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1. INTRODUCTION 
 
In many cities in Europe, tolls are discussed as a means to reduce the amount of traffic during peak 
hours or in a city in general. But only few cities (e.g. Singapore, Bergen, Trondheim, Durham, Lon-
don, Stockholm, Bologna, Roma) have been able to implement a toll scheme, as tolling requires sub-
stantial upfront investment and is likely to be an unpopular policy. Thus, many cities have an interest 
in transportation planning tools and traffic models to thoroughly test different toll schemes to find one 
that solves their problems best—and provides hints about popular acceptance. 
 
Traditional transportation planning tools work macroscopically, distributing static traffic flows onto a 
network (e.g. Ortùzar and Willumsen 1995). While this is a well-established technology, it is not able 
to model all aspects that are of interest when modelling tolls. In particular, they usually lack any 
meaningful representation of the time-of-day dynamics. The models usually calculate traffic flows for 
a complete day, or at best for certain periods (morning peak, evening peak), but in all cases without 
any feedbacks between the different times-of-day. This makes it difficult or impossible to model time-
dependent tolls, as the reaction of the travellers (e.g. driving before/after the toll) cannot be captured 
endogenously within the planning model, but must be pre-specified by the analyst. This reduces the 
usefulness of such a tool enormously. 
 
Dynamic traffic assignment (DTA) explicitly models the temporal dynamics of traffic over the day 
(Chang et al 1985, Ben-Akiva et al 1998, Bliemer 2003). Demand, however, is typically given as 
fixed-period (e.g. hourly) origin-destination (OD) matrices, and, in consequence, does not adapt to the 
toll. Adaptation would need to happen in the demand generation modules that generate the OD matri-
ces, but that implies rather intricate coupling between demand generation and DTA. In addition, the 
DTA is no longer aware of traveller characteristics, such as income or time constraints, and, in conse-
quence, cannot base any kind of toll route acceptance/rejection decision on such attributes.   
 
A partial way out is offered by the approach chosen within METROPOLIS (de Palma and Marchal 
2002), which selects departure times of trips based on desired arrival times and schedule delay penal-
ties. Given a time-dependent toll, travellers can react by selecting new departure times. A remaining 
problem is, however, the fact that trips and in consequence, decisions are not related to demographics. 
In addition, every model that uses single trips will have problems predicting useful reactions of travel-
lers that span the whole day. This is because trips in real life are embedded in a complete day plan and 
are not meaningful just as stand-alone trips. Trips lead people from one activity to another, and in 
most cases the activities have a higher importance in the daily schedule than the trips do: Stores have 
opening and closing times, work places have fixed times when one has to be present, a full-time em-
ployee has to work about eight hours a day. This means that travellers cannot escape a toll at will, but 
have to trade off between different utilities (working eight hours, being at a shop when it has opened, 
etc.) and disutilities (paying a toll, being late for work, etc.). Thus, a toll may influence the complete 
daily schedule of a person, and not only the period when the toll is charged. 
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Our approach uses multi-agent simulations to model and simulate full daily plans. The agents are gen-
erated as a synthetic version of the real population living in the area of interest, matching as many 
demographic attributes as are available. Every agent then plans his/her day. These plans are simulta-
neously executed in the synthetic world, and the interaction between the agents (e.g. congestion) is 
computed. Agents are then given a chance to modify their plans, the plans are executed again, etc., 
that is, the agents adapt (co-evolution). Since the agents are virtual representations of real people, and 
since they move in a virtual representation of the real world, aspects of reality such as those discussed 
in the previous paragraph can be included in a conceptually straightforward way.    
 
Each of our agents has a (possibly individual) utility function, based on the agent’s performance dur-
ing plan execution (i.e. including interaction). This utility function plays the same role as the fitness 
function in co-evolutionary genetic algorithms: Every agent attempts to improve his/her fitness, 
which, however, is based on the behaviour of the other agents. In consequence, changes in an agent’s 
utility in reaction to a policy change can be directly interpreted as if and how much the agent benefits 
from the policy change, which allows to identify winners and losers of a policy measure. Since agents 
can adapt, their utility change reflects indirect utility: the utility change after agents have optimally 
adapted to the new circumstances. This adaptation takes place along those choice dimensions that are 
allowed by the simulation system, thus allowing fine-grained control over the adaptive reactions that 
are to be included into the scenario. Since utility is based on the performance in the synthetic world, it 
is conceptually straightforward to include constraints such as opening times: If an agent remains at a 
facility while the facility is closed, no utility will be accumulated during that time, and thus the agent 
will most probably search for a different time structure for his/her day.  
 
As the change of the utility of an agent is the change of her/his personal performance, the (weighted) 
sum of all utility changes in reaction to a policy change is, in consequence, the change in the system’s 
welfare. That is, the input of “user benefits” to a cost-benefit analysis can be taken directly from the 
simulation, and is therefore automatically consistent with the assumptions about the agents’ optimiza-
tion capabilities. This is in stark contrast to the traditional approach, where there is one model in 
which the agents react to a policy change, and a second model that assigns economic valuations to 
those changes. That approach completely separates the agents’ optimization behaviour from the meas-
urement of the economic benefit, thus making it difficult if not impossible to keep those consistent. 
 
It might be worth emphasizing that the approach described in this paper, is meant to evaluate/appraise 
approaches that are designed by other means. There are other approaches, such as by Markose et al 
(2007) or Zhang and Levinson (2007), that concentrate on finding optimal designs, using agent-based 
approaches on the supply side.  The emphasis of the present paper, in contrast, is on the travellers’ be-
havioural realism, which we intend to improve much further in the near future.  Ultimately, however, 
it is probable that the two approaches, supply-side agents on the one hand, and improved behavioural 
realism on the demand side, will merge. 
 
