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ABSTRACT 
Micro-simulations for transport planning are becoming increasingly important in traffic 
simulation, traffic analysis, and traffic forecasting. In the last decades the shift from using 
typically aggregated data to more detailed, individual based, complex data (e.g. GPS tracking) 
and the continuously growing computer performance on fixed price level leads to the possibility 
of using microscopic models for large scale planning regions.  

This chapter presents such a micro-simulation. The work is part of the research project 
MATSim (Multi Agent Transport Simulation, http://matsim.org). In the chapter here the focus 
lies on design and implementation issues as well as on computational performance of different 
parts of the system. 

Based on a study of Swiss daily traffic – ca. 2.3 million individuals using motorized individual 
transport producing about 7.1 million trips, assigned to a Swiss network model with about 60’000 
links, simulated and optimized completely time-dynamic for a complete workday – it is shown 
that the system is able to generate those traffic patterns in about 36 hours computation time. 
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1 INTRODUCTION 
By tradition, transport planning simulation models tend to be macroscopic or mesoscopic (e.g. de 
Palma & Marchal, 2002; PTV, 2008). Reasons for this are access to aggregated data only (e.g. 
traffic counts, commuter matrices, etc.) and limitations in computational hardware to calculate 
and store detailed computations. These limitations have changed in the last few decades. 
Performance of computer hardware has been continually growing—and still grows—while the 
cost of machines stays fixed. For transport planning, the relevant developments in computer 
hardware are: 

• The capacities of fast random access memory (RAM) have increased dramatically. 
• Multi processor hardware allows one to perform parallel computation without using 

(maintenance intensive) computer clusters. 
• Shared memory architectures allow fast on-demand access to the physical memory for 

an arbitrary amount of processes. 
In the same manner, the available data used in transport planning are getting more detailed and 

complex. Good examples for that are person diary surveys (e.g. Hanson & Burnett, 1982; 
Axhausen et al, 2002; Schönfelder et al, 2002), and analysis of individual transport behavior 
based on GPS data (e.g. Wolf et al, 2004).  

Therefore, the demands made to transport planning software are getting more complex, too. 
Micro-simulation is becoming increasingly important in traffic simulation, traffic analysis, and 
traffic forecasting. Some advantages over conventional models are: 

• Computational savings when compared to the calculation and storage of large 
multidimensional probability arrays necessary in other methods. 

• Larger range of output options, from overall statistics to information about each 
synthetic traveler in the simulation. 

• Explicit modeling of the individuals' decision-making processes. 
The last point is important since it is not a vehicle that produces traffic; it is the person that drives 
the vehicle. Persons do not just produce traffic; instead they try to manage their day (week, life) 
in a satisfying way. They go to work to earn money, they go hiking for their health and pleasure, 
they visit their relatives for pleasure or because they feel obliged to do so, they shop to cook a 
nice dinner at home, and so on. Since not all of this can be done at the same location, they travel, 
which produces traffic. To plan an efficient day, many decisions have to be made by each person. 
They decide where to perform activities, which mode to choose to get from one location to 
another, in which order and at which time activities should be performed, with whom to perform 
certain activities, and so on. Some decisions are made hours (days, months) in advance while 
others are made spontaneously as reactions to specific circumstances. Furthermore, many 
decisions induce other decisions. Therefore, it is important to model the complete time horizon of 
the decision makers. 

Transport simulation models should be able to implement (at least part of) such an individual 
decision horizon and assign the outcome to a traffic model, since it is the complete daily 
schedules (and the decisions behind that) that produce traffic. This chapter presents such a micro-
simulation, called MATSim-T (Multi Agent Transport Simulation Toolkit), implemented as a 
Java application, usable on any operating system. The work is part of the research project 
MATSim (http://matsim.org). In the chapter here the focus lies on design and implementation 
issues as well as on computational performance of different parts of the system. On the basis of 
integrated (daily) individual demand optimization in MATSim-T, the system is extended such 
that it provides flexible handling of a large variety of input data; extensibility of models and 



algorithms; a simple interface for new models and algorithms; (dis)aggregation for different 
spatial resolutions; robust interfaces to third party models, programs, and frameworks; unlimited 
number of individuals; and an easily usable interface to handle new input data elements. 

This chapter lays the focus on the modules. It analyzes how specific modules affect the 
functionality of the toolkit as well as how they affect the overall computational speed of the 
complete system. The chapter starts with an overview of MATSim-T and related work (Sec. 2).  
This is followed by sections about the modules of the iterative part of MATSim-T: the traffic 
flow simulation (Sec. 3), the scoring and plans selection modules (Sec. 4), the re-planning 
(Sec. 5), and finally a comprehensive view at the whole iterative process (Sec. 6).  Sec. 7 sketches 
the computational demand of the initial demand generation.  Although that process runs at the 
beginning of the study, some aspects of it are easier to explain after the iterative part of MATSim 
is laid out. The chapter closes with an overview of the current development processes which will 
enhance the system in size, speed and functionality. 

 
 

2 OVERVIEW 
2.1 MATSim-T 
The term multi agent micro-simulation is used with different meanings in transport research. 
Often, the word “microscopic” is used to describe a “car following model” (e.g. Wiedemann, 
1974) that is also used in some commercial products (e.g. VISSIM: PTV, 2008). In MATSim, the 
term is used to describe that each modeled person contains its completely individual settings. 
Each person is modeled as an agent, and the sum of all agents should reflect the statistically 
representative demographics of the region. The demand is modeled and optimized individually 
for each agent—not only for some parts of the demand like departure-time and route choice, but 
as a complete temporal dynamic description of the daily demand of each agent. 

