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1 Introduction

Much of our technological infrastructure (traffic, electricity, telephone, water)
operates on networks. Many of the phenomena on infrastructure networks
display spatio-temporal structure. For example, traffic congestion only occurs
at certain places and times; electricity is most used on very cold or very hot
days, and in specific neighborhoods; telephone networks are heavily used on
special days (e.g. Christmas) or after exceptional events (e.g. catastrophes).

Both the theory and the modelling/simulation of spatio-temporal systems
made important progress in the last decades. However, the following two as-
pects differentiate infrastructure systems from “standard” spatio-temporal
systems:

(1) The spatial substrate of the dynamics of infrastructure systems is a net-
work instead of “flat” 2d or 3d space. Even though these networks are
embedded in space, strong inhomogeneities in the network structure, such
as broad degree distribution of the nodes or their clustering, lead to dif-
ferent behaviors than more smoothly embedded structures exhibit.

(2) The “forces” behind the network usage are based on human behavioral
patterns. These are known to have long range temporal correlations for
individual behavior even in simple situations (i.e. sending print jobs to a
printer [1], or replying to emails).

In consequence, progress in “standard” spatio-temporal systems alone will not
suffice to understand infrastructure systems.

Much progress has been made in the pragmatic modelling and simulation
of aspects (1) and (2). This is particularly true for traffic [2, 3, 4, 5, 6, 7].
What is missing is a better connection between those pragmatic real-world
simulations and a deeper understanding of the dynamic processes in those
simulations. The ultimate hope is that better understanding leads to (even)
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better pragmatic real-world models, and to an improved functioning of the
system itself.

This paper attempts to contribute to this by reporting occurrences of
network breakdown in large-scale multi-agent transport simulations. These
occurrences have been observed by us for many years, but this is the first
systematic description of them. The simulation model that is used for those
investigations is one of the “pragmatic” real world models mentioned earlier
rather than a “minimal” model that contains nothing but the ingredients
necessary to generate the observed phenomenon. Investigations with such a
minimal model should follow.

Although the model is not minimal, it is speculated that the following
mechanism is at work:

1. The basic “physical” dynamics consists of daily traffic in a congested
metropolitan region.

2. The simulation is run for many days in sequence (“iterations”), and the
synthetic travellers that produce the traffic can adapt from iteration to
iteration.

3. It is observed that many of these “days” traffic runs smoothly. But some-
times, traffic “breaks down”, leading to macroscopic, network-spreading
traffic jams (see Fig. 2), and only the end of the rush period can eventually
resolve them. It is speculated that the mechanism is similar to the sim-
ple network breakdown mechanism displayed in simple 2d traffic models
[8, 9, 10], although the microscopic dynamics of the breakdown in true
networks (as opposed to the flat 2d space used in those references) looks
rather different.

4. Such a network breakdown is usually caused by a microscopic fluctua-
tion (a queue that is a couple of vehicles longer than normal), which
has macroscopic consequences. It is, however, observed that traffic then
remains problematic for the next couple of iterations (days), somewhat
akin to an “avalanche” [11, 12]. It is speculated that this is because of
violent adaptation reactions of the synthetic travellers, which therefore
disrupt the “normal” traffic pattern. It is speculated that the mechanism
is similar to the “decision avalanches” found in route choice experiments
with real humans [13, 14].

This paper will describe the investigations that were performed. It there-
fore consists of the following sections: Section 2 describes the simulation set-
up. Since this is not a minimal model, this section is rather long. Section 3 will
describe our observations which are discussed in Section 4. Section 5 contains
our conclusions.
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2 Simulation Setup

2.1 Overview

The foundations of traffic simulations are a (road) network and some descrip-
tion of the traffic. In multi-agent simulations, the traffic is described by the
sum of all agents. Every agent has zero or more trips planned to travel from
one place to another. All the trips of all the agents describe the total traf-
fic demand. The network consists usually of a series of nodes, and of links
connecting the nodes. The links can contain additional attributes describing
physical aspects of the link like the number of lanes, the length of the link, or
the maximum speed allowed on the link.

