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Abstract 
Micro-simulations for transport planning are becoming increasingly important in traffic 
simulation, traffic analysis, and traffic forecasting. In the last decades the shift from using 
typically aggregated data to more detailed, individual based, complex data (e.g. GPS 
tracking) and the continuously growing computer performance on fixed price level leads to 
the possibility of using microscopic models for large scale planning regions also.  

This paper presents such a micro-simulation. The work is part of the research project 
MATSim (Multi Agent Transport Simulation, http://matsim.org) while in the paper here the 
focus lies on design and implementation issues as well as on computational performance of 
different parts of the system. 

Based on a study of Swiss daily traffic (ca. 2.3 million individuals using motorized 
individual transport producing about 7.1 million trips, assigned to a Swiss network model 
with about 60’000 links, simulated and optimized completely time-dynamic for a complete 
workday) it is shown that the system is able to generate those traffic patterns in about 
36 hours computation time. 
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1 Introduction 
By tradition, transport planning simulation models tend to be macroscopic or mesoscopic 
(e.g. De Palma and Marchal, 2002; PTV, 2006). Reasons for this are access to aggregated 
data only (e.g. traffic counts, commuter matrices, etc.) and limitations in computational 
hardware to calculate and store detailed computations. These limitations have changed in the 
last few decades. Performance of computer hardware has been continually growing—and 
still grows—while the cost of machines stays fix. For transport planning, the relevant 
developments in computer hardware are: 

• The capacities of fast random access memory (RAM) have increased dramatically. 

• Multi processor hardware allows one to perform parallel computation without using 
(maintenance intensive) computer clusters. 

• Shared memory architectures allow fast on-demand access to the physical memory 
for an arbitrary amount of processes. 

In the same manner the available data used in transport planning are getting more detailed 
and complex. Good examples for that are person diary surveys (e.g. Hanson and Burnett, 
1982; Axhausen et al., 2002; Schönfelder et al., 2002), and analysis of individual transport 
behavior based on GPS data (e.g. Wolf et al., 2004).  

Therefore, the demands made to transport planning software are getting more complex, too. 
Micro-simulation is becoming increasingly important in traffic simulation, traffic analysis, 
and traffic forecasting. Some advantages over conventional models are: 

• Computational savings when compared to the calculation and storage of large 
multidimensional probability arrays necessary in other methods. 

• Larger range of output options, from overall statistics to information about each 
synthetic traveler in the simulation. 

• Explicit modeling of the individuals' decision-making processes. 

The last point is important since it is not a vehicle that produces traffic; it is the person who 
drives the vehicle. Persons do not just produce traffic; instead each of them tries to manage 
his/her day (week, life) in a satisfying way. They go to work to earn money, they go hiking 
for their health and pleasure, they visit their relatives for pleasure or because they feel 
obliged to do so, they shop to cook a nice dinner at home, and so on. Since not all of this can 
be done at the same location, they have to travel, which produces traffic. To plan an efficient 
day, many decisions have to be made by each person. She/he has to decide where to perform 
activities, which mode to choose to get from one location to another, in which order and at 
which time activities should be performed, with whom to perform certain activities, and so 
on. Some decisions are made hours (days, months) in advance while others are made 
spontaneously as reactions to specific circumstances. Furthermore, many decisions induce 
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other decisions. Therefore, it is important to model the complete time horizon of the 
decision makers. 

Transport simulation models should be able to implement (at least part of) such an 
individual decision horizon and assign the outcome to a traffic model, since it is the 
complete daily schedule (and the decisions behind that) which produces traffic. This paper 
presents such a micro-simulation, called MATSim-T (Multi Agent Transport Simulation 
Toolkit), implemented as a Java application, usable on any operating system. The work is 
part of the research project MATSim (http://matsim.org). In the paper here the focus lies on 
design and implementation issues as well as on computational performance of different parts 
of the system. On the basis of integrated (daily) individual demand optimization in 
MATSim-T, the system is extended such that it provides flexible handling of a large variety 
of input data; extensibility of models and algorithms; a simple interface for new models and 
algorithms; (dis)aggregation for different spatial resolutions; robust interfaces to third party 
models, programs, and frameworks; unlimited number of individuals; and an easily usable 
interface to handle new input data elements. 

This paper lays the focus on the modules. It analyzes how specific modules affect the 
functionality of the toolkit as well as how they affect the overall computational speed of the 
complete system. The paper starts with an overview of MATSim-T and related work 
(Sec. 2).  This is followed by sections about the modules of the iterative part of MATSim-T: 
the traffic flow simulation (Sec. 3), the scoring and plans selection modules (Sec. 4), the re-
planning (Sec. 5), and finally a comprehensive view at the whole iterative process (Sec. 6).  
Sec. 7 sketches the computational demand of the initial demand generation.  Although that 
process runs at the beginning of the study, some aspects of it are easier to explain after the 
iterative part of MATSim is laid out. The paper closes with an overview of the current 
development processes which will enhance the system in size, speed and functionality. 

