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ABSTRACT
Multi Agent Simulation has increasingly been used for trans-
portation simulation in recent years. With current tech-
niques, it is possible to simulate systems consisting of several
million agents. Such Multi Agent Simulations have been ap-
plied to transportation simulation for whole cities and even
large regions. In this paper we demonstrate how to adapt an
existing multi agent transportation simulation framework to
large-scale pedestrian evacuation simulation. The underly-
ing �ow model simulates the tra�c based on a simple queue
model where only free speed and bottleneck capacities are
taken into account. The queue simulation, albeit simple,
captures the most important aspects of evacuations such as
the congestion e�ects of bottlenecks and the time needed to
evacuate the endangered area.
During the simulation, each evacuee optimizes his/her

personal evacuation route to �nd the fastest escape route.
At this point two di�erent routing solutions are considered:
(1) An �empty network� routing solution, where every evac-
uee follows the path that would be fastest in an empty net-
work. (2) A �Nash equilibrium� approach, where, via itera-
tions every evacuating person attempts to �nd a route that
is optimal for him/herself under the given circumstances.
Both approaches can be considered as benchmarks: the �rst
as one where congestion e�ects are not taken into account
in the path choice; the second one as one which might be
achieved by appropriate training or guidance while main-
taining acceptability in the sense that no person could gain
by deviating from this solution. The results from the simu-
lation give an estimate of the time it could take to evacuate
the endangered area. We applied the system to a hypothet-
ical scenario, namely a dam-break of the Sihlsee dam near
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Zurich, which would lead to an inundation of large parts of
the city of Zurich within two hours. We show how well both
approaches perform with respect to evacuation time and the
out�ow rate of evacuees.
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1. INTRODUCTION
The evacuation of whole cities or even regions is an im-

portant problem, as demonstrated by recent events such as
the evacuation of Houston in the case of Hurricane Rita or
the evacuation of coastal cities in the case of Tsunamis. A
robust and �exible simulation framework for such large-scale
disasters helps to predict the evacuation process. Further-
more, it is possible to recognize bottlenecks in advance, so
that an elimination of those bottlenecks is possible. This
should lead to a better preparedness for an event of evac-
uation for cities or regions that face a high risk of natural
disasters.

2. RELATED WORK
Disaster and evacuation planning has become an impor-

tant topic in science and politics. In principle there are two
di�erent situations: evacuation of buildings, ships and air-
planes or the like on the one hand, or evacuation of whole
cities or even regions on the other hand. The former involves
normally the evacuation of pedestrians, where the latter is
rather associated with the evacuation by car.
In the area of pedestrian evacuation simulation, there has

been done considerable research in the last 20 years. A good
overview about models and software for pedestrian evacua-
tion simulation can be found in the proceedings of the con-
ference �Pedestrian and Evacuation Dynamics� [35, 9, 10].
Corresponding to the two di�erent types of problems, there
are two di�erent basic approaches for simulating the tra�c
�ow:



(1) Methods of dynamic tra�c assignment (DTA) have
been applied to evacuation simulation on the city or re-
gional scale. Some examples are: MITSIM [19], DYNAS-
MART [22] or VISSIM [14]. The DTA approach is based on
the analogy between tra�c and hydrodynamic characteris-
tics of �uids. That means DTA is a macroscopic approach
and reduces the problem of evacuation dynamics to a well
known physical problem. On state of the art hardware it
is possible to handle even large-scale scenarios with this ap-
proach. � However, in DTA it is not straightforward to deal
with the inhomogeneity of a population. For this, a micro-
scopic simulation is needed, where all people are simulated
as individuals.
(2) Microscopic simulations are often based on Cellular