In our case, agents have at least one plan, of which exactly one is selected
and executed during the traffic simulation. A plan contains a list of activities,
and of legs connecting the activities. Activities contain information about the
location, the type of activity and the planned start and end time for the
activity. Legs contain information about the planned departure and expected
travel time, the travel mode (car, bike, public transport, ...), and the exact
route through the network, given by the list of nodes the agents will cross on
its leg. For the purposes of this paper, “legs” and “trips” are the same.

As traffic simulation, we use MATSim [3], our own implementation of
a multi-agent transport simulation that is based on TRANSIMS [2]. One
scenario run consists of multiple iterations, each iteration consisting of a run
of the traffic flow simulation (sometimes also called “physical layer”) and a
run of the agent re-planning process (sometimes also called agent learning, or
“mental layer”).

2.2 Traffic flow simulation (physical layer)

The traffic flow simulation is a comparatively simple so-called queue simu-
lation. This is essentially a queueing model simulation, with the important
difference that links can be full, causing spillback into upstream links. Input
parameters into the queue simulation, besides the traffic network topology,
are, for each link: free speed on the link (vehicle speed in the absence of con-
gestion), flow capacity (maximally possible exit flow), and storage capacity
(maximally possible number of vehicles on the link.) Compared with the orig-
inal version of the queue simulation [15], we now use intersections priorities
according to capacities [16], and a deterministic rather than a randomized
service rate (where vehicles are served when some counter has exceeded the
average waiting time).

2.3 Agent replanning (mental layer)

During agent re-planning, a fixed percentage of agents make a copy of an ex-
isting plan and modify it. In the next iteration, this modified plan is executed
and scored. Possible modifications are:
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route adaption: choose different routes through the network to travel from
one activity to the next one.

time adaption: choose different activity durations and thus different depar-
ture times for trips

Additional modifications could be thought of (e.g. reordering the sequence of
activities, dropping or adding activities, choosing a different location for an
activity), but are not yet implemented. To limit the memory usage, there is a
limit of the number of plans an agent can remember. Once an agent reaches
this limit, the plan with the lowest score will be deleted.

2.4 Scoring Plans

The correct scoring of the simulated plans is crucial to the success of the
simulation. As the agents try to optimize their daily routine, the score must
reflect the dis-utilities of travel as well as the utilities of performing activities.
Minimizing the travel time by choosing an alternate departure time does not
help the agent if she arrives too early or too late at an activity location (e.g.
shop has already closed on arrival, or the agent arrives too late at work).

The utility function used is derived from the traditional utility function
based on the Vickrey bottleneck model [17], but is modified to be consistent
with complete day plans:

Uplan = Z Uact,z’ + Z Utrcw,i + Z Ulate,i (1)

The utility of performing an activity is assumed to increase logarithmically:

Uget.i(z) = maz (0, - ln(%)) (2)
where x is the duration that one spends at the activity. Time spent waiting
at an activity because of arriving too early (e.g. before a shop opens) is not
included in x. We take o = gy - t*, where (4, is uniformly the same for all
activities and only t* varies between activity types. With this formulation, t*
can be read as “typical” duration for an activity, and (4, as the marginal
utility at that typical duration:

5[/acti * 1
: = wr t U — = ur
B ﬁd /Bd (3)

t*
to can be seen as a minimum duration of an activity, but is better inter-
preted as a priority: All other things being equal, activities with large ¢( are
less likely to be dropped than activities with small ¢y (for details, see [18]).
The utilities of traveling and of being late are both seen as dis-utilities
which are linear in time:

r=t*

Utrav,i (J?) = 6t7‘av * T (4)
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where x is the time spent traveling, and
Ulate,i (.’17) = ﬁlate X (5)

where x is the amount of time an agent arrives late at an activity. In our
simulations, B¢q, is set to -6 EUR/h, and B4, is set to -18 EUR/h.