2 Overview 

2.1 MATSim-T 

The term multi agent micro-simulation is used with different meanings in transport research. 
Often, the word “microscopic” is used to describe a “car following model” (e.g. 
Wiedemann, 1974) that is also used in some commercial products (e.g. VISSIM; PTV, 
2006). In MATSim, the term is used to describe that each modeled person contains its 
completely individual settings. Each person is modeled as an agent, and the sum of all 
agents should reflect the statistically representative demographics of the region. The demand 
is modeled and optimized individually for each agent—not only for some parts of the 
demand like departure-time and route choice, but as a complete temporal dynamic 
description of the daily demand of each agent. 
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<plans name="example plans file"> 
 ... 
 <person id="393241" sex="f" age="27" license="yes" car_avail="always" 
    employed="yes"> 
  <travelcard type="regional-abo" /> 
  <plan> 
   <act type="home" link="58" start_time="00:00" dur="07:00" end_time="07:00" /> 
   <leg mode="car" dept_time="07:00" trav_time="00:25" arr_time="07:25"> 
    <route>1932 1933 1934 1947</route> 
   </leg> 
   <act type="work" link="844" start_time="07:25" dur="09:00" end_time="16:25"/> 
   <leg mode="car" dept_time="16:25" trav_time="00:14" arr_time="16:39"> 
    <route>1934 1933</route> 
   </leg> 
   <act type="home" link="58" start_time="16:39" dur="07:21" end_time="24:00" /> 
  </plan> 
 </person> 
 ... 
</plans> 

Figure. 1: Description of the demand of a synthetic person (including demographic data) for a complete 
day. The agent with ID 393241 plans to leave home—located on link 58—to travel to his work place. He 
uses a route leading along 4 nodes (5 links) with an expected travel time of 25 minutes. The agent stays at 
work for 9 hours, then travels back home with an expected travel time of 14 minutes. The demand does 
not only describe single parts of the day, but the complete sequence for agent 393241 continually in time. 
– Source: Balmer, 2007. 

 

The demand of an agent is called plan in MATSim. Figure 1 shows an example of one 
agent’s daily plan, written in XML (W3C, 2006). This structure stays the same during all 
modeling and simulation of the demand. In particular, the assignment of the traffic demand 
does not only take single trips into account, but the complete daily plans—including the 
activities—are executed. Thus the term micro-simulation relates to the microscopic 
(individual) demand of each person in the scenario. 
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Figure 2: Process structure of MATSim-T 

 

To produce individual plans for each agent with MATSim as shown in Figure 1 it is 
necessary to provide the user interfaces such that he/she is able to generalize and fuse the 
data available of the region of interest, so that a general dataset of the infrastructure, the 
population, and the demand can be created. To structure the process of demand 
creation/optimization, MATSim-T can be split up into four parts as shown in Figure 2: 

• Scenario creation process 

• Initial individual demand modeling process 

• Iterative demand optimization process (including demand execution, scoring, and 
replanning) 

• Post-process analysis 

Since MATSim-T is a modular approach, each single part shown in Figure 1 (FUSION, 
IIDM, EXEC, SCORING and REPLANNING) are given as interfaces such that the user is 
able to plug in his/her own modules. 
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The first two processes rely on the available data of the region of interest. Since the quality, 
quantity, and resolution of data can vary a lot from one scenario to another, the scenario 
creation and the initial demand modeling process steps can vary as well. MATSim-T 
therefore provides in its core only the resulting data representation of the infrastructure 
(network and facilities) and the population including each person’s individual demand, plus 
parsers and writers for the XML data representation. 

To clarify the functionality of a FUSION or IIDM module, here is an example: Let us 
assume that land-use information about the region of interest is given based on the 
resolution of municipalities, and that the number of work places is given for each 
municipality. The user implements a MATSim-FUSION module that parses this information 
and creates one facility (including the number of workplaces) per municipality. This gives a 
rough approximation or the existing work facilities and work places in the region. Let us 
now assume that at a later stage of the project the user has access to detailed buildings data 
including work facilities. The system allows one to add another module that replaces the 
already created work facilities with the new information and distributes the number of work 
places to the more realistic work facilities of that region. 

While the resulting facilities of both situations are suitable for MATSim-T to start the third 
step of the overall process (demand optimization; Figure 1), the second version of the 
facilities delivers more detailed results. Even though the two described modules are 
implemented for a specific scenario, they can be part of the MATSim toolkit and therefore, 
another user with the same needs is able to reuse the modules for his/her own scenario. 

The post-process analysis part of MATSim-T (fourth part of Figure 2) works in the same 
way with the difference that now the input data follows MATSim standards (MATSim XML 
formats of the network, facilities, population and demand) and therefore useable for any 
given scenario. 

The iterative demand optimization process (third part of Figure 1) is the actual core of 
MATSim-T. While all other steps are run once in a sequential order defined by the user, part 
three optimizes the demand for each individual synthetic traveler in the scenario such that 
they respect the constraints (network, facilities) of the scenario and the interaction with all 
the other actors of that region. 

Usually, a method of relaxation is used to find an equilibrium state. For route choice the 
Wardrop equilibrium (Wardrop, 1952) describes such a relaxed state. But importantly, not 
only the routes are optimized in MATSim-T. Instead, the complete daily plan—including 
routes, times, locations, sequence of activities, activity types, and so on—of each agent is 
optimized. Each agent tries to execute its day with highest possible utility. The utility of a 
daily plan depends on infrastructural constraints (capacity of streets, opening times of shops, 
etc.) and on the daily plans of the other agents in the system. This implies that the effective 
utility of a daily plan can only be determined by the interaction of all agents. This is the 
place where co-evolutionary algorithms (Holland, 1992; Palmer et al, 1994) come into play. 
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An evolutionary algorithm basically consists of the following steps: 

1) Initialize P(t=0) — Create the population of individuals at time t=0 

2) Score P(t) — Calculate the “fitness” 

3) Select P’(t) out of P(t) — “survival of the fittest” 

4) Recombine and mutate P’(t) — “crossover” and “mutation” 

5) P(t+1) = P’(t); t = t+1 — the next generation of individuals 

6) GOTO item 2 

Applied to the demand optimization (optimization of daily plans) in MATSim, this means: 

1. Initialize / generate the daily plans for each agent in the system 

2. Calculate the utility of the execution of the individual daily plans for each agent 

3. Delete “bad” daily plans (the ones with a low utility) 

4. Duplicate and modify daily plans 

5. Make those plans the relevant plans for the next iteration; increase the iteration counter 
by one 

6. Goto 2. 

It is important to note that the “individuals” of the evolutionary algorithms are the plans, 
while the synthetic travelers are the entities that co-evolve. 