The demand of an agent is called a plan in MATSim. Figure 1 shows an example of one 
agent’s daily plan, written in XML (W3C, 2008). This structure stays the same during all 
modeling and simulation of the demand. In particular, the assignment of the traffic demand does 
not only take single trips into account, but the complete daily plans—including the activities—are 
executed. Thus the term micro-simulation relates to the microscopic (individual) demand of each 
person in the scenario. 

To produce individual plans for each agent with MATSim as shown in Figure 1 it is necessary 
to provide the user interfaces such that he/she is able to generalize and fuse the data available for 
the region of interest, so that a general dataset of the infrastructure, the population, and the 
demand can be created. To structure the process of demand creation/optimization, MATSim-T 
can be split up into four parts as shown in Figure 2: 

• Scenario creation process 
• Initial individual demand modeling process 
• Iterative demand optimization process (including demand execution, scoring, and 

replanning) 
• Post-process analysis 

Since MATSim-T is a modular approach, all parts shown in Figure 1 (FUSION, IIDM, EXEC, 
SCORING and REPLANNING) are given as interfaces such that users are able to plug in their 
own modules. 

 



 
The first two processes rely on the available data of the region of interest. Since the quality, 

quantity, and resolution of data can vary a lot from one scenario to another, the scenario creation 
and the initial demand modeling process steps can vary as well. MATSim-T therefore provides in 
its core only the resulting data representation of the infrastructure (network and facilities) and the 
population including each person’s individual demand, plus parsers and writers for the XML data 
representation. 

To clarify the functionality of a FUSION or IIDM module, here is an example: Let us assume 
that land-use information about the region of interest is given based on the resolution of 
municipalities, and that the number of work places is given for each municipality. The user 
implements a MATSim-FUSION module that parses this information and creates one facility 
(including the number of workplaces) per municipality. This gives a rough approximation of the 
existing work facilities and work places in the region. Let us now assume that at a later stage of 
the project the user has access to detailed buildings data including work facilities. The system 
allows one to add another module that replaces the already created work facilities with the new 
information and distributes the number of work places to the more realistic work facilities of that 
region. 

While the resulting facilities of both situations are suitable for MATSim-T to start the third 
step of the overall process (demand optimization; Figure 1), the second version of the facilities 
delivers more detailed results. Even though the two described modules are implemented for a 
specific scenario, they can be part of the MATSim toolkit and therefore, another user with the 
same needs is able to reuse the modules for his/her own scenario. 

 

<plans name="example plans file"> 
 ... 
 <person id="393241" sex="f" age="27" license="yes" car_avail="always" 
    employed="yes"> 
  <travelcard type="regional-abo" /> 
  <plan> 
   <act type="home" link="58" start_time="00:00" dur="07:00" end_time="07:00" /> 
   <leg mode="car" dept_time="07:00" trav_time="00:25" arr_time="07:25"> 
    <route>1932 1933 1934 1947</route> 
   </leg> 
   <act type="work" link="844" start_time="07:25" dur="09:00" end_time="16:25"/> 
   <leg mode="car" dept_time="16:25" trav_time="00:14" arr_time="16:39"> 
    <route>1934 1933</route> 
   </leg> 
   <act type="home" link="58" start_time="16:39" dur="07:21" end_time="24:00" /> 
  </plan> 
 </person> 
 ... 
</plans> 

Figure. 1: Description of the demand of a synthetic person (including demographic data) for a 
complete day. The agent with ID 393241 plans to leave home—located on link 58—to travel to his 
work place. He uses a route leading along 4 nodes (5 links) with an expected travel time of 25 
minutes. The agent stays at work for 9 hours, then travels back home with an expected travel time of 
14 minutes. The demand does not only describe single parts of the day, but the complete sequence for 
agent 393241 continually in time. – Source: Balmer, 2007. 



 

Figure 2: Process structure of MATSim-T 
 
The post-process analysis part of MATSim-T (fourth part of Figure 2) works in the same way, 

with the difference that now the input data follows MATSim standards (MATSim XML formats 
of the network, facilities, population and demand) and therefore is useable for any given scenario. 

The iterative demand optimization process (third part of Figure 1) is, in a way, the core of 
MATSim-T. While all other steps are run once in a sequential order defined by the user, part 
three optimizes the demand for each individual synthetic traveler in the scenario such that they 
respect the constraints (network, facilities) of the scenario and the interaction with all the other 
actors of that region. 

Usually, a method of relaxation is used to find an equilibrium state. For route choice the 
Wardrop equilibrium (Wardrop, 1952) describes such a relaxed state. But importantly, not only 
the routes are optimized in MATSim-T. Instead, the complete daily plan—including routes, 
times, locations, sequence of activities, activity types, and so on—of each agent is optimized. 
Each agent tries to execute its day with highest possible utility. The utility of a daily plan depends 
on infrastructural constraints (capacity of streets, opening times of shops, etc.) and on the daily 
plans of the other agents in the system. This implies that the effective utility of a daily plan can 
only be determined by the interaction of all agents. This is the place where co-evolutionary 
algorithms (Holland, 1992; Palmer et al, 1994) come into play. An evolutionary algorithm 
basically consists of the following steps: 



1) Initialize P(t=0) — Create the population of individuals at time t=0 
2) Score P(t) — Calculate the “fitness” 
3) Select P’(t) out of P(t) — “survival of the fittest” 
4) Recombine and mutate P’(t) — “crossover” and “mutation” 
5) P(t+1) = P’(t); t = t+1 — the next generation of individuals 
6) GOTO item 2 

Applied to the demand optimization (optimization of daily plans) in MATSim, this means: 
1) Initialize / generate the daily plans for each agent in the system 
2) Calculate the utility of the execution of the individual daily plans for each agent 
3) Delete “bad” daily plans (the ones with a low utility) 
4) Duplicate and modify daily plans 
5) Make those plans the relevant plans for the next iteration; increase the iteration 

counter by one 
6) Goto 2. 