Automata (CA) [28, 29, 16]. In CA models each evacuee is
designed as an individual; therefore it is possible to simu-
late also population structures where people have di�erent
speeds or ranges, or more complex behavior. The modeling
of complex behavior in evacuation simulation has become
important in recent years. People could for example ignore
warnings or might not choose the nearest emergency exit,
furthermore people tend to follow others (herd behavior)
[15, 23]. Agent oriented research groups have modeled such
behavior [27, 30]. In general it is expected that complex
behavior leads to longer evacuation times, consequently a
simulation that ignores such behavior patterns is probably
optimistic.
The aim of this approach is to develop a simulation frame-

work for large-scale scenarios, e.g. for large cities with a
population of hundreds of thousands. A standard CA-based
approach is not applicable here, because the area of those
cities could be several hundred square kilometers. In this
case a CA-model would consist of more than 109 cells, lead-
ing to rather long computing times.
In contrast, a DTA approach, as pointed out earlier, is

not able to handle complex individual behavior. One possi-
ble approach to deal with such large-scale scenarios but to
retain persons as individual agents is based up on a modi�ed
queuing model [11, 36]. The queuing model simpli�es streets
to edges and crossings to nodes; the di�erence to standard
queuing theory is that agents (particles) are not dropped but
spill back, causing congestion. This graph-oriented model is
de�ned by lengths/widths, free speed and �ow capacity of
the edges. This simpli�cation leads to a major speedup of
the simulation while keeping results realistic. For example,
the simulation of the whole (motor) tra�c of Switzerland
(approx. 5 million trips) takes less then 5 minutes for 24h
real time [32]. In this work the adaptation of the existing
multi agent transportation simulation framework to large-
scale pedestrian evacuation simulation is described.

3. MULTI AGENT SIMULATION
Our simulation is constructed around the notion of agents

that make independent decisions about their actions. In
this case study, each evacuee is modeled as an individual
agent in our simulation. In the simulation the agents try
to �nd the best (in terms of time) escape route, whereby
the real world is modeled as a network constructed of nodes
(intersections) and links (roadway between intersections).
The overall approach consists of three important pieces:

• Each agent independently generates a so-called plan
which encodes its intended escape route.

• All agents' plans are simultaneously executed in the
simulation of the physical system. This is also called
the tra�c �ow simulation or mobility simulation.

• There is a mechanism that allows agents to learn. In
our implementation, the system iterates between plans
generation and tra�c �ow simulation (i.e. system-
atic relaxation [20, 4]). The system remembers several
plans per agent, and scores the performance of each
plan. Agents normally chose the plan with the high-
est score, sometimes re-evaluate plans with bad scores,
and sometimes obtain new plans. Further details will
be given below.

The simulation approach is the same as in many of our
previous papers (e.g. [33, 3]) on the same subject. The re-
sults of this paper are based on a re-implementation of the
MATSim framework in Java [25]. Since not all elements of
MATSim are important for an evacuation simulation, the
following exposition is a shortened and simpli�ed descrip-
tion of key elements.
A plan contains the itinerary of activities the agent wants

to perform during the day, plus the intervening trips the
agent must take to travel between activities. An agent's
plan details the order, type, location, duration and other
time constraints of each activity, and the mode, route and
expected departure and travel times of each trip. This paper
concentrates on �home� and �evacuated� as the only activi-
ties, and �walk� as the only mode.
A plan can be modi�ed by the router module: The

router is implemented as a time-dependent Dijkstra algo-
rithm. It calculates link travel times from the output of the
tra�c �ow simulation. The link travel times are encoded in
variable-sized time bins, so they can be used as the time-
dependent weights of the links in the network graph.
The tra�c �ow simulation executes all agents' plans

simultaneously on the network. In the work presented here,
the plans contain the departure time and the exact routes,
and agents just follow these prescriptions; learning is imple-
mented via iterations (see below). The tra�c �ow simula-
tion is implemented as a queue simulation, where each street
(link) is represented as a FIFO (�rst-in �rst-out) queue with
three restrictions [11, 5]. First, each agent has to remain for
a certain time on the link, corresponding to the free speed
travel time. Second, a link �ow capacity is de�ned which
limits the out�ow from the link. If, in any given time step,
that capacity is used up, no more agents can leave the link.
Finally, a link storage capacity is de�ned which limits the
number of agents on the link. If it is �lled up, no more
agents can enter this link. The tra�c �ow simulation pro-
vides output describing what happened to each individual
agent during the execution of its plan.
The outcome of the tra�c �ow simulation (e.g. conges-