Figure 2(c) shows this optimization loop. For each of the steps listed above, specific 
modules are available. The execution of the daily plans (EXEC) is handled by a 
corresponding traffic flow simulation module, in which the individuals interact with each 
other, i.e. individuals may generate congestion on streets of high usage. The SCORING 
module calculates the utility of all the executed daily plans. Plans with a high utility (high 
“fitness”) survive, while plans with a low utility (e.g. caused by long travel times because of 
traffic jams) are eventually deleted. 

The creation and variation of daily plans (REPLANNING) is distributed among different 
modules that are specialized on varying specific aspects of daily plans. The modifications in 
the plan of a single agent are completely independent on the re-planning of all the other 
agents’ plans.  

2.2 Related Work 

Many models have implemented the concept of activity based demand generation (e.g. PTV, 
2006; Vovsha et al., 2002; Bowman et al., 1999, Bhat et al., 2004; Pendyala, 2004; Arentze 
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et al., 2000). But the results are typically delivered as (time-dependent) origin-destination 
matrices, which are used as input for static or dynamic traffic assignment models. 
Completely agent-based micro simulations (e.g. “mobiTopp”; Schnittger and Zumkeller, 
2004) are typically focused on telematics aspect or on effects of changes in infrastructure. 
Event driven simulations for transport planning (e.g. Axhausen, 1988; Balmer and Nagel, 
2006; Axhausen and Herz, 1989) already presented the powers of micro-simulations, but 
they usually only work on small scenarios. 

The work most related to the MATSim project is TRANSIMS (2006), which also generates 
individual activity schedules for large-scale scenarios. While the concepts are similar, there 
are some important differences.  The most important differences are: 

• MATSim is consistently constructed around the notion that travelers (and possibly 
other objects of the simulation, such as traffic lights) are “agents”, which means that 
all information for the agent should always kept together in the simulation at one 
place.  In this way, an agent in MATSim can access demographic characteristics or 
time pressure while he/she is moving around in the transport system.  In 
TRANSIMS, such information is in principle available, but fragmented between 
many modules and many files. 

• As a mirror of the coherent agent information, MATSim uses the hierarchical XML 
(W3C, 2006) format for the input or output of agent information.  Because the file 
format is hierarchical, it can be filled out with different levels of detail.  This means 
that in all places where agent information is exchanged between modules, the same 
file format is used.  This has two important consequences: (i) Arbitrary modules can 
be combined to fill out the agent information. In TRANSIMS, the capabilities of the 
modules are given implicitly by the file formats.  (ii) One DTD (Document Type 
Definition, see W3C, 2006) is sufficient to ensure correctness of all agent data files. 

• As a consequence of the agent design, it is easy to maintain several plans per agent.  
This facilitates to interpret the iterative part of MATSim as a co-evolutionary 
algorithm, where every agent draws on a population of plans in order to find better 
solutions for him-/herself. Once more, this could be emulated in TRANSIMS, but it 
would be considerably more difficult to implement it, and in some sense the only 
option may be to add something similar to the MATSim agent database (Raney and 
Nagel, 2004) to TRANSIMS. 

• The traffic flow simulations currently used in MATSim-T are simpler than that in 
TRANSIMS, and as a result run considerably faster, thus allowing meaningful runs 
in days instead of weeks.  This is not really a conceptual difference, but it was an 
important design decision when starting MATSim: Iterations should essentially run 
over night. 

Agent-based micro-simulation applications can also be found in related research fields to 
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transport planning. Promising concepts in urban planning are land-use simulations, i.e. 
URBANSIM (Waddell et al., 2003), ILUTE (Salvini et al., 2005) or the models of 
Abraham/Hunt (Hunt et al., 2000). 

2.3 Case Study (“all-of-Switzerland”) 

From a user point of view, it is of high interest how much time a simulation program needs 
to spend until results are produced. This paper will present the performance measures of the 
toolkit on a typical large-scale transport planning study. Meister et al. (2008) present the 
first results for the daily traffic for the whole of Switzerland created with MATSim-T. That 
case study will be used to present the computational performance of each part of the toolkit. 
The extents of the Swiss daily traffic demand study are: 

• The national planning network (“Nationales Netzmodell”; Vrtic et al., 2003) consists 
of ~24’000 nodes and ~60’000 links. 

• Based on the enterprise census 2000 (BfS, 2001) and the census 2000 (BfS, 2000), 
ca. 1.7 million facilities are modeled. Up to five different activities (“home”, “work”, 
“education”, “shop” and “leisure” activity) are assigned to each facility. 

• With the census 2000 and the micro-census 2005 (BfS, 2006), about 7 million 
synthetic persons (agents) are generated, incl. demographic attributes like age, 
gender, car license ownership, car availability, public transport ticket ownership and 
employed status. 

• The generation of the initial, individual, time-dependent daily demand is described in 
detail in Ciari et al. (2007) and Meister et al. (2008). Overall, about 22 million trips 
are generated—about 7.1 million trips for motorized individual transport. 

• The performance measures are produced on a machine with 8 dual-core processors 
with 2.2 GHertz clock rate each. 

