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Abstract 
In this master thesis, the traffic in a microscopic traffic simulation of Berlin (MATSim) 
is controlled by route guidance. The guidance is directed by automatic feedback control 
and transmitted to the simulated vehicles via in-car COOPERS-devices. The aim of the 
control is to achieve and maintain a Nash equilibrium on two alternative routes between 
a common origin and a common destination in the traffic network.  Since no explicit 
model of the controlled traffic simulation is available, only algorithmically simple 
control strategies such as bang-bang control, proportional control (P-control) and 
proportional and integral control (PI-control) are applied. The control is applied in two 
different network settings: a topologically simple test network and a reduced version of 
the full Berlin network. The main result of the simulations is that well tuned automatic 
feedback controllers improve the traffic conditions considerably in a scenario where an 
accident is generated on one of the controlled routes. Generally speaking, P- and PI-
control are better at handling the scenario they are tuned to handle whereas the bang-
bang control is more robust against parameter variations.  Especially the P-controller’s 
ability to handle changes in the compliance rate is strikingly poor. Given the 
resemblance between microscopic simulations and reality, it is likely that the route 
guidance control, that is shown to be successful in the simulations, would work 
acceptably also in the real-world. In the concluding chapter of the thesis, a broad 
outline for how such a real-world implementation could be materialized is presented.  
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Populärvetenskaplig sammanfattning 
Igenkorkade gatunät är ett stort problem i de allra av världens stora och medelstora 
städer. Ibland beror dessa trafikproblem på att vägnätets kapacitet är för liten, men 
minst lika ofta uppstår köer eftersom trafikflödet är ojämnt fördelat mellan olika 
alternativa vägar. I en sådan situation finns det en potentiell möjlighet att förbättra den 
sammantagna trafiksituationen genom att dirigera om trafikanter från överbelastade till 
mindre belastade vägar. Belastningen på olika alternativa vägar tenderar dock att se 
mycket olika ut från en dag till en annan och det är därför mycket svårt att på förhand 
veta vilken väg som kommer att ha hög respektive låg belastning. För att en 
omdirigering av trafiken ska bli framgångsrik, krävs därför att den aktuella 
trafiksituationen tas i bekantande då vägvisningen ges till trafikanterna; vägvisningen 
måste med andra ord vara dynamisk.   

Inom ramen för detta examensarbete dirigeras trafiken i en mikroskopisk JAVA-
programmerad trafiksimulering av Berlin, med hjälp av dynamisk vägvisning. Syftet 
med vägvisningen är att uppnå en Nash-jämvikt, dvs. att ingen trafikant väljer en väg 
som inte är den snabbaste möjliga. Vägvisningen ges till de simulerade trafikanterna via 
en elektronisk s.k. COOPERS-vägvisare som alla trafikanter antas ha installerad i sin 
bil. Sättet att dirigera bilarna bestäms på reglerteknisk väg med hjälp av en 
återkopplande regulator. I en sådan regulator beräknas vägvisningen utifrån den 
nuvarande trafiksituationen och en förbestämd regleralgoritm Eftersom det inte går att 
få fram en explicit modell av den typ av simulering som regleras, används enbart 
mycket enkla reglerstrategier, så som bang-bang-reglering, proportionell reglering (P-
reglering) och proportionell och integrerande reglering (PI-reglering).  

Vägvisningen implementeras dels i ett litet testnätverk och dels i ett större 
Berlinnätverk. Simuleringarna visar med tydlighet att regleringen förbättrar 
trafiksituationen avsevärt i bägge nätverken, då en trafikolycka som innebär långa köer 
genereras på en av två alternativa vägar. P- och PI-reglering fungerar generellt sett bäst, 
men det finns tecken på att bang-bang-reglering har en större förmåga att klara av 
situationer då trafiken beter sig annorlunda än förväntat (t.ex. då olyckan är större än 
väntat eller då färre trafikanter än väntat följer vägvisningen). Valet av reglerstrategi 
bör därför göras specifikt i varje enskilt fall. Då den mikroskopiska simuleringen av 
Berlins trafik har visat sig vara en mycket bra representation av de verkliga 
trafikflödena i Berlin, finns det anledning att tro att den reglering som fungerar bra i 
simuleringen också borde kunna förbättra trafiksituationen också i verkligheten. I 
examensarbetets avslutning finns därför ett förslag på en arbetsgång för hur man skulle 
kunna överföra de regulatorer som utvecklats i simuleringen till den verkliga 
stadsmiljön.  
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1 Introduction 

1.1 The potential of route guidance 
Congested traffic networks are of major concern in almost all large cities in the world 
today. Seeing that traffic congestion is a result of over-utilization, traditional ways of 
coping with the problem have either been focused on expanding the capacity of the 
system, i.e. by construction of more and bigger roads, or on reducing the demand, e.g. 
by means of congestion charging or higher fuel taxes. Congested traffic networks do 
however not necessarily imply that the capacity of the entire system is insufficient for 
the demand. Typically, just a fraction of the streets in a city is congested at a given time 
instance, whereas the traffic load on other streets is comparably low. In such a situation, 
suitable guidance of the traffic around the problematic areas might improve the traffic 
conditions considerably. The adoption of a guidance strategy has a potential of solving 
the congestion problems smoothly, avoiding both expensive road project and the often 
politically problematic congestion charges and tax increases. Moreover, it is a cheap 
strategy to implement, since the only technology needed is some kind of infrastructure 
for transferring the guidance information to the travelers.1 

One fundamental assumption in traffic engineering and traffic modeling is however that 
people in a normal day scenario tend to choose the best route available to them also 
without guidance.2 No traveler could therefore gain anything from choosing an 
alternative route. In such a situation, the traffic system is said to have reached a Nash-
Equilibrium3 and no guidance thus seem to be needed. The situation is however only a 
Nash-equilibrium from a static point of view, i.e. the route chosen by each traveler is 
the best given the information about the other travelers’ behavior that he or she had 
prior to the trip. In the short run, the traffic in a city typically fluctuates strongly and 
the system is thus not in a Nash-equilibrium at every given time instance. Hence it 
follows, that it is indeed possible to improve the traffic conditions using guidance, 
given that this guidance is dynamic and that it takes the present traffic situation into 
consideration.4 

                                                 

1 Papageorgiou, M., “Traffic Control” in Hall, R. W., ed. Handbook of Transportation Science 2nd edition 
(New York, 2003). p 243-244. 
2 Almost all traffic assignment is based on the validity of this assumption. A discussion about the 
implications of the assumption is found in Nagel, K., Rickert, M., Simon, K. M., Pieck, M., “The 
dynamics of iterated transportation simulation” (2000), in Preprints of the TRISTAN-3 Conference, San 
Juan, Puerto Rico, 1998, p 2. 
3 A Nash equilibrium is a general, game-theoretical concept that is not traffic specific. In a game with 
two or more agents, a Nash equilibrium is reached when “no player has anything to gain by changing 
only his or her own strategy unilaterally”. “Nash equilibrium”, Wikipedia; The Free Encyclopaedia 
http://en.wikipedia.org/wiki/Nash_equilibrium (2007-01-08). The concept will be discussed more 
thoroughly in Chapter 1.4. 
4 The assumption that a traffic system naturally tends towards a Nash equilibrium is in other words rather 
an approximation that makes modelling possible than a theorem that is always valid in the traffic system. 



 7

1.2 Route guidance as applied control theory 

1.2.1 Open loop control 
The problem of how to guide the traffic through the traffic network at a given time 
instance using information about the overall traffic conditions is clearly a control 
problem. Seen from this perspective, the traffic condition is an output signal of a 
dynamical system that one wants to control desirably by means of giving the system the 
right input signals, i.e. route guidance.5 Given such a control problem, there are plenty 
of strategies available for how to guide the traffic through the network in the best 
possible way. Looking at published research articles, the most commonly used 
approaches rely on open loop control in one way or another. 6 Such approaches are 
based on an often complex mathematical model of the traffic system that describes the 
relation between guidance (input) and traffic conditions (output). The guidance one 
uses is then determined by optimizing the output with respect to the input over a given 
time frame. Since the guidance can typically be changed several times over the 
optimizing time frame, the optimization problem often ends up being highly 
dimensional and thus computationally costly.  

Assuming that the optimizing algorithm is capable of finding an optimal input, the 
advantage of controlling by means of open loop control is that the input obtained really 
is the very best way of controlling the model. The obvious disadvantage is that, due to 
inevitable disturbances and model errors, the optimal input to the model rarely 
generates an optimal output also in the real system. Contrary, the input given is likely to 
generate an output that, although it might be optimal initially, quickly deviates 
considerably from this optimality. In a highly disturbed system controlled over a long 
time frame, it thus tends to be difficult to produce a good output by means of open loop 
control.7 

1.2.2 Feedback control 
The problems with open loop control can be reduced or even eliminated if one takes the 
development of the real system into consideration when the input is determined. 
Strategies utilizing this principle are called feedback control strategies. One way of 
using feedback that shows great resemblance with many open loop strategies, is called 
Rolling horizon or Model Predictive Control (MPC). When this strategy is used the 
input is re-optimized at certain time intervals, taking the true development of the 

                                                 

5 A formal definition of the control problem (in Swedish) is given in Glad, T. & Ljung, L., Reglerteknik; 
Grundläggande teori 2nd edition (Lund, 1989), p 10. 
6 A few examples of articles in which traffic is controlled by an open loop approach are: Kotsialos, A., 
Papageorgiou, M., Mangeas, M., Haj-Salem, H., “Coordinated and integrated control of motorway 
networks via non-linear optimal control” Transportation Research Part C 10 (2002), pp 65-84, Bhouri, 
N., Papageorgiou, M., Blosseville, J. M., “Optimal control of traffic flow on periurban ringways with 
application to the Boulevard Périphérique in Paris”, in Preprints of the 11th IFAC World Congress, vol 10 
(1990), pp 236-243 and Messmer, A. & Papageorgiou, M., “Route diversion control in motorway 
networks via nonlinear optimisation” IEEE Transactions and Control Systems Technology 3, pp 144-154. 
7 Glad, T.  & Ljung, L., Reglerteori; Flervariabla och olinjära metoder 2nd edition (Lund, 2003), p 451-
452. 
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system into consideration. Compensations for disturbances and model errors are thus 
carried out continuously. 8  

The control signal of a MPC-controller can however not be updated arbitrarily frequent, 
since a costly optimization algorithm has to be run every time round. Nevertheless, 
there are many feedback control strategies that do not rely on any costly optimization 
calculations at all. Instead, these strategies perform comparably simple calculations 
(typically vector-matrix-multiplications) in every time step, which generate an input 
suitable for the present output of the system. The input to the system can therefore be 
changed more frequently than when a control approach such as MPC is utilized. This 
kind of control strategies are often denoted automatic feedback control strategies. 
Taking the flexibility of such strategies into consideration, it seems reasonable to 
assume automatic feedback control to be superior to open loop control approaches 
when it comes to route guidance through traffic networks. The reason for that is that a 
traffic system is highly complex and incorporates a high degree of human behavior that 
is very difficult to model correctly. The interdependence with society also makes it a 
system with a large number of immeasurable disturbances.9 In order to control such a 
system successfully, the robustness against model perturbations and disturbances 
achieved by feedback based control strategies seems more important than the strict 
optimality given by optimized open loop control. Furthermore, some of the most basic 
automatic feedback control strategies also have the advantage that they can be 
implemented even when an explicit model of the traffic system is lacking. Such “blind” 
control usually results in surprisingly good output performance of the system, although 
a differential equation model of the system usually simplifies the process of tuning the 
controller correctly.10 

Promising results, using automatic feedback control in traffic engineering have been 
presented in several articles written by the professor at the Dynamical Systems and 
Simulation Laboratory, Technical University of Crete, Markos Papageorgiou.11 The 
way of controlling the traffic, most commonly used by Papageorgiou is by installation 
of variable message signs (VMS) in one or a few important intersections in the traffic 
network. These signs either give the road-users information about expected travel times 
on some routes downstream of the sign. Alternatively, the signs suggest the traveler 
which route to take towards a certain destination. In that case, the signs are usually 
denoted “Variable destination signs” (VDS).12 

                                                 

8 Glad & Ljung (2003), pp 423-432. 
9 Example of such disturbances could be: sport events, people that want to go to the beach since the sun 
is shining, a demonstration etc. 
10 A general description of the idea behind automatic feedback control is found in Glad & Ljung (1989), 
p 11-12. 
11 A general discussion about feedback control in traffic system is found in Papageorgiou (2003), pp 255-
270.  A more detailed and mathematical focused article is: Messmer, A. & Papageorgiou, M., “Automatic 
control methods applied to freeway network traffic” Automata Vol. 30 (1994), No. 4, pp 691-712. An 
interesting article where a method based on predictive control is applied is: Wang, Y., Papageorgiou, M., 
Messmer, A., “A predictive feedback routing control strategy for freeway network traffic” for the 
Transportation Research Board. 82nd Annual Meeting, January 12-16, 2003, Washington, D. C.  
12 The VDS/VMS concept is for example described in Messmer (1994), p 691-692. 
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Papageorgiou and his research group’s main focus has been on running two structurally 
similar simulation tools called METACOR and METANET. The core of both these 
simulation tools is a nonlinear second order differential equation represented by a state-
space model. In this model, the states consist of flows and occupancies on each traffic 
link. The original state is given by statistical data describing the traffic demand between 
different sectors in the network.13 Due to the state quantities’ macroscopic character 
(i.e. they represent aggregated quantities) a model such as METACOR/METANET is 
usually described as macroscopic. Comparison of some standard output measures from 
these simulations with and without control clearly indicates that feedback control has a 
potential of improving the traffic situation vastly.14  

In addition to the simulations, variable message signs managed by the control 
theoretical principles suggested by Papageorgiou have also been installed in the real 
world on freeway stretches in the outskirts of a few European cities. Evaluations of 
these tests also show that the control improves the over-all traffic conditions. In 
comparison with the improvements achieved in METANET/METACOR simulations 
however, these real-world improvements are rather modest.15 Presumably, these less 
overwhelming results in the real-world testing are due to the fact that the 
METACOR/METANET-simulations, being very generalized and simplified 
representations of the real traffic systems, are comparably simple to control. One source 
of simplification in METACOR/METANET is that the traffic demand used often is a 
very rough average of the real traffic demand. Moreover, the topology of the simulated 
networks is typically very simple and the number of streets in the simulations rarely 
exceeds 100.16 Finally, METACOR/METANET’s differential equation framework 
makes the tuning of automatic feedback controllers rather straightforward, since a 
totally correct model of the system is available right away.  

1.3 Microscopic multi-agent simulations 
Macroscopic modeling is however not the only way of creating a synthetic 
representation of a traffic network. One other approach, called microscopic modeling, 
takes the behavior of individual agents instead of aggregated data as a starting point. In 
microscopic traffic simulations, individual agents with individual plans travel through 
the traffic network and interact with each other according to some predefined, often 
rather simple, laws of motion. Advocates of microscopic simulations tend to maintain 
that such an individual agent approach is superior to macroscopic approaches in 

                                                 

13 METANET is presented in Messmer, A. & Papageorgiou, M., “METANET: a macroscopic simulation 
program for motorway networks” Traffic Engineering and Control 31 (1990), pp 466-470. METACOR 
is defined in Elloumi, N., Haj-Salem, H., Papageorgiou, M., “METACOR: a macroscopic modelling tool 
for urban corridors” Proceedings of TRISTAN II, vol. 1 (1994), p 135-150. 
14 Messmer (1994), p 699-701, Wang (2003), p 18-22. 
15 A real-world application from Glasgow, Scotland is discussed in Diakaki, C., Papageorgiou, M., 
McLean, T., “Applying integrating corridor control in Glasgow” Proceedings of ASCE Fifth 
International Conference on Application of Advanced Technologies in Transportation Engineering 
(1998), p 1-16. A test in Aalborg, Denmark is presented in Mammar, S., Messmer, A., Jensen, P., 
Papageorgiou, M., Haj-Salem, H., Jensen, L., “Automatic control of variable message signs in Aalborg” 
Transportation Research Part C, vol. 4, No. 3 (1996), pp 131-150.  
16 Such generalizations are e.g. done in Messmer (1994) and Wang (2003). 
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illustrating how urban traffic systems really work.17 According to this point of view, no 
differential equation and no averaged macroscopic demand could ever describe the 
heterogeneity of large human populations and the complexity of human interaction in 
an urban traffic system without being too general or unforeseeably intricate. The micro-
simulation approach, letting a huge number of agents interact in a comparably simple 
way, is thus the only possible way of generating tractable, yet realistic traffic 
simulations.18  

Given the higher degree of complexity in microscopic multi-agent traffic simulations as 
a whole, it is extremely difficult (or even impossible) to transform the entire dynamics 
of such a simulation into a comprehensible differential equation framework. The lack of 
a straightforward mathematical model of the simulation makes it more difficult to 
implement feedback control in a micro-simulation framework than in a macroscopic 
simulation like METACOR/METANET. On the other hand, one could argue that the 
complexity of a micro-simulation makes it more similar to the real traffic system 
represented. Given this higher degree of resemblance, it is reasonable to assume that a 
successfully implementation of feedback control guidance in a microscopic simulation, 
is more likely to be successful also in reality, than control strategies that are developed 
and executed in a smoother macroscopic environment such as METACOR/METANET.  

1.3.1 MATSim at Berlin’s Technical University 
Within the Institute for Transport Systems Planning and Transport Telematics at the 
Technical University in Berlin, a research group led by Professor Kai Nagel has been 
developing a microscopic multi-agent traffic simulation of Berlin since 2004.19 The 
simulation tool, which is called MATSim, is written in JAVA and it has become more 
and more complex over the years. Very briefly, the simulation consists of a population 
of approximately 2 million agents (although only a sample of 10 % are actually being 
simulated) and a network with all nodes (intersections) and links (streets) in Berlin’s 
road network. The total number of links and nodes is 30,000 and 11,500 respectively. 
Every agent has a plan specifying what activities it is going to carry out over the day as 
well as how the agent is going to travel between these activities. Such a trip between 
two activities is called a leg. The MATSim-plans are generated using a combination of 
statistical surveys and iterated best-path calculations.20 At the moment only car traffic is 
modeled, implying that only agents traveling by car are taken into account. The plans of 
                                                 

17 It is predominantly urban traffic systems that might be better understood microscopically. For flow 
dynamics on highways, being less complex than urban traffic networks dynamics, macroscopic modeling 
is sufficient in most cases.  
18 Balmer, M., Cetin, N., Nagel, K., Raney, B., “Towards truly agent-based traffic and mobility 
simulations” in Workshop on agents in traffic and transportation at Autonomous agents and multi-agent 
systems (AAMAS’04) (2004) 
19 Before 2004, Professor Nagel did work at the MATSim-model at the Swiss Federal Institute of 
Technology (ETH) Zurich for five years. Before that he worked at the similar TRANSIMS model at Los 
Alamos Laboratories in the US since 1996. 
20 Generally speaking, the plans are generated in the following way. A very rough initial plans file is 
generated from statistical survey data. The simulation is run and the travel time on each link is registered. 
A fraction of the agents thereafter re-plan using best path calculations based on the registered link travel 
times. The simulation is then run once more and new travel times are generated, which are once again 
used for re-planning etc. After sufficiently much iteration, the plans there will not be necessary for the 
agents to re-plan any longer. The plans file obtained at that stage ensures that the entire traffic system is 
in a rough Nash Equilibrium. Nagel (2000).  