This paper describes the agent-based approach in more detail. Section 2 describes the overall ap-
proach, concentrating on conceptual aspects, the co-evolutionary adaptation, and the scoring. Sec-
tion 3 then describes a specific scenario, related to an illustrative study using data from the Zurich 
metropolitan area. The scenario consists of the geographic and socio-demographic input data, the 
computational modules, the toll scheme, and the specific simulation runs that were undertaken. In 
principle, the computational details should be rather unimportant, since agents are assumed to adapt 
optimally in the choice dimensions that are included in the simulation. In practice, however, at this 
point little is known about the robustness of these results, and for that reason more details are given. 
Section 4 describes the results of the toll simulation, in particular the reaction patterns that emerge. An 
important result is that agents react also outside tolled times – as they should. Section 5, finally, comes 
back to the economic analysis that was shortly sketched in the previous paragraphs. 
 
2. SIMULATION STRUCTURE 
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2.1 Overview  
 
Our simulation is constructed around agents that make independent decisions about their actions. Each 
traveler of the real system is modeled as an individual agent in our simulation. The overall approach 
consists of three important pieces: 
 
• Each agent independently receives a plan, which encodes its intentions during a certain time pe-

riod, typically a day. 
 
• All agents’ plans are simultaneously executed in the simulation of the physical system. This is also 

called the traffic flow simulation (and sometimes the mobility simulation). 
 
• There is a mechanism that allows agents to learn. In our implementation, the system iterates be-

tween plan generation and traffic flow simulation. The system remembers several plans per agent, 
and utilities the performance of each plan. Agents normally chose the plan with the highest score, 
sometimes re-evaluate plans with bad utilities to test if it now performs better, and sometimes ob-
tain new plans. For the purposes of this paper, a “score” is the same as a “utility”. Further details 
will be given below. 

 
A plan contains the itinerary of activities the agent wants to perform during the day, plus the interven-
ing trips the agent must travel between activities (see Figure 1). An agent’s plan details the order, type, 
location, duration and other time constraints of each activity, and the mode, route and expected depar-
ture and travel times of each trip. This paper concentrates on “home” and “work” as the only activities, 
and “car” as the only mode. Our implementation supports additional activity types (see, e.g., Meister 
et al 2006) and additional modes of transport, but more time is needed to validate results given those 
additional complexities.  
 
The task of generating a plan is divided into sets of decisions, and each set is assigned to a separate 
module. An agent strings together calls to various modules in order to build up a complete plan. To 
support this incremental process, the input to a given module is a (possibly incomplete) plan, and the 
output is a plan with one or more decisions added. This paper will make use of two modules only: “ac-
tivity time generator” and “router”. Other modules are under investigation, and will be the topic of 
future publications. Once all agents’ plans have been constructed, they can be fed into the traffic flow 
simulation. The traffic flow simulation module executes all agents’ plans simultaneously on the net-
work, allowing agents to interact with one another, and provides output describing what happened to 
the agents during the execution of their plans.  
 

<plan> 
   <act type=”home” link=”123” end_time=”06:30:00” /> 
   <leg mode=”car”> 
      <route> 3 6 19 </route> 
   </leg> 
   <act type=”work” link=”456” duration=”08:00:00” /> 
   … 
</plan> 

Figure 1: A “plan” in XML format.  For the purposes of the present paper, a “leg” is the same as a 
“trip”. 

 
The outcome of the traffic flow simulation (e.g. congestion) depends on the planning decisions made 
by the agents and their decision-making modules. However, those modules can base their decisions on 
the output of the traffic flow simulation (e.g. knowledge of congestion). This creates an interdepen-
dency (“chicken and egg”) problem between the decision-making modules and the traffic flow simula-
tion. To solve this, feedback is introduced into the multi-agent simulation structure (Kaufman et al 
1991, Bottom 2000). This sets up an iteration cycle which runs the traffic flow simulation with spe-
cific plans for the agents, then uses the planning modules to update the plans; these changed plans are 
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again fed into the traffic flow simulation, etc, until consistency of the results is reached. The feedback 
cycle is controlled by the agent database, which also keeps track of multiple plans generated by each 
agent, allowing agents to reuse those plans at will. The iteration cycles coupled with the agent data-
base enable the agents to learn how to improve their plans over many iterations.  
 
2.2 Co-evolutionary adaptation 
 
The iterative approach outlined above describes co-evolutionary adaptation: Every agent attempts to 
improve, while everybody around him/her is doing the same. Several conceptual issues are related to 
this concept: 
 
• If the adaptation ever came to an end (to a fixed point), and if the whole system were determinis-

tic, then the system would be in a Nash equilibrium: No agent could improve by unilaterally doing 
something else. This notion is important, since it relates our work to standard game theory.  There 
is, however, no guarantee that the Nash equilibrium is unique; i.e., depending on the initial condi-
tions and on the exact nature of the adaptation process, different fixed points might be reached 
(Hofbauer and Sigmund 1998, Watling 1999).  Clearly, the possibility of multiple outcomes is im-
portant in policy contexts.  
 

• There is not even a need that such a system goes to a fixed point at all.  Other possibilities are cy-
cles or chaotic attractors (Hofbauer and Sigmund 1998, Watling 1999).  
 

• Our system, however, is not deterministic.  Although this is probably more realistic, and makes 
the system more robust, it makes the interpretation more complicated.  One could argue that the 
system is ergodic (roughly: it eventually visits all possible system states) and should thus go to a 
steady state phase space density (Cantarella and Cascetta 1995).  Yet, the phase space is huge and 
our typical iteration numbers comparatively small, and thus an instance of pseudo-stability (Wat-
ling 1996) or “broken” ergodicity (Palmer 1989) is much more probable.  This means that the it-
erations might find a situation that is (apart from fluctuations) locally stable, but there is no guar-
antee that running the iterations longer might not lead to completely different solutions.  In this 
paper, such a situation will be called “relaxed”. 

