planning, engineers agree that the 
problems of transportation are no more a matter of 

extending the infrastructure with concrete and steel, but 
rather a matter of the efficient use of existing transport 
networks [9]. Advanced Traveler Information Systems 
(ATIS) are intended to fill in here by providing accurate 
information through a variety of devices. 

An important aspect is the response of drivers to provided 
information. Since deployment of ATIS technologies is still 
in an early state, practical experiences are limited. To gain 
more insights into travelers’ decision making in-laboratory 
experiments such as FASTCARS ([1] and [2]) and IGOR [3]  
have been proposed. 

Behavioral models derived form the results of these 
laboratory experiments can be used in large-scale 
simulations to evaluate ATIS technologies. Travel time 
savings have been observed in several studies ([10], [11], 
[12] and [13]), varying from three to 30 percent depending 
on market penetration and network topology. Beside the 
lowering of travel time itself, the reduction of its uncertainty  
deserves to receive just as much attention.  

As a contribution to research in this field, this paper 
presents a basic framework that enhances the MATSim 
system (“Multi-Agent Transport Simulation Toolkit”, 
www.matsim.org) by capabilities of en-route and within-
day-re-planning. The framework is integrated in the so-
called „mental layer” of agent behavior and defines a set of 
interfaces in which specific implementations can model 
specific behavioral patterns. More specifically, the behavior 
of an agent is represented by modules, each of which reflects 
a certain behavioral aspect. The modularity allows to easily 

exchange certain building blocks or even complete 
behavioral implementations and thus to compare and 
evaluate different models. 

The framework allows to model ATIS strategies, 
corresponding driver reactions, and finally to analyze the 
interaction between ATIS, drivers and traffic conditions. 

The remainder of this article is organized as follows: In 
section II the model and its conceptual background are 
presented. Section III describes an exemplary 
implementation and section IV verifies the model by means 
of two sensitivity studies. The paper closes with a discussion 
of the results of section IV. 

II. MODEL DESCRIPTION 

A. Basic agent model 
In MATSim, agents follow a predefined activity plan. A 

plan consists of a sequence of activities, which are linked by 
legs (trips). A leg holds several attributes describing the 
travel from on activity to another such as departure time, 
expected arrival time, route and transportation mode. 
Activities contain type attributes such as home, work, 
education, leisure as well as further information regarding 
activity timing.  

The behavior of an agent is fully determined through its 
plan. Thus, altering an agent’s behavior is possible only by 
modification of its plan. This also implies that the modeling 
aspects are limited by the plan’s degrees of freedom, 
primarily activity, departure time and route choice. The 
presented framework concentrates on route choice. 

B. Agent brain 
Presented so far, agent behavior is constrained to 

execution of a predefined activity plan. In order to alter its 
behavior it needs to become intelligent. Intelligence is 
provided to the agent by equipping it with a brain. The 
essential task of a brain is to do on the fly modification to 
the plan. Additionally, the brain is able to determine the 
agent’s desire to replan at all. 

An agent brain comprises three further components, each 
of which represents a certain aspect of the replanning 
process. Descriptive information in the form of link travel 
costs are provided by a so called link cost provider, 
prescriptive information in the form of predefined routes are 
obtained from a route provider and the agent’s satisfaction is 
modeled by the contentment module. However, the ways in 
which these three components are combined are up to a 
concrete implementation of an agent brain. For example, a 
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rational and strictly utility maximizing brain may use a 
shortest path algorithm as route provider supplied with link 
costs obtained from an arbitrary link cost provider. Figure 1 
provides an overview. 

 

 
Fig. 1. Conceptual agent layout. An agent is feed with in initial activity 
plan. The plan can be modified by the brain with the help of a link cost 
provider, router and contentment module. The mobility simulation moves 
the agent through the network according to its plan. 
 

C. Types of information provision 
As mentioned above the link cost provider and the route 

provider represent two types of information sources. From 
the conceptual side one can distinguish between intrinsic and 
extrinsic provision. However, technically these sources of 
information are dealt with in a unified way. 

An intrinsic link cost provider may represent the agent’s 
observation (what it can see by looking out of the window) 
or the historical knowledge an agent accumulated in 
previous trips. An extrinsic link cost provider may represent 
an in-vehicle device, which supplies the driver with travel 
times or messages broadcasted via radio. 

For route providers this differentiation is not as distinct as 
above. One may imagine an intrinsic route provider as a 
representation of the process of acquiring a route when the 
agent thinks for itself. The extrinsic counterpart may be an 
in-vehicle navigation device, internet-based services, 
variable destination signs (VDS) or even static guide posts. 

The simulation framework currently provides three 
different types of basic link travel time information. 

