
A fully disaggregate approah to the alibration ofsimulation-based DTAGunnar Flötteröd1Berlin Institute of Tehnology, GermanyAbstratWe desribe a novel method for the fully disaggregate alibration of a motorist demandsimulator from aggregate measurements of �ows, densities or veloities that are obtainedat a limited set of network loations. The problem is solved in a Bayesian setting wherethe prior assumption about an individual's hoie distribution is ombined with the avail-able measurements' likelihood into an estimated posterior hoie distribution. The ap-proah is simulation-based in that it (i) only requires a simulation system to representthe behavioral prior distribution, and (ii) only generates realizations from the behavioralposterior distribution. We fous on the o�ine-alibration problem in onjuntion with anequilibrium-based dynami tra� assignment system.Keywords: demand alibration, tra� state estimation, dynami tra� assignment1 IntrodutionThe subjet matter of this text is the alibration of

Figure 1: Simulation-based DTA
a simulation-based dynami tra� assignment (DTA)system from aggregate measurements of �ows, densi-ties or veloities that are obtained at a limited set ofnetwork loations. Figure 1 outlines the onsideredtype of simulation system. It onsists of a demandsimulator and a supply simulator. The demand simu-lator maps network onditions (suh as travel times)on travel behavior (suh as route, destination, and de-parture time hoie). The supply simulator modelshow well a road network serves a traveler's need ofdriving most onveniently along a route to a desti-nation in a potentially ongested tra� situation. Time-dependent Nash equilibria areomputed on suh models via iteration: Start with some version of time-dependent de-mand. Have eah vehile exeute its pre-omputed trips in the supply simulator. Then,re-ompute the travel behavior for some fration of travelers given the most reently ob-served network onditions. This proedure is iterated until an approximate �xed point isreahed.1This projet was funded in part by the German researh soiety DFG under the grant �State esti-mation for tra� simulations as oarse grained systems�. Signi�ant amounts of omputing time on theomputing luster of TU Berlin's mathematial faulty are gratefully aknowledged.1



In this artile, we desribe a method to alibrate the demand simulator. While ourapproah an (and should) be omplemented by an additional alibration omponent forthe supply simulator, the subsequent presentation assumes the supply simulator to bemodeled without error. To serve the purpose of this work, travel behavior in terms ofbreaking, aeleration, and lane hanging is subsumed in the physial representation oftra� �ow.The arguably most frequently adopted approah to demand alibration is origin-destination(OD) matrix estimation. An OD matrix models the demand of a given time interval interms of number of trips from every origin to every destination of a tra� system. Theoriginally stati problem was to estimate suh a matrix from observed link volumes, givena linear assignment mapping of demand on link �ows. Various methods suh as entropymaximization and information minimization [33℄, Bayesian estimation [22℄, generalizedleast squares [2, 10℄, and maximum likelihood estimation [31℄ were proposed to solve thistask. Non-onstant assignment mappings were inorporated by a bilevel-approah thatiterates between a nonlinear assignment and a linearized estimation problem [23, 35, 36℄until a �xed point of this mutual mapping is reahed [13℄. The ombined estimation ofOD matries at subsequent time slies was demonstrated in [11℄, and many originallystati methods were applied to dynamial problems in this vein, e.g. [1, 21, 29, 37℄. Theoneptual equivalene of the stati and the dynami OD matrix estimation problem wasdemonstrated in [9℄.Sine a time-dependent OD matrix maps (origin, destination, departure time) tuples ondemand levels, it diretly represents destination and departure time hoie. A motoristOD matrix re�ets mode hoie at least in terms of deisions for or against the vehiularmode. Route hoie, however, onstitutes no additional degree of freedom but is a funtionof demand de�ned by the DTA proedure. The path �ow estimators outlined belowonstitute a notable exeption to this, yet only in a (behaviorally) stati setting.The naming �path �ow estimator� is usually assoiated with the approah proposed in [6℄.It desribes a marosopi one-step network observer that estimates stati path �ows fromlink volume measurements based on a stohasti user equilibrium modeling assumptionin a ongested network [3℄. The estimation problem is transformed into one of smoothoptimization whih is iteratively solved. The model has been enhaned by multiple userlasses and a simple analytial queuing model to represent tra� �ow dynamis [5℄, andhas been suessfully implemented in various researh and development projets [4℄. Thelimitations assoiated with its original assumption of a logit path hoie model (�over-lapping path problem�, e.g. [7℄) have been mitigated by the implementation of a C-logitpath hoie model [12, 34℄. The path �ow estimator's non-stohasti user equilibriumounterpart has been proposed in [28, 30℄ and was further advaned in [24, 25℄.The alibration of a fully disaggregate demand simulator from aggregate sensor dataappears to be a novel venture. Sophistiated alibration proedures are available forrandom utility models (RUMs) whih apture demand at the individual level [8, 32℄.However, we are not aware of any researh that alibrates a RUM from aggregate sensordata suh as tra� ounts.The remainder of this artile is organized as follows. Setion 2 states the formal require-ments on a DTA system to be alibrated by our methodology. Setion 3 desribes the2