• The case study needs about 22 GByte of RAM. 

2.4 Computing times 

This paper concentrates on the MATSim architecture and the resulting computing times.  
The above scenario is close to the largest that is currently feasible.  Since it is possible to 
obtain plausible results with runs with 10% of the population, this means that scenarios up to 
70 million people can currently be addressed.  If hardware keeps improving in similar ways 
as in the past, simulating even large mega-cities or “all-of-Europe” seems within reach. 

Computing times are given with respect to that specific scenario.  Unfortunately, it has 
turned out consistently that finding simple predictive rules for the computational 
performance of MATSim is quite difficult (Nagel and Rickert, 2001; Cetin et al, 2003; 
Cetin, 2005).  This has to do with the fact that interwoven aspects of hardware, 
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implementation, scenario details, and scenario size play a role.  For example, hardware, 
implementation and scenario size together determine how much of a scenario fits into cache 
or memory, and if the computation is I/O- or CPU-bound.  Scenario details decide, say, 
during how much of the simulated time there is activity in all parts of the system (as 
opposed to activity on a small number of links).  It might be possible to give worst-case 
complexities.  These, however, in our experience are completely unrelated to the actual 
computing times.  This paper rather gives computing times for a specific scenario, plus 
information on how these times change when important aspects, such as the number of 
travelers or the number of network elements, change. 

3 Traffic flow simulation 
Despite considerable work over more than the last decade (e.g. Nagel and Schleicher, 1994; 
Nagel and Rickert, 2001; Gawron, 1998; Cetin et al, 2003; Charypar et al, 2007), the traffic 
flow simulation remains the module with the largest computing requirements for the 
problem at hand. The traffic flow simulation is responsible for executing the daily plans in a 
physical environment. In principle, arbitrary models could be used, e.g. the model by 
Wiedemann (1974) or a cellular automata model by Nagel and Schreckenberg (1992), but 
both require still too large amounts of computing power. Transport planning is not so much 
interested in the detailed driving behavior, but in the dynamic amount of traffic, traffic that 
reflects traffic jams, tailbacks, the dissolving of traffic jams, etc. The queue model (Gawron, 
1998) fulfills all these requirements. Every street is modeled as a queue in which vehicles 
have to wait for at least the free speed travel time on that street.  In addition, both the flow 
and the storage capacity of each link is limited.  The former causes congestion, that latter 
causes spillback since links can become full and then upstream links also become jammed. 

The traffic flow simulations produce information about where each agent is at a specific 
time of the day and what it is doing at that time. Each agent generates for each of its actions 
(begin/end of an activity, entering or leaving a link, etc) a temporal and spatial localized 
event. 

3.1 Default traffic flow simulation 

The current default traffic flow simulation of MATSim-T is a single CPU Java re-
implementation of the micro-simulation described in the thesis of Cetin (2005). As an 
integral part of the toolkit it has the advantage that it can directly access all the data in 
MATSim object database, saving time-consuming input and output of data. Because of the 
platform independence of Java, it runs on all major operation systems. 

The default traffic flow simulation uses seconds as smallest entity of time. For each 
simulated second, all queues (all links of the network) synchronously get a new state 
assigned. As a result, the runtime is proportional to the number of links in the scenario: 

Error! Objects cannot be created from editing field codes. , 
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where tsim is the real time window to be simulated (usually 1 day = 86,400 seconds), ∆t the 
size of the time step (1 second), and Error! Objects cannot be created from editing field 
codes. the number of links in the street network.  There is, however, also some overhead to 
generate events, which depends on the number of agents in the system.  Performing the 
Mobility Simulation on a 2.2 GHz processor, the computation time to simulate one day of 
the complete vehicular traffic of Switzerland (see above) takes about 70 minutes (ca. 20.5 
times faster than real time). 

The simulation performance in a naïve implementation of the queue model does not depend 
very much on the number of agents, respectively on their demand: Every link is processed 
once in every time step. This is acceptable for situations where all network elements are in 
use (e.g. morning rush hour), but the simulation will take just as long calculating low traffic 
during nightly hours.  The current implementation in MATSim-T, however, switches off 
links that are completely empty, saving additional computing time but making it now even 
more dependent on the number of agents and their demand structure. 

3.2 Deterministic, Event-based Queue-Simulation (DEQSim) 

DEQSim, an alternative traffic flow simulation, extends the queue-model. In addition to the 
FIFO (First-In, First-Out) behavior of the queue model, this traffic flow simulation imitates 
backwards-traveling gaps produced by vehicles that leave congestion. This leads to more 
realistic dynamics of congested links. Also the implementation differs. Rather than updating 
all links every second, it only operates whenever a link actually changes its state.  Despite 
the improved dynamics, such state changes are fairly rare.  In a pure queue model, the state 
of a link only changes when a vehicle enters or a vehicle leaves, and since the earliest 
possible leaving time is known for every vehicle, the link can be processed at exactly those 
times.  It was possible to add the improved dynamics in a similar way, by adding “holes” 
that travel backwards, and that have, in consequence, also pre-computed times of when they 
arrive at the upstream end of the link.  Therefore, computing time is only used when agents 
produce events on links. As a side effect, the simulation does not have to stick to discrete 
time steps anymore. A detailed description of the DEQSim can be found in Charypar et al 
(2007). The performance is 

Error! Objects cannot be created from editing field codes., 

where the number of events e is proportional to the number of agents (a), respectively the 
number of executed plans, and depends on the street network (number of links Error! 
Objects cannot be created from editing field codes.). On a high-resolution network of the 
same region, an agent’s route contains more links than on a low-resolution network, thus 
generating more events.  