tion) depends on the planning decisions made by the decision-
making modules (in this case, the router). However, those
modules can base their decisions on the output of the tra�c
�ow simulation (e.g. knowledge of congestion) using feed-
back from the multi-agent simulation structure [20, 4]. This
sets up an iteration cycle which runs the tra�c �ow simula-
tion with speci�c plans for the agents, then uses the planning
modules to update the plans, these changed plans are again
fed into the tra�c �ow simulation, etc., until consistency
between modules is reached.
The feedback cycle is controlled by the agent database,



Figure 1: Inundation map provided by the Zurich
civil defense o�ce

which also keeps track of multiple plans generated by each
agent, allowing agents to reuse those plans at will. The repe-
tition of the iteration cycle coupled with the agent database
enables the agents to learn how to improve their plans over
many iterations. This circle continues until the system has
reached a relaxed state. At this point, there is no quantita-
tive measure of when the system is �relaxed�; we just allow
the cycle to continue until the outcome seems stable. The
actual number of iterations that are needed depends on the
scenario. Normally 100 to 200 iterations are su�cient to
reach this �relaxed� state (also see below).
In order to compare plans, it is necessary to assign a quan-

titative score to the performance of each plan. In principle,
arbitrary scoring schemes can be used (e.g. prospect theory
[2]). In this work it is assumed that the agents are only in-
terested in minimizing their individual evacuation time. For
that reason, the utility of a plan is just the negative of the
time needed to reach the safe area.

4. SCENARIO
A hypothetical event of a dam-break of the Sihlsee dam

was chosen. This would lead to an inundation of parts of the
city of Zurich. According to the civil defense o�ce there will
be an advance warning time of about 110 minutes until the
inundation will reach the city center. The civil defense o�ce
also provides an instruction sheet [1] with an inundation map
of the area at risk (shown in �gure 1).

4.1 Data Basis
There are two main inputs that have to be provided to the

simulation framework. At �rst the simulation needs a net-
work. We extracted the evacuation network by projecting
the inundation map from the civil defense o�ce onto the net-
work of Switzerland provided by NAVTEQ1. This extraction

1NAVTEQ is a provider of digital maps for in-vehicle navi-
gation systems (see also http://www.navteq.com/)

Figure 2: Empty evacuation network

has been done semi-automatically. First, all boundary nodes
were selected manually, and after this all links and nodes in-
side the so selected area were selected automatically. So the
overall e�ort of pre-processing was manageable. The origi-
nal NAVTEQ network of Switzerland consists of about 400k
nodes and 880k links. After cropping, the resulting network
consist of 3037 nodes and 6120 links. It is shown in �gure 2.
The other important input to the simulation framework

is a so-called �plans �le�, containing information about peo-
ple and their plans, including home and work locations. A
synthetic population for the area of Zurich was generated
by [26] and provided to us. The population was generated
using data from the Swiss census for the year 2000 [12] and
information about facilities in the city center. Every per-
son in this synthetic population obtains one complete day
plan, describing all activities the person performs during a
day. The �rst work location appearing in a plan of each
agent was extracted to build the agents' initial locations for
the evacuation. In the end, there were 165571 agents with a
work activity within the endangered area. This set of agents
and locations builds our start setup for the evacuation; this
means we will simulate a break of the Sihlsee dam during
regular working hours.