estimation framework and presents two operational estimators. Setion 4 demonstratesthe method's pratial appliability. Finally, Setion 5 onludes the artile and skethesour ontinuative researh.2 Modeling requirementsWe assume a mirosimulation-based demand model and a mixed miro/maro (�meso-sopi�) supply simulator to be given. Mirosimulation greatly simpli�es modeling issuesand likewise ompliates the alibration task. Consequently, every property of the simula-tor has to be arefully mathed by a formal representation that allows for a mathematialtreatment. The formalism set up in this setion aptures a wide variety of mirosopiaspets while ensuring tratability of the mathematial estimation problem.2.1 Marosopi tra� �ow modelA deterministi and marosopi representation of tra� �ow dynamis is required sinethese dynamis need to be linearized: The supply simulator maps travel demand onlink volumes. Basially, an inverse mapping is needed to dedue the demand from thesevolumes. Sine suh an inversion does generally not exist, a linearization of this mappingis used and non-linearities are aounted for in an iterative manner.For alibration purposes, the tra� �ow dynamis are represented in terms of a generalstate spae model
xms(0) = xms

0 (1)
xms(k + 1) = fms[xms(k), β(k), k]. (2)The vetor xms(k) denotes this mobility simulation's state at disrete simulation timestep k. For a spatially disretized 1st order model (suh as the ell-transmission model[14, 15℄) this vetor ontains one element for every ell in the network. Single-ommodity�ow splits β(k) = (βij(k)) from every upstream link i to every downstream link j atall intersetions are exogenously provided. The vetor-valued transition funtion fmsde�nes the system's evolution through time. It fully enapsulates the spei�ally hosentra� �ow model. It is required that at least approximate Jaobians ∂fms[. . . , k]/∂xms(k)and ∂fms[. . . , k]/∂β(k) an be alulated. The handling of demand soures and sinks isdesribed later in this setion.This state spae model is supplemented with an output equation

y(k) = g[xms(k), ǫ(k)] (3)that maps xms(k) by a linearizable funtion g on the vetor y(k) of marosopi observ-ables. These may inlude �ows, veloities, and densities generated by sensors suh asindutive loops, �oating ars, and tra� surveillane ameras. The in�uene of varioussoures of error on these observations is aounted for by the random disturbane ve-tor ǫ(k) that turns y(k) into a random variable itself. The resulting probability density3



funtion (p.d.f.) of y(k) is
p(y(k)|x(k)) =

�
δ(y(k) − g[x(k), ǫ])p(ǫ)dǫ (4)where δ is the Dira funtion and p(ǫ) is the known p.d.f. of ǫ. Here and in the following,a lower-ase p denotes a p.d.f. while an upper-ase P represents a disrete probability.An exemplary tra� �ow model that meets all requirements of this subsetion is desribedin [16, 17℄.2.2 Mesosopi supply simulationConsider a set of partiles n = 1 . . . N (a population of travelers, agents or vehiles)moving through the network. Partiles have no �mass� insofar as they do not ontributeto the marosopi oupany of a link. At the time of a partile's entrane into thenetwork an appropriate amount of marosopi �ow is also dismissed into the system,resulting in a mass balane between partiles and total marosopi oupany.The marosopi tra� �ow model is required to speify a loal veloity vi(k) on everylink i at every time step k. At any suh time step of duration T , eah partile n advanesaording to the loal veloity of its urrent link. Partile loations within a link areontinuous variables and partile movement is regarded as ontinuous in time as well:When n rosses a link boundary during a single move of duration T , it freely hoosesits next link (if there is more than one downstream link) and ontinues with the veloityenountered there until its available move time ends. When a partile has reahed itsdestination, it is removed from the system and an appropriate amount of marosopi�ow is also �ltered out of the tra� stream passing the exit loation.The route hoie of partile n is expressed by a vetor un(k) = (uij,n(k)) of turningmove indiators where

uij,n(k) =

{

1 if n proeeds from link i to j at time step k
0 otherwise. (5)An additional state vetor xcnt(k) = (xij(k)) is introdued. Eah element xij(k) representsthe aumulated ount of partiles having moved from link i to j until time step k. Thedynamis of this turning ounter xcnt(k) are de�ned by

xcnt(0) = 0 (6)
xcnt(k + 1) = xcnt(k) +

∑N
n=1 un(k). (7)The marosopi �ow splits β(k) = (βij(k)) of the state spae model (2) are now spei�edthrough