For the case study described above 162 million events are generated. The total computing 
time for the single-CPU implementation of the DEQSim takes about 50 minutes (real time 
ratio =~ 28). Additionally, the DEQSim also runs in parallel using multiple CPUs with 
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distributed memory. The performance scales nearly linearly with the number of processors. 

In contrast to the default traffic flow simulation, DEQSim is written in the C++ 
programming language. This prevents the direct access to the data from the traffic 
simulation. Instead, the data needed to run the DEQSim is first written to disk and later read 
by DEQSim. Similarly, DEQSim writes its events to a file on disk, from where the MATSim 
toolkit reads them after DEQSim has finished. This file input and output (including the 
processing of the read in events) requires an additional 20 minutes in the given case study.  
The input is proportional to the number of agents, the output once more proportional to the 
number of the events.  Maybe somewhat surprisingly, the main overhead does not stem from 
the physical disk I/O, but from the handling of the events while they are processed inside 
MATSim. 

4 Scoring and plans selection 
The events produced by the traffic flow simulation make it possible to calculate the effective 
utility of each daily plan, including the influences and effects of the interaction of other 
agents. The “success” of a daily plan is specified by an individual utility function. This 
function describes the goal of each agent, and with that its behavior. In principle, any 
arbitrary utility function could be used, for example one coming from prospect theory 
(Avineri and Prashker, 2003). MATSim currently uses a simple but effective utility function 
described in Charypar and Nagel (2005). It is related to the Vickrey bottleneck model 
(Vickrey, 1969; Arnott et al, 1993), but is modified in order to be consistent with the 
approach based on complete daily plans (Charypar and Nagel, 2005; Raney and Nagel, 
2006).  

Without going into detail, the elements of the utility function are: 

• A positive contribution for the (usually) positive utility earned by performing an 
activity. 

• A negative contribution (penalty) for traveling. 

• A negative contribution for being late. 

Intuitively, being early should also be punished, but it turns out that this is not necessary 
since “doing nothing” is already indirectly punished by the fact that something with a 
positive utility could be done instead in a better plan.  

The utility function induces the behavior of the agent, because the agent searches in the 
solution space of the utility function for the best possible score, which implies the best 
possible daily plan. The agent cannot optimize outside of the solution space. This aspect is 
documented in more detail later. 

Scores are computed in two ways, depending on the type of the traffic flow simulation: 
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• In the case of the integrated (default) traffic flow simulation, scores are computed 
when events from the traffic flow simulation reach the scoring module.  The 
computational effort to compute the scores is smaller than the overhead caused by 
the events handling mechanism.  Any effort to accelerate the computation at this end 
would need to accelerate the events handling mechanism first. 

• In the case of the external DEQSim traffic flow simulation, scores are computed 
when Java events that are generated from the events file reach the scoring module.  
This ends up being the same problem: The main computational effort is caused by 
the events handling mechanism. 

There is, thus, a computational cost of the events handling mechanism, that is either hidden 
in the default traffic flow simulation, or in the file I/O when the events are read from file.  
This may be an element of future improvements. 

A small, but important step in the whole process is the deletion of a “bad” plan. As there are 
new plans generated in each iteration for a subset of all agents, the population of plans per 
agent increases up to a user-defined maximum (typically between 3 to 6 plans per agent). 
Before a new plan can be created for an agent that already has as many plans as the 
maximum defines, the worst plan (the one with the lowest score) is deleted from the 
population. As a consequence, only “good” plans survive. This step takes about 10 seconds 
for the all-of-Switzerland study. 

5 Plans Variation (Re-planning) 
The re-planning is responsible for making sure that every agent explores its solution space. 
This happens by duplicating an existing plan of an agent, varying (mutating) the copy, and 
executing and scoring it in the next iteration. Each re-planning module takes charge for a 
specific part in the optimization process. As an example, the Router module calculates the 
routes of a plan based on the amount of traffic from the last traffic flow simulation. The 
Time Allocation Mutator module modifies departure times and activity durations of a daily 
plan. This module varies the corresponding times randomly. Additional modules could 
change activities’ locations, or change the sequence of activities. An important fact is that all 
these modules work independently from each other. This allows one to add an arbitrary 
number of re-planning modules to the optimization process. 

A characterization of modules is whether they modify a plan randomly (Random Mutation) 
or whether they search for the best solution based on the results of the last traffic flow 
simulation (Best Response). The former has the advantage not to use any significant amount 
of computing power. Additionally, it searches—sooner or later—over the complete search 
domain. The disadvantage is that such modules require (too) many iterations until the 
optimization relaxes. Best Response modules on the other hand help to relax the system 
much faster, but they are usually more complex and computationally intensive. 
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5.1 Time Allocation Mutator 

The Time Allocation Mutator is a typical example of a Random Mutation module. It varies 
randomly the departure times and durations of activities in a daily plan. It takes a few 
seconds for the mutation of times in the complete demand of Switzerland and can thus be 
neglected for total computing time. The Time Allocation Mutator needs bout 10 seconds to 
process the 10% re-planning agents per iteration. 

5.2 Router Module 

The Router Module calculates the best routes in a daily plan, given the departure times for 
each leg and the dynamic travel times of all streets (based on the last traffic flow 
simulation). The best route is defined as the one with the least negative utility. This Best 
Response module uses the complete and dynamic traffic load of the system for finding 
routes. 