 11

the agents provide information about what routes21 all agents take as well as when they 
embark on their different trips. The movement of the agents through the network is 
thereafter determined by a set of rules regulating the traffic on each link as well as in 
every intersection. Finally, there is also a possibility for the agents to re-plan and take a 
new route the next day if they experience too long travel times on their original routes. 
This artificial intelligence feature ensures that the traffic gets more and more realistic 
over time.22  

1.3.1.1 The Extended Cell Transmission Model  
The methods for moving the agents through the simulated Berlin network realistically 
have been changed a few times over the years the MATSim-project has been in place. 
Presently, there are two possible ways of determining the network dynamics. At the one 
hand, there is a rather simple queuing model, where the traffic on each link is basically 
modeled like a first-in-first-out queuing system. The most positive aspect of this model 
is its simplicity, which makes it run smoothly with a minimum of calculations in each 
time step. Given the simplicity, it also models the traffic behavior surprisingly 
realistically.23  

One of the most striking problems, using the queuing model is however that it is not 
able to model the build-up and dissolution of traffic congestion realistically. Using the 
queuing model, queues seem to dissolve from behind since all cars take a step forward 
instantly when a car is leaving the front of the queue. In reality, traffic congestion 
dissolve from the front, leaving the car in the very end of the queue standing still the 
longest time.24  

In order to avoid this and other problems associated with the queuing model, an 
alternative way to handle traffic dynamics amongst microscopic agents has been 
developed within the research group. This model’s most striking feature is probably 
that the movements of the microscopic agents along the links are determined by a 
macroscopic flow model. The macroscopic model, which is an extended version of 
Carlos F. Daganzo’s Cell Transmission Model25, does however only determine the 
behavior on each link. At the intersections, it is instead every agent’s individual plan 
that determines which link it shall proceed to. In order to calculate the dynamics on the 
links correctly, it is also necessary for the macroscopic model to know how much flow 
that is coming into each link; that is, the flow must be split appropriately in the 

                                                 

21 The concepts “leg” and “route” are very similar and easy to confound. Basically, every leg has a route 
but also a few other parameters such as departure time and mode of travel. The mode of travel has so far 
always been car. 
22 Balmer (2004). 
23 Simon, P. M., Esser, J., Nagel, K., “Simple queuing model applied to the city of Portland” (1999) 
published on the Institute for Transport System Planning and Transport Telematics, TU Berlin website: 
http://www.vsp.tu-berlin.de/archive/sim-archive/publications (2007-01-08). 
24Kerner, B. & Rehborn, H., “Experimental properties of complexity in traffic flow” Phy. Rev. E, 
5, (1996). 
25 The Cell Transmission Model (CTM) is presented in Daganzo, C. F., “The Cell transmission model: A 
dynamic representation of highway traffic consistent with hydrodynamic theory” Transportation 
Research Part B, vol. 28B, No. 4 (1994), pp 269-278 and developed in Daganzo, C. F., “The Cell 
transmission model, part II: Network traffic” Transportation Research Part B, vol. 29B, No. 2 (1995), pp 
79-93. 
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intersections. In the ECTM-model that is done by counting how many of the 
microscopic agents that travel left and right respectively at each crossing.26 Figure 1 
shows how the interaction between the microscopic and macroscopic level structurally 
works.  

 

Figure 1. Interaction between the microscopic and macroscopic parts of the ECTM-model. 

The ECTM-model can thus be characterized as a mixture of a microscopic and a 
macroscopic model. In this way, it hopefully combines the best aspects of these two 
simulation-approaches. On the one hand, there are microscopic agents that travel 
through the simulation according to individual plans. This makes it possible to model 
the great heterogeneity in a population like that of Berlin. On the other hand, the 
macroscopically modeled link dynamics make the modeling of for example congestion 
pattern more realistic than the one achieved by simpler models like the queuing 
model.27 Moreover, the ECTM-model also has the advantage of being differentiable, 
facilitating advanced analysis and control.28 On the other hand, the ECTM-model, 
being more complex, is slower than the Queuing-model. The decrease in speed is rather 
modest though, not exceeding a factor of ten.  

Within this master thesis project, the ECTM-model has been used consistently in the 
simulations. The reason for that was simply that the ECTM was the model made 
available at the department. Nevertheless, considering that this model gives slightly 
more realistic traffic behavior than the Queuing model, it would probably have been the 
preferred model also if there would have been an option available. 

1.3.1.2 The COOPERS-project  
Before the beginning of the fall 2006, guidance of any kind had not been part of the 
MATSim-project. Intentions to implement some kind of guidance as well as other 
telematics measures had however been present for quite some time. In one sub-project 
involving parts of the research group, the implementation and analysis of an in-car 
information provision device, called a COOPERS-device, has been planned. The 
development of this device is part of the European Union COOPERS-project, standing 
for “Co-operative Systems for Intelligent Road Safety”. The general aim of this project 

                                                 

26 The ECTM-model is presented in Flötteröd, G. & Nagel, K., “Some Practical Extensions to the Cell 
Transmission Model” Conference Paper from IEEE ITSC, Vienna, 2005. 
27 Daganzo (1994), 273-276. 
28 Flötteröd (2005) 
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is the “[e]nhancement of road safety by direct and up to date traffic information 
communication between infrastructure and motorized vehicles on a motorway 
section”.29 The project is divided into several sub-projects, one of them taking place at 
the Institute for Transport Systems Planning and Transport Telematics at the Technical 
University in Berlin. Furthermore, the information provision between the device and 
the traffic management is supposed to be bi-directional. That means that information 
can be provided both from the infrastructure to the vehicles and from the vehicles to the 
infrastructure.30 

Assuming that every agent in the simulation had such a device installed in its simulated 
car would make it possible to analyze if and how the traffic situation in Berlin could be 
improved, if one provided a certain fraction of the agents with guidance via the devices. 
The information given to this kind of device is broadcasted from a traffic management 
central. A GPS-navigation system in the device keeps track of the position of the cars, 
making it possible to filter the information such that the cars only get the information 
relevant in their present location. One could also assume that the drivers give the device 
information about the trip they are about to a make upon leaving. Using this 
personalized information for filtering the broadcasted information, the information 
provision to the drivers could get even more specific. Guidance information could then 
be given only to those drivers that are bound for a relevant destination. 

1.4 The aim of the thesis 
Given MATSim’s microscopic character and the high complexity of the network and 
population used in the Berlin simulation, it is reasonable to assume it to be more 
difficult to implement successful automatic feedback control guidance in this 
framework than in a macroscopic framework such as METACOR/METANET. On the 
other hand, if such guidance could be implemented successfully, the control would 
presumably work better than the METACOR/METANET-guidance if it was applied in 
the real world. The overall aim of this master thesis is therefore to control the traffic in 
the MATSim representation of Berlin by means of automatic feedback control guidance 
via in-car COOPERS-devices.  

This overall aim is split up into two separate sub-aims. The first of these is to write 
software that makes it possible to control the traffic in the MATSim-framework by 
means of COOPERS-devices directed by different automatic feedback control 
strategies. This software must be flexible enough to facilitate different control 
strategies. Moreover, it is of importance that the simulated traffic behaves realistically 
when the agents receive the COOPERS-guidance.  

The second sub-aim of the thesis is to use the guidance for controlling the simulated 
traffic in Berlin. The aim of the control is to achieve and keep a Nash Equilibrium 
situation on two alternative routes connecting one origin with one destination. A Nash 
Equilibrium is a game theoretical concept defined as a situation where no agent has 

                                                 

29 The COOPERS Website: http://www.coopers-ip.eu (2007-01-08). 
30 ibid. 
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anything to gain from choosing a different option unilaterally.31 In a traffic situation 
with two alternative roads, this definition corresponds to a situation where all agents are 
traveling on the least costly, i.e. the fastest,32 route. A sufficient condition of a Nash 
Equilibrium is therefore that the travel times on both roads are equal. In that case, both 
roads can be said to be fastest and all travelers are therefore obviously using a road that 
is the fastest possible. 

Equal travel times is however not a necessity. A Nash Equilibrium is also achieved 
when one of the roads are faster, provided that the entire traffic uses this route. This is 
the usual situation in a normal day scenario if the control is applied to one main road 
and one slower, alternative road that is not normally used. In such a situation the travel 
times on the two routes are not equal since it is always faster to use the main road as 
long as nothing extraordinary happens. Nevertheless, as long as all travelers use the 
faster main route, the system is still in a perfect Nash Equilibrium.33 

                                                 

31 “Nash equilibrium”, Wikipedia; The Free Encyclopaedia 
http://en.wikipedia.org/wiki/Nash_equilibrium  (2007-01-08). 
32 I assume throughout this thesis that the cost of traveling a certain road stretch is defined as the travel 
time. This is a common assumption in traffic engineering.  
33 The Nash equilibrium concept is for example used in this way in Messmer (1994), p 696. 
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2 Method 

2.1 Necessary additional functionality  
In order to fulfill the aims stated above, some extra functionality, not already available 
in MATSim had to be added. In an initial phase of the project, a set of JAVA-classes 
carrying out these tasks thus had to be implemented. One necessary function was to 
measure the control output. As will be discussed in Chapter 2.2, the travel time 
deviation between two pre-defined roads is a relevant output quantity to keep track of 
when a Nash Equilibrium on that road couple is desired. Hence, implementation of 
software being able to measure this output was necessary.  

A feedback functionality connecting the output measures of the traffic conditions with 
the input guidance broadcasted to the COOPERS-devices was also necessary. This 
particular part of the JAVA-code needed to be flexible in terms of control strategies so 
that suitable control strategies could be adopted in different control situations. 
Furthermore, this software also had to obey to constrains given by the COOPERS-
technology as well as fundamental aspects of human psychology. Examples of such 
constrains could be that the COOPERS-technology does not allow for sending several 
messages at the same time and that people would not find it meaningful with a guidance 
messages that change too frequently.  

Finally, another obvious functionality that had to be implemented was a software 
representation of the COOPERS-devices and the way the agents perceive and react to 
the information provided by these. Similarly to the real-world device, this 
implementation had to be able to filter the guidance broadcasted depending on the 
current position of the car as well as the route the agent is about to travel.  

A full description of how this functionality was actually implemented is found in 
Chapter 3. 

2.2 Control strategies  
The literature covering automatic feedback control is extensive and the amount of 
strategies one could potentially use is large. However, a majority of the strategies 
requires a linear differential equation model of the system. Given such a model, a huge 
framework for sophisticated analysis and tuning of the control loop is available, 
facilitating very exact behavior of the control output. Since no such model is available 
for the multi-agent simulation controlled within this master thesis project, a vast part of 
the control theoretical research field becomes obsolete. In fact, only those strategies 
that could be applied “blindly”, i.e. without an explicit model of the system, could be 
taken into consideration. Typically, blind feedback control can only be carried out 
using very basic and simple control strategies. Due to this constrain, the control 
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strategies applied to the simulated traffic was limited to bang-bang control, proportional 
control and proportional and integral control.34  

2.2.1 Signals and notation 
The simulations in MATSim are all discrete in time, having a time step of one second. 
In the remaining section, this discrete time variable will be denoted t. It is important to 
note that this discrete time step implies that the system that is to be controlled is time 
discrete. That is, although MATSim represents a real traffic system with continuous 
time, the system controlled in this project is not this real world but the simulation itself 
which is a truly time discrete system. 

As already mentioned, the control aims at achieving and keeping a Nash equilibrium on 
two alterative routes connecting a common origin with a common destination. A 
sufficient condition for a Nash equilibrium is that the travel time on both routes are 
equal and the difference between these two travel times has therefore been seen as the 
relevant output of the system. Remembering that equal travel times is not a necessary 
condition for Nash equilibrium (Chapter 1.4), it might seem strange that the output does 
not also take the number of vehicles traveling on each route into consideration. The 
reason for choosing the travel time deviation as output is partly due to the fact that this 
seems to be the standard approach used by other researchers trying to achieve and keep 
Nash equilibriums.35 Moreover, one more reason for choosing this output is that control 
strategies based on this output, does not run the risk of distorting Nash equilibriums 
with one faster route that everyone is using. One might fear that the control strategy 
would make that faster route slower, in order to decrease the travel time difference 
between the two routes. In practice, it may be true that the control strategy tries to make 
the faster route slower However, the only way of actually making the fast route slower 
is to guide more traffic into that route. That is obviously practically impossible, since 
the entire traffic is already using the faster route.  

In the remaining sections of this report, the output from the system, i.e. the travel time 
deviation on the two routes, will be denoted )()()( 21 tTTtTTt RRR −=Δτ . When more 
general control theoretical aspects are discussed, the same signal is sometimes denoted 

)(ty . The route travel time )(tTT j
R  at time t on a route j is for practical reasons defined 

as: 

)()( ttttTT
Ji

i
R

j
R ∑

∈

=  (1) 

J in this formula represents the set of links constituting route j. The quantity )(ttt i
R  is 

the link travel time experienced by the vehicle, which most recently exited link i. The 
reason for using this formula is that link travel times, in contrast to route travel times 
are readily available from the multi-agent simulation. The subscripted R stands for 

                                                 

34 Theoretically, it would also have been possible to use proportional, integral and derivative control 
(PID-control). In practice, it is usually really hard to tune such a controller, containing three control 
parameters without an explicit model. It is also questionable how much one could gain from using 
derivative control, given the complexity and noisiness of the traffic system being controlled. 
35 This output is for example used in Messmer (1994), p 696-699. 
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“reactive” following the standard notation in traffic engineering research articles.36 The 
reference value, which the output should be controlled towards, is always 0)( ≡tr .  

The input to the system is defined as the way the traffic management central tries to 
split the traffic flow at the intersection at the beginning of the two alternative routes.37 
This signal is either denoted )(tβ 38 or  )(tu when the discussion is not traffic specific. 

1(t) =β  implies that all traffic is to be directed into route 1 whereas 0)( =tβ means 
that all traffic is guided into route 2. Hence, 7.0)( =tβ implies that one desires to guide 
70 % of the traffic into route 1 and 30 % into route 2. Obviously 

]1,0[)()( ∈= tutβ always holds for the input.39 I the rest of the text, it is assumed that 
]1,0[u0 ∈  is the splitting of the traffic when no guidance is applied.  

2.2.2 Bang-bang control 
An extremely simple and intuitive way to control the system is by always guiding all 
the traffic into the presently faster of the two roads. Mathematically that means that the 
controller sets the input to the system according to the following control algorithm. 

0)(:,0)(:
0)(:,0)(:
1)(:,0)(:

ututhentyIf
tuthentyIf
tuthentyIf

==
=>
=<

  (2) 

A control strategy based on this “all-or-nothing algorithm” is denoted bang-bang 
control (or relay-control). They main virtue of this strategy is its simplicity. In contrast 
to more complex control strategies, it does not include any parameters that have to be 
tuned differently in different scenarios. This system-independent aspect of the control 
strategy also makes it comparably robust if the system behavior is changing. In contrast 
to other control strategies, a bang-bang controller always uses the same algorithm and 
is therefore never badly tuned. Furthermore, except for the rather rare case when 

0)( =ty , Bang-Bang control avoids the problem of how to materialize a splitting rate 
that is neither  0)( =tβ  nor 1(t) =β .40 

There are however also a few drawbacks associated with bang-bang control. The main 
problem has to do with the fact that bang-bang controllers tend to control too strongly, 
resulting in oscillating system behavior. The reason for this is that the controller sends 
all agents into the fastest road also when the travel time difference is very close to zero. 
Typically, the road into which all agents are directed soon gets jammed, leading to 
increasing travel times after a time lag. Following this travel time increase, the Bang-
Bang controller starts guiding all the traffic into the other road instead, until that road 
                                                 

36 In Section 2.2.5, another travel time measurement called “predictive” is introduced. The difference 
between reactive and predictive travel times is discussed in Wang (2003), p 3-4. 
37 Exactly how this desirable splitting is to be achieved by the intrinsically binary guidance information 
provided by the COOPERS-devices is a non-trivial question discussed extensively in chapter 2.2.6. 
38 This notation seems to be a standard notation for control splitting rates. It is for example used in 
Messmer (1994), Wang (2003) and Kotsialos (2002). 
39 As will be shown in several sections later on, these boundaries on the input does constrain the control 
performance in many ways. 
40 Messmer (1994), p 697-698.  
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gets jammed and slow. In a system controlled by a Bang-Bang controller, it is therefore 
common that the system oscillates, also in situations where the output would have been 
close to zero without any control at all. In other words, the stability of the system can 
not be guaranteed.41 

2.2.3 Proportional control (P-control) 
The oscillating behavior normally observed in a system controlled by bang-bang 
control is caused by the fact that the controller does not at all consider the magnitude of 
the output error when calculating the input. That is, a very small positive value of )(ty  
is considered equally as considerably larger )(ty -values. One way of getting around 
this problem is to apply a control with an input that is proportional to the control error. 
Considering that ]1,0[)( ∈tu  must hold, a proportional controller obeys the following 
algorithm. 

000 )](ˆ[]1[)](ˆ[)(:
0)(:,1)(:

1)(:,1)(:

)()(

utuutuutuElse
tuthentûIf

tuthentûIf

tyKtû p

⋅−−−⋅+=
=−≤

=≥

−=

ψψ

 (3) 

In this algorithm, ),0max()( ⋅=⋅ψ . The parameter pK  in the controller is a parameter 
that one chooses freely. If pK  is chosen large, the control gets faster but the risk of 
oscillating system behavior increases. If pK  is really large in comparison with the 
magnitude of )(ty , the proportional controller works as a bang-bang controller in 
practice. In contrast, small pK -values make the system reaction slower but non-
oscillating. In order to achieve good system behavior, it is thus of great importance to 
tune the pK -value depending on the system’s characteristics.42 

An appropriately tuned proportional controller is generally superior to a bang-bang 
controller, especially when it comes to oscillations and stability. It is also easy to 
implement and mathematically very simple. Moreover, its one and only control 
parameter is often possible to tune without an explicit model of the system by means of 
some kind of trial-and-error method. This quality makes it a suitable strategy for the 
system controlled in this thesis. The main drawback to this type of control is however 
that it can not guarantee that the control output tends towards its reference value 
asymptotically. In fact, systems controlled by proportional controllers very often have 
static errors, meaning that the output is kept constant at a non-desirable level.43  

The following example illustrates how this could happen: 

                                                 

41 ibid. 
42 Glad & Ljung (1989), p 13-14, 41-44. 
43 Glad & Ljung (1989), p 14. 



 19

Assuming that 1.0=pK , 5)( =ty  and 5.00 =u  it follows that 5.0)( −=tû  and 
25.0)( =tu . That is indeed a reasonable choice of the input; the output is too big 

and one should therefore use an input that is closer to zero than one. It is 
however possible that the system dynamics implies that  25.0)( ≡tu  generates 

05)( ≠≡ty  asymptotically.44 In that case, the closed system has reached a 
stable fix point situation that is not the desired one; in other words, the system 
has a static error. 

2.2.4 Proportional and integral control (PI-control) 
The standard solution to the static error problem discussed above is to add an 
integrating part to the proportional controller, making it a proportional and integral 
controller (PI). For continuous time systems, this means that also the integral of the 
prior output is taken into account when the intermediate value )(tû is calculated. For 
discrete systems, like the one controlled in this project, the integral is replaced by a sum 
of prior output values, giving a control algorithm that looks like this: 

000

0

)](ˆ[]1[)](ˆ[)(:
0)(:,1)(:

1)(:,1)(:

)()()(

utuutuutuElse
tuthentûIf

tuthentûIf

iyKtyKtû
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=≥

−−= ∑
=

ψψ

    (4)             

The addition of the integrating part usually eliminates the static error problems. The 
reason for that is that there can be no fix point at 0,)( ≠≡ kkty  since in such a 
situation the sum would grow bigger and bigger, continuously changing the value of the 
input.45 The only risk of getting a static error situation with such an integrating part in 
the controller is if inputs with sufficiently large magnitude can not be generated since 
the input is bounded in one way or another. In this project ]1,0[)( ∈tu  always holds. 
Static errors can thus remain in the system controlled in this project also when PI-
control is applied, if 0,)(0)( >≡⇒≡ kktytu or 0,)(1)( <≡⇒≡ kktytu . That is, if 
the control error does not disappear even though the controller controls as hard as it 
possibly can.46 

As is easily seen, a P-controller is a special case of a PI-controller with iK  set to zero. 
Compared with a P-controller, this extra control parameter gives a PI-controller one 
additional degree of freedom. Hence it follows that a PI-controller has a potential of 
being tuned more precisely than a P-controller. At the same time, tuning of two 
parameters simultaneously also requires more work. Especially when the tuning is done 
without an explicit model by means of trying a set of reasonable parameter 

                                                 

44 For the traffic system controlled in this master thesis, this could be the case for example if route 1 is 
longer than route 2.  
45 Glad & Ljung, p 14, p 44-45. 
46 Glad & Ljung, p  227-228. 
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combinations, the complexity of the tuning algorithm is increased from n to 
2n simulation runs.47 

The general PI-algorithm stated above, is however rarely used in real-world 
applications. Instead, the algorithm is often being executed using differentiated data. 
The differentiated PI-control algorithm typically looks like this: 

000 ))]1()(([]1[)]1()([)(:
0)(:,1)1()(:

1)(:,1)1()(:

)(1))1()(()(

ututuututuutuElse
tuthentutuIf
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T

tytyKtu
i

p

⋅−+Δ−−−⋅−+Δ+=
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=≥−+Δ

−−−−=Δ

ψψ

(5) 

  

This second algorithm (5) is basically nothing but a differentiated version of the first 
algorithm (4) with slightly changed behavior at the boundaries and a new control 
parameter ii KT 1= .  