 
The uniqueness of the Nash equilibrium solution of traditional transport modeling was one of its most 
important features: Although static assignment does not necessarily have much to do with reality es-
pecially in heavily congested situations, at least it allows a conceptually sound comparison of different 
policy scenarios.  Multi-agent simulations do not possess this uniqueness property, as can be shown 
already with simple but plausible examples (Daganzo 1998).  It is as of yet unclear what the agent-
based models will be able to put forward instead. One possibility is to not only consider the relaxed 
state, but also to pay closer attention to the realism of the initial condition and the adaptation behavior 
itself. Such models, then, would attempt to predict the full dynamic trajectory of the learning behavior 
of the simulated population when faced with a policy or infrastructure change. 
 
2.3 Scores (= utilities) of plans  
 
In order for adaptation to work in a meaningful way, it is necessary to be able to compare the perform-
ance of different plans. This is easiest achieved by assigning scores to plans.  This is the same as the 
fitness function in genetic algorithms, or the objective function in optimization problems.  Note once 
more that every agent has its own scoring function, and attempts to optimize for her-/himself. 
 
In principle, arbitrary scoring schemes can be used (e.g. prospect theory, Avineri and Prashker 2003). 
Much of the approach, in fact, would still function even if agents were only able to rank plans at any 
given instance. In this work, a utility-based approach is used, and therefore the word “score” is re-
placed by “utility” in the following. The approach is related to the Vickrey bottleneck model (Arnott et 
al 1993), but is modified in order to be consistent with our approach based on complete daily plans 
(Charypar and Nagel 2005, Raney and Nagel 2006). The elements of our approach are as follows:  
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• the total utility of a plan is computed as the sum of individual contributions:  
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where Utotal is the total utility for a given plan; n is the number of activities, which equals the 
number of trips, as we consider the stay at home before the first departure; Uperf,i is the (positive) 
utility earned for performing activity i; Ulate,i is the (negative) utility earned for arriving late to ac-
tivity i; and Utravel,i is the (negative) utility earned for traveling during trip i. In order to work in 
plausible real-world units, utilities are measured in Euro.   
 

• a logarithmic form is used for the positive utility earned by performing an activity:  
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where tperf is the actual performed duration of the activity, t* is the “typical” duration of an activity, 
and βperf is the marginal utility of an activity at its typical duration. βperf is the same for all activi-
ties, since in equilibrium (and in the absence of constraints) all activities at their typical duration 
need to have the same marginal utility (since otherwise an agent could gain by expanding the ac-
tivity with the largest marginal utility while shrinking the activity with the smallest marginal util-
ity). βperf is, in fact, the (marginal) opportunity cost of time, since it is the utility that is foregone 
when “nothing” is done (also see below the discussion re “coming early/waiting”). 
 
t0,i is a scaling parameter that is related both to the minimum duration and to the importance of an 
activity. If the actual duration falls below t0,i, then the utility contribution of the activity becomes 
negative, implying that the agent should rather completely drop that activity. A t0,i only slightly 
less than t*,i means that the marginal utility of activity i rapidly increases with decreasing tperf,i, im-
plying that the agent should rather cut short other activities. This paper uses t0,i = t*,i · exp(–ζ / t*,i) 
where ζ is a scaling constant set to 10 hours. With this specific form, Uperf,i(t*,i) = βperf · ζ is inde-
pendent of the activity type. 
 

• The (dis)utility of being late is uniformly assumed as: Ulate,i = βlate · tlate,i, where βlate is the marginal 
utility (in €/h; usually negative) for being late, and tlate,i is the duration of being late to activity j.
  
 

• The (dis)utility of traveling is uniformly assumed as: Utravel,i = βtravel · ttravel,i, where βtravel is the 
marginal utility (in €/h; usually negative) for travel, and ttravel,i is the number of hours spent travel-
ing during trip i.  

 
In principle, arriving early or leaving early could also be punished. There is, however, no immediate 
need to punish early arrival, since waiting times are already indirectly punished by foregoing the re-
ward that could be accumulated by doing an activity instead (opportunity cost). In consequence, the 
effective (dis)utility of waiting is already –βperf . Similarly, that opportunity cost has to be added to the 
time spent traveling, arriving at an effective (dis)utility of traveling of  – |βtravel | – βperf.  In contrast, no 
opportunity cost needs to be added to late arrivals, because the late arrival time is spent somewhere 
else. In consequence, the effective (dis)utility of arriving late remains at βlate .  
 
These values (βperf , βperf +|βtravel|, and |βlate|) are the values that would correspond to the values of the 
parameters of the Vickrey model (Vickrey 1969, Arnott et al 1993) if our simulation would just look 
for late arrival.  
 
2.4 Discussion of the utility function 
 
The above scoring function seems to be rather complicated, and seems to have many parameters.  In 
the investigations presented in this paper, however, activities cannot be dropped, and therefore several 
aspects become unimportant.  Take, for example, a person with a daily plan that consists of “home” 
and “work” only, with typical durations of t*,home=16h and t*,work=8h.  When home and work are at the 
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same locations, the person can be “at home” for 16 hours, and work for 8 hours, and that is the optimal 
solution, since the marginal utilities for both activities at these durations are equal.  Note that the mar-
ginal utilities need to be decreasing (i.e. utilities need to be concave), because otherwise that optimum 
would not be unique and stable. 
 
When home and work are not at the same location, the person needs to travel between the locations.  
The time for travel will eat with into the 16h at home and into the 8h at work.  With small travel times, 
the reduction of these times will be approximately the same, since the marginal utilities are the same.  
With larger travel times, however, the curvature of the utility function will play a role, and the utility 
function with the stronger curvature will give up less time.  A work duration that is strongly anchored 
near the 8h would, therefore, be modelled with a t0,work only slightly smaller than t*,work, while a home 
duration this is not strongly anchored near the 16h would be modelled with a t0,work  considerably 
smaller than t*,work.  This would lead to a result where the travel time would mostly be taken away from 
the time at home. 
 
Overall, this implies the following for the investigation described in this paper: 
 
• It is plausible to assume that utility functions are increasing and concave in the neighbourhood of 

the “typical durations” of the activities.  Beyond these restrictions, the specific form of the func-
tion does not matter.  