Historical travel times represent the „typical“ state of the 
traffic network1 as expected by the traveler, reactive travel 
times (in literature also referred as naïve or instantaneous 
travel times) represent a current snapshot of the traffic 
network and predictive travel times represent a forecast of 
the traffic state within a given time window.2 
 

1 Historical travel times are generated by running an assignment without 
replanning. The plans have undergone several iterations in the MATSim 
demandmodeling framework, thus representing a network state near user 
equilibrium. 

2 Such a prediction is generated in a rolling-horizon manner by running 
the mobility simulation forward without re-planning and then switching 
back to the previously marked state. 

Depending on the type of link travel costs that are 
supposed to be modeled, an implementation of a link cost 
provider may compose the three basic types to a new 
representation of link costs. Of course link cost providers are 
not restricted to the information generated by the mobility 
simulation. Static information may be read out of files or 
generated by other modules a priori. It would be even 
conceivable that a link cost provider operates its own sub-
simulation to generate specific information. 

 

III. EXEMPLARY IMPLEMENTATION 
This section presents an exemplary implementation which 

models agent behavior in terms of bounded rationality. The 
model makes the following two assumptions: (i) The agent is 
strictly utility maximizing considering the information he 
possesses. (ii) However, its available information is based on 
individual observations and estimation of its surroundings 
and thus is limited by the extent of its perceptivity. 

The re-planning mechanism as it is processed by the agent 
brain can be separated in three quite typical steps [15]:  

1. Perception. The agent observes its current 
environment which basically is given by the 
current traffic state. 

2. Deliberation. The agent searches a new route 
based on this information. 

3. Execution. The agent modifies its plan so that the 
mobility simulation will move it through the 
network according to its new route. 

A. Link cost perception 
An agent has two ways to acquire information: It can 

observe its direct surroundings and it can estimate 
information that cannot directly be perceived. Estimation is 
based on current observation in combination with historical 
and common knowledge. Observations are based on the 
current state of the traffic network but are distorted by 
individual errors of perception. Consequently, to model the 
driver’s perception and estimation of link travel times the 
historical and reactive travel times are required.  

Observations are spatially limited to the agent’s current 
link and on its immediately succeeding links (i.e. all 
outgoing links of its downstream node). For these links the 
agent is aware of the reactive (instantaneous) travel times. 
However, the agent’s perception is distorted by two 
individual perception errors. The first is a white noise added 
to the reactive travel times and the second represents the 
uncertainty of appraising the correct travel time when the 
current traffic state differs from the habitual known: 
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becomes noticeable when the observed traffic state differs 
from the one the agent is used to. If, e.g., link travel times 
are twice as high as historically observed, an agent is more 
unsure about the real travel time than if observations match 
its historical knowledge. The resulting error, 
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standard normally distributed random variable but now with 
variance dependent on the deviation between the current 
randomized traffic state to the historical: 
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For the estimation of travel times on unobservable links 
the agent compares the perceived reactive travel time on his 
current link and the travel time of his historical knowledge. 
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historical travel time on the current link and 
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h  the 
historical travel time on link i. This is a simple linear 
extrapolation of the historically learned travel times. 
Additionally, estimated and perceived link travel times are 
corrected if they fall below the free flow travel time. 

B. Routing 
The routing is done with a time variant Dijkstra best path 

algorithm. The routing algorithm is supplied with link travel 
costs by a link cost provider as described in the previous 
section A. 

In the literature, route choice models are often realized as 
random utility models that represent the human non-
deterministic behavior [14]. Since MATSim focuses on 
large-scale scenarios, the generation of choice sets as 
required for discrete choice models is to expensive in terms 
of computational performance. Thus we choose a purely 
simulation-based approach, apply strict shortest path 
algorithms, and realize the non-deterministic behavior by 
randomization of link costs as described in the previous 
section. 

C. Contentment 
Our exemplary implementation of the agent brain uses a 

contentment module to determine the agent’s need to replan. 
Contentment is represented as a scalar value out of the 
interval [-1,1], where 1 means the agent is pleased, 0 the 
agent is indifferent, and -1 the agent is displeased. As an 
agent becomes displeased (i.e. values less than 0), its need to 
replan increases. Due to limits in computational 

performance, agents do not decide to replan them self. 
Replanning is always controlled and invoked by the 
simulation. The probability that an agent is requested to re-
plan increases with his need to replan. One could say the 
simulation controller concentrates the computational 
resources it invests in replanning on displeased agents. 

This simulation logic might appear to be at odds with its 
very own modelling assumptions since a traveller that does 
feel the need to replan would definitely do so in the real 
world. However, to get a simulation that is practical for real-
world applications one sometimes has to forego a certain 
degree of realism. 