The use of algorithm (5) does avoid a problem called integrator windup that otherwise 
often follows when an integrated part is introduced in the controller and the input signal 
is bounded. This problem is commonly observed in situations like the one described 
above, where also controllers with integral parts are unable to eliminate static errors. As 
already mentioned, this could only happen if the input is stuck to a boundary. When a 
static error is observed over a long period of time, the magnitudes of the sum in (4) as 
well as )(ˆ tu  tend to grow very large. In a situation where )(ty  later, due to changing 
conditions in the system, changes sign, the output will be allowed to be at a non-zero 
level for a long time before the sum in (4) returns to zero. )(ˆ tu  will therefore be kept 
large and )(tu  will stick to its boundary-value undesirably long. The result of this 
phenomenon is typically strong and long-lasting overshoots in the output. 48 

In contrast to a PI-controller that uses control algorithm (4), windup is not a problem 
for PI-controllers implemented with (5). The reason for that is not the differentiation of 
the data49 but rather the way the input is handled at the boundaries. In contrast to (4) no 
quantity is updated in (5) if )(tu is at a boundary. That means that the controller only 
takes prior outputs into account if these outputs were generated when the input was not 
at a boundary.  In a situation where there has been a static error for a period of time and 
the output suddenly changes sign, the input will thus leave its boundary-value much 

                                                 

47 In practice, the increased complexity arises when in the tuning process, one loop, is replaced by two 
nested loops. 
48 Glad & Ljung, p 228-229. 
49 A straightforward differentiation can not change anything, since the equation will obviously be 
equivalent.  
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faster.50 The problems with overshoots will therefore be less severe if algorithm (5) is 
used instead of (4).  

As will be shown in Chapter 4.2, static error situations with the input at a boundary are 
common for the system controlled in this project. This is for example the case in the 
Nash equilibrium situation when one road is faster and all travelers use that road. In 
order to avoid the problems associated with integrator windup, the PI-controllers used 
in this project are consistently implementations of control algorithm (5) instead of (4). 

2.2.5 Predictive measurements   
Dynamical systems containing time lags are often problematic to control using 
automatic feedback control strategies. A time lag refers to a situation where the input at 
one time instance does not start influencing the output immediately. That is )( 1tu has no 
effect on y(t) when Tttt +=< 12 , T being the time lag. In a time lag situation, a 
feedback controller basing its input to the system on the current output is likely to be 
too late in its control decisions, leading to oscillating system behavior. Typically the 
controller, seeing no results of its adjustments, adjusts too strongly making re-
adjustments later on necessary. The situation obviously gets more severe, the longer the 
time lags are.51  

In traffic networks, time lags are ubiquitous. In system with route guidance given at a 
certain intersection as the input and an output determined by travel times, the sizes of 
the lags depend on the lengths of the routes. Obviously, when the routes are long, the 
time before the guidance has an impact on the travel times is also long. These time lags 
could potentially turn out being very problematic for the controllers used in this thesis, 
making it relevant to consider some ways of coping with time lag problems. 

The standard method used when a system with time lags is to be controlled is to use 
predicted values instead of current values as the control output. That means that )( 2ty  , 
which is the first output that is influenced by )( 1tu , is predicted by means of running a 
model of the system with the most current input held constant in 21 ttt << . )( 2ty is 
then used in the control algorithm in one way or the other.52  

Unfortunately, no model for prediction was realizable within the available project time 
for the multi-agent simulation controlled within this project.53 The predictive control 
approaches discussed above were thus not possible to use. Seeing that the simulation 
                                                 

50 That does not necessarily mean that the boundary will be left immediately when the sign of the output 
changes. The controller is still integrating and the sum of outputs that were generated before the input 
reached the boundary does obviously still matter.  
51 Technically speaking, the time lag decreases the phase margin, pushing the system closer to instability. 
Time lags are discussed in Glad & Ljung (1989), p 105-107. 
52 A common control structure that bases its control on a prediction of the output is the Otto Smith 
controller discussed in Glad & Ljung (1989), p 134-136. A more general approach is called “Internal 
Model Control” (IMC), which is discussed in Glad & Ljung (2003), p 256-261. A variant of this control 
structure is applied to a traffic system in Wang (2003). 
53 In MATSim there is a certain mode that generates accurate predictions of future system performances. 
Unfortunately, the additional implementation necessary for using these predictions in the control turned 
out being too complicated and the predictive mode was thus never used. 
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facilitates two different ways of calculating travel times on the two routes, there are 
however ways to make the control at least semi-predictive. As already mentioned in 
Section 2.2.1, the standard way of calculating the system output uses the reactive route 
travel time calculation defined in (1). 

The other method for route travel time calculation is defined by the following formula: 

)()( ttttTT
Ji

i
P

j
P ∑

∈

=  (6) 

j is also here the number of the route and J is the set of all links making up route j. 
)(ttt i

P  is here denoting the predictive travel time on link i. The predictive link travel 
time is calculated as  
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where )(tiη  is the number of cars on link i at time t and )(tf i  is the maximum 
outgoing flow allowed by the traffic situation on the downstream link (cars/second) at 
time t. i

fftt  is the travel time on link i at free flow which in (7) is a lower bond for 

)(ttt i
P . Assuming that the flow on a link is constant, this way of measuring the travel 

times gives a good prediction of the travel time of the car just entering the link.54 The 
use of PTT  instead of RTT  as the control output thus has a potential of making the 
controller more similar to a predictive controller. Hence, time lags might be handled in 
a better way. Furthermore, RTT  and PTT  are both measurements that are possible to 
obtain in a real world traffic network where the cars are equipped with COOPERS-
devices. Given the ability of the device to keep track of its position, reactive travel 
times are easily evaluated by measuring the time it takes for each car to travel from the 
beginning to the end of each link. Predictive travel times are also easily available since 
occupancy as well as outgoing flow is given by straightforward counts of the number of 
cars entering and leaving the link.55  

It is however important to notice that an output generated using the predictive route 
travel times PTT  is not identical to the output normally used by a predictive controller. 
That is 

Ttttt RP +=Δ≠Δ 1221 );()( ττ  (8) 

                                                 

54 This is intuitively logical. If the flow is constantly f  all η cars have left the link after η/f seconds. 
55 Flow and occupancy can also be measured without the COOPERS-devices, using inductive loops at 
certain points in the network. In contrast to reactive travel times, the measurement of predictive travel 
times is thus not dependent on the COOPERS-technology. 
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The main reason for that is that the definition of a certain time lag T is somewhat 
ambiguous, given the system studied and the way of calculating the system output. It is 
not at all easy to say when )(tTTR will be affected by a guidance at 1t . In fact, it seems 
reasonable to assume that )( 1tttP  is a good prediction of )( 2tttR  for the very first link 
on the route, since )( 1tttP  is actually predicting the reactive travel time of the car that is 
just about to enter the link at time 1t , which in case of the first link is the guided traffic. 
For all other links, it is harder to interpret what the predictive travel times actually 
measure. The predictive route travel time, being the sum of all predictive link travel 
times, should therefore not be used unreservedly.  

Given these problematic properties of the predictive travel times, one should be 
cautious using )(tPτΔ  instead of the normal )(tRτΔ  in the control loop. )(tPτΔ  does 
indeed include a predictive aspect that might be useful for coping with time lags but  
since the prediction is not exactly the one one would wish to have, no improvements 
can be guaranteed. Hence, instead of seeing the predictive control as something 
obviously preferable, the use of predictive instead of reactive travel times has been 
considered as an extra degree of freedom that has been used in a trial-and-error fashion 
when tuning the controllers.  

2.2.6 Continuous input - binary guidance 
The control signal )(tβ  generated by the controller is a number between zero and one 
but the guidance given to the cars can only be either “take route1” ( 1=β ) or “take 
route 2” ( 0=β ) at every given time instance.56 The problem of how to generate a 
continuous input from such intrinsically binary guidance information is a non-trivial 
problem that could be solved in several ways. The way of solving this problem chosen 
in this project is based on the idea that an aggregated sequence of binary variables 
resembles a continuous variable. )(tβ  is thus actuated as a sequence of guiding 
messages that is used over a certain time horizon.57 The number of messages in the 
sequence is a highly significant variable. This parameter, called c, can be chosen freely 
and can thus be seen as a control parameter that needs to be tuned.58  Furthermore, the 
time period over which each message is broadcasted is also important. In this project, 
this time slot, which is denoted fixT , has been assumed to be 30 seconds. The reason for 
this choice is that if the guidance is changed more frequently, the agents would 
presumably find the guidance annoying and stop paying attention to it. The time 
horizon over which the sequence of messages is kept constant is obviously 

cTT fixhold ⋅= . After that time interval, a new sequence of guidance messages is 
constructed according to the value of )(tβ  at that time.  

                                                 

56 This is due to the COOPERS-infrastructure’s inability to transmit more than one message at a time. 
57 The same way of generating the input is for example used in Messmer (1994), p 695.   
58 Exactly how this parameter was tuned is discussed in Section 4.1.1.4.1. 
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An example with 4.0)( =tβ , 3=c  and 30=fixT  shows how this part of the control 
works: 59 

4.0)( =tβ  implies that the traffic is to be split so that 40 % are traveling on 
route 1 and 60 % on route 2. This splitting rate is to be achieved using three 
different messages, each shown for 30 seconds. The order of the messages is not 
considered to be of interest, since only the aggregated result over the entire time 
horizon matters. Hence, the alternative ways of guiding the traffic over the 
upcoming 90 seconds are {1,1,1}, {1,0,0}, {1,1,0}, {0,0,0}. The mapping of 

)}(),(),({)( 321 tttt ββββ →  logically looks like this: 60 

}1,1,1{]1,75.0[)(
}0,1,1{)75.0,5.0[)(
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}0,0,0{)25.0,0[)(
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t
t
t
t

β
β
β
β

  (9) 

Given this mapping, 4.0)( =tβ  would generate a sequence of guidance 
messages over the upcoming 90 seconds that guides the traffic towards route 1 
during 30 seconds and towards route 2 during 60 seconds.  

The conversion of the continuous input )(tβ  into a sequence of binary guidance 
messages obviously worsens the controller’s ability to control the system output 
desirably.  A variable )(trealβ , representing the actual splitting of the traffic over the 
current holdT -interval  is needed if this limitation is to be understood properly. )(trealβ  
is defined like this: 
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t
t

c

i
i
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∑
== 1

)(
)(

β
β  (10) 

One of the most problematic aspects associated with the actuation procedure is that 
although the control input )(tβ  is updated as often as the system time step (one 
second), the sequence of guiding messages (and )(trealβ ) is updated much more rarely. 
As a matter of fact, the variable sT fix 30=  constitutes a lower bound for the time 
interval holdT  between these updates. Keeping the input to the system constant over 
such a long period of time obviously makes the controller slower and less exact. 
Technically speaking, the lower sampling of the input decreases the phase margin of 
the loop gain, leading to a closed loop system with smaller stability margin.61  

                                                 

59 As described in chapter 4.1.1.4.1,  3=c turned out to be a good choice of this parameter..  
60 }1,0{)( ∈tiβ  is here the guidance at position i in the message sequence defined most recently at time t. 
Since the order of the messages does not matter, the positions of the messages do not necessarily 
correspond to the temporal order in which the messages are actually broadcasted.  
61 Glad & Ljung (1989), p 221. 
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From the line of arguments above, it is tempting to conclude that the variable c should 
always be set to 1. In this way, one would minimize holdT  during which )(trealβ  is kept 
constant as well as the stability problems associated with large such intervals. 
Unfortunately, choosing 1=c , leads to a situation where }1,0{∈realβ . This obviously 
implies very rough approximations of )(tβ  and in practice, such a setting would make 
any controller behave like a bang-bang controller.  

In order to get the preciseness necessary for achieving the advantages of P- or PI-
control described in chapter 2.2.3-2.2.4, the value of c thus has to be larger than one. As 
an example, 5=c  extends the possible real inputs to the system to 

}1,8.0,6.0,4.0,2.0,0{∈realβ . This obviously makes the approximations of  )(tβ  less 
harsh, but at the same time, the time interval holdT  during which )(trealβ  is kept 
constant is extended from 30 seconds to 150 seconds. Hence, the choice of c will 
always be a trade-off between accuracy and fastness and it is never trivial to tune this 
parameter optimally. 

2.3 Simulation settings  
Running the MATSim micro-simulation using the full Berlin network with 
approximately 30,000 links and a population of some 200,000 agents is a 
computationally costly process that makes the tuning of control parameters by means of 
testing all relevant combination impossibly time consuming. The simulations carried 
out within this master thesis project have therefore been run on a reduced version of the 
Berlin network including only the roughly 2500 links having a capacity of more than 
2000 cars per hour62 and a population of approximately 170,000 agents63. Also this 
reduced Berlin network was however way too clumsy to use in the process of software 
implementation as well as when the basic functionality of the controller was to be 
tested. As an example, loading the population alone takes about 5 minutes on a 1.8 
GHz, 2048 MB computer. Furthermore, the simulation speed-up on the same machine 
is approximately 50, which means that 50 simulation seconds can be simulated during 
one real world second. Each of the 6 hour simulation runs, used for the final evaluation, 
thus take roughly 12 minutes in total. In an initial phase of the project, a much smaller 
test network was therefore used to speed up the process. 

2.3.1 Simulations on the small test network 
The small network used for initial testing was designed to make it easy to check that the 
new software worked properly. Moreover, the traffic situation in the network was 
deliberately shaped so that interesting traffic scenarios could be generated with ease. 
Figure 2 shows a screenshot of the network with the link identity numbers written out.  

                                                 

62 Some smaller links later had to be added in order fill the gaps between these high-capacity links. 
63 This is a sample of 40% of the population that is relevant on this reduced version of the Berlin 
network. 
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Figure 2. The basic structure of the small test network. Guidance is given in the blue circle to cars 
traveling towards the red circle. Route 1 is yellow, route 2 is green. An accident can be generated in the 
violet circle. 

The 6000 agents in the population used for simulations on this network, all start from 
link 1 traveling to link 21. The first agent leaves link 1 at 07:00:00 in the morning. The 
time between each subsequent departure after agent 1 is exponentially distributed with 
an expected value of one second, all departure times being rounded to the nearest whole 
second. The expected departure time of the last agent is therefore 08:40:00 in the 
morning. Moreover the route each agents takes is randomized so that 50% of the agents 
use route 1 (yellow). The other half of the agents obviously makes their journeys, using 
route 2 (green). Guidance can be given to the agents as they are about to exit link 2, that 
is, when they are in the blue circle. The two alternative routes are equally long, 2530 
meters, resulting in travel times at free flow of approximately 91 seconds. The total 
travel time from the origin at link 1 to the destination at link 21 is approximately 200 
seconds. The departure rate of averagely one agent per second makes the demand on 
link 1, 2, 20 and 21, 3600 cars/hour. Link 1 has however a capacity of only 3000 
cars/hour. This non-sufficient capacity results in a situation where only 3000 cars per 
hour are entering the links downstream of this link. The capacity of link 2, 20 and 21 is 
6000 cars/hour leading to unproblematic traffic behavior (i.e. no congestion) on and 
around the upstream ends of these three links. On the two alternative road stretches 
(link 5, 6, 14 and 7, 8, 16 respectively) the expected demand will be 1500 cars/hour. In 
a scenario denoted “Normal day” these demands are fulfilled since the capacity on all 
the links is 1900 cars/hour. In another scenario called “Accident” the capacity on link 6 
(violet circle) is decreased to 1300 cars/hour, generating a congestion on route 1. It is 
important to note however that the total capacity on the two alternative routes, being 
1300 + 1900 = 3200 cars/hour, would be large enough to handle the entire traffic 
demand. The accident scenario thus represents a situation where route guidance has a 
potential of improving the situation and it is therefore presumably a good scenario for 
trying out different automatic feedback control strategies. The link parameters for all 
links in the small test network are found in Appendix A. 
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The departure times of the agents in the population used for simulations on the small 
test network makes it reasonable to run the simulations from 07:00:00 to 09:00:00.64 
The simulations were run both in the Normal-day scenario and the Accident scenario, 
without as well as with the control strategies described in chapter 2.2 above. Tuning of 
the control parameters was consistently carried out by means of looping over a set of 
relevant parameter combinations and choosing the one showing the best system 
performance.65 In addition to the regular control parameters, quite a few other 
parameters intrinsic to the COOPERS-technology also had to be tuned. These 
parameters are described in detail in chapter 3.2.   

In addition to the two basic scenarios described above, systematic testing of the control 
performance in scenarios deviating from the standard ones was also carried out. In this 
way the robustness of the control strategies implemented was evaluated. Finally, 
experiments testing system performance when a normal distributed noise was added to 
the control output was also carried out, giving a hint on the control strategies sensitivity 
properties. 

A more thorough description of the experiments can be found together with the 
simulation results in Chapter 4.1. 

2.3.2 Simulations on the Reduced Berlin Network 
As mentioned above, the network used for the main experiments in this master thesis is 
a reduced version of the full Berlin traffic network where only the major streets and 
minor streets connecting the major ones are included. Figure 3 shows a screenshot of a 
part of the network in the Berlin city centre. 

                                                 

64 All or almost all cars should have left the network by nine o’clock. 
65 More systematic and sophisticated tuning procedures, such as Lambda-tuning and Ziegler-Nichol’s 
method, were not possible to use since the system is neither linear nor BIBO-stable. The step responses 
and self-oscillating system behavior needed for these tuning methods were thus not possible to induce. 
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Figure 3. Central part of the reduced Berlin network. Approximately the area inside the commuter train 
ring-line. Guidance towards the red circle is carried out in the blue circle. Route 1 is yellow, route 2 is 
green. An accident is occasionally generated in the violet circle. 

The simulation on this network was run with a population of some 170,000 agents. The 
agents’ plans were, as for the full network, generated using a combination of statistical 
data and best path algorithm calculations. These plans specify the behavior of each 
agent over a 24 hour time span. My experiments did however only focus on the traffic 
conditions during the morning rush hours. All simulations were thus run from 5 am up 
until 11 am. This choice of start and end time guarantees that all interesting morning 
peak traffic is being considered as well as a build up phase before and a settling phase 
right after the rush hours.  

The choice of an area where the traffic situation was to be measured and hopefully 
controlled was made taking several aspects into consideration. The area in Berlin 
chosen by the European Union as a test zone for the COOPERS-project consists of a set 
of freeways in the west and south-west parts of the city (highway A100, A111 and 
A113 respectively).  In Figure 3, these freeways are the wider roads at the very left end 
of the figure. To set up the control on and around this area was therefore a prerequisite.  
The origin and destination of the guidance (blue and red circle respectively) were 
thereafter chosen. The choice was mainly based on the system topology. The origin and 
destination chosen constitute one of the few locations that have the two necessary 
alternative routes connecting them. Furthermore, the travel time on the alternative route 
(being the one marked with a yellow arrow slightly east of the highway marked with 
green) is only 152 second longer than the highway travel time. Guidance in this area 
thus has a potential of improving the traffic in situations when the traffic on the 
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highway is delayed more than two minutes and 32 seconds.66 Given that the part of the 
highway used is the busiest road stretch in all of Germany, it is indeed realistic to 
believe such situations to occur at least once in a while. The two routes chosen are both 
approximately five kilometers long. The free flow travel time on route 1 is a little bit 
more than 6 minutes whereas route 2 is traversed in approximately 3 minutes and 30 
seconds at free flow. 

Similarly to the simulations in the small test network, a “Normal day” as well as an 
“Accident” scenario was run also in this larger network. In the normal scenario, the 
network was used unmodified whereas in the accident scenario, the capacity of link 
7832 on route 2 (violet circle in Figure 3) was reduced from 2900 to 1080 cars per 
hour. The number of lanes was reduced as well, from three to two. This decrease of 
capacity represents a major accident on this link. The two scenarios were run with as 
well as without the different control strategies described in chapter 2.2.67 The guidance 
messages were given at the end of two links leading in to the area where a route choice 
was to be made (Figure 4).  

 

Figure 4. The links were the guidance was given to the agents (blue arrows). In Chapter 3 and the JAVA-
code these links are denoted signLinks. 