 
• As long as external constraints (e.g. work hour regulations, shop opening times) do not play an 

overarching role, marginal utilities at the typical durations should be the same at all activities.  
They might, however, vary from person to person, corresponding to different values of time. 

 
• The curvature of the utility function at the typical duration is needed separately for each activity 

type. 
 
This implies that any function that allows setting the slope and the curvature at a given “typical dura-
tion” should lead to similar results – typical candidate functions for this are log, power-laws, or sec-
ond-degree polynomials.  The parameters to be estimated are the following: (i) typical durations for 
each activity type; (ii) one marginal utility parameter for all activities, which also relates the utility of 
time to the utility of money; (iii) curvatures of the utility functions at the typical durations for each 
activity type.  With respect to typical durations (i) and the opportunity cost of time (ii), one can have 
some confidence that they can be estimated from time use surveys (e.g. Stinson, 1999): Considerable 
progress has been made by Jara-Díaz and Guerra (2003) and Jara-Díaz et al (2007) concerning the 
methodology of estimating utility functions for complete days, including the income-dependency of 
the parameters.  (iii) is more problematic, and the sensitivity of the results to the choice of the parame-
ters needs to be systematically tested.  Yet, given the abundance of time-use data, one can have some 
confidence that useful estimations will eventually be possible. 
 
In addition, disutilities for travelling and for being late need to be derived.  There is considerable work 
on disutilities for travelling, usually framed as “value of time” investigations.  A problem is that, as 
explained above, two disutilities need to be added, one that is simply the opportunity cost of time, and 
one that is the additional disutility of travelling.  A second problem is that estimations from discrete 
choice theory, abundant in travel behaviour research, measure indirect utility (e.g. Bates 2006), while 
what is needed for our simulations is direct utility.  Once more, given the results of Jara-Díaz et al, 
one can have some confidence that these issues will eventually be resolved.  With respect to the disu-
tility of being late, the value used in our current investigations is ad-hoc, simply mirroring the famous 
value of Vickrey.  There is, however, agreement in the transport community that especially for home-
to-work trips, some kind of penalty for being late makes sense.  The parameters can, in principle, be 
estimated from surveys concerning the willingness-to-pay for a more reliable transport system (e.g. 
Chen et al 2002). 
 
3. SCENARIO 
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In this section, a specific scenario will be described in some detail. The purpose of this section is to 
illustrate the more general concepts described above, but also to provide some intuition as to what is 
feasible when dealing with real world scenarios.   
 
3.1 Geographical area; population; initial demand 
 
The scenario covers the area of Zurich, Switzerland, which has about 1m inhabitants. The network is a 
Swiss regional planning network, extended with the major European transit corridors (Figure 2 (a)). It 
has the fairly typical size of 10 564 nodes and 28 624 links. 
 
The simulated demand consists only of commuters that travel by car in the aforementioned region, 
resulting in 260 275 agents.  For the results presented here, all travellers will have a simplified activity 
pattern of home-work-home.  This is done for illustration and for verification purposes; future studies 
will contain full activity chains.  The initial time structure has the agents leaving home in the morning 
at a randomly chosen time between 6am and 9am, work for 8 hours, and then returning to home. 
 
3.2 Computational modules 
 
A specific scenario always comes together with a specific selection of aspects that are included in the 
modeling, together with specific computational modules that are used. In the following sections, we 
describe the modules in more detail.  Further research is needed in order to estimate how important the 
details of these modules are. Regarding the traffic flow simulation, which represents the physical real-
ity, it should be possible to eventually come up with a calibrated and validated model that describes 
that physical reality in sufficient detail; and in fact, our own experience (unpublished) indicates that 
the results do not hinge critically on the selection of the traffic flow simulation.  Yet, also the selection 
of the decision modules should, as long as they are able to scan the search space in a meaningful way, 
not be absolutely critical, since it is the scoring function described above that ultimately determines 
the agents’ behavior. There is indeed some indication that simple mental modules, together with many 
iterations (= very long computing times), can lead to plausible results (Nagel et al 2004, Balmer et al 
2005).  Yet, the issue of computing times remains important (Meister et al 2006, Charypar et al 2006). 
 
3.2.1 Activity Time Allocation Module  
 
This module is called to change the timing of an agent’s plan. At this point, a very simple approach is 
used which applies random “mutations” to the duration and end time attributes of the agent’s activi-
ties. For each such attribute of each activity in an agent’s plan, this module picks a random time from 
the uniform distribution [–30 min, +30 min] and adds it to the attribute. Any negative duration is reset 
to zero; any activity end time after midnight is reset to midnight.  
 
Although this approach is naive, it is sufficient in order to obtain useful results. As stated above, this is 
consistent with our overall assumption that, to a certain extent, simple modules can be used in con-
junction with a large number of learning iterations (e.g. Nagel et al 2004).  
 
Since each module is implemented as a “plug-in”, this module can be replaced by a more sophisticated 
implementation if desired.  A more sophisticated scheduling module is already available (Meister et al 
2006). After appropriate testing, this will be used in future studies. 
 
3.2.2 Router  
 
The router is implemented as a time dependent Dijkstra algorithm. It calculates link travel times from 
the events output of the previous traffic flow simulation (see next section). The link travel times are 
encoded in 15 minute time bins, so they can be used as the weights of the links in the network graph. 
Apart from relatively small and essentially technical details, the implementation of such an algorithm 
is straightforward (Jacob et al 1999; Lefebvre and Balmer, 2007). With this and the knowledge about 
activity chains, it computes the fastest path from each activity to the next one in the sequence as a 
function of departure time.  
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3.2.3 Traffic Flow Simulation  
 
The traffic flow simulation simulates the physical world. It is implemented as a queue simulation, 
which means that each street (link) is represented as a FIFO (first-in first-out) queue with two restric-
tions (Gawron 1998, Cetin et al 2003): First, each agent has to remain for a certain time on the link, 
corresponding to the free-flow speed travel time. Second, a link storage capacity is defined which lim-
its the number of agents on the link. If it is filled up, no more agents can enter this link.  
 