Currently, MATSim has three different implementations of the Router module. They are all 
based on a time-dynamic variant of Dijkstra’s algorithm for finding shortest paths in 
networks, and they return all the identical results. Our newest implementation, the 
Landmarks-A* module (Lefebvre and Balmer, 2007), gives the best performance in average: 
For the given case study it needs in about 0.1 millisecond to calculate one route in average.  
For the 7.1 million (motorized) routes of the “all-of-Switzerland” scenario and 10% route 
replanning rate this implies 71 seconds of computing time per iteration, which can, however, 
be shared between parallel CPUs. 

Additional computational results for different routing algorithms and different networks 
sizes can be found in the paper by Lefebvre and Balmer (2007).  Unfortunately, those results 
are not sufficient to make a prediction about the functional form of the average complexity 
of the Landmarks-A* implementation; the most probable fit may be O(n2) where n is the 
number of network nodes.  It also plays a role that the Java implementation of the priority 
queue does not offer a fast decrease-key operation. 

5.3 “planomat” 

Another Best Response module available in MATSim is planomat, described in full detail in 
Meister (2004). This module not only optimizes one aspect of a daily plan, but all parts at 
the same time. It bases its assumptions heavily on the outcome (events) of the last execution 
of the traffic flow simulation (see above). Additionally, it is able to coordinate the daily 
plans of members of the same household (e.g. a common dinner at home). This module is 
written in C++, but can be called from the MATSim toolkit. 

The C++-planomat is a genetic algorithm (GA) with a special encoding for activity 
sequences, activity locations, activity times, and activity participation.  The encoding was 
constructed with the idea that a plan that is “good in the morning” and another plan that is 
“good in the afternoon” should be able to combine into a plan that is “good overall”.  This 
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takes some input from the GA coding of the traveling salesman problem.  One instance of 
the GA generates the plan(s) for one person or one household.  As is common, the GA is not 
a particularly fast method to solve the problem, but it is extremely flexible with respect to 
the inclusion of additional constraints, for example facility opening times. 

A simplified version of the planomat—written in JAVA—is an integral part of the MATSim 
toolkit and optimizes the time schedules. It is therefore a substitute of the Time Allocation 
Mutator. planomat uses an evolutionary algorithm for the optimization of departure times 
and activity durations. It is therefore far more computationally intensive than the Time 
Allocation Mutator module. In the above described case study, it uses about 5.7 milliseconds 
in average for the best response calculation of timing of a single daily plan.  For the ca. 
2.3 million (motorized) plans of the “all-of-Switzerland” scenario and 10% planomat 
replanning rate this implies 1331 seconds of computing time per iteration, which can, 
however, be shared between parallel CPUs. 

5.4 Additional modules 

It is important to recall at this point that MATSim-T is not limited to the modules described 
above.  Any user can add his or her own modules; additional modules also be added by the 
developers.  The computational performance of such modules will be assessed in due time 
when such modules have proven their value with respect to the transport simulation 
problem. 

6 Systematic Relaxation of the Evolutionary Algorithm 
According to the user's needs it is now possible to combine all the previously mentioned 
modules. The optimization process, i.e., the iterative processing of single tasks, is done by 
the toolkit. However, with respect to the combination of modules one aspect has to be 
considered: Each additional re-planning module enlarges the solution space for the agent's 
day-plan. It is required that this solution space is completely covered by the utility function. 
Consider the following example: 

If an agent is only allowed to optimize its route it would be feasible to reduce the above 
described utility function to Error! Objects cannot be created from editing field codes., 
since the agent is not capable to alter its time allocation. However, if one adds a time 
allocation module, and therefore enlarges the solution space, this has to be considered by the 
utility function. On the other hand it is legitimate to use the extended utility function for 
agents that consider only route choice, since it covers the complete solution space. On this 
account, the further functional development of the optimization process in MATSim-T 
(implementation of new re-planning modules) goes hand in hand with the extension of the 
agents’ behavioral models. 

In the following the relaxation behavior and the required computational time of the co-
evolutionary algorithm will be analyzed. 
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6.1 Setup 

For the suitable analysis of the relaxation process a typical and in the last years frequently 
used setup is used: 

1. Each agent is capable of route-choice. 

2. Each agent is capable of time allocation choice. 

3. In each iteration, a randomly selected sample of 10% of all agents creates a new plan 
by altering the routes of an existing plan. 

4. In each iteration, a randomly selected sample of 10% of all agents creates a new plan 
by altering the time allocation of an existing plan. 

5. The remaining 80% of agents select an existing plan for repeated execution. The 
selection probability corresponds to the logit function Error! Objects cannot be 
created from editing field codes., where Error! Objects cannot be created from 
editing field codes. denotes the utility of plan Error! Objects cannot be created 
from editing field codes. and Error! Objects cannot be created from editing field 
codes. an empirical estimated constant. 

6. The utility function corresponds to the one given in the previous section. 

7. The number of plans per agent is limited to a maximum of four. 

8. The system will be considered relaxed once the trajectory of average utility per 
iteration represents a stationary process. 

A detailed description of this setup with values for the parameters of the utility function can 
be found in Meister et al. (2008). 