βij(x
cnt(k)) = xij(k)/

∑

l xil(k). (8)This is a maximum likelihood estimator of the turning probabilities if the partile turningmoves follows a multinomial distribution [19℄. While the update equation (7) assumes4



time-independent turning probabilities, a straightforward approah to introdue time de-pendeny is to de�ne an additional forgetting parameter w ∈ (0, 1) in a modi�ed turningounter state equation
xcnt(k + 1) = wxcnt(k) + (1 − w)

∑N
n=1 un(k). (9)In the absene of newly observed turning moves, this sheme auses an exponential for-getting of previously learned ounts. A useful property of this �lter is its in�nite memory:Even if no partiles arrive at an intersetion for a while, turning ounts remain stritlypositive and thus ensure well-de�ned �ow splits (8). In order to avoid unde�ned 0/0 di-visions at the beginning of a simulation, turning ounters should be initialized with smallpositive values instead of all zeros.A state spae representation of the ombined system (2) and (9) an now be given. De�n-ing

x(k) =

[

xms(k)
xcnt(k)

] (10)and
f [x(k),u1(k) . . .uN (k), k] =

[

fms[xms(k), β(xcnt(k)), k]

wxcnt(k) + (1 − w)
∑N

n=1 un(k)

]

, (11)one obtains
x(k + 1) = f [x(k),u1(k) . . .uN (k), k]. (12)Given a linearizable model (2) of tra� �ow dynamis, the ombined state transitionfuntion f is likewise linearizable with respet to the marosopi states x and all un.A more elaborate desription of this ombined miro/maro simulation logi that inludesa number of exerimental results an be found in [16, 18℄.2.3 Mirosopi demand simulationThe deision making proess of a traveler is strutured aording to the framework givenin [8℄:1. de�nition of the hoie problem,2. generation of alternatives,3. evaluation of attributes of alternatives,4. hoie,5. implementation.These steps are made preise in the remainder of this setion. The disussion omitsspei� modeling assumptions and algorithmi details that would be neessary for theimplementation of an appliable behavioral model. This is justi�ed by the intentionto provide a alibration proedure that is ompatible with a broad range of demandsimulators.
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2.3.1 De�nition of hoie problemThe ativity and traveling intentions of a motorist are denoted as her plan. For simpliity,only plans for a single day are onsidered. Physially, a plan desribes a round trip throughthe transportation network. This round trip omprises a sequene of routes that onnetintermediate stops during whih ativities are onduted. The �rst and last ativity of aplan typially take plae at the individual's home loation.Formally, a (simple) route U an be spei�ed as a (physially feasible) sequene ofturning moves
U = . . .u(k − 1),u(k),u(k + 1) . . . = {u(k)}k (13)with u(k) de�ned in (5). This notation an be extended to express all mobility relatedaspets of a omplete plan if additional turning moves for all possible network entranesand exits are spei�ed: The onatenation of all (network entry, route, network exit)turning move sequenes for all trips in a partiular plan is de�ned as the (generalized)path U of that plan.Any tra� �ow model of struture (12) an be steered by the turning move indiators ofgeneralized paths instead of simple routes without formal modi�ation. Marosopially,a partile entry or exit merely orresponds to a loal density modi�ation the e�et ofwhih an be globally extrapolated by the linearizable state spae model. Consequently,the model is also linearizable with respet to the newly introdued turning moves thatrepresent suh entries and exits. That is, the mobility simulation an linearly predit thee�et of a single traveler's plan hoie on the global network onditions.2.3.2 Generation and evaluation of alternatives, hoieThe hoie set of behavioral alternatives available to deision maker (agent) n is denotedby Cn. The elements of this set are plans, formally represented by (generalized) paths U .It is required that a non-empty hoie set Cn is available to every deision maker n. Sinethe goal of this work is to treat the behavioral model as muh as a blak box as possible,it is only required that there exists a nonempty set Cn of alternatives that ontains allpossible hoies of n in a given situation. However, an enumeration of this set is notrequired.The systemati (deterministi) utility of an alternative, represented by a real-valuednumber, is a model of the bene�ts the deision maker expets from hoosing this alter-native. It re�ets the deision maker's preferenes. The pereption of utility an varyamong deision makers, and learly utility an di�er among alternatives. Formally, a sys-temati (deterministi) utility Vn(U) is assoiated with every plan U in the hoie set Cnof traveler n. An evaluation of this funtion only has to be available on request and on aper-plan basis. It is not required that the hoie set is enumerated for evaluation before ahoie is made. Furthermore, if the deision protool sequentially omposes a hoie, e.g.by inrementally building a plan as a sequene of ativities and legs, the utility funtionmay be limited to an evaluation of the aording plan omponents.6