Even though this structure is indeed very simple, it produces traffic as expected and it can run directly 
off the data typically available for transportation planning purposes. On the other hand, there are some 
limitations compared to reality, i.e. number of lanes, weaving lanes, turn connectivities across inter-
sections or signal schedules cannot be included into this model.  
 
The output that the traffic flow simulation produces is a list of events for each agent, such as enter-
ing/leaving link, left/arrived at activity, and so on. Data for an event includes which agent experienced 
it, what happened, at what time it happened, and where (link/node) the event occurred. With this data 
it is easy to produce different kinds of information and indicators like link travel time (which, e.g., will 
be used by the router), trip travel time, trip length, percentage of congestion, and so on.  
 
3.2.4 Agent Database – Feedback  
 
As mentioned above, the feedback mechanism is important for making the modules consistent with 
one another, and for enabling agents to learn how to improve their plans. In order to achieve this im-
provement, agents need to be able to try out different plans and to tell when one plan is “better” than 
another. The iteration cycle of the feedback mechanism allows agents to try out multiple plans. To 
compare plans, the agents assign each plan a “utility”, as explained above.  
 
It is important to note that our framework always uses actual plan performance for the utility. This is 
in stark contrast to all other similar approaches that we are aware of. These other approaches always 
feed back some aggregated quantity such as link travel times and reconstruct performance based on 
those (e.g. Waddell et al 2003, Ettema et al 2003). Because of unavoidable aggregation errors, such an 
approach can fail rather badly, in the sense that the performance information derived from the aggre-
gated information may be rather different from the performance that the agent in fact experienced (Ra-
ney and Nagel 2004).  
 
The procedure of the feedback and learning mechanism is described in detail in (Balmer et al 2005). 
For better understanding, the key points are restated here.  
 
1. The agent database starts with one complete plan per agent, which is marked as “selected”.  
 
2. The simulation executes these selected plans simultaneously and outputs events. 
 
3. Each agent uses the events to calculate the utility of its selected plan and decides which plan to 

select for execution during the next iteration (traffic flow simulation). When choosing a plan, the 
agent database can either: 
• create a new plan by sending an existing plan to the router, adding the modified plan as a new 

plan and selecting it, 
• create a new plan by sending an existing plan to the time allocation module, adding the modi-

fied plan and selecting it, 
• pick an existing plan from memory, choosing according to probabilities based on the utilities 

of the plans. The probabilities are of the form p = eβ·Uj/∑i eβ·Ui, where Uj is the utility of plan j, 
and β is an empirical constant. This is the familiar logit model (e.g. Ben-Akiva and Lerman 
1985). 

 
4. Next, the simulation executes the newly selected plans, that is, it goes back to 2.  
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This cycle continues until the system has reached a relaxed state. At this point, there is no quantitative 
measure of when the system is “relaxed”; we just allow the cycle to continue until the outcome seems 
stable. In the long run, measures to stop the iterations automatically and consistently need to be found. 
 
3.3 Tolls 
 
To test the approach, two different road pricing policies were simulated: a ”time toll” where the toll 
amount to pay depends on the time spent driving, and a “city toll” which is a distance-based charge for 
a certain area of Zurich.  These will be explained in more detail in the following. 
 
3.3.1 Time toll 
 
The time-based policy is introduced for all travellers 24 hours a day, for the whole simulation area. 
For every hour spent on the road 12 € are charged; the computation of the toll is done in one-second 
increments. One could argue that this type of toll will never be implemented in the real world because 
it provides an incentive to speed. Yet, in-car devices for supervising speed limits are available (Garvill 
et al 2003) and could, in principle, be used together with such a toll.  However, the main reason for 
using such a toll in a scientific study is that it approximates the time-dependent optimal toll in the bot-
tleneck scenario analyzed by Arnott et al (1990): The time toll is more expensive for links where, and 
during time slots when, congestion is high.  This becomes clear when one considers that the free speed 
travel time, and any toll levied on it, is foregone anyway, since in the set-up considered here the trav-
ellers can only adapt routes and times, i.e. they are forced by the simulation set-up to make the car 
trips under all circumstances.  Therefore, only the time that comes on top of the free speed travel time 
is relevant for the decision-making of the agent – and that time is now made “more expensive” by the 
toll. 
 
3.3.2 City toll 
 
As a more realistic scenario, a hypothetical toll area was defined that covers the Zurich city area of 
administration, but not the motorways that lead into and partially around the city. The exclusion of the 
motorways is plausible because they are owned by the Swiss Confederation and not by the city of Zu-
rich. This is a plausible scenario based on the status of the political discussion in Switzerland (Bundes-
rat, 2007).  We are not aware of more specific politically discussed scenarios for Zurich; otherwise we 
would have used those. Figure 2 (b) shows the area and the tolled links. The diameter of the toll area is 
about 11 km. The toll is levied during morning rush hour, 7:15 am to 8:15 am, and is set to 1 €/km – in 
fact, toll levels of 0.5 €/km, 1 €/km, and 2 €/km were tested and out of those, the selected toll level 
yields the highest economic benefits (see below). The tolled area has a high density of offices and 
other work places, so the in-bound traffic is larger in the morning than the out-bound traffic, and vice 
versa in the evening. 
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(a) Switzerland network, area of Zurich enlarged 

 
(b) hypothetical toll links in Zurich area. 

 
Figure 2: Scenario: Switzerland network with toll links for Zurich. 