The implementation for the contentment module used here 
is based on a scalar scoring (utility) function for plans 
introduced by Charypar and Nagel in [4]. This scoring 
function evaluates the quality of a plan by summing the 
utilities of all activities that are performed and all travel 
(dis)utilities. Since the model presented in this article deals 
with within-day-replanning, only an agent’s current route 
and the succeeding activity are of interest. Therefore, we 
determine the utility of the succeeding activity and the 
(dis)utility of being late. 
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Departure time choice is not considered here.  
The utility for performing an activity is a logarithmic 

function 
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The contentment of an agent is defined as 
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with c the contentment, k an attenuation factor, U the 
expected utility, and 

! 

U
* the utility when maintaining the 

plan.3 The attenuation factor k causes agents to replan less 
frequent if they are close to their destination. This behavior 
has been observed in [5] and [6]. The attenuation factor is 
determined by 
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with 

! 

µ  a scaling parameter, L the length of the complete 
route and l the distance the agent still has to travel. 

IV. SIMULATION RESULTS 

A. Introduction 
With the above implementation, two scenarios were run 

which will be described in the following: first a synthetic 
corridor example (called the “simple” scenario), and then a 
scenario based on real-world data from Berlin (called the 
“Berlin” scenario).  For both scenarios, the set-up is as 
follows: 
• As base case, a set of initial plans is given.  Plans 

contain departure times and routes for every agent.  
• These plans are then run through the simulation 

described in this paper.  Repeated runs are done, where 
the replanning probability is incremented in small steps. 
Agents replan at each intersection with this certain 
replanning probability. In case of presence of the 
contentment module the replanning probability is 
weighted with the agent’s need to replan.  

For the “simple” scenario, the initial plans are manually 
constructed.  For the “Berlin” scenario, they are taken from 
the MATSIM “demandmodeling” version, which for the 
purposes of the paper here can be described as a dynamic 
traffic assignment.  The plans for the “Berlin” scenario can 
be considered “relaxed” (i.e. close to a Nash equilibrium) 
with respect to the MATSIM “demandmodeling” version, 
but they are in general not relaxed (i.e. out of Nash 
equilibrium) with respect to the simulation discussed in the 
present paper (since it uses a different traffic flow model). 

B.  “Simple” test scenario 

 
 
Fig. 2. Simple test network. The gray arrows denote the routes as defined in 
the initial plans. Agents depart at the six leftmost horizontal links and travel 
via the middle route to the three rightmost links. 
 

We first set up a simple test scenario with a grid shaped 

 
3 U* is calculated a priori by scoring the initial plan. 

network including 41 links. All links are equal in their 
attributes (1000 m length, 1800 vehicles per hour max. flow 
and 7.5 m/s free speed). The demand consists of 6000 agents 
departing at 7:00 and traveling from the left to the right side 
(see fig. 2). 

According to their initial plans, all agents use the middle 
route. Because of its limited capacity, spillback occurs 
shortly behind the demand entry points. The resulting travel 
times are used as the historical traffic pattern. It is 
questionable if this is realistic, since the historical travel 
times are not in user equilibrium. However, this extreme 
case shows more clearly the effects of within-day-
replanning. 

We run several simulations with different types of link 
cost providers to investigate the impact of descriptive 
information provision. Beside the model of agents link travel 
time perception presented in III.A, we additionally provided 
the agents directly with historical, reactive and predictive 
travel times. All test runs have been done with and without 
the contentment module of III.C. The average nash 
equilibrium deviation without replanning is 9:50. 

 

a)  

b)   
 
Fig. 3. Comparison of link cost provider in the simple test scenario. ‘hist’ = 
historical, ‘react’ = reactive, ‘pred’ = predictive (with 30 mins prediction 
window) and ‘perceived’ = perceived travel times. a) without contentment 
module, b) with contentment module 

 
Figure 3 shows results that one may not expect at first 

glance. Predictive information provision leads to less 
deviation from a user optimum than reactive information 
provision. But replanning with historical travel times leads 
to better results than with reactive (instantaneous) travel 
times. The link cost provider which models the agent’s 



  

perception produces results that are between the ones of the 
historical and the reactive link cost provider. As explained in 
III.A it uses the historical and reactive information with two 
random errors. 

The results with reactive information provision 
demonstrate the problem of overreaction. Overreaction 
describes the situation in which drivers overcompensate in 
response to information, again causing sub-optimal traffic 
conditions. This effect can be well observed with high 
replanning probabilities. 

Considering the runs with the contentment module, one 
can see that at least for the historical, reactive and perceived 
link travel times we achieve the expected effect: Switching 
the contentment module on results in less deviation from the 
user optimum as without. Recall that with the contentment 
module displeased agents are replanned with a higher 
probability. For the run with predictive information the two 
curves in fig. 3a and 3b barley differ.  

This also shows that the contentment module can be used 
to increase computational performance (at least for reactive 
and perceived travel times). For the simple test scenario it is 
possible to lower the replanning probability if using the 
contentment module to achieve equal results as without the 
contentment module and higher replanning probabilities. 
And lower replanning probabilities means that less agents 
are replanning which in turn improves computational 
performance. 