In principle, arriving early or leaving early could also be punished. There
is, however, no immediate need to punish early arrival since waiting times are
already indirectly punished by foregoing the reward that could be accumulated
by doing an activity instead (opportunity cost). In consequence, the effective
(dis)utility of waiting is already —QBgy,. Similarly, that opportunity cost has
to be added to the time spent traveling, arriving at an effective (dis)utility
of traveling of Btrqy — Baur- No opportunity cost needs to be added to late
arrivals, because the late arrival time is already spent somewhere else. These
effective values are the standard values of the Vickrey model (Arnott et al.
1993).

Because the scoring function uses monetized costs and gains, the function
could be easily extend to include tolls or other external effects.

At the end of each traffic simulation, the score o for each simulated plan
is calculated. The calculated (new) score Upiay is then assigned to the plan
according to:

o — { Uplan if the plan was executed the first time (6)
(1 —=X) -0+ A-Upian if the plan already has a score

A is the learning rate with which the agents adapt the new score. If the
learning rate is lower than 1, the new score will not completely overwrite an
existing score, but only influence it (exponential smoothing).

2.5 Scenario

The simulated scenario is located around Zurich, Switzerland. Both the road
network and the traveller population are based on realistic data. The set of
activities, however, was reduced to “home — work/education — home” [19].
This leads to plausible morning rush hour traffic. A total of over 260’000
agents were simulated, corresponding to all people commuting by car in the
aforementioned region.

Two different runs where simulated, one with a learning rate of A = 1 (no
memory of old scores) and one with a learning rate of A = 0.1 (exponential
smoothing).

Both scenarios start with the re-planning set so that 10% of the agents
do route adaption and 10% do time adaption, while the others simply chose
the plan with the best score from their plan memory for simulation in the
next iteration. After iteration 50, the percentages of agents doing some kind
of adaption is reduced to 5% each.
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3 Observations

As in most iterative simulations, the system first takes several iterations in
which the average agents’ score improves steadily, until it levels at some value.
But even then, the agents’ average score does not stay at that level, but has
more or less severe slumps from time to time. Figures 1.a and 1.c show the
average agents’ score for the two scenarios, where the slumps can be clearly
seen. Figure 1.b shows one of those slumps in more detail, corresponding to
the highlighted region in fig. 1.a.

While the slumps in fig. 1.c for the scenario with the learning rate set to
0.1 are clearly smaller than in 1.a, they still occur frequently. The reduced
amplitude of the slumps is due to the exponential smoothing, which is ap-
plied before the data is extracted for the plot. Since the amplitude is reduced
by about the same factor as the learning rate, it is expected that the main
contribution to the amplitude reduction is simply a result of the smoothing
rather than a consequence of a modified dynamic behavior of the system.

The reason for those slumps in the average score gets visible if the actual
network state is visualized. Fig. 2 shows a visual representation of the network
in three consecutive iterations at different times. While in iteration 240 only
a few minor traffic jams can be observed which have no further consequence
(“fluctuations on the micro-scale”), a major traffic jam starts building in it-
eration 241 at 7:35am in the center of the city. The tailbacks of this initial
traffic jam spread wider and wider into the network in the following minutes,
until most parts of the network are jammed. We call this situation a network
breakdown, where no more traffic is possible. In the following iteration, it-
eration 242, most agents have chosen another plan. Those agents that could
re-plan seem to have mostly chosen a route leading through north of the pre-
vious center of the traffic jam. The consequence is that in this iteration this
route is overloaded: Already at 7:15am, there are some severe traffic jams in
the northern part of the city, which slowly extend themselves until at 7:45am
another network breakdown can be seen.

Figure 3 shows the Fourier transform of the agents’ average scores. Tech-
nically, the original time series was loaded into xmgrace (http://plasma-
gate.weizmann.ac.il/Grace/), the Discrete Fourier Transform (DFT) was ap-
plied to the data, and as output option “Magnitude” was chosen. According to
a simple test with synthetic data this means S(f) = \/A(f)? + B(f)?, where
A(f) and B(f) are the amplitude coefficients. We are unable to find univer-
sal agreement if this or the square of it should be the (generalized) power
spectrum.