Furthermore, guidance was only given to agents planning to travel to one of the three 
links immediately succeeding the two routes that are controlled (Figure 5). As for the 
small test simulations, parameter tuning was carried out by means of trial-and-error 
iterations. Due to the much more time consuming iterations (approximately 12 minutes 

                                                 

66 This conclusion relies on the reasonable assumption that the entire traffic that traverse the interesting 
part of the system uses the highway in a normal day scenario. This is indeed the case when the plans-file 
is the one used for these simulations. 
67 As will be discussed in Section 4.2.1, simulations with control in the normal-day scenario, turned out 
to be rather irrelevant. 
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instead of 10 seconds for each simulation), the number of iteration could not be as large 
as when the small network was controlled. Therefore, some of the COOPERS-
technology specific parameters were not systematically optimized specifically for the 
large network. Instead, conclusions drawn from the small scale testing were assumed to 
hold even in the larger scenario. Hence, the settings that worked best for the small 
network were used also during the large scale simulations. 

 

Figure 5. The links towards which the cars are guided (red arrows). In Chapter 3 and the JAVA-code 
these links are denoted destinationLinks.  

Due to the much longer simulation times, robustness was not tested as systematically in 
the large scale scenario as in the small test scenario. A few sample experiments where 
the control strategies were applied with altered system settings (accident position, 
accident size and compliance rate) were however executed. The reason for making 
these experiments was not to analyze the robustness of the controllers systematically. 
The number of runs did not allow for such conclusions. Instead, the test experiments 
were meant to validate if the more systematic findings from the small test network were 
possible to generalize, i.e. if they were valid also in this much larger and much less 
controlled system.  

As for the small test network, a more thorough description of the experiments being 
carried out in the larger network can be found together with the simulation results in 
Chapter 4.2. 

2.3.3 Evaluation 
The simulations were evaluated using several measurements. For both networks, plots 
of the output, )(tRτΔ , as well as the input, )(tβ , were drawn, showing the evolvement 
of the system over time.. In addition to these standard signals, an alternative output was 
also plotted when relevant. This alternative signal, )(td  is defined as: 
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)()()( tAttd R ⋅Δ= τ  (11) 

In the formula, )(tA represents the number of agents traveling from the common origin 
to the common destination routes that are using the slower of the two routes at time 
instance t.  This measure gives a picture of the system behavior in which also the 
amount of agents actually experiencing a non-optimal travel time are taken into 
account. Hence, this signal somehow measure the total disbenefit in the system at a 
given time instance. The use of such a signal is most relevant in situations where all, or 
almost all agents, use a faster road. Looking at the normal system output )(ty  in such a 
situation might indicate that the situation is problematic since 0)( ≠ty . As indicated by 

0)( =td , the system is however in a perfect Nash Equilibrium, since no traffic is 
traveling on the road that is slower. 68 

In addition to plotted signals, some aggregated values describing entire simulation runs 
were also measured. Two of these measures correspond to the two alternative outputs 
described above. The first of these is a variance measure representing an average of the 
magnitude of )(ty , called Average Nash deviation (AN). The formal definition is: 
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In this formula, it is assumed that the simulation started at t=0 and ended at t=N. The 
unit for AN is seconds. 

The second aggregated evaluation quantity is a similar average of the disbenefit-signal 
)(td  discussed above. It is called Average Disbenefit (AD) and it is defined as: 

1

)(
0

+
=
∑
=

N

td
AD

N

i  (13) 

In contrast to AN  the output is not squared when AD is calculated. The reason for that 
is that in contrast to )(ty , 0)( ≥td  always holds. AD’s unit is seconds·persons. 

In addition to AN and AD one more quantity was measured for each simulation. This 
measure, called Nash Mean (NM), was defined as follows: 
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68 As will be discussed in Chapter 5.3, one could possibly argue that )(td  should be used as the system 
output instead of )(ty . The reasons for not doing so were discussed in Section 2.2.1. 
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This measure indicates if the output has a mean that is shifted in one direction or the 
other. Looking at this value, one could get an indication of whether the controller 
produces a static error or not. Also for NM, the unit is seconds. 

For each specific setting, final evaluating measures were achieved by taking the 
average values from ten simulation runs.69 This procedure made the evaluation less 
dependent on the different sources of randomness inherent in the simulations.70 When 
the different values were compared, the t-test was used for determining if the different 
settings produce significantly different values or not. The significance level of the tests 
was always 0.05.71 

                                                 

69 For the simulations testing robustness in the large network (Section 4.2.3), only five runs for each 
setting were executed. 
70 The random sources in the simulations are all found in the part of the code handling guidance (see 
Chapter 3). That means that the averaging of several simulation runs is only necessary when guidance is 
applied. 
71 The t-test is defined in Råde, L. & Westergren, B., Mathematics Handbook for Science and 
Engineering 4th Edition (Lund, 2001), p 486.  
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3 Implementation 
As mentioned already in chapter 2.1, some extra functionality had to be added to the 
micro-simulation software. In this chapter, the implementation of traffic measurements, 
COOPERS-guidance and COOPERS-perception is discussed more thoroughly. UML-
diagrams complying with the standards in Martin (1997)72 are consistently used to 
facilitate better understanding.  

3.1 Measuring    
The measuring of the system output is taken care of by a class called NashWriter. It is 
an implementation of the interface SimStateWriterI and as all such writers, it has a 
method called dump() which is called every second during the simulation.73 There can 
be more than one NashWriter-object in the simulation, i.e. more than one road couple 
can be controlled simultaneously.74 The basic structure of the class NashWriter is 
depicted as an UML-diagram in Figure 6. 

 

Figure 6. UML-diagram of the class NashWriter75 

An object from this class knows about the network and it has two pre-specified routes, 
whose travel times it is to compare. The comparison is done in the dump-method and 
the difference between the travel times is stored in a list of NashTime-objects. Every 
such NashTime-object contains the time instance t given by the argument to the 
method, the output )()( tytR =Δτ and the alternative control output )(tPτΔ .  All 
outputs in the list are available publicly using the method getNashTime(time_s). 76 

                                                 

72 Martin, R. C., “UML Tutorials: Part 1 – Class Diagrams” published on the Object Mentor website: 
http://www.objectmentor.com/resources/articles/umlClassDiagrams.pdf (2007-01-13) 
73Writers like this one are common in MATSim. They are called every second and were originally meant 
to be used for simulation state documentation. In this project, the writers have more general functions.  
74 Within this master thesis project, only one road couple at a time is controlled (SISO). The code is 
however general enough to handle multiple control (MIMO). 
75 In this and all other UML-diagrams, only instance variables, methods, arguments and return variables 
relevant for a conceptual understanding are depicted. 
76 The output of the discrete system is in other words sampled at highest possible frequency. I.e. the 
output for every past second is available.  

NashWriter implements SimStateWriterI

network: BasicNetI 
route1: Route 
route2: Route 
nashTimes: List<NashTime>

close() 
dump(time_s) 
getNashTime(time_s): NashTime 
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Right after the end of the simulation, the method close()77 is called . In this method 
the entire output signal is written to file.78 Furthermore, two of the aggregated 
evaluation values, AN and NM, are also calculated in this method and written to file. 
The disbenefit measure )(td  and its associated aggregated value AD are however not 
calculated or written by the NashWriter. The reason for that is that the NashWriter 
has no access to the counting of the cars on each road.79  

3.2 Feedback and guidance 

3.2.1 TrafficManagement and VDSSign 
The classes that most directly handle the guidance and feedback are called 
TrafficManagement and VDSSign. TrafficManagement implements 
SimStateWriterI. There is only one TrafficManagement-object and its main content 
is a list of VDSSign-objects. Similarly to NashWriter, TrafficManagement has a 
method called dump() that is called once every second during the simulation. This 
method does however nothing but calling the dump-methods in each VDSSign-object, 
where the real functionality is implemented. Also in the method close() in 
TrafficManagement, which is called after the simulation, nothing is done but calling 
the close-methods for all VDSSign-objects 

The guidance within this project is carried out via in-car COOPERS-devices to which 
the guidance information is broadcasted if the car is situated on a certain link. This 
guidance is however fundamentally equivalent to guidance given to the cars via a 
variable direction sign (VDS) at the same link. This similarity explains why the JAVA-
class most fundamental for the guidance is called VDSSign. In fact, this class does 
represent a VDS guiding the traffic along two routes, even though the way of 
transmitting the information has been modified. It is possible to have many such signs 
in one simulation (one for each NashWriter). The only difference from a situation 
with real physical signs is that instead of having the signs spread out in the network, 
they are here part of the traffic-management central, where they determine what 
information should be given to the COOPERS-devices. The structure of the classes 
involved in the guidance can be found in Figure 7. 

                                                 

77 Also this method is a legacy method predefined by the interface SimStateWriterI. Originally, 
implementations of this interface were meant to write out the state of the simulation only.  Hence, the 
method names dump() and close(). 
78 This data was later copied into MATLAB, where all plots were done. 
79 This quantity is instead measured and stored by the class VDSSign, which is discussed extensively in 
Chapter 3.2. 
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Figure 7. UML-diagram of the classes that take care of feedback and guidance. 

3.2.2 Specification of relevant routes and links 
A VDSSign-object is first and foremost defined by the two alternative routes (given by 
the nashWriter), the links where the traffic is guided, called signLinks80 and the 
links towards which the traffic is guided, which are called destinationLinks. This 
last set of links is used to filter out the cars, which should get the information; only cars 
bound for these links are relevant to guide. 

                                                 

80 Also the name of this variable shows the close connection between COOPERS-guidance and VDS-
guidance. If the guidance would have been carried out via VDS, the signs would have been located on 
these links. Now, the COOPERS-devices get the information at these links. 

TrafficManagement implements
SimStateWriterI 

signs: List<VDSSign> 

dump(time_s) 
close() 
getSigns(): signs 

ControlerI 

Control(output): input 

nashWriter: NashWriter 
 
signLinks: List<Link> 
directionLinks: List<Link> 
inRoadsTo1: List<Route> 
inRoadsTo2: List<Route> 
outRoadsFrom1: List<Route> 
outRoadsFrom2: List<Route> 
 
updateTime: int 
controlEvents: int 
nominalSplitting: double 
deadZone: double 
predictiveControl: Boolean 
 
controler: ControlerI 
 
compliance: double 
 
legSet: List<Leg> 

VDSSign

dump(time_s) 
close() 
getCurrentSign(time_s): 
   guidanceLeg 
getCompliance(): compliance 
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Figure 8. Cars on one of the sign-links are guided along route 1 or route 2 if they plan to pass one of the 
destination-links later on. 

In traffic networks where the guidance is to be carried out on road stretches looking 
structurally like in Figure 8, the signLinks and the destinationLinks give a 
sufficient description of the guidance area together with the two routes in the 
nashWriter. This is often the case when the guidance is applied in inner-city 
networks. Unfortunately this is rarely the case on freeway-stretches such as the one 
controlled in the large network in this master thesis project. The reason for that is that 
there are rarely unifying intersections in such networks, where all signLinks and 
destinationLinks have direct access to the two alternative routes. Structurally, 
freeway networks rather look like the sketch in Figure 9 than the one in Figure 8.  

 

 

Figure 9. Typical topology of a freeway network. 

The problem with this type of network is that the signLinks, routes and 
destinationLinks alone are not sufficient to fully describe the paths through the 
network. Nevertheless, such a full route is necessary if one wants to guide the traffic in 
a micro-simulation, since in MATSim every agent must always know its entire route to 
it next planned activity. A full specification of a VDSSign-object must therefore also 
contain information about how to get from the signLinks to the relevant route as well 
as from the route to the destinationLinks. This information is provided by the 
instance variables inRoadsTo1 (how to get to route 1 from the different signLinks), 

Destination-links

Route 1Sign- links 

Route 2
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Irrelevant road
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Road 1

Sign links 

Road 2



 37

inRoadsTo2 (how to get to route 2), outRoadsFrom1 (how to get from route 1) and 
outRoadsFrom2 (how to get from route 2 to the different destinationLinks).  

3.2.3 From traffic measurements to route guidance 
The core method in VDSSign is dump(time_s), which, as mentioned above, is called 
every second.  It has the current simulation time as its argument. In this method, the 
output of the system is firstly read, calling nashWriter.getNashTime(time_s). 
Depending on the value of the Boolean instance-variable predictiveControl, either 
the predictive or the reactive travel time is registered as the system output. This output 
is thereafter given to the control-method in the controler (instance variable), which 
returns an input ]1,1[)(~)(~

−∈= tutβ 81. The controller is always an implementation of 
the interface ControlerI. The algorithm in the method control(output) is 
however different in different control strategy implementations (NoControl, 
ConstantControl BangBangControler, PControler and PIDControler).82 

The input )(~ tβ is then transformed to a splitting rate ( ]1,0[)( ∈tβ ).83 In this operation, a 
variable called nominalSplitting, representing 0u  in Chapter 2.2, is used. This 
variable represents the way the traffic is split between the two routes without any 
control being applied and it ensures that the controller takes this nominal splitting into 
consideration when setting the guidance. I.e. the control should split the traffic 
according to this splitting rate when the system is in Nash Equilibrium. The mapping 

)()(~ tt ββ →  is depicted in Figure 10. 

Figure 10. Transformation of the output from the controller to a splitting rate between zero and one. 

                                                 

81 For the control algorithms (3) and (4) in Chapter 2.2, )(ˆ)(~ tutu = . 
82 The algorithms for the more sophisticated control strategies are described thoroughly in chapter 2.2. 
NoControl always returns 0. ConstantControl always returns a pre-specified value. 
83 This opreration represents the last equation in algorithm, (3), (4) and (5) in Chapter 2.2. 
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The input )(tβ  is later transformed into a sequence of guidance messages according to 
the strategy described in Section 2.2.6. The mapping scheme in Section 2.2.6 is 
however not an entirely correct description of how the algorithm in VDSSign actually 
works. In the actual implementation, there also exists a variable called deadZone 
(usually set to 0.02). If the input )(tβ  is closer to the nominal splitting than this dead-
zone, no guidance at all is given to the agents. This subtlety presumably makes the 
control less oscillating. 

The mapping determines the number of two alternative guidance messages in the 
sequence, but the order of the messages is randomized in the dump-method. The 
guidance messages are stored as legs in a list called legSet. In the VDSSign-
implementation the control parameter c and fixT  are represented by two integer 
instance variables called controlEvents and updateTime respectively. The 
legSet-list is normally updated every holdT  (controlEvents*updateTime) 
seconds. An exception is if all messages in the legSet are equal. In that case the 
sequence is updated already after fixT (updateTime) seconds. This function speeds up 
the control without any loss of preciseness. 

Finally, the dump-method also registers the current input )(tβ  and the number of agents 
currently traveling on each road. The later of these quantities is updated by the class 
COOPERSProvider, which is discussed extensively in chapter 3.3. 

3.2.4 Other methods in VDSSign 
Apart from the method dump(), a few more methods in the class VDSSign are 
important to notice. One example is the method close() which is called via the 
TrafficManagement at the end of the simulation. Similarly to the close-method in 
NashWriter, this method writes the information collected during the simulation to 
file. More specifically, the input signal )(tβ , the number of cars on each road, and the 
disbenefit values )(td  are written to file in this method. Furthermore, the aggregated 
disbenefit value AD is also calculated and written down by this part of the software. 

Two other important methods, used extensively by the COOPERSProvider discussed 
in chapter 3.3, are getCompliance() which returns the fraction of the population that 
actually listen to the guidance and getCurrentSign(time_s) which returns the 
current guidance, as it is defined in the legSet. 

3.3 Perceiving and reacting        
The JAVA-class handling the perception of the information broadcasted by the 
VDSSign is called COOPERSProvider. It implements the interface RouteProviderI 
and it is software-technically part of the agent’s brain. In the real world, a 
COOPERSProvider-object can be seen as a representation of a COOPERS-device. As 
such, it has information of the TrafficManagement, which is an instance variable 
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called source, as well as of the plan of the agent driving the car.84  A schematic UML 
class-hierarchy showing the entire COOPERS-guidance software and its connection to 
the rest of the MATSim is found in Figure 11. 

 
Figure 11. UML-diagram of the COOPERSProvider as well as its connection to other parts of the 
simulation.  

The by far most interesting method in the COOPERSProvider is called 
requestRoute(depLink, time_s, …). This method is called automatically when 
an agent exits a link. The method, which is specified by the interface, takes four 
arguments but only two are used in this implementation. These are the link about to be 
exited (depLink) and the current simulation time (time_s). The method returns a leg 
(i.e. a complete route to the next activity with a few additional properties) which 
replaces the current leg in the agent’s plan. If null is returned, the agent will stick to 
its original plan.  

The basic functionality of the requestRoute-method is simple. It checks if depLink 
belongs to the signLinks for any VDSSign-object in the source and if the agent was 
planning to traverse any of the corresponding directionLinks. In that case the agent 
should be guided85 and the current guidance message is read from the legSet in the 
relevant VDSSign-object via the method getCurrentSign(time_s). The leg 
returned by this method either has route 1 or route 2 as its route. Obviously, this is only 
a small part of the leg that requestRoute(…) should return. The rest of the leg is later 
being generated by joining appropriate links given partly by the variables in VDSSign 
called inRoadsTo1, inRoadsTo2, outRoadsFrom1 and outRoadsFrom2 and partly 
by the current plan of the agent. The leg, finally returned thus gives the agent a 
                                                 

84 As mentioned already in chapter 1.3.1.2, people using the COOPERS-devices are assumed to give the 
devices in their cars information about their plans.  
85 Compare chapter 3.2.2. 
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complete route from the link where the guidance was given to the agent’s destination, 
i.e. next activity. 

In case the agent is not located on a sign-link or is not bound for any of the 
destinationLinks, null is returned. This is the absolutely most common scenario 
and it represents a situation where the COOPERS-device does not give the agents any 
guidance at all in an intersection. In such a situation, the agent sticks to its original plan. 
Finally null is also returned to a fraction of the agents for which the guidance is 
indeed relevant. This function is supposed to represent the fact that not all agents follow 
the route guidance. The fraction of the agents that do get the information when relevant 
is specified in the VDSSign as the instance variable compliance. This value is 
available for the COOPERSProvider via the method in the VDSSign called 
getCompliace(). Exactly which agents that do not comply is randomized in the 
COOPERSProvider; the compliance rate is the probability for each agent to comply. 
When nothing else is stated, the variable compliance is consistently set to 0.8 in the 
simulations. This choice was mainly based on the author’s intuition; 80 % compliance 
seemed intuitively reasonable. And since this value was not regarded as totally 
outrageous by the traffic engineers at the department in Berlin, the intuition was gladly 
obeyed.   
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4 Simulation results 
Several hundred simulations have been run during this master thesis project. Giving an 
account for each and every evaluation value for every single experiment is therefore not 
doable. Hence, it follows that the simulation runs presented in this chapter is nothing 
but a small selection of all simulated traffic scenarios. Only the experiments most 
interesting and most elucidative have been described. Furthermore, not every 
evaluation measurement has been explicitly written out for every simulation setting. As 
an example, the disbenefit value )(td  and its aggregated counterpart AD are discussed 
more thoroughly in the section covering experiments on the larger of the two networks. 
The reason for that is that in the small network )(ty  and )(td typically show very 
strong resemblance. This resemblance is due to the very symmetrically distributed 
traffic demand between route 1 and route 2. For the large network, the demand is more 
unequally distributed making the )(td -signal more relevant to study. 

In addition to the separate simulation results discussed in the text, tables summarizing 
the results for all simulations in the two networks are found in Appendix B and 
Appendix C. 

4.1 The small test network 
As mentioned already in Section 2.3.1, the simulations on the small test network were 
run in two different scenarios called “Normal Day” and “Accident”. In the following 
sections, the simulation results from the two scenarios are described and compared with 
as well as without control. The accident-case is described before the normal-day 
scenario. The reason for that is that the same parameters for the P- and PI-controller are 
used in the two scenarios. These parameters were tuned for the case “Accident” and it 
is therefore logical to describe this scenario prior to the normal-day case. 

4.1.1 Accident case 

4.1.1.1 No guidance 

 

Figure 12. Output signal with accident but without control. When the output reaches 600 s, the entire 
route 1 is fully congested and the travel time deviation can not increase any further. 

In Figure 12 one can see how the accident on route 1 makes it impossible for that route 
to handle its entire demand. Congestion is building up that increases the )(1 tTTR  and 
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)(ty  gradually. At approximately 8:15 AM the increase in )(ty  stops at 600)( ≈ty . 
The reason for this is that the entire route 1 upstream of the accident is fully congested. 
The travel time deviation can therefore not increase any further.86  Figure 13 shows a 
set of snapshots from the simulation movie that shows the development of the traffic.  