The hoie of a plan is modeled non-deterministially. The probability that deision maker
n hooses plan U ∈ Cn is denoted as Pn(U). This hoie distribution may be parame-terized in an agent-spei� way but otherwise is required to depend only on the systematiutilities of the elements in Cn. (In its general form, the alibration proedure does noteven require a utility funtion. This is detailed in Setion 3.) A probabilisti hoie logimay represent randomness in human behavior or aount for modeling impreisions [8℄.The spei� modeling assumptions that underly a partiular hoie distribution are notrelevant for the subsequently developed alibration approah. Furthermore, no expliit(e.g. losed-form) representation of the hoie distribution is required. Only realizationsof hoies need to be generated by the demand simulator.2.3.3 ImplementationThe implementation of a hoie requires its realization in the mobility simulation. How-ever, a traveler with imperfet knowledge of the atual tra� onditions may observe aninonsisteny between what she wants to do and what is physially possible. In partiu-lar, the generalized path representation of a plan omprises a sequene of turning moveindiators that prespeify the timing of every turning move and every entry/exit move inthe network. It is unlikely that (ongested) tra� onditions admit preisely this timing.A generalized path does, however, impliate a logially feasible sequene of ativities androutes. It therefore is assumed that the mobility simulation extrats the physially rele-vant information from a generalized path whenever it is stated that �U1 . . .UN are loadedon the network� or �U1 . . .UN are fed into the mobility simulation�.The spei� properties of the simulation omponents desribed in this setion are nowexploited in the formulation and solution of a DTA alibration problem.3 Calibration methodologyThe onsidered problem is to use spatially and temporally inomplete sensor informationto reonstrut spatially and temporally omplete system state information. Marosopi-ally, the system state to be reonstruted is represented by the state vetor sequene

X = {x(k)}k (14)of tra� �ow model (12). Sine this model unfolds deterministially given an initial stateand a driver population's plans U1 . . .UN , the alibration problem beomes to identifyontrol sequenes U1 . . .UN that steer X = X (U1 . . .UN) towards most likely values giventhe available measurements and the behavioral a priori knowledge represented by thedemand simulator.3.1 General formulation of estimatorAggregate measurements alone do not provide su�ient information for unique plan es-timates sine usually there are many behavioral ombinations that generate the same7



observations. Here, this problem is resolved by the inorporation of additional behavioralinformation in a Bayesian setting.Consider a single iteration of a simulation-based DTA proedure. An (arbitrary) demandsimulator draws hoies U ∈ Cn aording to an individual hoie distribution Pn(U) forevery agent n = 1 . . .N . Only realizations from these distributions are available. Givenmutually independent traveler deisions, the behavioral prior for the whole populationis de�ned as
P (U1 . . .UN) =

∏N
n=1 Pn(Un). (15)Aording to (4), the measurements

Y = {y(k)}k (16)result from a joint distribution
p(Y|X ) =

∏

k p(y(k)|x(k)) (17)where stohasti independene between outputs on di�erent time steps is assumed. Thisis, so far, the not unexpeted result that all spatiotemporal measurements Y an beprobabilistially desribed if all spatiotemporal system states X are known � no behavioralinformation is needed diretly. However, sine X = X (U1 . . .UN), the likelihood of apartiular plan hoie ombination U1 . . .UN is
p(Y|U1 . . .UN) = p(Y|X (U1 . . .UN )). (18)Bayes' theorem allows to ombine the behavioral prior and the likelihood into a behav-ioral posterior

P (U1 . . .UN |Y) = onst · p(Y|U1 . . .UN)P (U1 . . .UN ). (19)The estimation objetive is to make the population hoose its plans aording to theposterior (19) instead of the prior (15). This an be enfored if draws are taken fromthe prior but are rejeted with a ertain probability that depends on the measurements.Denote by φ(U1 . . .UN ) the probability to aept a draw U1 . . .UN from the prior. If thisprobability is spei�ed as
φ(U1 . . .UN) = p(Y|U1 . . .UN)/D, (20)