It is important to note that the “individuals” of the evolutionary algorithms are the plans, while 
the synthetic travelers are the entities that co-evolve. 

Figure 2(c) shows this optimization loop. For each of the steps listed above, specific modules 
are available. The execution of the daily plans (EXEC) is handled by a corresponding traffic flow 
simulation module, in which the individuals interact with each other, i.e. individuals may 
generate congestion on streets of high usage. The SCORING module calculates the utility of all 
the executed daily plans. Plans with a high utility (high “fitness”) survive, while plans with a low 
utility (e.g. caused by long travel times because of traffic jams) are eventually deleted. 

The creation and variation of daily plans (REPLANNING) is distributed among different 
modules that are specialized on varying specific aspects of daily plans. The modifications in the 
plan of a single agent are completely independent on the re-planning of all the other agents’ 
plans.  

 
2.2 Related Work 
Many models have implemented the concept of activity based demand generation (e.g. “VISEM”: 
PTV, 2008; Vovsha et al, 2002; Bowman et al, 1999, Bhat et al, 2004; Pendyala, 2004; Arentze et 
al, 2000). But the results are typically delivered as (time-dependent) origin-destination matrices, 
which are used as input for static or dynamic traffic assignment models. Completely agent-based 
micro simulations (e.g. “mobiTopp”: Schnittger & Zumkeller, 2004)) are typically focused on 
telematics aspect or on effects of changes in infrastructure. Event driven simulations for transport 
planning (e.g. Axhausen, 1988; Balmer & Nagel, 2006; Axhausen & Herz, 1989) already 
presented the powers of micro-simulations, but they usually only work on small scenarios. 

The work most related to the MATSim project is TRANSIMS (2008), which also generates 
individual activity schedules for large-scale scenarios. While the concepts are similar, there are 
some important differences.  The most important differences are: 

• MATSim is consistently constructed around the notion that travelers (and possibly other 
objects of the simulation, such as traffic lights) are “agents”, which means that all 
information for the agent should always kept together in the simulation at one place.  In 
this way, an agent in MATSim can access demographic characteristics or time pressure 
while he/she is moving around in the transport system.  In TRANSIMS, such 
information is in principle available, but fragmented between many modules and many 
files. 



• As a mirror of the coherent agent information, MATSim uses the hierarchical XML 
(W3C, 2006) format for the input or output of agent information.  Because the file 
format is hierarchical, it can be filled out with different levels of detail.  This means that 
in all places where agent information is exchanged between modules, the same file 
format is used.  This has two important consequences: (i) Arbitrary modules can be 
combined to fill out the agent information. In TRANSIMS, the capabilities of the 
modules are given implicitly by the file formats.  (ii) One DTD (Document Type 
Definition, see W3C, 2006) is sufficient to ensure correctness of all agent data files. 

• As a consequence of the agent design, it is easy to maintain several plans per agent.  
This facilitates to interpret the iterative part of MATSim as a co-evolutionary algorithm, 
where every agent draws on a population of plans in order to find better solutions for 
him-/herself. Once more, this could be emulated in TRANSIMS, but it would be 
considerably more difficult to implement it, and in some sense the only option may be 
to add something similar to the MATSim agent database (Raney & Nagel, 2004) to 
TRANSIMS. 

• The traffic flow simulations currently used in MATSim-T are simpler than that in 
TRANSIMS, and as a result run considerably faster, thus allowing meaningful runs in 
days instead of weeks.  This is not really a conceptual difference, but it was an 
important design decision when starting MATSim: Iterations should essentially run over 
night. 

Agent-based micro-simulation applications can also be found in related research fields to 
transport planning. Promising concepts in urban planning are land-use simulations, i.e. 
URBANSIM (Waddell et al, 2003), ILUTE (Salvini et al, 2005) or the models of Abraham/Hunt 
(Hunt et al, 2000). 

 
2.3 Case Study (“all-of-Switzerland”) 
From a user point of view, it is of high interest how much time a simulation program needs to 
spend until results are produced. This chapter will present the performance measures of the 
toolkit on a typical large-scale transport planning study. Meister et al (2008) present the first 
results for the daily traffic for the whole of Switzerland created with MATSim-T. That case study 
will be used to present the computational performance of each part of the toolkit. The extents of 
the Swiss daily traffic demand study are: 

• The national planning network (“Nationales Netzmodell”: Vrtic et al, 2003) consists of 
~24’000 nodes and ~60’000 links. 

• Based on the enterprise census 2000 (SFSO, 2001) and the census 2000 (SFSO, 2000), 
ca. 1.7 million facilities are modeled. Up to five different activities (“home”, “work”, 
“education”, “shop” and “leisure” activity) are assigned to each facility. 

• With the census 2000 and the microcensus 2005 (SFSO, 2006), about 7 million 
synthetic persons (agents) are generated, incl. demographic attributes like age, gender, 
car license ownership, car availability, public transport ticket ownership and employed 
status. 

• The generation of the initial, individual, time-dependent daily demand is described in 
detail in Ciari et al (2007) and Meister et al (2008). Overall, about 22 million trips are 
generated—about 7.1 million trips for motorized individual transport. 

• The performance measures are produced on a machine with 8 dual-core processors with 
2.2 GHz clock rate each. 