4.2 Calibration of the Queuing Model
Since the underlying simulation framework is mainly de-

signed for the simulation of motorized transportation, sev-
eral adaptations are necessary. At �rst it is obvious that the
evacuees do not care about the tra�c direction. So we al-
lowed all links in the street network to be used in both direc-
tions. Given the link length, the queuing model is described
by three parameters for each link. The parameters are: �ow
capacity, storage capacity and free �ow speed. These
parameters had to be calibrated to achieve an appropriate
�ow dynamic for pedestrians. In literature the �ow dynamic
of pedestrians is often described by fundamental diagrams
[37, 31]. These diagrams show the velocity as a function of



Figure 3: Weidmann's fundamental diagram com-
pared to queuing model

the density of pedestrians. Weidmann pointed out that the
relation between density and velocity is adequately captured
by the so-called Kladek-formula [37]2:

vF,hi(D) = vF,hf × [1− e
−γ×( 1

D
− 1

Dmax
)
]

With:

• vF,hi the velocity at a particular density [m/s],

• vF,hf the velocity at free �ow [m/s],

• γ a free parameter [persons/m2],

• D the actual density [persons/m2] and

• Dmax the density at which no �ow occurs [persons/m2].

Empirical studies showed the best results with γ = 1.913
persons/m2, vF,hf = 1.34 m/s and Dmax = 5.4 person/m2.
Our queuing model, however, generates a speed-density

relationship of the form v = min[vmax, 1/D] [36]. Therefore
a complete agreement is not possible. However, as shown
in �gure 3, the �ow dynamic produced by our queue model
is not too far away from Weidmann's fundamental diagram.
The details of the calibration are explained in the following
paragraphs.
As the above mentioned NAVTEQ network is designed for

transport simulation, we had to adjust the networks param-
eters accordingly. In the original network �le, there is only
information about number of lanes but not the width of the
street, so we had to estimate it. According to the hand-
book Strassenprojektierung [6] the lane width on streets in
Switzerland has to be 2.20-3.00 m for automobiles and 3.10-
3.90 m for trucks. Taking this information, we set the width
of all lanes in the network to 3.50 m. For pedestrian evac-
uation the �ow capacity is assigned in persons per meter
per second, but it depends on the actual density of persons.
According to Weidmann [37] the maximum �ow is about 1.3
persons/(m · s) at a density of 2 persons/m2. The SFPE
Handbook of Fire Protection Engineering [8] supports these
values. Together with the lane width we got the �ow capac-
ity of 4.55 persons/(lane · s).
2Newer studies [34] imply other fundamental diagrams then
those from Weidmann or Predtetschenski and Milinski. An
adaptation of these values could, in consequence, become
necessary in future.

Figure 4: Sketch of the modi�ed evacuation network

Another parameter for the queue simulation is the storage
capacity of the links. Not to contradict the �ow rate in Wei-
dmann's fundamental diagram we set the storage capacity
to 2 persons/m2.
The free �ow speed was set to 1.666m/s. This value is

slightly higher then the 1.34m/s recommended in literature,
but the values presented by Weidmann re�ect the pedestrian
�ow under normal conditions and not in a case of emergency.
Before we can apply this approach to �real world� scenarios
we have to verify all parameters and check if they are real-
istic.
Overall, there are 101 links that lead out of the evacuation

area. Most of them have one or two lanes. The aggregated
capacity of all these �escape links� is 787.15 persons/s. How-
ever, this capacity is a theoretical value since it is unlikely
that the evacuees will �nd a way to distribute themselves
in such a smooth way over the network. Rather it is ex-
pected that this out�ow rate has a much lower value at the
initial iteration, where all evacuees proceed on the assump-
tion that the network is empty and there is free speed on all
links. With the optimization of the evacuation procedure
the out�ow rate is expected to increase as the evacuees will
make better use of all roads.

4.3 Initial Routing
Initial plans use the shortest path (according to free speed

travel time) out of the evacuation area for all agents. Within
the MATSim framework a shortest path router based on
Dijkstra's shortest path algorithm [7] has been implemented.
This router �nds the shortest path in a weighted graph from
one node to any other, whereby the actual weights for a link
are de�ned by a time-dependent cost function. Since we
want to evacuate the city as fast as possible, the weights
represents the (expected) travel time3.
There is, however, no particular node as the target of the

3For the initial evacuation plans the expected travel time is
determined by free travel speed.