 

 

 

Figure 13. The development of the traffic in the small network with accident but without control. The 
figure shows snapshots of the movie taken at 07:00, 07:15, 07:30, 07:45, 08:00 and 08:15 AM. White 
color indicates no traffic, green low traffic and red represents congestion. The figure clearly shows how 
route 1 gets fully congested sometimes between 08:00 and 08:15 AM. 

The situation in the system without control is obviously not a Nash equilibrium 
situation. Since no guidance is applied, 50 % of the population still uses route 1, even 
though its travel time is up to ten minutes longer the travel time of route 2. The 

                                                 

86 The spill-back queue upstream of the node where the traffic split does indeed increase the travel times 
on these links. But since these links are part of both route 1 and route 2, the travel time difference will not 
increase. 
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Average Nash-value (AN) is 419 s, the Nash mean (NM) is 364 s and the average 
disbenefit-value (AD) is 80,354 s·person.87  

4.1.1.2 Static guidance around the accident 
One obvious solution to the problematic situation generated by an accident like this 
would be to guide all traffic along the alternative route 2. Such a static guidance seems 
reasonable to apply if no dynamic guidance (VDS, COOPERS etc.) is available. A 
temporary static signpost is then placed in the intersection. Nevertheless, as is shown in 
Figure 14, guiding all agents into route 2 does not solve the problem. 

 

Figure 14. Output with accident when all traffic is guided into route 2. 

The reason for this is obviously that the capacity of route 2 is not large enough to 
handle the entire demand.88 The guidance only moves the congestion problems from 
route 1 to route 2. The traffic situation does get a bit better than without guidance, since 
when route 2 is fully congested, the travel time difference is not as big as before 
( 370)( −≈ty  at steady-state). Also AN=337 and AD=75384 indicate a slight 
improvement. The input signal, shown is Figure 15, is obviously 0)( ≡tu . 

 

Figure 15. Input signal when all cars are guided into route 2. 

                                                 

87 As mentioned in chapter 2.3.3, aggregated measures are normally averages of 10 diffent runs (although 
in this particular case, averaging is not really needed since all random sources are in the guidance-code). 
For a few experiments, covered below, only five runs were averaged. When that is the case, it will be 
clearly mentioned. Otherwise, all measures are averages of ten runs. 
88 One should remember however, that guiding all traffic into route 2 does not mean that all traffic is 
actually using that route. The reason for this is of course that the compliance rate is not 100 but 80 % in 
this as well as all other simulations. Hence, 20 % of the travellers do not care about the guidance. Out of 
these agents, 50 % are using route 1. In total, 90 % of the cars are thus using route 2 whereas 10 % travel 
on route 1. 
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The plot in figure 14 and the associated evaluation measures, clearly show that static 
guidance can not handle an accident situation like the one simulated. The evaluation 
measures did certainly improve when the guidance was installed, but the situation is 
still not at all satisfactory. 

4.1.1.3 Bang-bang control 
The most trivial way to guide the traffic dynamically is by implementation of the bang-
bang control strategy. As clearly depicted in Figure 16, this control (based on )(tRτΔ ) 
improves the system performance considerably. Although the system oscillates 
strongly, 200)( <ty  always holds. AN=112 s is also significantly better than before 
(approximately 26 % of the same value without guidance) and NM=39.1 s, is closer to 
zero. The largest improvement can however be observed at AD=6660. This value is 
only 8.3 % of the same value without guidance. The reason for this is obviously that 
with bang-bang control most agents are actually using the fastest road whereas before, 
50 % of the agents used the slower of the two roads.89  

 

Figure 16. Output with accident and bang-bang control based on reactive system output. The oscilating 
system behavior is expected for bang-bang controlled systems. 

The input generated by the bang-bang controller is shown in Figure 17. In the figure 
one can easily see that the control algorithm (2) from chapter 2.2.2 is followed 
correctly. That is, the input equals one when the output is negative, zero when the 
output is positive and 0.5 initially as the output is equally zero. 

 

Figure 17. Input from the Bang-Bang controler when reactive travel times are used. 

                                                 

89 For the static guidance, it was even worse; i.e. 90 % of the agents were then utilizing the slower road. 
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As discussed in Chapter 2.2.2, the oscillating system behavior experienced is something 
one would expect when bang-bang control is applied. The reason for that is that the 
bang-bang controller tends to do too much for too long time. In general, bang-bang 
control is sensitive to time lags and the oscillations are usually damped considerably if 
the time lags are reduced. One would therefore expect predictive measurements to be 
favorable when the system is controlled by a bang-bang controller.90  

 

Figure 18. System output with accident and bang-bang control based on predictive travel times. 

Figure 18 shows that assumption to be valid. The magnitude of the oscillations gets 
much smaller ( 100)( <ty ) when the controller uses )(tPτΔ  instead of )(tRτΔ  as its 
control output. With predictive measurements, the controller quicker understands that 
the output is about to change sign. Hence, the frequency of the oscillations increases. 
The increase of the frequency can also be observed for the control signal, shown in 
Figure 19. 

 

Figure 19. Input from the bang-bang controler when predictive travel times are used. 

Looking at the three aggregated evaluation measures, one can once again conclude that 
the bang-bang control works better with predictive system output. AN=45.1 s (112 with 
reactive output), NM=18.8 s (39.1) and AD=1363 s·person (6660). The improvements 
of all three values are significant. 

                                                 

90 The relation between predictive control and time lags is discussed in chapter 2.2.5. 
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4.1.1.4 Proportional control 

4.1.1.4.1 Parameter tuning 
In contrast to bang-bang control, proportional control can not be implemented without a 
certain amount of parameter tuning. Apart from the control parameter intrinsic to all P-
control ( pK ), some parameters associated with the implementation of VDSSign also 
needed to be specified.91 These parameters were all specified for a controller basing the 
control output on reactive travel times. The parameter among the VDSSign-variables 
easiest to define for the small test network was the one called nominalSplitting 
(i.e. 0u ). The traffic flow is known to be split equally between the two roads and 
nominalSplitting=0.5 was accordingly an obvious choice. 

Another parameter necessary to specify was the VDSSign-variable called deadZone. 
The specification of this parameter was, admittedly, not done in the most systematic 
way. The reason for this was that it would have been extremely time consuming to test 
all possible combinations of all parameters that one is allowed to choose freely. Some 
parameters, considered to be less essential for the overall system performance, were 
thus chosen independently of the other parameters. Thereafter, other more important 
parameters were tuned systematically with the less important parameters kept constant.  

The choice of dead-zone was done by first choosing 001.0=pK  and 
controlEvents=3. Picking 001.0=pK  seemed intuitively reasonable since it 
implies that )()(ˆ tyKtu p ⋅−=  gets a reasonable magnitude92 and, as will be described 
later in this section, controlEvents=3 turns out to work fine. Thereafter, simulations 
were run with a few different dead-zone values.  The results of these simulations are 
depicted in Figure 20. The results are unfortunately not very clear, but one conclusion 
that can be drawn is that it is always better to have a dead-zone that not having one.93 
The value finally chosen was 0.02. The AN-value generated with this dead-zone was the 
best achieved. It was significantly better than the value achieved without dead-zone.94  

                                                 

91 The VDSSign-parameter updateTime is assumed to be 30 seconds throughout the entire project. 
Hence, this variable is not discussed in this section. 
92 600)( ≈ty , as in figure 12, implies that ]1,1[6.0)(ˆ −∈−=tu . 
93 Even when the P-parameter was optimized with deadZone=0, AN=44.1 and AD=1675 were the best 
evaluation measured obtained. As is shown later on, this is clearly worse than the best values obtain with 
P-control and deadZone=0.02. (The difference is significant) 
94 This AN-value was however not significantly lower than for many other non-zero dead-zones. 
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Figure 20. Plot showing AN as a function of the dead-zone with P-control when Kp=0.001 and 
controlEvents=3. The AN-values are averages from ten runs.  

Having fixated the dead-zone, the VDSSign-parameter denoted controlEvents was 
the next to be chosen. That this parameter has a potential of affecting the control 
performance heavily was discussed already in Chapter 2.2.6. This time, 

00032.010 5.3 ≈= −
pK  was chosen.95 Simulations were run with the controlEvents-

variable taking all whole-number values between one and ten. For each setting, ten runs 
were carried out and the AN-values were averaged. Figure 21 shows the results. 

 

Figure 21. Plot showing AN for P-control (Kp=0.00032) and different controlEvents-values. 

The most obvious conclusion drawn from Figure 21 is that controlEvents should 
definitely be chosen odd-valued. In fact, if one use for example controlEvents=2 
one could as well use no control what so ever. As an example, controlEvents=2 
gives AN≈400; without control AN=419 is achieved. Other even numbers are almost as 
bad. This might look weird, but the explanation of this phenomenon is actually rather 
straightforward. If controlEvents=2, the mapping )()( tt realββ → looks like this: 

                                                 

95 Admittedly, it would have been more logic to choose 0.001 also this time. There was no really good 
reason for changing the control parameter, even though 0.00032 also generates inputs of reasonable 
magnitude.  
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In contrast to the corresponding mapping when controlEvents is odd (9), the 
mapping in (15) does not give different )(trealβ for )(tβ -values slightly below and 
slightly above 0.5. Contrary, 5.0)( =trealβ  for the entire interval )67.0,33.0[)( ∈tβ .96 
Noticing that 5.0)( =trealβ  implies that the traffic is split equally between the two 
routes97, one understands why a P-controller with controlEvents=2 resembles no 
guidance at all in practice. Only )(tτΔ -values with very large absolute values induce 

)(tβ -values that are large enough to avoid 5.0)( =trealβ . The same argument also 
holds for other even controlEvents, although since the )(tβ -interval generating 

5.0)( =trealβ  gets smaller, the control does not get all that bad. 

When controlEvents instead is chosen odd, )(trealβ  will always take different 
values for )(tβ -values slightly below and slightly above the dead-zone surrounding 
0.5. That is, )(trealβ  is never 0.5 in such a setting.98 The controller will therefore be 
much more active; in other words, it will actually control the traffic more frequently.   

Looking back at Figure 21, controlEvents=1 generates the very best results. 
Choosing this parameter value would however transform the P-controller into a bang-
bang controller (as discussed in chapter 2.2.6). Nonetheless, such a controller would be 
totally insensitive to variations in the pK -value. The controlEvents-parameter was 
therefore finally set to 3. As is shown in Figure 21, this setting produced the second 
best evaluation-measures99 yet one can assume this setting to generate better results 
than controlEvents=1 after the pK -parameter has been tuned.100 

The tuning of the control parameter pK  was done by means of testing a set of 
reasonable candidates. Similarly to when controlEvents was chosen, ten simulations 
were run for each pK -value, the evaluation measure AN being an average from these 
runs. A first rough test series produced the plot in Figure 22. 

                                                 

96 If )(tβ  is in the dead-zone, null is returned. 
97 Over a one minute time interval. 
98 Although, it can be that there is no control at all if )(tβ is in the dead-zone. 
99 The differences between the AN-values achieved with controlEvents=1 and 
controlEvents=3 were by the way not significant.  
100 As will be shown later on in this section, the P-controller with controlEvents=3 did generate 
better system performances than the bang-bang controller. Hence, controlEvents=3 was a good 
choice. 
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Figure 22. Rough tuning plot for the P-controller’s control parameter pK .  

The plot clearly shows that neither a too large nor a too small pK  gives good control 
performance. When pK  is too small, there is no control at all resulting in AN-values 
similar to those given in the simulations without guidance. With too large pK , the P-
controller acts like a bang-bang controller. As expected, the AN-values resemble the 
value obtained with a reactive bang-bang controller (112 s) when pK  is really high.  

The optimal pK  apparently lies close to 0.001. Another set of simulations, with 

]10,10[ 2.22.3 −−∈pK , was therefore run to make the tuning more exact. Figure 23 shows 

that the very best pK -value turned out to be 0016.010 8.2 ≈− . This value was therefore 
chosen.  

 

Figure 23. Fine tuning plot for the P-controller’s control parameter. 

4.1.1.4.2 Simulation runs 
Controlling the accident scenario with a P-controller using the parameter setting 
described in the preceding section and reactive travel times, typically generates outputs 
and inputs as in Figure 24 and 25.  
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Figure 24. Output with accident when the system is controlled by an optimally tuned P-controller based 
on reactive travel times. 

 

Figure 25. Input to the system when it is  controlled by an optimally tuned P-controller based on reactive 
travel times. The area between the two broken lines is the dead-zone. 

The output plot alone clearly shows that an optimized P-controller works better than the 
bang-bang controller discussed in chapter 4.1.1.3. The output only rarely exceeds 60 s 
and it never goes below -40 s. The aggregated evaluation measures tell a similar story; 
AN=28.0 s and AD=927 s·person are both significantly lower than the corresponding 
values for the bang-bang controller, even when predictive travel times were used.101 
The third aggregated quantity measured, NM, did however not improve significantly. 
With predictive bang-bang control, this value was 18.8; with reactive P-control it was 
16.5. This observation should be interpreted as signifying that the P-control is not able 
to eliminate static errors. In steady state, the system therefore oscillates back and 
forward around a non-zero level. Another interesting aspect of the P-controlled 
simulation is that the input produced by the controller only rarely goes outside the 
dead-zone area (Figure 25). This implies that the controller does not control the system 
at all most of the time (i.e. no guidance is shown by the COOPERS-devices). It is 
interesting to observe that a controller can be so very efficient, and indeed optimized, 
without actually doing anything at all most of the time.  

Also for proportional control, a set of simulations were carried out using predictive 
instead of reactive travel times. The results turned out to be more or less identical to the 

                                                 

101 With predictive bang-bang control, these two evaluation measures were 45.1 s and 1363 s·persons 
respectively.  
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results obtained when reactive travel times were used. No significant differences at all 
were observed and the plots are therefore omitted in this report.102 

4.1.1.5 Proportional and integral control 

4.1.1.5.1 Parameter tuning 

Seeing that deadZone=0.02 and controlEvents=3 worked out well for the P-
controller, these values were used also for the proportional an integral controller. The 
main reason for not re-tuning these parameters was that it would need another set of 
costly simulation series. Nonetheless, seeing that these two parameters are not 
controller specific but rather something involved in the input actuation, it is reasonable 
to assume that parameter values that worked well for P-control would work well also 
when an integral part was added to the controller.  

The tuning of the two parameters pK  and iT  was done by testing a set of parameter 
combinations that seemed reasonable. As a rule of thumb, the optimal pK -value in a 
PI-controller tend to be approximately 10% smaller than the pK  in an optimal P-
controller for the same system.103 As described in Section 4.1.1.4.1, the optimal pK -

value for the P-controller was found to be 0016.010 8.2 ≈− . As a first guess, 
9.28.2 109.010 −− ≈⋅=pK thus seemed like a reasonable choice. The nine pK -values 

considered in the tuning process were equally distributed (logarithmically) around this 
first guess. In order to find an appropriate set of iT -values for the tuning, some PI-
controlled simulations with 9.210 −=pK  and randomly picked iT -values were run. It 
was shown that ]5000,100[∈iT  is an interval that certainly includes the best iT . Five 

iT -values in this interval ( },10,10,10,10,10{ 3
10

3
9

3
8

3
7

3
6

∈iT ) were thus used in the 
tuning. The tuning results, showing the averaged AN –values for simulations run with 
all relevant pK - iT -combinations, are shown in Figure 26. 

                                                 

102 The aggregated evaluation measures form these experiments are found in Appendix B.  
103 This is rule of thumb is part of the Ziegler-Nichol’s method for tuning PID-controllers. The method is 
described in Glad & Ljung (1989), p 48. 
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Figure 26. Averge Nash deviation as a function of pK  and  iT . Dark blue color indicates that AN is 

low. The minimal AN-value is achived when 8.210−=pK  and 67.23
8

1010 ==iT .  

It is not totally trivial to interpret the tuning results from Figure 26 alone. One can 
however easily see that AN grows really big when both pK  and  ii TK 1=  are large. In 
that case, the controller resembles a bang-bang controller, which is seen on the AN-
value that tends towards 100 s. The corresponding value for reactive bang-bang control 
is, as mentioned in Section 4.1.1.3, AN=112 seconds.  

One other conclusion that can be drawn is that a large number of parameter 
combinations give approximately the same AN-values (between 20 and 30 seconds). A 
minimum can however be found at 8.210−=pK  and 67.210=iT . These parameters were 
hence considered to be optimal and in the coming sections, all simulations are run with 
this parameter setting. 

4.1.1.5.2 Simulation runs 
Controlling the accident scenario with a PI-controller using the parameter setting 
described in the preceding section and reactive travel times, typically generates outputs 
and inputs as in Figure 27 and 28.  
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Figure 27. Output with accident when the system is controlled by an optimally tuned PI-controller based 
on reactive travel times. 

 

Figure 28. Input to the system when it is controlled by an optimally tuned PI-controller based on reactive 
travel times. The area between the two broken lines is the dead-zone. 

The output in Figure 27 is apparently better than the corresponding output when P-
control was applied (Figure 24). This time )(ty  only rarely exceeds 40 seconds. The 
aggregated evaluation values are also better with PI-control than with P-control. 
AN=22.2 s, AD=745 s·person and NM=2.07 s. All these measures are significantly 
lower than the corresponding values for P-control. Especially interesting is the 
improvement of NM. As mentioned in Section 4.1.1.4.2, the proportional controller did 
not manage to improve the shifted mean in the output, which was almost as big as for 
the bang-bang controller (16.5 s). That was interpreted as a sign of the P-controller’s 
inability to avoid static errors. Applying PI-control to the system, the shifted mean 
almost disappears completely (NM=2.07 s); in other words, the integration eliminates 
the static error as expected. 

Finally, one more detail to notice is that the input from the PI-controller (Figure 24) is 
not in the dead-zone as often as the P-controller’s input (Figure 25). The reason for this 
is that the entire )(tu  is slightly shifted downwards. The periods when the input is in 
the dead-zone therefore gets shorter and rarer. 

Also for the PI-control, a set of simulations were carried out using predictive instead of 
reactive travel times. The results turned out to be more or less identical as when 
reactive travel times were used. No significant differences at all were observed and the 
plots are therefore omitted in this report.104 

4.1.2 Normal day 

4.1.2.1 No guidance 
The output from the system during a normal day without accident typically looks like 
the plot in Figure 29.  

                                                 

104 The aggregated evaluation measures from this experiment are found in Appendix B. 
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Figure 29. Output on a normal with neither accident nor control. 

The situation is almost perfect. AN=0.423, NM=-0.061 and AD=3.5.  

Automatic feedback controllers are supposed to be flexible enough to be turned on at 
all times. I.e. it is a necessity that the controller does not make the system performance 
worse in situations, like the one in Figure 29, where no control is needed. For all 
controllers used in this master thesis, it holds that 0)(0)( ututy ≡⇒≡ . Due to the fact 
that the controller has a dead-zone, this means that no guidance at all is given in this 
case. Hence, no controller used in this project runs the risk of distorting a system that 
works fine also without control.105 

The conclusion that no controller could ever destroy a Nash equilibrium situation is 
however only valid if 0)( ≡ty holds exactly. As one can see in Figure 29, that is not 
exactly the case. In the real world, one can also assume that a lot of disturbances affect 
the output so that 0)( ≡ty  never holds. In order to test the controllers’ abilities to keep 
a Nash equilibrium in such noisy environments, a normally distributed disturbance with 
a standard deviation of 5 seconds, was added to the output. 106 Without control, the 
output looked like in Figure 30 when such a disturbance was added. This output is 
basically nothing but a series of random numbers with an expectation of 0 and a 
standard deviation of 5. Non-surprisingly, AN=5.03 and NM=0.0805 in this simulation. 
AD is 149 s·person. 

                                                 

105 Simulations of normal-day-scenarios controlled by all controllers discussed in Chapter 4.1.1 were run 
to test this intuitive hypothesis. No result significantly different from the results without control (Figure 
29) was observed.  
106 Admittedly, the size of the disturbance was picked rather randomly.  
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Figure 30. Output on a normal day when a normally distributed disturbance with a standard deviation of 
five is added to the output. 

4.1.2.2 Guidance with disturbed output 

When bang-bang guidance is applied in the system with disturbed output, the situation 
is considerably worsened. The guidance, trying to compensate for the disturbances, 
quickly controls the system too much, generating oscillations. As for the accident 
scenario (Section 4.1.1.3), the oscillations get smaller when the control output is based 
on predictive instead of reactive travel times. Figure 31 and 32 shows the output from 
systems controlled with reactive and predictive bang-bang-control respectively. Also 
the aggregated evaluation measures obviously get larger than without control. As an 
example, AN=33.3 when the control is reactive. That is almost 7 times worse as without 
control. When the control is predictive, AN=19.4 which is better but still almost four 
times as bad as when no control at all was applied. 