• The case study needs about 22 GByte of RAM. 
 
2.4 Computing times 
This chapter concentrates on the MATSim architecture and the resulting computing times.  The 
above scenario is close to the largest that is currently feasible.  Since it is possible to obtain 
plausible results with runs with 10% of the population, this means that scenarios up to 70 million 
people can currently be addressed.  If hardware keeps improving in similar ways as in the past, 
simulating even large mega-cities or “all-of-Europe” seems within reach. 

Computing times are given with respect to that specific scenario.  Unfortunately, it has turned 
out consistently that finding simple predictive rules for the computational performance of 
MATSim is quite difficult (Nagel & Rickert, 2001; Cetin et al, 2003; Cetin, 2005).  This has to do 
with the fact that interwoven aspects of hardware, implementation, scenario details, and scenario 
size play a role.  For example, hardware, implementation and scenario size together determine 
how much of a scenario fits into cache or memory, and if the computation is I/O- or CPU-bound.  
Scenario details decide, say, during how much of the simulated time there is activity in all parts 
of the system (as opposed to activity on a small number of links).  It might be possible to give 
worst-case complexities.  These, however, in our experience are completely unrelated to the 
actual computing times.  This chapter rather gives computing times for a specific scenario, plus 
information on how these times change when important aspects, such as the number of travelers 
or the number of network elements, change. 

 
 

3 TRAFFIC FLOW SIMULATION 
Despite considerable work over more than the last decade (e.g. Nagel & Schleicher, 1994; Nagel 
& Rickert, 2001; Gawron, 1998; Cetin et al, 2003; Charypar et al, 2007), the traffic flow 
simulation remains the module with the largest computing requirements for the problem at hand. 
The traffic flow simulation is responsible for executing the daily plans in a physical environment. 
In principle, arbitrary models could be used, e.g. the model by Wiedemann (1974) or a cellular 
automata model (e.g. Nagel & Schreckenberg, 1992), but both require still too large amounts of 
computing power. Transport planning is not so much interested in the detailed driving behavior, 
but in the dynamic amount of traffic, traffic that reflects traffic jams, tailbacks, the dissolving of 
traffic jams, etc. The queue model (Gawron, 1998) fulfills all these requirements. Every street is 
modeled as a queue in which vehicles have to wait for at least the free speed travel time on that 
street.  In addition, both the flow and the storage capacity of each link are limited.  The former 
causes congestion, the latter causes spillback since links can become full and then upstream links 
also become jammed. 

The traffic flow simulations produce information about where each agent is at a specific time 
of the day and what it is doing at that time. Each agent generates for each of its actions (begin/end 
of an activity, entering or leaving a link, etc) a temporally and spatially localized event. 

 
3.1 Default traffic flow simulation 
The current default traffic flow simulation of MATSim-T is a single CPU Java re-implementation 
of the micro-simulation described by Cetin (2005). As an integral part of the toolkit it has the 
advantage that it can directly access all the data in the MATSim object database, saving time-



consuming input and output of data. Because of the platform independence of Java, it runs on all 
major operation systems. 

The default traffic flow simulation uses seconds as smallest entity of time. For each simulated 
second, all queues (all links of the network) synchronously get a new state assigned. As a result, 
the runtime is proportional to the number of links in the scenario: 

 
Tmobsim ∝ tsim Nlinks / ∆t 

 
where tsim is the real time window to be simulated (usually 1 day = 86,400 seconds), ∆t the size of 
the time step (1 second), and Nlinks the number of links in the street network.  There is, however, 
also some overhead to generate events, which depends on the number of agents in the system.  
Performing the Mobility Simulation on a 2.2 GHz processor, the computation time to simulate 
one day of the complete vehicular traffic of Switzerland (see above) takes about 70 minutes (ca. 
20.5 times faster than real time). 

The simulation performance in a naïve implementation of the queue model does not depend 
very much on the number of agents, respectively on their demand: Every link is processed once in 
every time step. This is acceptable for situations where all network elements are in use (e.g. 
morning rush hour), but the simulation will take just as long calculating low traffic during nightly 
hours.  The current implementation in MATSim-T, however, switches off links that are 
completely empty, saving additional computing time but making it now even more dependent on 
the number of agents and their demand structure. 

 
3.2 Deterministic, Event-based Queue-Simulation (DEQSim) 
DEQSim, an alternative traffic flow simulation, extends the queue-model. In addition to the FIFO 
(First-In, First-Out) behavior of the queue model, this traffic flow simulation imitates backwards-
traveling gaps produced by vehicles that leave congestion. This leads to more realistic dynamics 
of congested links. Also the implementation differs. Rather than updating all links every second, 
it only operates whenever a link actually changes its state.  Despite the improved dynamics, such 
state changes are rare.  In a pure queue model, the state of a link only changes when a vehicle 
enters or a vehicle leaves, and since the earliest possible leaving time is known for every vehicle, 
the link can be processed at exactly those times.  It was possible to add the improved dynamics in 
a similar way, by adding “holes” that travel backwards, and that have, in consequence, also pre-
computed times of when they arrive at the upstream end of the link.  Therefore, computing time is 
only used when agents produce events on links. As a side effect, the simulation does not have to 
stick to discrete time steps anymore. A detailed description of the DEQSim can be found in 
Charypar et al (2007). The performance is 
 

Tdeqsim ∝ e(a,Nlinks) 
 

where the number of events e is proportional to the number of agents (a), respectively the number 
of executed plans, and depends on the street network (number of links Nlinks). On a high-
resolution network of the same region, an agent’s route contains more links than on a low-
resolution network, thus generating more events.  