Figure 5: Evacuation time vs. iteration number

shortest path calculation, as the evacuees have more than
one safe place to run to. Instead, in the underlying domain
every node outside the evacuation area is a possible desti-
nation for an agent that is looking for an escape route. To
resolve this, the standard approach (e.g. [24]) is to extend
the network in the following way: All links which lead out of
the evacuation area are connected, using virtual links with
in�nite �ow capacity and zero length, to a special �evacu-
ation node� (see �gure 4). Doing so, Dijkstra's algorithm
will always �nd the shortest route from any node inside the
evacuation area to this evacuation node.

4.4 Re-Planning and Learning
At the end of each iteration, every agent scores the per-

formed plan. In this study the scoring function is simply
the negative of the travel time. This score is then memo-
rized for the plan. After an agent has updated the score of
its actual plan, it will be selected with a probability of 10%
for re-routing. This replanning probability is a con�gurable
parameter; 10% is a good compromise between slow conver-
gence on the one hand, and over-reaction of the system on
the other hand. In the re-routing procedure, the Dijkstra
router is again applied to �nd the fastest escape route for
the particular agent. The di�erence to the initial routing is
that the weights for the links are no longer based on free
speed travel times but on the experienced travel times from
the last iteration. The travel times of all links are recorded
and averaged into time bins. More precisely, the link traver-
sal times of all pedestrians entering a link during a speci�c
time bin are averaged. Those link travel times are then used
when, during the Dijkstra computation, a speci�c link is en-
tered by the algorithm. More details can be found in [18].
The size of these bins is con�gurable; for the present study,

a size of 15 mins was used. If no tra�c for a particular time
bin and link occurs, free speed travel time is assumed for
this time bin and link.
For agents that have not been chosen for re-planning, the

plans with the highest scores (i.e. the plan with the fastest
escape route) are selected for the next iteration. Repeating
this iteration cycle, the agent behavior will move towards a
Nash equilibrium. If the system were deterministic, then a
state where every agent uses a plan that is a best response
to the last iteration would be a �xed point of the iterative
dynamics, and at the same time a Nash Equilibrium since no
agent would have an incentive to unilaterally deviate. Since,

Figure 6: Evacuation progress

however, the system is stochastic, this statement does not
hold, and instead we look heuristically at projections of the
system such as in Fig.5. In all such plots, 100 iterations is
more than enough to arrive at a horizontal line, indicating
that the iterative dynamics has reached a steady state.
In most (but not all) evacuation situations, the Nash equi-

librium leads to a shorter overall evacuation time than when
everybody moves to the geographically nearest evacuation
point. On the other hand, a Nash equilibrium means that
nobody has an incentive to deviate. The Nash equilibrium
in an evacuation situation can therefore be considered as a
solution that could be reached by appropriate training.

5. RESULTS
The simulation run was performed on a dual core CPU

at 2.33 GHz with 2 GB of RAM. The computer runs JAVA
jdk1.5_012 on Linux. The evacuation simulation was
stopped after 100 re-planning cycles. The average runtime
for an iteration was 123 seconds and the overall runtime was
3 hours and 24 minutes. The simulation consumed up to
1393MB of RAM. Besides the evacuation time, the out�ow
rate of the evacuation area has been recorded, too.
As expected, the evacuation time decreases signi�cantly

with the iterations. Especially within the early iterations,
it drops very fast. A diagram that represents this process
is shown in �gure 5. The evacuation takes 7205 seconds at
the initial iteration. Beginning with iteration 15 there are
only small changes and it �uctuates randomly around 2676
seconds.
These values show only how long the overall evacuation

takes but it tells nothing about the evacuation process itself.
Therefore we evaluated the evacuation process for iteration
0, 1, 5, 10 and 100 in detail. Figure 6 shows the results.
The initial iteration results in a steep gradient (high out-

�ow) at the beginning but it �attens very fast. As the it-
erations progress the initial gradient gets even steeper and
becomes more linear.
Some statistics of the out�ow of evacuees for the discussed

iterations are given in table 1. Overall the results are as ex-
pected: both the maximum �ow and the median �ow are
increasing with the iterations. Nevertheless, there are some
interesting details. One interesting aspect is the low value
for the median of the initial or 5th iteration. A possible rea-
son for this phenomenon is that many agents try to perform