 

Figure 31. Output on a normal day with disturbance and reactive bang-bang control. 

 

Figure 32. Output on a normal day with distrurbance and predictive bang-bang control. 



 56

In contrast to bang-bang control, neither P-control nor PI-control makes the system 
performance significantly worse on a normal day with disturbed output.107 This is most 
easily understood if one takes a look at the input signal. In Figure 33, the input from the 
PI-controller optimized in Chapter 4.1.1.5.1 is depicted (the input from the P-controller 
is very similar). 

 

Figure 33. Input from the PI-controller optimized in Chapter 4.1.1.5.1. The area between the two broken 
lines is the dead-zone. 

The most striking feature of this input signal is that it is always inside the dead-zone. 
That means that no guidance is given, which in this situation implies that the system 
behaves equally as with no guidance at all (Figure 30). Hence, no significant 
differences are observed.  

A prerequisite for the good results with P-control and PI-control in a disturbed system 
is that the dead-zone is big enough. If the input is allowed to go outside the dead-zone 
area, the good behavior cannot be guaranteed. Obviously, the ratio between disturbance 
variance and dead-zone size is important. When the disturbance is large, the input 
increases as well and it might end up outside the dead-zone. The choice of the dead-
zone should therefore take the impreciseness of the output measurements into 
consideration. Figure 34 shows the output of the system, when PI-control without dead-
zone is applied. The figure clearly depicts what happens if the dead-zone is not big 
enough. The input-plot is found in Figure 35. 

 

Figure 34. Output from the PI-controller optimized in Chapter 4.1.1.5.1 without dead-zone. Normal day 
with disturbed output. 

                                                 

107 The evaluation measures from these experiments are found in Appendix B. 
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Figure 35. Input from the PI-controller optimized in Chapter 4.1.1.5.1 without dead-zone Normal day 
with disturbed output. 

The plot in Figure 34 shows that the PI-control makes the system output worse than 
without any control at all (Figure 30) if the controller dos not have a dead-zone. The 
aggregated values AN=13.4, and AD=367 are significantly higher than when no control 
is applied. They are however significantly better that the corresponding values for 
system controlled with bang-bang controller, also when predictive travel times were 
used in the control output.108 The conclusion that can be drawn is that the dead-zone is 
a very important parameter if one wants the control to work well also at times when no 
control is needed. When a sufficiently big dead-zone is included in the controller, the 
controller does not run the risk of distorting a good traffic condition. As soon as the 
dead-zone is taken away (or is too small), the risks get larger. It is also important to 
remember that the bang-bang controller can not have a dead-zone since the output is 
always at one of the boundaries.109 This explains why this control strategy is so 
sensitive to disturbances on the output in situations when the traffic conditions are 
unproblematic.  

4.1.3 Robustness and sensitivity testing 
In Section 4.1.1 it was shown that feedback control improves the system performance 
considerably when there is an accident on one of the routes in the small test network. 
The improvements are dependent on the control strategy used; the biggest 
improvements are observed when the system is controlled by a well tuned PI-controller, 
whereas bang-bang control improves the system performance more modestly. A good 
controller should however not only work well for the situation it is tuned for. 
Optimally, a feedback controller should be able to handle a large amount of different 
scenarios, always keeping the output close to its reference value. In Section 4.1.2, the 
controllers’ ability to achieve and keep a Nash deviation was investigated in a normal-
day-situation. I.e. the controllers were tested in a situation that they were not mainly 
constructed to handle. When such a testing is carried out, one is testing a robustness 
aspect of the controllers. In this section, a few other such robustness tests are discussed. 
The parameters varied in the tests are accident size, accident location and compliance 

                                                 

108 The PI-control without dead-zone did not generate any significantly different results if predictive 
travel times were used instead of the normal reactive.  
109 It would indeed be possible to implement a dead-zone also in a bang-bang controller. A discussion 
about this topic is found in Chapter 5.3. 
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rate. In addition, the system behavior with differently large output disturbances is also 
tested. This last test says something about the controllers’ disturbance sensitivity. 

4.1.3.1 Variations in accident size 
In order to test the different controllers in situations with differently large accidents, 
AN-values110 from simulations with different capacity on the link with the accident 
(link 6, Figure 2) were collected. The capacity, which in the standard “Accident-
scenario” was 1300 cars/hour, was set to even multiples of 200 between 200 and 1600 
cars/hour. Since the demand is approximately 1500 cars/hour, higher capacities are not 
interesting to test. The control strategies tested were reactive P- and PI-control. The 
bang-bang control tested was however predictive, since that was shown to work better 
than reactive in Section 4.1.1.3.The results are depicted in Figure 36. In Figure 37, the 
most interesting part of the plot is zoomed. 

 

Figure 36. System performance with different controllers and different accident size. 

 

Figure 37. System performance with different controllers and different accident size. A zoom of the most 
interesting part of Figure 36. 

The P-controller and the PI-controller are tuned for a capacity of 1300 cars/hour on link 
6. Non-surprisingly, Figure 37 shows that a PI-controller gives the best system 
performance when the capacity is close to that value. P-control is second best and bang-

                                                 

110 Here, as in all other robustness experiments on the small test network, the AN-values are averages 
from ten simulation runs. 
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bang controller is the worst.111 This is however only the case when the capacity is 
higher than 1200 cars/hour. Already at 1100 cars/hour, the bang-bang strategy is 
significantly better than both P-control and PI-control. In Figure 36, one sees that the 
bang-bang controller works much better than the two other when the capacity is very 
limited. For example if the capacity is 500, both P-control and PI-control give 
catastrophic AN-values that are higher than 500 s. With bang-bang control, the 
corresponding value is lower than 60 s. The conclusion one can draw is that bang-bang 
control is much more robust than P-control and PI-control when it comes to the size of 
the accident. That means that it is probably smart to control the system by means of a 
bang-bang controller if one is not sure of what disturbances that will occur in the 
system. In practice, P-control and PI-control are so bad when the accident is large, that 
it is sensible to use these strategies only when the capacity reduction is somewhat 
controllable, e.g. when one or two lanes are blocked due to road constructions. 

One other way of looking at the robustness against accident size is presented in Figure 
38. Here, the relative improvement of AN for different controllers in relation to no 
control at all, is plotted. One can clearly see that whereas the bang-bang control 
improves the system considerably for almost all system settings, P- and PI-control 
control well when the capacity is close to 1300 cars/hour, but rather poorly for other 
capacities. 

 

Figure 38. Relative improvement in comparison with no guidance, when different control strategies are 
applied and the capacity reduction is varied.  

4.1.3.2 Variations in accident location 
Another way of evaluating the robustness of the controllers is achieved by varying the 
location of the accident. Practically, that meant that the length of link 5, immediately 
prior to the accident on link 6, was varied. The link length, that normally is 2000 
meters, was set to values between 500 meters and 9500 meters. Remembering that 
predictive travel times should have the ability of handling time lag problems better than 
reactive (Section 2.2.5), simulations were run with predictive as well reactive travel 
times in the control output for all three control strategies. For the P- and PI-controllers, 
the parameters found optimal in Section 4.1.1 were used.  

                                                 

111 As was shown in Section 4.1.1 these differences are significant. 
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For PI-control, no significant difference was experienced between the reactive and the 
predictive control. For both bang-bang control and P-control, the predictive mode was 
significantly better. As is shown in Figure 39, the difference with P-control grows 
bigger when the distance to the accident increases. The difference becomes significant 
when the distance is 3500 meters or longer.  

 

Figure 39. AN-values for simulations with different P-controllers when the accident is located differntly. 

The difference between reactive and predictive measurements is significant for the P-
controller. The difference is however rather modest in contrast to the differences 
observed when the bang-bang controller was tested in the same way. Figure 40 shows 
the same test for the bang-bang controller. 

 

Figure 40. AN-values for simulations with different bang-bang controllers when the accident is located 
differntly. 

For the reactive bang-bang controller, the system output is not at all acceptable when 
the accident is located far away from the guidance spot. In fact, when link 5 is 9500 
meters long, this controller does only improve the system output marginally by 
approximately 15 %. In contrast, the predictive bang-bang controller handles the long 
time lags much better.  

When all three control strategies were to be compared, predictive controllers, being 
better or equally good, were chosen for all three strategies. The results are shown in 
Figure 41. 
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Figure 41. Comparison of all three control strategies in predictive mode.  

Figure 41 shows that both P-control and PI-control are rather insensitive to location 
variations of the accident. The PI-controller is always significantly better than the P-
controller. The graph of the bang-bang controller is more interesting. Also with a 
predictive control output, the location of the accident has a big impact on the system 
performance when this control strategy is applied. When the accident is located far 
away, the bang-bang controller generates results that are much worse than the AN-
values achieved with P- and PI-control. The results are up to three times as bad. With 
small time lags, this difference is decreased however and for the very shortest link 
length tested (500 meters), the bang-bang controller outperformed the more 
sophisticated control strategies.112 

The conclusion one can draw from this way of evaluating the robustness is that 
predictive measurements become more and more important as the time lags grow 
bigger. Moreover, one can conclude that neither the P- nor the PI-controller is 
particularly sensitive to the location of the accident. In contrast, the bang-bang 
controller is highly sensitive to such variations. Bang-bang control should therefore 
only be used in situations when the time lags are short. When the accident is far away 
from the point of guidance, bang-bang control is better avoided. 

4.1.3.3 Variations in compliance rate 
A parameter that is hard to estimate correctly is the compliance rate. How big a fraction 
of the population that actually follows the guidance is likely to vary depending on 
factors such as where in the city the guidance is applied and what people the guidance 
is given to. Compliance rate robustness is therefore a very important feature for every 
controller. Simulating in the “Accident scenario” with different compliance rates and 
the controllers from Section 4.1.1 the following results were given. The bang-bang 
controller used predictive travel times, whereas the two other controllers were based on 
reactive travel times.  

                                                 

112 It is important to remember that the P- and PI-controllers tested were tuned for a length of link 5 of 
2000 meters. It is likely that both a P- and a PI-controller, optimized for a shorter link length would still 
be superior to the bang-bang controller.  
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Figure 42. AN-values when the compliance rate is varied.  

Figure 42 shows the results of the simulations with different compliance rates. When 
the compliance rate has its default value, 0.8, the results from Section 4.1.1 are 
achieved; i.e. the PI-controller is the best, the P-controller is the second best and the 
bang-bang controller gives the worst system performance. When the compliance rate is 
really low, the system behaves as if there was not any control at all and AN thus tends 
towards 400 s (as in Section 4.1.1.1). Interestingly, when the compliance rate is in the 
interval ]5.0,2.0[ , the P-controller is much worse than the two other control strategies. 
In this interval, the bang-bang strategy is significantly better than the other two, 
although PI-control is only slightly worse.  

The reason for the big control performance differences when the compliance rate is low 
is not totally obvious. It is however fully possible to understand the robustness 
differences, if the ways the three control strategies actually control are considered.  The 
good robustness of the bang-bang controller is most intuitive. This controller typically 
controls the input too hardly and it is thus rather an advantage if fewer agents comply 
with the guidance given, since this means that the control is somewhat softened. 
Looking at Figure 42, it is clear that the lower compliance does improve the bang-bang 
controller, which is optimal for compliance=0.4.  

In contrast to the bang-bang controller, the P-controller does not control too hardly 
when the compliance rate is set to its default value 0.8. Contrary, the P-controller is 
optimized for this compliance rate value and the control is thus neither too hard nor too 
soft. When the compliance rate decreases, the control is not strong enough. The result 
of this too soft control is worsening system performance. 
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Figure 43. Output with P-controller. The compliance rate is 0.3. 

 

Figure 44. Input with P-controller. The compliance rate is 0.3.When the input is below the broken line, 
the agents are guided along route 2 all the time. 

In Figure 43 and 44, the output and input of the system, controlled by the P-controller 
when the compliance rate is 0.3, are depicted. Obviously, the output deteriorates 
heavily from the reference value and the control signal is not doing enough to 
compensate for the exceeding output. Interestingly, after approximately 8:15 AM, 

33.0)( <tu . That implies, according to the mapping in Section 2.2.6, that the entire 
traffic is guided along route 2. In other words, the P-controller behaves exactly as a 
bang-bang controller from that moment on and the controller is doing as much as it 
possibly can to decrease the output. It is however not enough to guide all travelers 
along route 2 at this point in time, since the output continues to increase all the way up 
until 9:00 AM, although at a slightly lower rate. 

In order to understand why the PI-controller does not have the same problems as the P-
controller when the compliance rate is low, a comparison between the output and the 
input for the two controllers is needed. In Figure 45, the output from the system, 
controlled by the PI-controller when the compliance rate is 0.3, is depicted. 
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Figure 45. Output with PI-controller. The compliance rate is 0.3. 

Also when the PI-controller is applied, the output initially rises quickly. In contrast to 
the output from the system controlled by a P-controller, the rise stops abruptly around 
7:30 in AM, and from that time on, the system output is kept close to the reference 
signal during the entire simulation. The input signal, depicted in Figure 46, explains 
why this happen. 

 

Figure 46. Input with PI-controller. The compliance rate is 0.3. When the input is below the broken line, 
the agents are guided along route 2 all the time. 

What is striking with this input signal in comparison with the input from the P-
controller in Figure 44 is that it reaches the critical level of 0.33 much quicker. The 
reason for that is that the integral in the controller quickly increases when the output 
starts to rise as in Figure 45. Already from approximately 7:30 AM, all agents are 
guided along route 2 when PI-control is used. Contrary to what happens when the input 
from the P-controller reaches 0.33, this maximal guidance is successful in this case. I.e. 
the output in Figure 45 immediately goes down towards zero, whereas in the P-
controlled system (Figure 43) the effect is not very big at all. This might seem 
intuitively non-logical; the same guidance gives apparently totally different effects in 
the same traffic system. The difference is however that in the PI-controlled case, the 
maximal guidance was applied already at 130)( ≈ty whereas when the P-controller 
started to guide all agents into route 2, )(ty  was already larger than 230 seconds. Such 
a difference might have a substantial impact in a dynamical system and especially in a 
system like this that is both non-symmetric and highly non-linear.  

The differences in compliance robustness between P- and PI-control can however also 
be explained in a more mathematical way. When the compliance rate is decreased, the 
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effect of static inputs on the system output is obviously also decreased. Another way of 
expressing that is that the static gain of the system decreases with decreasing 
compliance rate. The static gain is usually denoted )0(G . Moreover, the static gain is 
indirectly determining the magnitude of the static error of the controlled system. For a 
system controlled by P- or PI-control, the static error statice  is determined by the 
following equation.113 

)0()0(1
1
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e

c
static ⋅+

=   (16) 

In this formula, )0(cG  is the static gain of the controller.  For a P-
controller, pc KG =)0( . This means the denominator in (16) decreases when the 
compliance rate and )0(G  gets smaller. Hence it follows that the static error grows 
larger. 114 

In contrast to the P-controller, ∞=)0(cG  for a PI-controller. The denominator in (16) 
is therefore infinitely large as long as 0)0( ≠G , which is true for all system where the 
guidance actually has an impact. The static error is therefore always zero for a PI-
controller, which is obvious in Figure 45.115  The robustness against decreasing 
compliance rate is thus much better when an integral part is added to the proportional 
controller.  

The conclusions one can draw from this experiment is that P-control is not very good to 
use in situation where the compliance rate is uncertain. PI-control is much better than 
P-control at handling compliance rate changes. Bang-bang control works however well 
in almost all cases and when the compliance rate is low, this strategy is actually the best 
of the three.  

4.1.3.4 Control with disturbance 
Finally, the system performance for the three control strategies was also tested when a 
normally distributed disturbance of varying size was added to the output. The 
simulations were still run in the accident scenario. As before, the bang-bang controller 
worked with predictive travel times, whereas the other two controllers had the deviation 
of reactive travel times as their control output. The standard deviation of the 
disturbance was varied between zero and 20 seconds. The results are depicted in Figure 
47. 

                                                 

113 Glad & Ljung (1989), p 53. 
114 ibid. 
115 ibid. 
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Figure 47. AN-values when the magnitude of the output noise is varied. 

Apparently, bang-bang control is totally insensitive to disturbances. The system 
performances of the P-controller and the PI-controller get significantly worse when the 
disturbance is increased. It therefore seems reasonable to conclude that it is less 
important to use sophisticated control strategies such as P and PI-control when the 
system output is noisy. Nevertheless, remembering the conclusions from the 
experiments with disturbed output on a normal day (Section 4.1.2.2), one should not 
use bang-bang control unreservedly when the disturbance is large. The bang-bang 
strategy might be good at handling the accident situation when the disturbance is big, 
but as soon as there is no accident in the system; a bang-bang controller, having no 
dead-zone, has a tendency of worsening the system performance that would have been 
almost perfect if no guidance at all was applied.  

4.1.4 The small test network – concluding remarks 
The experiments on the small test network illuminate many aspects regarding automatic 
feedback control in traffic networks. The simulations discussed in Section 4.1.1 and 
4.1.2 shows how different controllers can be tuned and how well different control 
strategies work in different scenarios. In the Section 4.1.3, the results of different 
robustness and sensitivity tests have been presented and discussed. These experiments 
provide insight to the way different controllers work under non-optimal conditions. 

The observations from the experiments have made it possible to formulate a few rules 
of thumb that should guide the control design. The most important such guideline is 
that a controller works much better in the system it is optimized for, than in systems 
where some properties are altered. It is thus crucial to tune the controller for the 
scenario that is most likely to happen. If the problematic scenario can be predicted 
correctly, an optimized P- or PI-controller will most definitely produce good system 
performances. 

The controllers should always be tuned for the most likely scenario but unfortunately, 
all scenarios can not be predicted perfectly. It is however very helpful if one can 
estimate what aspects of this most likely scenario that are the most uncertain. Is the 
most uncertain simulation parameter the accident size, the accident location, the 
compliance rate or the disturbance? Depending on the answer to those questions, the 
control design should be carried out in the following way 
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 If the size of the accident is the most uncertain parameter, bang-bang control 
should be applied. 

 If the location of the accident is most uncertain, PI-control should be 
applied. 

 If the accident is located far away, bang-bang control should be avoided. 
 If the compliance rate is uncertain, P-control should be avoided.  
 If the disturbance is large, the dead-zone should be chosen large as well. 

Thus, bang-bang control, having no dead-zone, should be avoided. 
 If bang-bang control is applied, the control output should be based on 

predictive travel times. 

In the next Chapter, these guidelines are used when control is applied in the reduced 
Berlin network. As will be shown in Section 4.2.3, some of these conclusions are valid 
also in this larger environment. In the same section, it will however also be shown that 
a few of the guidelines are not possible to generalize outside the small test network 
framework.  

4.2 The reduced Berlin network 

4.2.1 Normal day 
In the normal day scenario, with no guidance, the output )(ty from the reduced Berlin 
network typically looks like in Figure 48. 

 

Figure 48. Output from the simulation in the reduced Berlin network. No accident and no guidance. 

Looking at this plot, one might conclude that the system is not at all in Nash 
equilibrium. The travel time on route 1 (i.e. the small inner city route in Figure 3, 
section 2.3.2) is always larger than the travel time on route 2 (i.e. the highway). Hence, 

0)()( => trty  always holds. The plot of the disbenefit-value )(td  in Figure 49, does 
however tell a different story.  
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Figure 49. Disbenefit plot with neither accident nor guidance. 

Apparently, the entire traffic load between the sign-links and the destination-links uses 
the faster highway. The system is thus in perfect Nash equilibrium, even though the 
system output is constantly larger than the reference value. The aggregated evaluation 
measures confirm this conclusion. AN=224 and NM=204 indicate that the system is not 
in an equilibrium. AD=0 does however confirm the conclusion from Figure 49 that a 
Nash equilibrium is indeed achieved.  

In contrast to the small test network simulations, there is no clear resemblance neither 
between )(ty  and )(td  nor between the corresponding AN- and AD-values when the 
reduced Berlin network is simulated. Seeing that 152)( =ty  in a free flow situation (the 
first two hours in Figure 48),  AN does not give a very good indication of the system 
performance. In the following, AD has therefore been the evaluation measure 
considered most relevant to study. It is also this quantity that has been used most 
frequently when the different control strategies’ abilities to maintain Nash equilibrium 
have been compared and evaluated. All evaluation measures from all simulations are 
found in Appendix C. 