For the case study described above, 162 million events are generated. The total computing 
time for the single-CPU implementation of the DEQSim takes about 50 minutes (real time ratio 
=~ 28). Additionally, the DEQSim also runs in parallel using multiple CPUs with distributed 



memory. The performance scales nearly linearly with the number of processors, implying that in 
8 CPUs, the 50 minutes are reduced to less than 7 minutes. 

In contrast to the default traffic flow simulation, DEQSim is written in the C++ programming 
language. This prevents the direct access to the data from the traffic simulation. Instead, the data 
needed to run the DEQSim is first written to disk and later read by DEQSim. Similarly, DEQSim 
writes its events to a file on disk, from where the MATSim toolkit reads them after DEQSim has 
finished. This file input and output (including the processing of the read in events) requires an 
additional 20 minutes in the given case study.  The input is proportional to the number of agents, 
the output once more proportional to the number of the events.  Maybe somewhat surprisingly, 
the main overhead does not stem from the physical disk I/O, but from the handling of the events 
while they are processed inside MATSim. 

 
 

4 SCORING AND PLANS SELECTION 
The events produced by the traffic flow simulation make it possible to calculate the effective 
utility of each daily plan, including the influences and effects of the interaction of other agents. 
The “success” of a daily plan is specified by an individual utility function. This function describes 
the goals of each agent, and with that its behavior. In principle, any arbitrary utility function 
could be used, for example one coming from prospect theory (Avineri & Prashker, 2003). 
MATSim currently uses a simple but effective utility function described in Charypar and Nagel 
(2005). It is related to the Vickrey bottleneck model (Vickrey, 1969; Arnott et al, 1993), but is 
modified in order to be consistent with the approach based on complete daily plans (Charypar & 
Nagel, 2005; Raney & Nagel, 2006).  

Without going into detail, the elements of the utility function are: 
• A positive contribution for the (usually) positive utility earned by performing an 

activity. 
• A negative contribution (penalty) for traveling. 
• A negative contribution for being late. 

Intuitively, being early should also be punished, but it turns out that this is not necessary since 
“doing nothing” is already indirectly punished by the fact that something with a positive utility 
could be done instead in a better plan.  

The utility function induces the behavior of the agent, because the agent searches in the 
solution space of the utility function for the best possible score, which implies the best possible 
daily plan. The agent cannot optimize outside of the solution space. This aspect is documented in 
more detail later. 

Scores are computed in two ways, depending on the type of the traffic flow simulation: 
• In the case of the integrated (default) traffic flow simulation, scores are computed when 

events from the traffic flow simulation reach the scoring module.  The computational 
effort to compute the scores is smaller than the overhead caused by the events handling 
mechanism.  Any effort to accelerate the computation at this end would need to 
accelerate the events handling mechanism first. 

• In the case of the external DEQSim traffic flow simulation, scores are computed when 
Java events that are generated from the events file reach the scoring module.  This ends 
up being the same problem: The main computational effort is caused by the events 
handling mechanism. 



There is, thus, a computational cost of the events handling mechanism, that is either hidden in the 
default traffic flow simulation, or in the file I/O when the events are read from file.  This may be 
an element of future improvements. 

A small, but important step in the whole process is the deletion of a “bad” plan. As there are 
new plans generated in each iteration for a subset of all agents, the population of plans per agent 
increases up to a user-defined maximum (typically between 3 to 6 plans per agent). Before a new 
plan can be created for an agent that already has as many plans as the maximum defines, the 
worst plan (the one with the lowest score) is deleted from the population. As a consequence, only 
“good” plans survive. This step takes about 10 seconds for the all-of-Switzerland study. 

 
 

5 PLANS VARIATION (RE-PLANNING) 
The re-planning is responsible for making sure that every agent explores its solution space. This 
happens by duplicating an existing plan of an agent, varying (mutating) the copy, and executing 
and scoring it in the next iteration. Each re-planning module takes charge for a specific part in the 
optimization process. As an example, the Router module calculates the routes of a plan based on 
the amount of traffic from the last traffic flow simulation. The Time Allocation Mutator module 
modifies departure times and activity durations of a daily plan. This module varies the 
corresponding times randomly. Additional modules could change activities’ locations, or change 
the sequence of activities. An important fact is that all these modules work independently from 
each other. This allows one to add an arbitrary number of re-planning modules to the optimization 
process. 

A characterization of modules is whether they modify a plan randomly (Random Mutation) or 
whether they search for the best solution based on the results of the last traffic flow simulation 
(Best Response). The former has the advantage not to use any significant amount of computing 
power. Additionally, it searches—sooner or later—over the complete search domain. The 
disadvantage is that such modules require (too) many iterations until the optimization relaxes. 
Best Response modules on the other hand help to relax the system much faster, but they are 
usually more complex and computationally intensive. 

 
5.1 Time Allocation Mutator 
The Time Allocation Mutator is a typical example of a Random Mutation module. It varies 
randomly the departure times and durations of activities in a daily plan. The Time Allocation 
Mutator needs about 2 seconds to process the 10% re-planning agents (approx. 220 000 agents) 
per iteration. 

 
5.2 Router Module 
The Router Module calculates the best routes in a daily plan, given the departure times for each 
leg and the dynamic travel times of all streets (based on the last traffic flow simulation). The best 
route is defined as the one with the least negative utility. This Best Response module uses the 
complete and dynamic traffic load of the system for finding routes. 