 
3.4 Simulation runs 
 
The simulation is run for 100 iterations to retrieve a relaxed state in which the initial plans are adapted 
to the traffic conditions without any toll.  Based on the hundredth iteration we simulate 200 iterations 
for each policy and for a base case where no policy is implemented.  If not specified explicitly 10% of 
the agents adapt routes and 10% adapt activity times in each iteration. The following values for the 
parameters were used: 
 
βperf = +6 €/h, βtravel = –6 €/h, βlate = –18 €/h 
 
Although it is not obvious at a first glance, these values mirror the standard values of the Vickrey sce-
nario (e.g. Arnott, de Palma, and Lindsey 1993): An agent that arrives early to an activity must wait 
for the activity to start, therefore forgoing the βperf = +6 €/h that it could accumulate instead. An agent 
that travels forgoes the same amount, plus a loss of 6 €/h for traveling. Finally, an agent that arrives 
late receives a penalty of 18 €/h. 
 
The work activity’s starting time is defined as 8:00 am for all agents.  This is, once more, done to mir-
ror the Vickrey scenario; more realistic values will be used in future studies. 
 
The time toll is realized by increasing the penalty for traveling from -6 € per hour to -18 € per hour, i.e 
. βtravel = –18 €/h for the runs simulating the time toll. 
 
4. RESULTS 
 
In the following, we will present the results of three simulation runs comparing the base case with the 
results of the time- and distance toll. Thus, we will show which modifications in travel behavior are 
evoked when the policies are implemented in our scenario. 
 
4.1 Effects of the time toll 
 
The time toll reinforces the incentive of our agents to minimize travel time. On the other hand, there is 
still a strong incentive to start working at 08:00 am to avoid opportunity costs for waiting in case of 
early arrival or the penalty for arriving late. Making travel time more expensive means diminishing the 
influence of the schedule delay stimuli. Figure 3 shows the temporal distribution of the arrivals of 
agents at their activity locations for the base case and the toll scenarios. Comparing the base case 
curve and the time toll curve one can see that most of the agents still try to arrive at work at eight in 
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the morning. Some of them however are forced by the policy to arrive earlier than in the base case, i.e. 
more agents arrive between 06:00 am and approx. 7:30. 
 
 

 
Figure 3: Number of arrivals of travelers over the time of day. The tolls force some agents to arrive 

earlier. 
 
Figure 4 shows the number of travelers simultaneously on the road for the different scenarios. The 
area below the curves can be interpreted as the total time agents spend on the road. A smaller area 
means that people spend less time traveling. As some of the agents react to the toll by departing / ar-
riving at different times or using other routes, the available infrastructure is used more efficiently, i.e. 
people have to spend less time traveling when the time toll is implemented.  
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Figure 4: Number of travelers on the road over the time of day. With the tolls, the travel time is re-

duced. 
 
Both results are as expected: The optimal toll in the Vickrey bottleneck scenario changes the departure 
pattern and reduces travel times, but it does not change the arrival pattern.  In consequence, it makes 
sense that a toll that goes into the same direction has the same general effect.  There are, however, also 
some differences: Figure 3 shows that the arrival pattern is not tri-angular, but is more strongly peaked 
at the desired arrival time at 8am.  This is the result of the fact that departure and arrival locations are 
scattered throughout the region. 
 
4.2 Effects of the city toll 
 
As explained above, the city toll is a distance toll that is implemented only in the city area, and only 
between 7:15 and 8:15 am.  Based on the arrival time distribution (Figure 3) and on the dynamics of 
the number of travellers on the road (Figure 4) one would say that its effect is in between the base case 
and the time toll.  In addition, there is a slight toll time avoidance reaction in the morning.  In contrast, 
there is virtually no effect in the evening.  This makes sense since, as the morning arrival pattern is not 
much changed, there is little incentive to change anything in the evening when there is no city toll.  
This is in contrast to the time toll which is charged also in the evening. 
 
4.3 Route adaptation only 
 
The agent-based approach allows to selectively switch on and off certain choice dimensions of the 
travellers.  In order to test this, additional runs were performed where the time adaptation of the agents 
in reaction to the tolls was switched off.  This means that all departure times of the agents remain 
fixed also when the tolls are switched on – the agents can only react by moving to other routes.  With 
the time toll, it is clear that there will be no reaction since the agents already use those routes that are 
fastest, given their departure time.  But also with the city toll, Figure 5 implies that there is little tem-
poral effect: The arrival time structure remains virtually unchanged, implying that the travel times re-
main unchanged and the toll thus does not relieve congestion.  When interpreting these results, one 
should, however, keep in mind that in this set-up there is no elasticity of demand.  This will be in-
cluded into future studies and will certainly influence the results. 
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Figure 5: Number of arrivals of travelers over the time of day when no time adaptation is possible. 
The curves are nearly equal thus most reactions to the policies are time reactions. 
 
4.4 Computational performance 
 
The above runs need about 5 to 10 minutes of computing time per iteration; 100 iterations thus need 
about half a day.  These numbers seems to be valid on any modern computer that we have tested, from 
laptops to workstations.  Another element is memory.  For the simulations for this paper, consisting of 
10% of about 260,000 commuters, 2GB of memory are sufficient.  A 100% simulation of the Zurich 
region, with full activity chains, takes about 20GB of memory. 
 
5. ECONOMIC INTERPRETATION 
 
5.1 Economic appraisal 
 
Standard economic appraisal, as is for example used for cost-benefit-analysis (e.g. Pearce and Nash 
1981), would now take the above traffic patterns as input, and attach economic valuations to them. 
One would, for example, for each link count the number of users and the average time they spent on 
the link. These numbers would then be compared between the base case and the scenario case.  Typi-
cally, the travel time for a link would go down (say from t1 to t2) and the number of users would go up 
(say from n1 to n2).  The economic gain consists of two contributions (e.g. Pearce and Nash 1981, But-
ton 1993): 
 
• Gains by existing users: n1 (t1 – t2), where the economic interpretation is that this was already the 

best option for those people before the modification of the system, and so the improvement of the 
system is fully counted for those people.  
 