With a learning rate of A = 0.1, a fairly convincing S(f) ~ 1/ f-dependency
can be recognized. For A = 1, there is only a short slope section, from f ~ 0.02
to f ~0.1.

For comparison, a random walk was simulated and then submitted to the
same treatment; the result is plotted in blue. One notices that also the ran-
dom walk displays 1/ f-behavior under these circumstances, implying that the
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Fig. 2. Visual representation of the network breakdown. Vehicles stuck in a traffic
jam are marked black.
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Fig. 3. Fourier transformations of the time series of the agents’ average score. For
comparison, the corresponding treatment of a random walk is shown (in blue).

A = 0.1 time series displays random-walk-like characteristics in the spectrum.
The distinct difference between the random walk spectrum and the spectrum
of the A = 0.1 score time series is that the A = 0.1 spectrum flattens out for
frequencies smaller than = 0.01. This means that there seem to be no corre-
lations beyond ~ 100 iterations, which is consistent with the observation that
there are no periods larger than 50 between network breakdown avalanches
(Fig. 1.a). Tests with different lengths of time series imply that this is a true
finite time cut-off.

Since the A = 0.1 spectrum comes from a time series that is essentially
a filtered (exponentially smoothed) version of the A = 1 spectrum, it makes
sense to assume that the random walk behavior of the A = 0.1 spectrum is
caused by the filtering.
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4 Discussion

We explain the breakdown avalanches with the agents’ striving to further
optimize their plans. They push the network capacities up to the limits, so
that as soon as some additional cars want to travel along these paths, the
maximum capacities are transgressed and traffic jams occur. Because many
other links are also at their limit, the initial traffic jam cannot be absorbed
by the surrounding links, leading to the expansion of the congestion until
one huge traffic jam occurs in which the cars are in a deadlock. We dub this
“at the edge of chaos” [20] since on most days, the (simulated) traffic system
functions orderly, interrupted by occasional avalanches of breakdown. It is
also reminiscent of self-organized criticality [11]. Yet, the fact that there is a
peak in the A = 1 spectrum implies that the documented behavior rather has
a weakly periodic structure: A network breakdown pushes the system away
from the “critical edge” by a certain amount; it then needs a certain time to
approach the edge again; a breakdown occurs and the system is pushed away;
etc.

Traffic network breakdowns do not only occur in models, but also in re-
ality. As mentioned in the introduction, Refs. [13, 14] discuss route choice
experiments with human subjects that display similar avalanche behavior.
Experience shows that in some traffic system, relatively small disturbances (a
construction site, or degraded weather conditions) can have a huge impact,
clogging up the system for hours. It is therefore a bit doubtful if time and
effort should be invested to remove these effects from the simulation, as tra-
ditionally is done. We expect that data to verify or falsify these effects in the
real world will become available in the near future.

5 Conclusions

It was shown that a real-world traffic model with learning iterations displays
network breakdown “avalanches”. These avalanches are separated by rela-
tively long periods of calmness in which the system operates rather smoothly.
Already during those calm periods, small scale fluctuations in the network
performance (i.e. localized jams) can be observed. Sometimes, these fluctua-
tions trigger a large scale breakdown, which, after initiated, quickly spreads
through the network. Once an iteration displays network breakdown, it is
highly likely that successive iterations also display network breakdown, lead-
ing to the above-mentioned avalanches. The slope of the power spectrum of
the time series of the agent scores may be flatter than that of a random walk,
but the results are inconclusive.

The intuitive explanation for the observed phenomena is that (a) agents
optimize for themselves until the system is pushed “to its limits”; (b) the sys-
tem “fights back” not by gradual degradation but instead by erratic complete
breakdowns.
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The observed results are not only of theoretical importance, but also of
practical relevance. Existing transport planning software usually calculates a
steady traffic flow distribution. These models cannot reflect the instabilities
observed in such networks. Multi-agent simulations are not yet able to give
answers when the network is surcharged and collapses or how the erratic be-
haviour of the system could be reduced. But by looking at the simulation
history and not just analyzing one single iteration, multi-agent traffic sim-
ulations could at least help to determine how likely or how often network
breakdowns may occur.
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