In Section 4.1.2.2, the controllers’ ability to handle a normal day scenario with 
disturbed output was tested. This kind of investigation is not relevant to carry out in this 
larger case. The reason for this is that, provided that nominalSplitting=0, no 
controller guides any car into route 1 as long as 0)( >ty . As one can see in Figure 48, 
that is always true in a normal day scenario. Moreover, one would need to add an 
unreasonably large disturbance to the output to change that.116 Hence, no such 
simulations have been run in the larger network.  

4.2.2 Accident case 
As is thoroughly described in Section 2.3.2, a capacity reduction representing a traffic 
accident on link 7832 was introduced in this scenario. The accident was then being 
controlled by means of the different control strategies discussed in Chapter 2.2.  

                                                 

116 When the output is at its lowest point around 8:40 AM, an output disturbance of approximately 50 
seconds would have been needed to push the output below zero. 
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4.2.2.1 No guidance 
When the accident scenario is simulated without guidance the output typically looks as 
in Figure 50. 

 

Figure 50. Output with accident but without guidance. 

In comparison with Figure 48, one can clearly see that the accidents affect the system 
output. Before 6:30 AM, the traffic load is so small that route 2 can handle the entire 
demand, also with the capacity reduction on link 7832. From that time on, congestions 
start to build up on route 2, increasing )(2 tTTR  and decreasing )()( tytR =Δτ . From 
approximately 8:00 AM up until 9:00 AM, route 2 is so congested that 0)( <ty  for a 
long period of time. The plot in Figure 50 is clearly different than the one in Figure 48, 
but the plots alone do not show that the system performance is worse with than without 
accident. AN=151 and NM=51.6 rather indicate that the system is closer to Nash 
equilibrium when there is an accident on route 2. Once again, )(td  in Figure 51, gives a 
better description of the situation. 

 

Figure 51. Disbenefit valued, d(t), with accident when no guidance is applied.  

Apparently, the accident does not make the system performance better. In contrast, 
since all travelers use route 2 many people do actually travel on the slower route, when 
the highway is the slower of the two routes between 8:00 and 9:00 AM. In this interval, 
the plot in Figure 51 also depicts positive disbenefit-values. The average disbenefit-
value (AD) is 1959 seconds·persons. One can thus conclude that the accident does lead 
to a traffic situation that is not in a Nash equilibrium. Hence, guidance has a potential 
of improving the situation. 
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4.2.2.2 Static guidance around the accident 
Also for the simulations in the reduced Berlin network, static guidance around the 
accident was tested. The output from this simulation is shown in Figure 52 and the 
disbenefit-plot is depicted in Figure 53. 

 

Figure 52. Output when all travelers are guided around the accident. 

 

Figure 53. Disbenefit-values when all travelers are guided around the accident. 

The figures show that static guidance is not a good idea in this situation. Route 1, being 
an inner-city road, has much less capacity than the freeway (route 2). This also holds 
when an accident is generated on the highway. Guiding all agents into route 1 therefore 
leads to even more congestion than if no guidance is applied. Hence, )(ty  grows big 
and since all travelers are guided into this road,117 )(td  also increases. In comparison 
with the no-guidance simulation, AD is almost 16 times as bad when the static guidance 
is applied. The conclusion one could draw from this experiment is thus that static 
guidance should absolutely not be applied in this situation.  

4.2.2.3 Bang-bang control 
Seeing in the preceding section that static guidance does not solve the problem caused 
by an accident on route 2, a dynamic bang-bang control was tested. First bang-bang 
control with reactive travel-times as control output was applied. Figure 54 shows the 
output and Figure 55 shows the input from this experiment. 

                                                 

117 The compliance rate is still 0.8. Therefore, only 80 % of the agents are actually travelling on route 1. 
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Figure 54. Output when reactive bang-bang control is applied. 

 

Figure 55. Input when reactive bang-bang control is applied. 

In these figures, one can see how the bang-bang controller sends all traffic into route 1 
as soon as the output goes below zero. The output is in this way kept above zero most 
of the simulation time. The oscillating system behavior, typical for bang-bang 
controlled systems is not so obvious in the plot. Nevertheless, the output does not say 
anything about how well the Nash equilibrium is maintained. This is more easily seen if 
one studies the disbenefit-value plot depicted in Figure 56.  

 

Figure 56. Disbenefit-values when reactive bang-bang control is applied. 

If the disbenefit-plot in figure 56 is compared with the corresponding plot without 
guidance (Figure 51), one can clearly see that bang-bang control improves the system 
performance considerably. The average disbenefit (AD) is now 274 seconds·persons, 
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which is only 14 % as much as the corresponding value without guidance. This 
difference is of course significant. 

The reactive bang-bang controller does improve the system behavior considerably. 
Remembering from Section 4.1.1.3 that the bang-bang controller worked even better 
when predictive travel times were used, it seems reasonable to assume that the 
improvement could be even bigger if the control output were predictive. The disbenefit-
plot in Figure 57 from the simulation with predictive bang-bang control does however 
show this assumption to be invalid. Contrary, the disbenefit becomes slightly larger 
when the control is predictive. AD=313 confirms that the assumed improvement was 
not materialized.118  

 

Figure 57. Disbenefit-plot from the simulation controlled by a predictive bang-bang controller. 

The results become even more surprising when the lengths of the routes are taken into 
consideration. The routes and the time lags are actually slightly longer in the large scale 
scenario and it should thus be even more important to use predictive travel times when 
bang-bang control is applied.119  

Presumably, the reason for why predictive travel times, that were shown to be crucial 
for good bang-bang control in the small test network, do not change the performance 
significantly in the large network, has to do with the way the predictive travel times are 
measured. As was noticed in equation (6) section 2.2.5, predictive route travel times are 
a sum of all predictive link travel times. The prediction is supposed to predict the travel 
time of the agent guided at time t. This way of predicting the travel times does however 
only generate really good predictions for the first link on the route.120 In the small test 
network, the accident was situated on the second link of route 1. The congestion was 
therefore located on the first link on this route. Hence, the travel time on this first link 
was the most relevant one when the route travel time was to be measured, since on all 
other links, the travel times always equaled the free flow travel times. Therefore, the 
output based on predictive travel times worked really well in this small setting, i.e. they 
were truly predictive. 

                                                 

118 This AD-value is however not significantly higher than the AD=274 achieved by reactive control 
either. 
119 Discussions about this topic are found in Section 2.2.5 and 4.1.3.2. 
120 s. 16. 
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In the larger network, the accident is located on the eleventh link on route 2. The 
predictive travel times are thus not as informative as in the small network. Most 
definitely, this explains why the predictive travel times do not improve the bang-bang 
control in the same way in the reduced Berlin network as they did in the small test 
network setting. 

4.2.2.4 Proportional control 

4.2.2.4.1 Parameter tuning 
As already mentioned, separate tuning of all relevant parameters was not possible in the 
larger simulation setting due to the long simulation times. The setting of the VDSSign-
parameters deadZone=0.02 and controlEvents=3 used in the small test network 
were thus used also in the experiments on the larger network.121 Seeing that all traffic 
uses route 2 without guidance, the parameter nominalSplitting ( 0u ) was set to 0.  

It has already been noticed several times in Chapter 4.2 that the system performance in 
the reduced Berlin network is much better described by )(td  and AD than by )(ty  and 
AN. The tuning of the P-controller for the larger network pK therefore aimed at finding 
the controller that minimized AD instead of AN. Figure 58 shows the result of the 
tuning experiments. As before, the results are averages from ten simulations for each 

pK -value and the tuning was done with reactive travel time measurements. 

 

Figure 58. Tuning plot for the P-controller. 

The plot clearly shows that 5.210−=pK  produces the best AN-values. This result is 

significantly lower than for all other pK -values tested. 5.210−=pK  was therefore used 
in the P-controller used to control the traffic in the simulation on the larger network. 

                                                 

121 Admittedly, it is likely that the system performance would have been improved if these parameters 
had been re-tuned for the larger network. The time available for this master thesis project was however 
not long enough to tune all parameters in an optimal way.  
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4.2.2.4.2 Simulation runs 
The output signal from the system when it is controlled by the P-controller optimized in 
the preceding section typically looks like in Figure 59. The more interesting disbenefit 
plot is found in Figure 60. 

 

Figure 59. Output with P-control and reactive travel times measurements. 

 

Figure 60. Disbenefit-plot with P-control and reactive travel times.  

Comparing the )(td -plot in Figure 60 with the corresponding plot when bang-bang 
control was used (Figure 54), it is hard to tell which controller that improves the system 
performance the most. On the one hand, )(td  has a higher maximum when bang-bang 
is applied, but on the other hand 0)( ≠td  for longer periods of time with P-control. The 
aggregated quantity AD shows that the P-controller is slightly better. In this experiment 
AD=228 seconds·persons with P-control, whereas with bang-bang control AD=274 
seconds·persons. This improvement is however not significant.  

Hence, it does not seem to matter if bang-bang control or proportional control is used to 
control the traffic on the two routes in the reduced Berlin network. Somewhat 
surprisingly, a significant improvement was however observed when the P-controller 
was used with predictive measurements in the control output. Looking at the output and 
the disbenefit-plot from this experiment (Figure 61 and 62), one sees that this 
improvement is due to the fact that 0)( <ty  for much shorter periods of time. Since a 
lot more traffic is travelling on route 2, this means that the )(td  is generally lower in 
this simulation, although )(ty  takes large positive values for longer periods of time. 
The average disbenefit value therefore becomes almost 40% lower (AD=143). 
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Figure 61. Output with P-control and predictive travel times measurements. 

 

Figure 62. Disbenefit-plot with P-control and predictive travel times.  

The conclusions to draw from the experiments with proportional control are firstly that 
it works well. The most important aggregated measurement AD is only 7.2 % as large 
as it was when no control was applied. Secondly, one can also conclude that the 
experiments show that no generalizations can be made regarding the effect of the 
predictive travel times. When the small network was simulated, the predictive 
measurements improved the bang-bang control but not the P-control significantly. In 
the larger network, it turned out to be the other way around; the bang-bang control was 
not improved but the P-control was. The predictive measurements should therefore be 
considered as a control parameter and it should always be tested by means of trial-and-
error.   

4.2.2.5 Proportional and integral control 

4.2.2.5.1 Parameter tuning 

Also for the PI-control, the VDSSign-parameters deadZone and controlEvents 
were not re-tuned. Thus the setting deadZone=0.02 and controlEvents=3 was 
used. The parameter nominalSplitting was set to 0. In the tuning of the control 
parameters pK  and iT  the Average disbenefit value, AD, was used for evaluation. The 
measurements used in the control output were predictive, since such measurements 
were shown to work better or equally good for the control strategies already applied to 
the larger network. 
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Similarly to when the PI-controller for the small test network was tuned, the pK -values 
considered were those surrounding the optimal value for the P-controller.122 The 
interval of iT -values was intentionally chosen really large so that no interesting value 
could be omitted. The result of the tuning is shown in Figure 63. 

 

Figure 63. Averge disbenefit-value as a function of pK  and  iT . Dark blue color indicates that AN is 

low. The minimal AN-value is achived when 7.6.210−=pK  and 310=iT . The chosen setting was 

however 7.6.210−=pK and 210=iT .  

The parameter combination generating the minimum AD-value was 7.6.210−=pK  and 
310=iT . At this minimum, AD=151 seconds·persons. Remembering from Section 

4.2.2.4.2 that the corresponding value with an optimal P-controller was actually slightly 
lower (143 seconds·persons), one might conclude that there is no point of using PI-
control in the larger network. On the other hand, the robustness tests discussed in 
Section 4.1.3 indicates that controllers which include an integral part are more robust 
against variations in compliance rate than controllers that are only proportional. It thus 
seems reasonable to use PI-control also in the larger network, not since it is superior to 
P-control in the default setting but since it might be better at handling systems where 
some parameters are altered.  

Given the conclusion that PI-control should be applied mainly due to its presumably 
good robustness, the parameter combination generating the minimum AD in Figure 63 
does not look very appealing. Changes in simulation parameters such as the compliance 
rate or the accident size can be interpreted as analogous to small variations in the 
control parameters. It therefore seems rather risky that the minimum point in Figure 63 
is surrounded by much higher AD-values. As an example, if pK is slightly decreased 

from 67.210− to 310− , AD suddenly skyrockets from 151 to 1572 seconds·persons. 
                                                 

122 Following the guidelines from Ziegler-Nichol’s method, Glad & Ljung (1989), p 48. 
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Similarly, a small increase in  pK  gives an equivalent effect. The parameter setting 
finally chosen for the PI-controller in the reduced Berlin network was therefore 

7.6.210−=pK  and 210=iT . This setting generates a slightly higher average disbenefit-
value of 182 seconds·persons. This parameter combination is however located in a 
much safer area in Figure 63 and it was thus assumed to give the controller better 
robustness against parameter variations.  

4.2.2.5.2 Simulation runs 
As expected, the system performance achieved when the system was controlled by the 
PI-controller tuned in the preceding section was slightly worse than the performance 
achieved by predictive P-control. In Figure 64 and 65, )(ty  and )(td  respectively are 
depicted.  

 

Figure 64. Output when predictive PI-control is applied. 

 

Figure 65. Disbenefit plot when predictive PI-control is applied. 

The average disbenefit value AD was 231 seconds·persons, which is significantly 
higher than the corresponding value when P-control was used.123 The optimal PI-
controller is in other words worse than the optimal P-controller at handling the accident 
in the larger network. It might however have a better robustness against parameter 
variations than the P-controller. If that is the case will be investigated in the next 
section of this report 

                                                 

123 The system was also simulated with a PI-controller that uses reactive travel times in the control 
output. The results from this simulation show that reactive travel times should not be used in this case. 
AD=515 seconds·persons is by far the highest average disbenefit value achieved by any controller tested. 



 78

4.2.3 Robustness and sensitivity 
As already mentioned, each simulation takes approximately 60 times as long time in the 
reduced Berlin network as in the small test network. Systematic robustness testing like 
the experiments discussed in Section 4.1.3 was therefore not possible to carry out in the 
larger simulation setting. Instead, only a few tests, intended to check if the conclusions 
drawn in the small test setting could be generalized, were carried out.124 Moreover, only 
five simulation runs were performed for each setting instead of the ten runs that have 
been default in prior sections of the text. Also this reduction in the scope of the 
experiments was due to the much longer simulation times. 

Four different simulation settings were used for robustness testing in the reduced Berlin 
network: one where the accident size was increased, one where the accident was 
located further away, one where the accident was really close to the point of guidance 
and one with lower compliance rate. No experiments with disturbed output signals were 
carried out. The main reason for that was that the results from the sensitivity 
experiments in the small test network were not all that spectacular. Validation of the 
more interesting robustness results was thus prioritized. 

For each scenario, the AD-values generated by bang-bang control, P-control and PI-
control are compared with the corresponding values in the original accident scenario. 
Predictive travel times, being shown to be better or equally good as reactive travel 
times for all controllers in the larger network, were used consistently. The AD-values 
from the default setting, used for comparison, are summarized in Table 1. 

Bang-bang control P-control PI-control 
319 143 231 

Table 1. AD-values for different control strategies in the default accident scenario. 

4.2.3.1 Larger accident 
In this setting, the capacity on link 7832 was decreased form 1080 cars/hour to 540 
cars/hour. The new capacity represents an accident that is larger than before. The 
results from the experiment are shown in Table 2. 

Bang-bang control P-control PI-control 
342 230 216 

Table 2. AD-values for different control strategies when the size of the accident is increased. 

The results from the bang-bang controller and the PI-controller do not change 
significantly when the accident is increased. The AD-value achieved when P-control is 
applied is however significantly higher than in the default setting. Comparing these 
results with the results from the small test network (Figure 36, Section 4.1.3.1) some 

                                                 

124 Obviously one single validation test from one single large network like this one does not make it 
possible to say that the conclusions from the smaller networks are general.  Much more systematic 
experiments from a large amount of networks would have to be made to support such bold claims. In the 
rest of this chapter, it is thus investigated if the conclusions from the smaller network can be falsified or 
if it seems as if they can be valid generally. It is unfortunately impossible to be more certain that that.  
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resemblance is observed. Also in the small network, bang-bang control is more robust 
than P-control when the size of the accident is increased. Looking at Figure 36, one 
would however also assume the AD-value for the PI-controller to increase considerably. 
Instead, this value decreases when the accident is made bigger. It is possible that this 
good robustness of the PI-controller is due to the non-optimal but robust PI-tuning that 
was discussed in Section 4.2.2.5.1.  

The conclusion one can surely draw from this experiment is that the robustness results 
from the experiments with varying accident size in the small test network can only be 
partly validated. The P-control has problems with the larger accident, whereas the 
bang-bang controller and the PI-controller handle the changed parameter setting rather 
well. The difference between the control strategies is however not at all as large as it 
was when the accident size was increased in the smaller network. 

4.2.3.2 Longer time lags 
In this setting, the accident was moved from link 7832 to link 7809. The distance from 
the point of guidance to the accident was by that increased from approximately 3 to 
approximately 4 kilometers. The results form the simulations are shown in Table 3. 

Bang-bang control P-control PI-control 
143 146 173 

Table 3. AD-values for different control strategies when the accident is located futher away from the 
point of guidance. 

Remembering the discussion in Section 4.1.3.2, the results in Table 2 are indeed very 
surprising. The long time lags are, contrary to what was expected, improving the system 
performance and the improvements are largest for the bang-bang control. The 
conclusion from Section 4.1.3.2 was that long time lags are worsening the controllers’ 
abilities to control and that the problems are most severe when bang-bang control is 
applied. Obviously, this conclusion was not at all validated by the tests on the larger 
network. 

4.2.3.3 Short time lags 
In this setting, the accident was moved to link 8376 approximately one kilometer from 
the point of guidance. The time lag in the system was thus shortened. The results from 
the experiments are shown in Table 4 

Bang-bang control P-control PI-control 
290 240 431 

Table 4. AD-values for different control strategies when the accident is located closer to the point of 
guidance. 

The results in Table 4 fit better with the conclusions drawn in Section 4.1.3.2 than the 
results from the experiments with longer time lags discussed in the preceding section. 
The P-control and the PI-control are significantly worsened in comparison with the 
default accident scenario whereas the evaluation measure from the system controlled by 
a bang-bang controller is not changed significantly. That means that the bang-bang 
controller gets relatively better when the time lags gets shorter. This observation 
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validates the conclusion from Section 4.1.3.2. It therefore seems reasonable to conclude 
that bang-bang control is more robust against short time lags than the other two control 
strategies and that this conclusion is valid generally. 

The conclusions from the small test network can however not be perfectly validated 
since shorter time lags in this larger setting implies that the system performance gets 
worse whereas in the small test network it was the other way round.  

4.2.3.4 Low compliance 
In this setting the compliance rate was reduced from 0.8 to 0.4. Running simulations 
with different controllers in this setting, the results in Table 5 were achieved.  

Bang-bang control P-control PI-control 
189 474 286 

Table 5. AD-values for different control strategies when the complaince rate was decreased to 0.4. 

The results fit very well with the results presented in Figure 42, section 4.1.3.3. When 
the compliance rate is reduced, the bang-bang controlled is improved, the PI-control is 
slightly worsened and the P-control gets much worse. All these changes are significant. 
As for the reduction of the compliance rate to 0.4 in the small network, bang-bang 
control was the significantly best control strategy also in this experiment.  

The conclusion drawn in Section 4.1.3.3 that P-control is very bad at handling 
compliance rates that it is not tuned for thus seems to be possible to generalize. 
Furthermore, the bang-bang controller’s good ability to cope with compliance rate 
changes seems to be a conclusion that is possible to generalize as well.  

4.2.4 The reduced Berlin network – concluding remarks 
The most important conclusion one can draw from the experiments carried out on the 
reduced Berlin network is that guidance really works. For exactly all controllers and 
parameter settings tested, the system performances (AD) was better with control than 
when no control at all was applied.125 In comparison with the experiments that were run 
on the small test network, it is however much more complicated to draw clear 
conclusions about the different control strategies advantages and disadvantages in this 
case. Moreover, out of the six rules of thumb proposed in Section 4.1.4 only two seem 
to be possible to generalize outside the smalls scale setting. These two are firstly that 
bang-bang control gets relatively better as the time lags get shorter and secondly that 
the robustness against compliance rate reductions is much worse for the P-control than 
for the other two control strategies. 