• Gains by new users: (n2 - n1) (t1 – t2) / 2, where the intuition is the following: New users one by 
one switch to the facility when the travel time is slowly decreased. A user that is switching is ex-
actly neutral between two options. Any further improvement of the facility after the switch is then 
counted as benefit to that user. The first user that switches reaps nearly all the benefits from t1 to 
t2, while he last user that switches reaps nearly no benefits; this is overall approximated by (t1 – 
t2)/2 (known as the “rule of the half” in the literature). 
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The result of this procedure has a unit of time; it is then converted to monetary units by multiplying it 
with a value of time. 
 
5.2 Identifying winners and losers in the multi-agent simulation 
 
It should be clear, however, that this is too simplistic for the above scenario. In particular, the standard 
approach only counts travel time gains, but not schedule delay effects (caused by people choosing a 
non-preferred time of travel to avoid the toll). However, research indicates that schedule delay effects 
might contribute more than half of the economic effects of well-chosen time-dependent tolls (Arnott et 
al 1990). In addition, the standard approach is unable to look at equity aspects of the toll, since it is not 
able to differentiate between subgroups. Yet, equity effects, for example by age, income, gender, or 
race, are increasingly becoming important in any discussion of policy measures. Finally, the approach 
needs to assume a uniform value of time for all travellers, since the approach is not able to differenti-
ate between trip purposes. Yet, it is well known that the value of time may differ by a substantial fac-
tor between leisure trips and business trips (for relevant Swiss results see Axhausen et al (forthcom-
ing), which also differentiates by the length of the trip; see Jara-Diaz and Guevara (2003) for the prob-
lem of an equity-adjusted value of time). 
 
Fortunately, with our multi-agent simulation, it is, in fact, not necessary to add the economic appraisal 
as it is conventionally done, since the agent utilities already are the economic performance indicators 
of the system. This is because the utility is the measure that every agent attempts to improve, and a 
higher utility directly measures the amount of improvement that an agent was able to reach. This auto-
matically includes the schedule delay effects, since every agent will have optimally adjusted to any 
trade-off between time-dependent congestion, time-dependent toll, and schedule delay, including any 
personal restrictions that an agent may have, such as specific opening times. The multi-agent approach 
could also include different values of time, since they would be included as person-specific values of 
βperf, βtravel, and βlate. 
 
It is, thus, immediately possible to identify winners and losers of a policy. An example of such an 
analysis is Figure 6, which allocates the gains and losses after the introduction of the time toll to the 
residential locations of the agents.  The analysis includes uniform redistribution of the toll revenues.  
In this case, there are both winners and losers close to Zurich, and mostly losers further away.  The 
reason is that, far away from Zurich, only long distance travelers are included in the analysis, and 
these lose because the time toll punishes long distance travelers more, while the equal redistribution 
reimburses the same amount to everybody.  Apart from this, there does not seem to be any structure, 
implying is that any structure that there may be is not geographically oriented. 
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Figure 6: Spatial distribution of gains and losses of the time toll. Green: households with gains; red: 
households with losses.  Households far away from Zurich lose because far away from Zurich only 

households with long distance trips are included, and these consistently lose with the time toll.  
 
5.3 Aggregated economic benefits in the multi-agent simulation 
 
For economic analysis, the gains and losses need to be aggregated.  The simplest – utilitarian – way to 
do this is to sum up the utilities.  The reasoning behind this would be that the monetarized utilities re-
flect willingness to pay of each individual for the change of the system by the policy (including the 
losers, which would need to receive money to accept), and thus the sum of these utilities reflects the 
aggregated willingness to pay. Table 1 shows one such analysis, for the scenario described above. On 
the left, one finds different entries for the base case.  This is followed by two columns for the time toll, 
one depicting the new numbers after the policy introduction, the other the differences to the base case.  
This is followed by two columns of the same type for the city toll.   For example, when switching on 
the time toll, the average travel time (per day per agent) decreases from 3832 to 3466 seconds.  Aver-
age utility decreases by 10.18 €, including the utility loss from the toll payment.  Since, however, av-
erage toll payments are 11.55 €, after redistribution of the toll revenues there is an average utility gain 
of 1.37 €.  Multiplied by the number of agents this results in 357,476 € of utility gains.  
 
The city toll reaches about ¾ of those gains (284,058 €), but with the advantages that already before 
redistribution there is a slight gain, and much less money needs to be moved around (less than 300,000 
€ instead of more than 3 million €) to obtain those gains.  
 
When interpreting those results, one should keep in mind that, although our goal is to simulate realistic 
scenarios, the current example is still rather artificial: It is based on simplified home-work-home ac-
tivities only, and there is no alternative to travelling by car (i.e. agents can neither decide to take an 
alternative mode nor to not travel at all).  Future studies will remove these restrictions. 
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Table 2 shows what happens if the simulation allows only route adaptation in reaction to the toll.  For 
the time toll, as expected the difference is essentially zero – the remaining difference can be attributed 
to the stochastic elements of the simulation.  For the city toll, there are economic losses even after re-
distribution of the toll (-136,476 € or -1.49 € per agent).  This is due to the fact that the city toll will 
make people travel longer routes than without the toll.  It is difficult to construct a toll for a city setting 
that generates economic benefits only from route adaptation.  This also means, however, that one 
should be wary about toll analysis simulations where the only choice dimension is route adaptation – 
or in more general: As long as certain choice dimensions that are enacted in response to tolls are not 
included in the simulation models, the results may not be very useful. 
 
Table 2: Different contributions to the utilities of the agents for the different scenarios if only 
route adaptation is permitted. 
 