6.2 Relaxation 

The relaxed state of the co-evolutionary algorithm of MATSim-T is reached if the utility for 
each agent does not noticeably change through variation of the day plans. Since bad plans do 
not “survive”, the utility of all remaining plans levels off eventually. Figure 3 depicts such a 
behavior. The light grey curve represents the utility of the plan that has been executed in the 
corresponding iteration averaged over all agents. The black and the medium grey curve, 
respectively, denote the average utility of the currently available best and worst plan, 
respectively. One can realize that in this example the utility converges to the ”relaxed” state 
after iteration 70, and exhibits only a mean variance of approx. 2 units in iteration 100. 
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Figure 3: Average utility (score) and average trip travel time per iteration 

 

More noticeable is the behavior before iteration 70, especially in iteration 15. Figure 3 
shows that the average scores for the executed plans (light grey curve) as well as for the 
worst plans (medium grey curve) are remarkably low in iteration 15, which can be ascribed 
to a so-called “network breakdown”. Due to the optimization process and the given 
constraints (such as the time window for the starting a work-activity) it is possible that a lot 
of agents simultaneously try out similar plans, which in turn leads to high traffic densities on 
preferred roads and therefore to highly congested situations. Due to this temporal overload, 
this congestion cannot be absorbed by the surrounding road network due to the overall high 
traffic density. Spillbacks build up and spread over a large part of the network. The model 
requires a long time to resolve such congestion, resulting in high travel times, and therefore 
in large disutility for traveling. Since the last executed plan exhibits a low utility after such a 
network breakdown most of the agents switch their plans. Thus the last optimization step is 
discarded and the usage of more diverse plans will be reinforced. In the paper of Rieser and 
Nagel (2007) the “network breakdown” situations are analyzed in more detail. 

Due to the diversification regarding departure times and route choice, average trips travel 
times decrease (black dotted curve in Figure 3), which in turn becomes noticeable in the 
resulting greater average utilities. 

It appears that after iteration 70 a combination of plans arises which results in a stable traffic 
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pattern that is robust towards variations of single agents. Good plans are duplicated during 
re-planning and the duplicates are kept if they also turn out to be good. Bad plans are 
discarded, so that finally only good plans will remain which can be observed in Figure 3 
with the approximation of the medium grey curve to the other two curves. 

6.3 Computational time for optimization process 

The total computational time of a single relaxation process consists of the sub-processes as 
described in Figure 2(c). Additional time is required for storing temporal results and analysis 
(intermediate demand, statistics and analysis shown in Figure 2(c)). This latter feature can 
be switched off by the user, so that only the final result will be saved. However, this feature 
helps to analyze the optimization process and allows one to abort the process if needed. For 
that reason this part will not be excluded in the following discussion. In detail the process 
can be divided into the following chronological steps: 

1. Initialization: Loading and managing of infrastructural data (network and facilities) 
and initial demand 

2. Iteration 0: primary execution of the traffic flow simulation and calculating of 
utilities 

3. Iteration 1 to n: re-planning, traffic flow simulation and scoring 

4. Iteration 0, 1, 2 and every 10th iteration: saving of temporal results and analyses 

5. Finalization: saving of final state (relaxed day-plans) 

Additionally to these steps, certain modules require extra computational time for 
initialization and finalization. For instance, the initialization of the “Landmarks-A*” router 
module as described earlier takes some seconds for calculating the landmarks (see Lefebvre 
and Balmer, 2007). The DEQSim requires several minutes for loading the network and 
individual demand and for storing them in optimized data structures. In case of the parallel 
DEQSim, additional initialization time is required. Several java internal processes such as 
the garbage collector and hardware constraints (file I/O) induce additional delays. 

Figure 4 shows the contributions of time to the total calculation time for the first 40 
iterations of a relaxation process. In this setup the routing is done by eight parallel running 
“Landmarks-A*” router modules. Time allocation is done by another eight “Time Allocation 
Mutator” modules. For the execution of the demand the parallel version of the DEQSim with 
eight threads is used. This setup results in a relaxation behavior as shown in Figure 2(c). 
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Figure 4: share of the overall computation time by process steps 

 

It turns out that the DEQSim requires in average 8-10 minutes per iteration as shown in 
Figure 4. There is, however, an additional overhead of 20 minutes for data exchange with 
the other modules of MATSim-T. Re-planning (time allocation and routing) requires about 
90 seconds computational time, where the main fraction is consumed by the “Landmarks-
A*” routing modules. The re-planning after a “breakdown” situation as shown in Figure 3 
causes a significant increase in calculation time for the router (approx. nine minutes; 
iteration 16). The cause for this is that the performance of the Landmarks-A* router 
decreases if link travel times differ significantly between the uncongested and congested 
traffic state. 

One iteration of the co-evolutionary algorithm requires about 32 minutes for the calculation 
of the individual time-variant daily demand consisting of 7.1 million trips on a 60,000 links 
network of Switzerland. In addition, every 10 iterations 22 minutes are used for saving 
temporal results and analysis. Taking into account that the system reaches a relaxed state 
after about 100 iterations, the total time for calculating the resulting demand and the 
corresponding traffic takes about 3.2 days. 

6.4 Combinations 

It is possible to run the relaxations faster when using other modules. Table 1 lists a set of 
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possible combinations of modules and their required average and total runtime to reach a 
stable state. With the replacement of the random mutation module (Time Allocation 
Mutator) with a best response module (planomat) a significant reduction of the number of 
iterations can be achieved. On the other hand, the planomat requires in average 30 minutes 
computational time per iteration. However, finally this trade-off pays off (the total runtime 
halves). 

If one includes the additional overhead for data exchange between MATSim-T and the 
DEQSim, the performance of the default traffic flow simulation (in Java) and the DEQSim 
are equivalent. With the parallel run of the DEQSim one can achieve a remarkable gain in 
performance, however, the overhead for file-I/O remains the same. 

Finally it is worthwhile to mention that in terms of computational performance the results 
clearly show the applicability (large scenarios, time-dynamic and detailed) of micro 
simulations for transport planning. 