Currently, MATSim has three different implementations of the Router module. They are all 
based on a time-dynamic variant of Dijkstra’s algorithm for finding shortest paths in networks, 
and they return all the identical results. Our newest implementation, the Landmarks-A* module 
(Lefebvre & Balmer, 2007), gives the best performance in average: For the given case study it 



needs in about 0.1 milliseconds to calculate one route in average.  For the 7.1 million (motorized) 
routes of the “all-of-Switzerland” scenario and 10% route replanning rate this implies 71 seconds 
of computing time per iteration, which can, however, be shared between parallel CPUs. 

Additional computational results for different routing algorithms and different networks sizes 
can be found in the paper by Lefebvre & Balmer (2007).  Unfortunately, those results are not 
sufficient to make a prediction about the functional form of the average complexity of the 
Landmarks-A* implementation; the most probable fit may be O(n2) where n is the number of 
network nodes.  It also plays a role that the Java implementation of the priority queue does not 
offer a fast “decrease-key” operation. 

 
5.3 “planomat” 
Another Best Response module available in MATSim is planomat, described in full detail in 
Meister (2004). This module not only optimizes one aspect of a daily plan, but all parts at the 
same time. It bases its assumptions heavily on the outcome (events) of the last execution of the 
traffic flow simulation (see above). Additionally, it is able to coordinate the daily plans of 
members of the same household (e.g. a common dinner at home). This module is written in C++, 
but can be called from the MATSim toolkit. 

The C++-planomat is a genetic algorithm (GA) with a special encoding for activity sequences, 
activity locations, activity times, and activity participation.  The encoding was constructed with 
the idea that a plan that is “good in the morning” and another plan that is “good in the afternoon” 
should be able to combine into a plan that is “good overall”.  This takes some input from the GA 
coding of the traveling salesman problem.  One instance of the GA generates the plan(s) for one 
person or one household.  As is common, the GA is not a particularly fast method to solve the 
problem, but it is extremely flexible with respect to the inclusion of additional constraints, for 
example facility opening times. 

A simplified version of the planomat—written in JAVA—is an integral part of the MATSim 
toolkit and optimizes the time schedules. It is therefore a substitute of the Time Allocation 
Mutator. planomat uses an evolutionary algorithm for the optimization of departure times and 
activity durations. It is therefore far more computationally intensive than the Time Allocation 
Mutator module. In the above described case study, it uses about 5.7 milliseconds in average for 
the best response calculation of timing of a single daily plan.  For the ca. 2.3 million (motorized) 
plans of the “all-of-Switzerland” scenario and 10% planomat replanning rate this implies 
1331 seconds of computing time per iteration, which can, however, be shared between parallel 
CPUs. 

 
5.4 Additional modules 
It is important to recall at this point that MATSim-T is not limited to the modules described 
above.  Any user can add his or her own modules; additional modules are also added by the 
developers.  The computational performance of such modules will be assessed in due time when 
such modules have proven their value with respect to the transport simulation problem. 

 
 

6 SYSTEMATIC RELAXATION OF THE EVOLUTIONARY ALGORITHM 
According to the user's needs it is now possible to combine all the previously mentioned modules. 
The optimization process, i.e., the iterative processing of single tasks, is done by the toolkit. 



However, with respect to the combination of modules one aspect has to be considered: Each 
additional re-planning module enlarges the solution space for the agent's day-plan. It is required 
that this solution space is completely covered by the utility function. Consider the following 
example: 

If an agent is only allowed to optimize its route it would be feasible to reduce the above 
described utility function to 

 
Utotal = ∑i Utravel,i 
 

since this agent would not be capable to alter its time allocation.  
However, if one adds a time allocation module, and therefore enlarges the solution space, this 

has to be considered by the utility function. On the other hand, it is legitimate to use the extended 
utility function for agents that consider only route choice, since it covers the complete solution 
space. On this account, the further functional development of the optimization process in 
MATSim-T (implementation of new re-planning modules) goes hand in hand with the extension 
of the agents’ behavioral models. 

In the following the relaxation behavior and the required computational time of the co-
evolutionary algorithm will be analyzed. 

 
6.1 Setup 
For the suitable analysis of the relaxation process a typical and in the last years frequently used 
setup is used: 

1. Each agent is capable of route-choice. 
2. Each agent is capable of time allocation choice. 
3. In each iteration, a randomly selected sample of 10% of all agents creates a new plan by 

altering the routes of an existing plan. 
4. In each iteration, a randomly selected sample of 10% of all agents creates a new plan by 

altering the time allocation of an existing plan. 
5. The remaining 80% of agents select an existing plan for repeated execution. The selection 

probability corresponds to the logit function pi = exp(β Si)/∑j exp(β Sj), where Si denotes 
the utility of plan i and β is an empirically estimated constant. 

6. The utility function corresponds to the one given in the previous section. 
7. The number of plans per agent is limited to a maximum of four. 
8. The system will be considered relaxed once the trajectory of average utility per iteration 

represents a stationary process. 
A detailed description of this setup with values for the parameters of the utility function can be 

found in Meister et al (2008). 
 



6.2 Relaxation 
The relaxed state of the co-evolutionary algorithm of MATSim-T is reached if the utility for each 
agent does not noticeably change through variation of the day plans. Since bad plans do not 
“survive”, the utility of all remaining plans levels off eventually. Figure 3 depicts such a 
behavior. The light grey curve represents the utility of the plan that has been executed in the 
corresponding iteration averaged over all agents. The black and the medium grey curve, 
respectively, denote the average utility of the currently available best and worst plan, 
respectively. One can realize that in this example the utility converges to the ”relaxed” state after 
iteration 70, and exhibits only a mean variance of approx. 2 units in iteration 100. 