 Base case  Time toll Difference  Distance 

toll 
Difference 

        
Number of agents 260’890  260’890 0  260’890 0 
Number of paying agents 0  260’890 260’890  63’510 63’510 
Travel time (avg. per 
agent, sec.) 3’638  3’630 -8  3’670 32 
          
Utility (avg. per agent, €) 101.62  89.52 -12.10  100.13 -1.49 

Utilities (sum, €) 26’511’958  23’354’332 
-

3’157’626  26’122’427 -389’530 
          
Toll paid (avg. per agent, 
€) 0.00  12.10 12.10  3.98 3.98 
Toll paid (sum, €) 0.00  3’156’769 3’156’769  253’054 253’054 
          
Utility after redistribution 
of toll (avg. per agent, €) 101.62  101.62 -0.003  101.10 -0.52 
Utility after toll redistribu-
tion (sum, €) 26’511’958  26’511’101 -857  26’375’482 -136’476 
 

Table 1: Different contributions to the agents utilities for the different scenarios 
 

 Base case  Time toll Difference  City toll Difference 
        
Number of agents 260’890  260’890 0  260’890 0 
Number of paying a-
gents 0  260’890 260’890  57’990 57’990 
Travel time (avg. per 
agent, sec.) 3’832  3’466 -366  3’682 -150 
          
Utility (avg. per agent, 
€) 102.66  92.47 -10.18  102.69 0.027 

Utilities (sum, €) 26’783’237  24’126’564 
-

2’656’673  26’790’317 7’080 
          
Toll paid (avg. per pay-
ing agent, €) 0.00  11.55 11.55  4.78 4.78 
Toll paid (sum, €) 0  3’014’149 3’014’149  276’978 276’978 
          
Utility after redistribu-
tion of toll (avg. per 
agent, €) 102.66  104.03 1.37  103.75 1.09 
Utility after toll redis-
tribution (sum, €) 26’783’237  27’140’713 357’476  27’067’295 284’058 
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An advantage of the agent-based approach is that the simulation and the appraisal are automatically 
consistent. Assume, for the purpose of illustration, that a toll is introduced for a fast facility, but that 
the facility can be circumvented by using a slower and untolled facility.  Assume furthermore that the 
value of time is set to a small value in the simulation, but to a large one in the appraisal.  In that situa-
tion, in the simulation much traffic would be diverted around the toll facility, since most travelers 
would rather spend more time than pay money. In the economic appraisal, however, that loss in time 
would be weighted very heavily.  The result would be wrong, because if the travelers would use the 
larger value of time in the simulation, they would rather pay the toll and save time, thus making them 
better off. This example is arguably a bit trivial, but it is easy to design examples where such “incen-
tive mismatches” can happen quite easily.  In fact, the issue of the schedule delay, included in the 
simulation but excluded from current appraisal methods, is one example.  
 
A similar consistency argument is made by de Jong et al (2005), where it is suggested to use the utility 
functions estimated for discrete choice models (or more precisely the expectation value, commonly 
called the “logsum term”) directly for appraisal.  This would have the same effect as our approach, i.e. 
that the model that is used for predicting the behavioral response is the same as the one that is used for 
evaluation/appraisal.  This is undoubtedly a powerful approach, since it is by now established and 
common practice to estimate discrete choice models whereas realistic multi-agent simulations are still 
a challenge. The difference is that in our approach, the reactions of the travelers are directly and mi-
croscopically computed.  The difference becomes clear when one, say, attempts to predict the effects 
of an area toll.  In that situation, for the logsum approach it will be quite difficult to differentiate who 
will be affected by that toll and to what extent.  One option would be to look at every person sepa-
rately.  Then, however, one ends up very close to a multi-agent simulation. 
 
Finally, any aggregation by sub-groups is possible since the individual utilities are attached to every 
individual of the synthetic population, thus allowing filtering and aggregation by arbitrary criteria. 
 
5.4 Discussion of the economic interpretation 
 
Clearly, such an interpretation demands that the utility functions are not only correct for each individ-
ual agent, but that they can be compared between agents. The following arguments may be brought 
forward in this context: 
 
• One could argue that it is unfair to just sum up the utilities of all agents, since this tends to, for 

example, weigh time gains/losses of the rich more heavily.  As usual in this situation, it is always 
possible to weigh the utility gains of the agents before the summation according to whatever wel-
fare function is to be optimized. 

 
• One could argue that real people do not systematically optimize any scoring function at all, but 

rather do some kind of heuristic symbol processing to move through their days and lives (Simon 
1997, Moss and Sent 1999). In that situation, one could replace the behavioral logic of our agents 
with an alternative logic. The simulation would still be able to predict future outcomes. The indi-
cators, however, would now need to be based on other principles.  
 

• The approach does not seem to include external effects. However, these could be included by 
computing the emissions caused by the traffic, and then compute the effects that these emissions 
have on the agents.  Agents could even react to these effects, but that would be more relevant in 
the context of urban planning than in transport planning, e.g. because agents might move their 
residences to areas that are less impacted by emissions. 

 
6. CONCLUSION 
 
It is shown that multi-agent simulations can be used to model people’s reactions to policy measures in 
a conceptually straightforward and parsimonious way.  In particular, when the simulated people 
(=agents) optimize individual utility functions, then changes in these utilities in reaction to a policy 
change directly measure individual gains or losses.  This makes identifying winners or losers of a pol-
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icy measure straightforward.  Taking weighted sums over these individual utility changes then leads to 
aggregate welfare gains or losses.  Since the aggregation is directly taken from the individuals, the 
weights can be based on individual demographic or geographic characteristics. 
 
The approach is tested with a multi-agent simulation of traffic and travel behaviour of the Zurich met-
ropolitan region in Switzerland.  As policy, several tolling schemes are investigated. It is shown that 
the simulation can be used to model travelers’ reactions to time-dependent tolls in a way most existing 
transportation planning tools are not able to do.  As an example, it is demonstrated that route adjust-
ment only, as is done by necessity in many traditional transport planning packages, results in no eco-
nomic gains from the tolls – this is because the economic effects of tolls often stem from time reac-
tions and from the elasticity of demand for car traffic.   As time-dependent tolls are a much-debated 
subject in transportation politics, the ability to fully model such tolls and the reactions of travellers 
may help to find better toll schemes.   
 
Overall, multi-agent simulations are able to approach a multitude of questions that current transporta-
tion tools are not able to answer. In a world where individuals have more and more freedom to sched-
ule their daily plans, agent-based simulations offer an intuitive way to research complex topics with 
lots of interdependencies. 
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