 

Table 1: Computing times of different combinations of modules 
     
traffic flow 
simulation  

routes times # of 
iterations 

run time on 
computer 

DEQSim (1 
CPU)  

Landmarks-A*  Time Allocation 
Mutator  

100  _5.2 Days  

default traffic 
flow simulation 
(1 CPU)  

Landmarks-A*  Time Allocation 
Mutator  

100  _5.5 Days  

DEQSim (1 
CPU)  

Landmarks-A*  planomat  30  _1.9 Days  

default traffic 
flow simulation 
(1 CPU)  

Landmarks-A*  planomat  30  _2.1 Days  

DEQSim (8 
CPU)  

Landmarks-A*  Time Allocation 
Mutator  

100  _3.2 Days  

DEQSim (8 
CPU)  

Landmarks-A*  planomat  30  _1.5 Days  

 
Module  Average 

runtime  
Remarks  

DEQSim (1 
CPU)  

ca. 70 minutes  ca. 50 minutes DEQSim und ca. 20 minutes I/O Overhead  

DEQSim (8 
CPU)  

ca. 28 minutes  ca. 8 minutes DEQSim und ca. 20 minutes I/O Overhead  

default traffic 
flow simulation  

ca. 70 minutes   

Landmarks-A*  ca. 1.5 minutes  significantly longer after „break-downs“ (ca. 6–10 
minutes)  

Time Allocation 
Mutator  10 sec  

planomat  ca. 22 minutes   



21 

 

7 Initial individual demand modeling 
In Fig. 2 the initial demand is stated to be a prerequisite for the optimization in MATSim-T. 
This section describes how the toolkit can be used to create the initial daily demand for each 
individual. The reason why this pre-process is introduced at the end of this article is that the 
solution space – as defined by the setup of the optimization – determines which aspects of 
the plan do not need to be modeled by the pre-process. 

Thus the task of the initial individual demand modeling is to model aspects of the agents’ 
plans that cannot be handled by the iterative optimization process. To get a best possible 
mapping of the real demand, this part is built upon knowledge, surveys and socio-
demographic data of the investigation area. MATSim-T is built in such a way that it can 
operate on various types of input data. Depending on the scenario, existing input data can 
vary in quality, level of detail, and quantity. The modules for the initial demand modeling 
are adopted correspondingly, or replaced. For this reason the runtime for generating the 
initial demand varies. Basically, this pre-process is of sequential nature. All required 
modules need to be used only one time. 

The modeling of the individual initial demand for the “all-of-Switzerland” application can 
be found in detail in Ciari et al. (2007) and Meister et al (2008). The required runtime is 
about 14.4 hours. 

MATSim-T operates on disaggregated information, i.e., the infrastructure is based on 
coordinates rather than aggregates, such as zones (districts, communes, etc.). Activities – 
and hence the facilities in which activities are preformed – are mapped to the links of the 
network. Since the network has a particular resolution, it defines the level of detail of the 
modeling. In other words, ultimately the investigation area has as many zones as the 
network has (directed) links, in the above case 60,000 zones. For high-resolution networks 
the number of zones can increase to more than one million. Since the raw data are typically 
of aggregated nature, they need to be disaggregated. MATSim-T provides several 
aggregation layers to store such data and to disaggregate them on to facilities, activities and 
persons if needed. 

The modeling of the initial demand can be split up into several steps depending on the 
available raw data and the user's needs. Each of these processes is implemented in one 
module. These modules can be arbitrarily used, extended, replaced or skipped. 

At each point of time during the modeling process it is possible to output intermediate 
results. This is important, since it is typically required to statistically validate the results of 
the model implemented in a module. The intermediate results can be used as input data for 
further modeling steps. 

A further important aspect is the so-called streaming process for the generation of an initial 
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demand. While infrastructural data (facilities, network and even aggregation layers) require 
relative little memory, the demand (= the initial plans) requires several gigabytes of 
memory. However, since the demand is generated individually for each synthetic person in 
the investigation area, it is possible to reduce the memory consumption: One loads the agent 
into memory, applies the demand-modeling module, writes the demand to file, and frees the 
memory. Then the next agent is loaded and so on. This allows one to model the individual 
demand for an unlimited amount of agents on standard consumer hardware. A detailed 
description of the features of the MATSim-T initial demand modeling can be found in the 
dissertation of Balmer (2007) and also in Balmer, Axhausen, and Nagel (2006). 

8 Discussion and outlook 
This work shows that the development of the last years considering hardware architecture, 
CPU performance, and optimization of programming implementations allows one to handle 
large-scale scenarios for transport planning with agent-based micro simulations in 
reasonable time. Furthermore it shows that the optimum of performance has not been 
reached yet. For instance, a re-implementation of the parallel DEQSim in JAVA as an 
integrated part of MATSim-T would avoid the overhead per iteration caused by the data 
exchange between DEQSim and MATSim-T (about 20 min for the discussed application), 
which in turn would decrease the total runtime by about 40%.  A scenario of the magnitude 
of complete Switzerland could be handled in approximately one day. 

The setup of the optimization process offers further possibilities of optimization. For 
instance, it is possible to reduce the number of iterations until the system becomes relaxed 
by introducing adaptive re-planning rates. Also the re-planning modules offer potential for 
optimization, in particular the routing module and the planomat. All these optimizations are 
to be aspired, since further functional extension, such as location and mode choice will 
certainly consume more computational time, be it because of the complexity of these 
modules or because more iterations will be required until the system reaches a relaxed state. 

Finally it is worthwhile to mention that the results of MATSim-T are not only traffic 
patterns, but also rather a detailed description on the single agent level. In other words, it is 
possible to determine for each synthetic person at each point in time where she/he is and 
what she/he does.  Still, the results should not be interpreted on the level of single agents, 
but rather at the level of aggregated sub-populations. 
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