Apart from these two general conclusions, the guidelines for how to tune design the 
controller optimally are few and vague. This follows, since it is more or less impossible 
to know exactly how a variation of a control parameter might affect the system 
performance. This is for example seen if one observes how differently the use of 
predictive measurements affects the system behavior in the two networks. The 

                                                 

125 A summary of all simulation results is found in Appendix C. 
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conclusion from the small network126 was that predictive measurements should be used 
for bang-bang control but that it does not make a big difference if one uses these or the 
reactive measurements when P- and PI-control is applied. In the larger network, one 
could instead observe that predictive travel times are crucial for good P- and PI-control 
whereas it does not matter much if the bang-bang controller is based on predictive or 
reactive measurements. The reason for why this parameter affects the system so 
differently in different simulation setting is hard to understand properly and a brutal 
trial-and-error approach that tests as many control parameter combinations as possible 
is therefore the only way to make sure that the controller one sets up will generate 
acceptable system performance.  

 

 

 

                                                 

126 Section 4.1.4.  
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5 Conclusion 

5.1 Automatic feedback control in microscopic traffic simulations 
The main focus of this master thesis project has been to investigate how well route 
guidance based on automatic feedback control is able to establish and maintain Nash 
equilibrium traffic conditions in the microscopic traffic simulation of Berlin called 
MATSim. The conclusion of the investigation is that that traffic control based on 
feedback improves the traffic conditions considerably in simulation scenarios where 
some roads have limited capacity due to traffic accidents. 

Different control strategies have been shown to produce differently desirable results in 
different settings. In a small test network, proportional and integral control produced 
the best results whereas when the traffic on two roads in the western suburbs of Berlin 
was controlled, proportional control worked better. Bang-bang control typically 
generated slightly worse system performance than the two other control strategies, 
although it is plausible that the bang-bang control is more robust against parameter 
variations since it is not specifically tuned for any system setting. The use of predictive 
measurements as an alternative basis for the control output has been shown to improve 
the system performance for some controllers in some simulation settings. No general 
conclusions can however be drawn about when to use such measurements. 
Furthermore, it has been shown that the number of binary messages in the sequence 
approximating the continuous control signal is an important parameter that should be 
set to an odd number. It is also advisable to use a dead-zone in the actuation process. 
Finally, different control strategies have been shown to be differently robust against 
changes in system parameters. Bang-bang control generates for example relatively 
better system performances when the time lags are short and P-control is much worse 
than the other control strategies when the compliance rate is decreased.  

Recalling from the introduction that the Berlin MATSim is very complex in terms of 
network topology and population and that no differential equation model of the 
simulation is available, there are reasons to assume it to be a lot more difficult to design 
a working controller in MATSim than in a simplified macroscopic simulation tool 
where a differential equation is readily available. On the other hand, the higher 
complexity of the microscopic simulation makes it reasonable to assume the 
discrepancy between the simulation and the real-world traffic system to be smaller 
when the simulation is microscopic. Presumably, a controller that improves the traffic 
conditions considerably in a microscopic simulation would therefore more likely 
produce acceptable results also if it was installed in the real world than a controller that 
has been designed within a smooth macroscopic differential equation framework. The 
controllers designed to handle the traffic in the “Accident scenario” in the reduced 
Berlin network are indeed such microscopically designed controllers. These controllers 
improve the traffic condition considerably and one could thus presume their abilities to 
handle a similar accident on the real highway in the western outskirts of Berlin to be 
good as well. Nevertheless, if one wants to design a control that can handle more 
general disturbances on this highway, a controller designed to handle one specific 
accident scenario is not sufficient. In the next chapter, a broad outline for a systematic 
design approach that has a potential of being applicable in a general traffic situation is 
therefore laid down. 
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5.2 Setting up a controller in the real world  
A prerequisite for controlling a real-world traffic system in the same way as the traffic 
in MATSim has been controlled within this master thesis project is of course that there 
exists a real infrastructure for guidance in the system. In this report, the guidance 
technology has been assumed to be in-car COOPERS-devices installed in every 
vehicle. As mentioned in Section 3.2.1, the guidance software could as well be said to 
represent guidance carried out by means of variable direction signs (VDS). The 
installation of such signs that are directed by a traffic management central would 
therefore also be sufficient.127 Another necessary requirement for setting up a real-
world control is that the traffic system can be modeled in MATSim. I.e. information 
about the network and the plans of the population must be available. 

Assuming that these two prerequisites are fulfilled, a first step for setting up a real-
world control is to specify in MATSim the road couples that the controllers are to 
control. As mentioned, control can be carried out simultaneously on arbitrary many 
couples of routes in the network. In the remaining parts of this section, it is however 
assumed for simplicity that only one controller is applied in the system. The extension 
to multiple control is straightforward as long as the controlled areas are spread out in 
the traffic network.128 Furthermore, a full MATSim-specification of the control area 
requires, apart from the two routes, a set of sign-links, a set of destination-links and the 
sequences of links connecting the sign-links and destination-links with the two 
routes.129  

When the control area is fully specified, a set of reasonable problem-scenarios (i.e. 
accidents, construction works etc.) is to be specified. Depending on the amount of 
recourses available for the tuning of the controller, this specification could be more or 
less detailed. Each scenario is defined by its location and the capacity reduction it 
brings about. The result of the specification is a table like the one below for each of the 
two routes.130 If there is a lot of time available for control tuning, the amount of 
different capacity reductions tested can be increased.  

Capacity reduction 20 % 40 % 60 % 80 % 100 % 

Link 1      
Link 2      
Link 3      
Link 4      

                                                 

127 If the cars are not provided by COOPERS-devices, it would however not be obvious how to measure 
reactive travel times. This is however a minor problem, since all experiments presented in this report 
show that the use of predictive travel times as control output give equally good or better system 
performances. 
128 How much the control areas must be spread out is different in different traffic networks. The 
important point is that one controller should not make too big of an impact on the system behavior on a 
route couple controlled by a different controller. That is, the controllers must be somewhat independent 
of each other. 
129 For details, see Section 3.2.2. 
130 If one of the routes is a main route where all or almost all agents travel (like in the scenarios discussed 
in Chapter 4.2), problems on the smaller of the two routes are not relevant for the controller. Hence only 
a table for the main route has to be specified. 
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Link 5      

Table 6. Specification of different problem scenarios on one route in the network. 

Thereafter, a reasonable compliance rate for guidance along the two specified routes in 
the real-world system is to be estimated. This compliance rate is used in the simulations 
of the network. Moreover, it is also important to somehow estimate how accurate this 
compliance rate estimation is. This accuracy of the esitmation is later used when the 
control strategies are chosen. At this stage, it is also possible to measure how large a 
fraction of the agent that uses route 1 when no guidance is applied. This fraction 
obviously specifies the parameter nominalSplitting in the simulation software. 

Controllers with optimally tuned parameters are thereafter designed for each scenario in 
Table 6. If the compliance rate estimate is considered to be accurate, bang-bang control, 
P-control and PI-control are considered. If the compliance rate is considered to be hard 
to estimate, P-control is omitted due to its poor robustness against compliance rate 
variations. For the bang-bang control, only the measurement mode (reactive or 
predictive) must be decided. One can therefore easily evaluate how this control strategy 
works in the different scenarios by means of running two sets of bang-bang controlled 
simulations, one with predictive and one with reactive measurements, and averaging the 
average disbenefit values (AD) achieved. The smaller of these two AD-values is later to 
be compared to corresponding values achieved with other control strategies. 

For the P- and PI-controller a set of parameters are to be tuned for each scenario. The 
tuning is carried out by means of the trial-and-error approach discussed in Section 
4.1.1. As mentioned in Chapter 4.2, this way of tuning the parameters is a 
computationally costly procedure if the network is large. Depending on the amount of 
resources, the tuning should therefore be carried out more or less thoroughly. The very 
best tuning is obviously achieved if all relevant parameters combinations of all relevant 
parameters are tested. For a PI-controller, there is five degrees of freedom ( pK  , iT , 
predictive or reactive measurements, controlEvents and deadZone) and the 
number of combinations is thus really high even though only a few different values are 
tested for each parameter. In practice, only a subset of the parameter combinations will 
thus be tested in the tuning process. Some parameters, considered less important, may 
for example be tuned roughly initially whereas other more decisive parameters are 
tuned more carefully later on with the initially tuned parameters kept constant.131 

For each scenario, the AD-value from the simulation controlled by bang-bang control is 
later compared with the corresponding values achieved when the optimal PI- and, if 
relevant, P-controller is applied. The controller that generates the best system 
performance (i.e. the smallest AD-value) is later chosen as the most suitable controller 
for that specific scenario. In scenarios where the differences between the bang-bang 
control and any other control strategy is non-significant, bang-bang control should 
always be chosen due to its better robustness against accident size variations. The most 
suitable control strategy and the parameter setting found optimal is thereafter filled into 

                                                 

131 This approach was basically the one used when the parameters of  P-controller in the small test 
network were tuned in Section 4.1.1. 



 85

the appropriate field in the tuning table. An example of how the table thereafter might 
look is found below. 

 

Capacity reduction 20 % 40 % 60 % 80 % 100 % 

Link 1 BB, react P, react 
Kp=0.002 
C=3 
dZ=0.01 

BB, pred PI, pred 
Kp=0.005 
Ti=1500 
C=3 
dZ=0.02 

BB, react 

Link 2 PI, pred 
Kp=0.0015 
Ti=1000 
C=5 
dZ=0.04 

P, react 
Kp=0.002 
C=3 
dZ=0.02 

P, pred 
Kp=0.002 
C=5 
dZ=0.04 

BB, pred PI, react 
Kp=0.008 
Ti=2500 
C=7 
dZ=0.02 

Link 3 PI, react 
Kp=0.002 
Ti=1700 
C=5 
dZ=0.02 

PI, pred 
Kp=0.002 
Ti=1500 
C=3 
dZ=0.01 

BB, pred P, pred 
Kp=0.007 
C=3 
dZ=0.03 

PI, pred 
Kp=0.009 
Ti=1500 
C=5 
dZ=0.02 

Link 4 BB, pred P, pred 
Kp=0.002 
C=3 
dZ=0.02 

PI, pred 
Kp=0.002 
Ti=1500 
C=3 
dZ=0.02 

PI, pred 
Kp=0.006 
Ti=1500 
C=3 
dZ=0.01 

BB, pred 

Link 5 PI, pred 
Kp=0.002 
Ti=2500 
C=3 
dZ=0.01 

PI, pred 
Kp=0.002 
Ti=2000 
C=7 
dZ=0.02 

P, pred 
Kp=0.002 
C=3 
dZ=0.01 

PI, pred 
Kp=0.009 
Ti=1000 
C=3 
dZ=0.02 

P, pred 
Kp=0.011 
C=3 
dZ=0.02 

Table 7. Typical tuning table for a route with five links. The existence of fields with P-control indicates 
that the compliance rate estimation is considered to be comparably accurate. 

In addition to the controllers tuned for the different problem settings, a control strategy 
and a set of parameters that are optimal in a normal day scenario without any capacity 
reductions should also be tuned in the same way. Remembering how controllers 
without dead-zone had a tendency of distorting good traffic behavior in the disturbed 
normal day scenario studied in Section 4.1.2, it is of great importance that the normal 
day controller has a sufficiently large dead-zone. It is however not advisable to have no 
control at all in a normal day scenario in the real world even though that might be 
indicated by the simulations. In contrast to what is shown in the simulation, there are 
often great fluctuations in the real-world traffic demand and it is therefore presumably 
reasonable to have some kind of control turned on at all times. 

The tuning procedure described above is a computationally costly procedure that takes 
a lot of time to carry out. Especially if the routes are long, the number of scenarios as 
well as the number of simulation runs needed, will be rather large. Nevertheless, when 
the tuning is finished one has a parameter setting for each possible scenario that is 
optimal, at least in MATSim. Hence it follows, that the guidance control will be able to 
cope with any kind of accident or road construction on any link on the routes being 
controlled. The only thing that the traffic management has to do is to observe where 
there is a disturbance and estimate how much the capacity is decreased by it. Given 
these two variables the guidance (may it be transfered via COOPERS or VDS) will be 
directed optimally by means of the appropriate controller specified in Table 7. When 
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the traffic is not disturbed in any way, the controller found optimal in a normal day 
scenario is obviously applied.  

Finally, it is important stress that a controller that is found to be optimal in MATSim 
does not necessary control the traffic in the real world as good as it did in the 
simulation. In order to obtain really good system performance in the real word, real 
world evaluation measurements and output should be compared with the corresponding 
measurements from the simulations. If real world measurements are significantly worse 
than the evaluation measurements obtained with the same controller in the simulation, it 
might be reasonable to make slight adjustments of the control parameters. If one is 
lucky, this fine tuning might improve the real world system performance; if not, the 
parameters from the tuning-table should once again be applied. 

5.3 Suggested future research 
Following the procedure outlined in the preceding  chapter of the report, it should be 
possible to design guidance system based on automatic feedback control that works 
good or at least acceptable at an arbitrary location in an arbitrary traffic system in the 
real world. In the procedure presented, all relevant findings from the simulations 
presented in Chapter 4 were taken into consideration. The methods for controlling the 
traffic used in the simulations in Chapter 4 are however not the only possible ways of 
controlling a traffic system. A lot of design choices were made before the simulations 
were run, partly due to limitations in MATSim, partly due to lack of time, and partly 
due to lack of insight of the nature of the system controlled. In this last chapter of this 
master thesis, a few such alternative design choices will be discussed. Investigations of 
the value or usefulness of these alterative approaches constitute interesting fields of 
research for the future. 

One major limitation of a controller that is optimized using the tuning proposed in this 
thesis is that the population simulated behaves more or less identical in each and every 
simulation run. Even though some randomness is added in the software that handles the 
guidance, the major traffic patterns are equal every time the simulation is run. I.e. the 
same amount of cars is making the same trip from the same origin to the same 
destination in every simulation as long as they are not affected by the guidance.  
Obviously this is not a very realistic representation of the traffic patterns in Berlin 
which of course changes considerably from one day to the other. The controllers 
optimized in this way thus run the risk of working well only for the very specific traffic 
pattern studied.  

In order to make the controllers more robust against varying traffic patterns, it would 
therefore be good if the tuning simulations were carried out on populations with slightly 
different plans in the different simulations. It is however important to notice that the 
generation of plans files is a computationally costly process. It is therefore not possible 
to generate one new plans file for every simulation run in the tuning process. An 
alternative approach that should lead to very similar results is to alter the behavior of 
the agents in the different simulation runs by adding a random component to the 
departure time for each leg. In this way, the traffic patterns will be different in every 
simulation although the same plans file will be used every time round. 
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Another alternative design approach that has a potential of improving the system 
performance is to use the disbenefit values )(td  instead of the Nash deviation )(ty as 
the control output. Recalling that )(td  and not )(ty  was the most relevant signal to 
study when the larger network was simulated, this way of changing the output seems 
like a reasonable modification of the control design. Presumably, a controller that bases 
decisions on )(td  would pay attention to the number of agents on each route in a way 
that is not possible for the controllers discussed in this master thesis. In fact, it is hard to 
find many good arguments for the use of )(ty  as control output. The reason for why 

)(ty  was chosen as the output from the system was quite simply that it is the signal that 
is used as the system output by Papageorgiou and his research group132 and it was 
therefore a design decision made early in the project. The alternative signal )(td  was 
not even taken into consideration at this early stage and when the focus was shifted 
towards this signal, it was already way too late to fundamentally change the system 
output. One relevant reason for why )(ty  might be a better system output than )(td  can 
however be found when a real-system is to be controlled. Contrary to )(td  the number 
of agents traveling on each route between one of the sign-links and one of the 
destination-links is not needed to compute )(ty . This quantity is easy to obtain if all 
cars are equipped with COOPERS-devices but in a situation where the guidance is 
carried out by means of variable direction signs, the number of agents using each route 
is not trivial to measure. The use of )(td  instead of )(ty  as control output therefore has 
a potential of improving the control and simulations in which this alternative output is 
used would certainly be very interesting to evaluate. In a system where the control is to 
be carried out but means of VDS, it is however questionable if such a control output 
can be used in real world implementations.  

Finally, it would also be interesting to investigate if bang-bang controllers could be 
improved by means of adding hysteresis or a dead-zone. In a bang-bang controller with 
hysteresis, the input generated by the controller does not change sign immediately as 
the control output changes sign. Instead the control signal is kept constant until the 
output leaves a pre-defined interval. A similar adjustment of the bang-bang controller 
would be to add a dead-zone interval for the output.133 The only difference between 
hysteresis and a dead-zone is that whereas the control signal keeps its former value 
when the output is in the critical interval and hysteresis is applied, no guidance at all is 
given when the output is in the dead-zone.  

Hysteresis has been shown to improve system performance in systems controlled by 
bang-bang control. If the hysteresis interval is chosen properly, the amplitude of the 
oscillations could sometimes decrease substantially.134 Seeing that the implementation 
of a dead-zone resembles hysteresis it is thus reasonable to believe that a dead-zone 

                                                 

132 Messmer (1994), Papageorgiou (2003) 
133 It is important to notice that the dead-zones used so far in this report have not been applied to the 
output but to the control signal. I.e. they have been located after the controller, not before it. Such a dead-
zone is not able to change the behavior of the bang-bang controller, since the output is always 0 or 1. 
Some adjustments in the software would thus be needed if one wanted to provide also the bang-bang 
controller with a dead-zone. 
134 “Hysteresis”, Wikipedia; The Free Encyclopaedia 
http://en.wikipedia.org/wiki/Hysteresis#Applications (2007-01-13) 
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could have the same kind of effect. Investigations of how the ability of the bang-bang 
controller to control a traffic system changes when hysteresis or a dead-zone of 
different size is added would thus have a potential of being very interesting.  
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Appendices 

A. The small test network - link specification 
 

Link Id Length [m] Capacity [cars/hour] Free flow speed [m/s] 
1 500 3000 27.78 
2 500 6000 27.78 
5 2000 3500 27.78 
6 30 1300/1900 27.78 
7 2000 3500 27.78 
8 30 1900 27.78 
14 500 3000 27.78 
16 500 3000 27.78 
20 1000 6000 27.78 
21 1000 6000 27.78 
22 3500 3000 27.78 
23 1000 3000 27.78 

 

The capacity on link 6 is different in the “Normal day” and “Accident” scenario respectively. 
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B. The small Test network – simulation results 
 

Normal day 
 AN NM AD 
No disturbance, no control 0,423 -0,061 3,5
Disturbance, no control 5,03 0,0805 149
Disturbance, BB reactive 33,3 -0,311 1117
Disturbance, BB predictive 19,4 -0,126 531
Disturbance, PI-control, reactive 5 -0,0358 148
Disturbance, PI-control, reactive, no dead-zone 13,4 -0,202 367
Disturbance, PI-control, predictive 5,02 -0,0697 148
Disturbance, PI-control, predictive, no dead-zone 13,3 0,628 371

The disturbance is always normally distributed with a standard deviation of five seconds. The control 
parameters are Kp=10^-2.8, Ti=10^8/3. 

 

Accident 
 

 AN NM AD 
No Control 419 364 80354 
All agents guided along route 2 337 -324 75384 
BB, reactive 112 39,1 6660 
BB, predictive 45,1 18,8 1363 
P-control, reactive 28 16,5 927 
P, predictive 26,5 16,5 838 
P-control, reactive, no dead-zone 44,1 25,7 1675 
PI-control, reactive 22,2 2,07 745 
PI-control, predictive 21 2,18 665 

The control parameters are Kp=10^-2.8, Ti=10^8/3 for all controllers except for the P-controller 
without dead-zone. For that controller, a specific tuning was done and the control parameter Kp=10^-
2.4 was picked. 
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C. The reduced Berlin network – simulation results 

Normal day 
 AN NM AD 
No disturbance, no control 224 204 0
Disturbance, no control 223 203 0
Disturbance, BB reactive 222 201 0
Disturbance, BB predictive 225 200 0
Disturbance, PI-control, reactive 225 205 0
Disturbance, PI-control, predictive 226 -203 0

The control parameters are for the P-control Kp=10^-2.5 and for the PI-controller, Kp=10^-2.67 and 
Ti=100 

Accident 
 

 AN NM AD 
No Control 151 51.6 1959 
All agents guided along route 1 681 593 30,661 
BB, reactive 144 126 274 
BB, predictive 150 137 319 
P-control, reactive 125 90 228 
P, predictive 128 106 143 
PI-control, reactive 144 114 515 
PI-control, predictive 134 112 231 

The control parameters are for the P-control Kp=10^-2.5 and for the PI-controller, Kp=10^-2.67 and 
Ti=100 

 