However, one has to take care of choosing realistic 
parameters. In the real world one could say that the 
“thinking power” is concentrated over displeased travelers, 
while indifferent and happy drivers are unconcerned about 
their route. The equivalent to “thinking power” in the 
simulation is the computational power, which like in the real 
world can be concentrated on displeased agents. One has to 
find the right balance of an efficient simulation but without 
neglecting realistic behavior. 

C. “Berlin” test scenario 
To investigate the behavior of the framework in real world 

applications, a large-scale scenario with a reduced road 
network representing the metropolitan area of Berlin 
(Germany) has been set up. The network includes 
approximately 2400 links and is bounded by the Berlin 
beltway (fig. 4).  

 

 
Fig. 4. Reduced road network representing the metropolitan area of Berlin. 

Activity plans have been generated with the MATSim 
“demandmodeling" package and represent a 10 percent 
sample of Berlin’s population (approx. 170,000 agents). 

The same investigations as with the simple test scenario 
have been conducted for the Berlin scenario. The average 
nash equilibrium deviation without replanning is 5:06. 

 
 

a)  

b)  
 
Fig. 5. Comparison of link cost provider in the Berlin test scenario. ‘hist’ = 
historical, ‘react’ = reactive, ‘pred’ = predictive (with 30 mins prediction 
window) and ‘perceived’ = perceived travel times. a) without contentment 
module, b) with contentment module. 

 
On qualitative inspection of fig. 5 we now observe the 

expected results: Better information leads to better results 
(“predictive” < “reactive” < “perceived” < “historical”). The 
phenomenon of overreaction with reactive information 
provision does not occur in this scenario. 

But in contrast to the simple scenario, increasing the 
replanning probability does not always improve results. 
With the use of historical or perceived travel times it even 
dramatically impairs results. Recall that the initial plans for 
the Berlin scenario have undergone several iterations in the 
MATSim “demandmodeling” framework and are thus close 
to the user equilibrium. Accordingly, it is not possible to 
further improve the traffic state by providing additional 
information to drivers. Even the improvements with reactive 
travel times are small. 

The contentment module again amplifies the effects of 
information provision. With the use of historical or 
perceived travel times the contentment module clearly 
impairs the results. Regarding the reactive and predictive 
link cost provider values are nearly the same as without the 



  

contentment module. 
Considering the results of the predictive information 

provider, the increasing values of user equilibrium deviation 
seem to be related to the accuracy of the prediction. For 
remembrance, the prediction is done by running the 
simulation forward without replanning. It is obvious that if 
more agents are allowed to replan, the experienced traffic 
state potentially differs more from the prediction as if fewer 
agents are allowed to re-plan.  

However, this behavior has not been observed in the 
simple test case. One explanation could be: The range of 
possible trip durations is quickly reduced in the simple test 
network, since the routes do not differ that much (actually, 
there are only three main routes). Thus if several agents re-
plan, the chance that the experienced traffic state and the 
prediction diverge is still low. In contrast, the large Berlin 
network is less constrained and consequently the probability 
of divergence is higher. 

V. CONCLUSION 
This work presented an agent-based model that describes 

the route switching behavior of travelers. The model 
distinguishes between a module for link cost perception, 
route searching and contentment. Together, these modules 
represent an agent’s behavior. The model provides flexible 
options for adjusting the behavior by choosing different 
implementations of the modules. For the studies presented 
here, Dijkstra’s best path-algorithm has been used for the 
route searching model, a scoring function to model the 
contentment, and historical, reactive, predictive travel times 
as well as combinations of them to model the perception of 
link costs. Beside the exemplary implementation, additional 
implementations modeling simple activity choice [7] and 
guidance by means of variable message signs [8] exist in the 
MATSim framework. 

The sensitivity studies showed that the results are not 
always as one at first glance would expect. In the simple test 
scenario we had to deal with the phenomenon of 
overreaction, whereas the contentment module showed the 
expected effect. In the Berlin scenario, better information 
provision lead to better performance of drivers, but 
compared to the run without replanning (nash equilibrium 
deviation 5:06) only the reactive and predictive information 
proved to be advantageous. Also the contentment module 
proved to be counterproductive. 

Altogether, it can be expected that the presented 
framework – once it has been validated and parameter 
calibration has been undertaken – provides valuable insights 
into the effects of ITS measures not only in current and 
future traffic conditions, but also on driver contentment 
itself.  

Our future research will concentrate on the impacts of the 
driver’s satisfaction on route choice and also the decision 
making process considering travel time uncertainty and risk 
aversion. In this context it will be practicable to also deal 
with departure time choice which has been neglected in our 

early studies. 
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