 

 

Figure 3: Average utility (score) and average trip travel time per iteration 
 
More noticeable is the behavior before iteration 70, especially in iteration 15. Figure 3 shows 

that the average scores for the executed plans (light grey curve) as well as for the worst plans 
(medium grey curve) are remarkably low in iteration 15, which can be ascribed to a so-called 
“network breakdown”. Due to the optimization process and the given constraints (such as the 
time window for the starting a work-activity) it is possible that a lot of agents simultaneously try 
out similar plans, which in turn leads to high traffic densities on preferred roads and therefore to 
highly congested situations. Due to this temporal overload, this congestion cannot be absorbed by 
the surrounding road network due to the overall high traffic density. Spillbacks build up and 
spread over a large part of the network. The model requires a long time to resolve such 
congestion, resulting in high travel times, and therefore in large disutility for traveling. Since the 



last executed plan exhibits a low utility after such a network breakdown most of the agents switch 
their plans. Thus the last optimization step is discarded and the usage of more diverse plans will 
be reinforced. In the paper of Rieser & Nagel (2008) the “network breakdown” situations are 
analyzed in more detail. 

Due to the diversification regarding departure times and route choice, average trips travel 
times decrease (black dotted curve in Figure 3), which in turn becomes noticeable in the resulting 
greater average utilities. 

It appears that after iteration 70 a combination of plans arises which results in a stable traffic 
pattern that is robust towards variations of single agents. Good plans are duplicated during re-
planning and the duplicates are kept if they also turn out to be good. Bad plans are discarded, so 
that finally only good plans will remain which can be observed in Figure 3 with the 
approximation of the medium grey curve to the other two curves. 

 
6.3 Computational time for optimization process 
The total computational time of a single relaxation process consists of the sub-processes as 
described in Figure 2(c). Additional time is required for storing temporal results and analysis 
(intermediate demand, statistics and analysis shown in Figure 2(c)). This latter feature can be 
switched off by the user, so that only the final result will be saved. However, this feature helps to 
analyze the optimization process and allows one to abort the process if needed. For that reason 
this part will not be excluded in the following discussion. In detail the process can be divided into 
the following chronological steps: 

1. Initialization: Loading and managing of infrastructural data (network and facilities) and 
initial demand 

2. Iteration 0: primary execution of the traffic flow simulation and calculating of utilities 
3. Iteration 1 to n: re-planning, traffic flow simulation and scoring 
4. Iteration 0, 1, 2 and every 10th iteration: saving of temporal results and analyses 
5. Finalization: saving of final state (relaxed day-plans) 

Additionally to these steps, certain modules require extra computational time for initialization 
and finalization. For instance, the initialization of the “Landmarks-A*” router module as 
described earlier takes some seconds for calculating the landmarks (see Lefebvre & Balmer, 
2007). The DEQSim requires several minutes for loading the network and individual demand and 
for storing them in optimized data structures. In case of the parallel DEQSim, additional 
initialization time is required. Several java internal processes such as the garbage collector and 
hardware constraints (file I/O) induce additional delays. 

Figure 4 shows the contributions of time to the total calculation time for the first 40 iterations 
of a relaxation process. In this setup the routing is done by eight parallel running “Landmarks-
A*” router modules. Time allocation is done by another eight “Time Allocation Mutator” 
modules. For the execution of the demand the parallel version of the DEQSim with eight threads 
is used. This setup results in a relaxation behavior as shown in Figure 2(c). 

It turns out that the DEQSim requires in average 8-10 minutes per iteration as shown in 
Figure 4. There is, however, an additional overhead of 20 minutes for data exchange with the 
other modules of MATSim-T. Re-planning (time allocation and routing) requires about 90 
seconds computational time, where the main fraction is consumed by the “Landmarks-A*” 
routing modules. The re-planning after a “breakdown” situation as shown in Figure 3 causes a 
significant increase in calculation time for the router (approx. nine minutes; iteration 16). The 



cause for this is that the performance of the Landmarks-A* router decreases if link travel times 
differ significantly between the uncongested and congested traffic state. 

 

 

Figure 4: share of the overall computation time by process steps 
 
One iteration of the co-evolutionary algorithm requires about 32 minutes for the calculation of 

the individual time-variant daily demand consisting of 7.1 million trips on a 60,000 links network 
of Switzerland. In addition, every 10 iterations 22 minutes are used for saving temporal results 
and analysis. Taking into account that the system reaches a relaxed state after about 100 
iterations, the total time for calculating the resulting demand and the corresponding traffic takes 
about 3.2 days. 

 
6.4 Combinations 
It is possible to run the relaxations faster when using other modules. Table 1 lists a set of possible 
combinations of modules and their required average and total runtime to reach a stable state. With 
the replacement of the random mutation module (Time Allocation Mutator) with a best response 
module (planomat) a significant reduction of the number of iterations can be achieved. On the 
other hand, the planomat requires in average 30 minutes computational time per iteration. 
However, finally this trade-off pays off (the total runtime halves). 

If one includes the additional overhead for data exchange between MATSim-T and the 
DEQSim, the performance of the default traffic flow simulation (in Java) and the DEQSim are 



equivalent. With the parallel run of the DEQSim one can achieve a remarkable gain in 
performance, however, the overhead for file-I/O remains the same. 

Finally it is worthwhile to mention that in terms of computational performance the results 
clearly show the applicability (large scenarios, time-dynamic and detailed) of micro simulations 
for transport planning. 