Iteration max mean median

0 127 22.98 5
1 129 24.32 5
5 139 34.78 10
10 139 50.26 46
100 148 59.94 68

Table 1: Statistics of the out�ow rate (persons/s)

the same escape route. If this happens they will line up in a
few long queues, which will result in a low constant out�ow
rate.
The comparison of the snapshots for iteration 0 and 100

in �gure 7 supports this hypothesis. Both snapshots were
taken after 30 minutes of evacuation. The escape directions
are indicated by black arrows. In iteration 0 there are con-
siderably more evacuees at this point then in iteration 100.
In the latter, the agents take advantage of six evacuation
points (indicated by the red circles). This is much more ef-
fective then the behavior in the initial iteration, where only
four evacuation points are used. Bottlenecks can also be de-
tected. Figure 8 depicts this issue. In this �gure the links
are colored dependent on congestion. A green color indi-
cates that the agents travel with free �ow speed and as the
color moves to red the �ow speed decreases. It is not sur-
prising that these congestion instances emerge at bridges,
but the snapshot is taken after 100 iterations of learning
and that means: there seems to be no better solution for
the individual agent then to queue up on these bridges.4

6. DISCUSSION
The simulations concentrate on two types of agent behav-

iors: One where every agent follows the shortest path to the
safe area; one where a Nash equilibrium is reached. Both
can be considered as benchmarks:

• The �rst as one where agents are rational about their
path choice, but unaware of congestion e�ects.

• The second as a solution that could be reached by
training, assuming that agents follow the training so-
lution also in the real situation.

Clearly, both can only be considered as benchmark solu-
tions. In panic situations, people tend to be irrational and
to display herd behavior [15]. Still, if even the Nash equilib-
rium solution does not leave enough time, then this would
be a strong indicator that major measures would need to be
taken to rectify the situation.
It should also be stated that Nash equilibrium and system

optimum do not need to coincide � i.e. that solutions even
better than the Nash equilibrium might be possible. Such
solutions would, however, be unstable in the sense that peo-
ple would have an incentive to deviate. Such solutions seem
even more improbable than Nash equilibrium solutions.
Finally, one should mention that MATSim already con-

tains the �rst hooks towards en-route replanning [17]. This
would allow to add situation-based behavior into the simu-
lation.

4For those who know the area: Since this preliminary study
is based on a vehicular tra�c network, it ignores links which
can be used by pedestrians only. This could be corrected by
using di�erent network data.

Figure 7: Comparison of two snapshots

Another issue concerns the mode choice: The investiga-
tion assumes that all evacuation is done by foot while it
might be reasonable to assume that some people use cars
or cycles, and they might even leave vehicles in the street
to continue on foot if progress by vehicle becomes too slow.
For the time being, such issues are not considered. The
queue model could, to a certain extent, be parameterized
to deal with mixed tra�c, as long as all modes move with
the same speed. Beyond that, one would arguably need to
switch to a true two-dimensional model such as [15] or [21].
Such models could still operate on networks [13].

7. CONCLUSIONS
We introduced a microscopic pedestrian simulation frame-

work for large-scale evacuations. It is implemented as a
Multi Agent Simulation, where every agent tries to opti-
mize its individual evacuation plan in an iterative way. The
simulation framework is demonstrated through a case study
based on a hypothetical dam-break of the Sihlsee dam near
Zurich. Despite the underlying behavioral model being quite
simple, the simulation gives plausible results regarding the
predicted evacuation time and bottlenecks. The runtime
performance shows that this approach is well suited for large
scale scenarios. With state of the art hardware it is no prob-
lem to simulate much larger scenarios with over one million
agents. In future work it is planed to apply this framework
to an evacuation simulation in the case of a Tsunami warn-
ing for the Indonesian city of Padang. The improvement
of the behavioral model (e.g. herd behavior [15] modi�ed
for large-scale scenarios [13]) could also be a topic of future
work.
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