 
Table 1: Computing times of different combinations of modules 
     
traffic flow 
simulation  

routes times # of iterations run time on 
computer 

DEQSim (1 CPU)  Landmarks-A*  Time Allocation Mutator  100  _5.2 Days  
default traffic flow 
simulation (1 CPU)  

Landmarks-A*  Time Allocation Mutator  100  _5.5 Days  

DEQSim (1 CPU)  Landmarks-A*  planomat  30  _1.9 Days  
default traffic flow 
simulation (1 CPU)  

Landmarks-A*  planomat  30  _2.1 Days  

DEQSim (8 CPU)  Landmarks-A*  Time Allocation Mutator  100  _3.2 Days  
DEQSim (8 CPU)  Landmarks-A*  planomat  30  _1.5 Days  
 
Module  Average runtime  Remarks  
DEQSim (1 CPU)  ca. 70 minutes  ca. 50 minutes DEQSim and ca. 20 minutes I/O Overhead  
DEQSim (8 CPU)  ca. 28 minutes  ca. 8 minutes DEQSim and ca. 20 minutes I/O Overhead  
default traffic flow 
simulation  

ca. 70 minutes   

Landmarks-A*  ca. 1.5 minutes  significantly longer after „break-downs“ (ca. 6–10 minutes)  
Time Allocation 
Mutator  10 sec  

planomat  ca. 22 minutes   

 
 

7 INITIAL INDIVIDUAL DEMAND MODELING 
In Fig. 2 the initial demand is stated to be a prerequisite for the optimization in MATSim-T. This 
section describes how the toolkit can be used to create the initial daily demand for each 
individual. The reason why this pre-process is introduced at the end of this article is that the 
solution space – as defined by the setup of the optimization – determines which aspects of the 
plan do not need to be modeled by the pre-process. 

Thus the task of the initial individual demand modeling is to model aspects of the agents’ 
plans that cannot be handled by the iterative optimization process. To get a best possible mapping 
of the real demand, this part is built upon knowledge, surveys and socio-demographic data of the 
investigation area. MATSim-T is built in such a way that it can operate on various types of input 
data. Depending on the scenario, existing input data can vary in quality, level of detail, and 
quantity. The modules for the initial demand modeling are adopted correspondingly, or replaced. 
For this reason the runtime for generating the initial demand varies. Basically, this pre-process is 
of sequential nature. All required modules need to be used only one time. 

The modeling of the individual initial demand for the “all-of-Switzerland” application can be 
found in detail in Ciari et al (2007) and Meister et al (2008). The required runtime is about 14.4 
hours. 



MATSim-T operates on disaggregated information, i.e., the infrastructure is based on 
coordinates rather than aggregates, such as zones (districts, communes, etc.). Activities – and 
hence the facilities in which activities are preformed – are mapped to the links of the network. 
Since the network has a particular resolution, it defines the level of detail of the modeling. In 
other words, ultimately the investigation area has as many zones as the network has (directed) 
links, in the above case 60,000 zones. For high-resolution networks the number of zones can 
increase to more than one million. Since the raw data are typically of aggregated nature, they 
need to be disaggregated. MATSim-T provides several aggregation layers to store such data and 
to disaggregate them on to facilities, activities and persons if needed. 

The modeling of the initial demand can be split up into several steps depending on the 
available raw data and the user's needs. Each of these processes is implemented in one module. 
These modules can be arbitrarily used, extended, replaced or skipped. 

At each point of time during the modeling process it is possible to output intermediate results. 
This is important, since it is typically required to statistically validate the results of the model 
implemented in a module. The intermediate results can be used as input data for further modeling 
steps. 

A further important aspect is the so-called streaming process for the generation of an initial 
demand. While infrastructural data (facilities, network and even aggregation layers) require 
relative little memory, the demand (= the initial plans) requires several gigabytes of memory. 
However, since the demand is generated individually for each synthetic person in the 
investigation area, it is possible to reduce the memory consumption: One loads the agent into 
memory, applies the demand-modeling module, writes the demand to file, and frees the memory. 
Then the next agent is loaded and so on. This allows one to model the individual demand for an 
unlimited amount of agents on standard consumer hardware. A detailed description of the features 
of the MATSim-T initial demand modeling can be found in the dissertation of Balmer (2007) and 
also in Balmer, Axhausen, & Nagel (2006). 

 
 

8 DISCUSSION AND OUTLOOK 
This work shows that the development of the last years considering hardware architecture, CPU 
performance, and optimization of programming implementations allows one to handle large-scale 
scenarios for transport planning with agent-based micro simulations in reasonable time. 
Furthermore it shows that the optimum of performance has not been reached yet. For instance, a 
re-implementation of the parallel DEQSim in JAVA as an integrated part of MATSim-T would 
avoid the overhead per iteration caused by the data exchange between DEQSim and MATSim-T 
(about 20 min for the discussed application), which in turn would decrease the total runtime by 
about 40%.  A scenario of the magnitude of complete Switzerland could be handled in 
approximately one day. 

The setup of the optimization process offers further possibilities of optimization. For instance, 
it is possible to reduce the number of iterations until the system becomes relaxed by introducing 
adaptive re-planning rates. Also the re-planning modules offer potential for optimization, in 
particular the routing module and the planomat. All these optimizations are to be aspired, since 
further functional extension, such as location and mode choice will certainly consume more 
computational time, be it because of the complexity of these modules or because more iterations 
will be required until the system reaches a relaxed state. 



Finally it is worthwhile to mention that the results of MATSim-T are not only traffic patterns, 
but also rather a detailed description on the single agent level. In other words, it is possible to 
determine for each synthetic person at each point in time where she/he is and what she/he does.  
Still, the results should not be interpreted on the level of single agents, but rather at the level of 
aggregated sub-populations. 
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