D ≥ max
V1∈C1...VN∈CN

p(Y|U1 . . .UN ), (21)then the following aept/rejet proedure draws from the posterior, as an be shown bystraightforward manipulations.1. Draw andidate hoies U1 . . .UN from the prior (15).2. With probability 1 − φ(U1 . . .UN), disard the andidates and goto 1.3. The �rst aepted plans U1 . . .UN onstitute a draw from the posterior (19).The behavioral posterior an thus be generated by suppressing ertain draws from theprior. Somewhat oarsely expressed: (i) The simulation is run many times with di�erentrandom seeds, (ii) a large portion of these runs is �thrown away�, based on the above8



rejetion riterion, and (iii) the remaining runs are draws from an aurate Bayesianombination of the behavioral prior and the measurements. Although appealing beauseof its simpliity, this approah is in this form omputationally intratable in all but trivialases. There are two major problems.1. It is omputationally infeasible to evaluate all possible p(Y|U1 . . .UN) values before-hand sine every suh evaluation requires a full network loading in order to map
U1 . . .UN on a marosopi state sequene X that enters the likelihood via (18).However, these evaluations are required in order to guarantee a feasible denomina-tor (21) for the aeptane probabilities. Furthermore, the need for a hoie setenumeration implies that the estimation logi is aware of this set, whih onstitutesan unwanted dependeny of the estimator on modeling details.2. Even if the aeptane probabilities' denominator was replaed by an estimate inorder to mitigate problem 1, a single draw from the posterior might still requirea substantial number of mobility simulation runs sine every draw from the priorneeds to be loaded on the network at least one, and sine it annot be guaranteedthat an �aept� ours after a �xed number of draws from the prior.In light of these di�ulties, simplifying assumptions that speed up the simulation ofthe posterior are highly desirable even at the ost of some loss in auray. Two suhsimpli�ations are proposed in the following.3.2 Operational aept/rejet estimatorThe estimation problem is onsiderably simpli�ed if the full likelihood is replaed byan approximation. Appendix A derives the following linearization of the log-likelihood

ln p(Y|U1 . . .UN ) with respet to the plans U1 . . .UN :
ln p(Y|U1 . . .UN) ≈

∑N
n=1〈Λ,Un〉 + onst (22)where the �inner produt� 〈Λ,Un〉 is de�ned as

〈Λ,Un〉 =
∑

k

∑

ij λij(k)un,ij(k). (23)The time-dependent λ oe�ients represent the sensitivities of the log-likelihood withrespet to the orresponding turning move indiators. These oe�ients are idential forall agents. Subsequently, Λ will be used as a olletive term for all λ oe�ients. Thelinearized log-likelihood implies the following likelihood approximation:
p(Y|U1 . . .UN ) ≈ onst · ∏N

n=1 e〈Λ,Un〉. (24)Substitution of this in the behavioral posterior (19) yields
P (U1 . . .UN |Y) ≈ onst · ∏N

n=1 e〈Λ,Un〉Pn(Un). (25)The bene�ts of the linearization are twofold. First, the population's joint posterior (25) isdeomposed into a produt of individual posteriors that an be evaluated agent by agent.These individual-level posteriors are subsequently denoted by
Pn(U|Y) = onst · e〈Λ,U〉Pn(U). (26)9



Algorithm 1 Aept/rejet estimator1. Initialization.(a) Set iteration ounter m = 0.(b) Fill Λ̄(m) (estimate of Λ �xed point) with all zeros.2. One iteration of simulation-based DTA (plus alibration proedure).(a) For all n = 1 . . .N :i. Draw andidate hoie U
(m)
n from n's behavioral prior.ii. Evaluate aeptane probability φn(U

(m)
n ) based on Λ̄(m) as de�ned in (27).With probability 1 − φn(U

(m)
n ), disard the andidate and goto 2(a)i.iii. Retain the �rst aepted hoie U

(m)
n .(b) Load U

(m)
1 . . .U

(m)
N on the network and obtain X (m).() Linearize ln p(Y|U1 . . .UN ) and obtain Λ(m).(d) Update Λ̄(m+1) = (mΛ̄(m) + Λ(m))/(m + 1).3. If another iteration is desired:(a) Inrease m by one.(b) Goto step 2.Seond, a single run of the mobility simulation (plus one alulation of the Λ oe�ients)is su�ient to parameterize these posteriors for all agents in the population.The aept/rejet proedure an now be applied to every deision maker individually.The aeptane probability for plan U from n's hoie set is de�ned as

φn(U) = e〈Λ,U〉/Dn (27)
Dn ≥ max

V∈Cn

e〈Λ,V〉 (28)but otherwise the method remains unhanged. This approah is subsequently denotedas the aept/rejet (AR) estimator. The only simplifying assumption made here isthat the log-likelihood an be linearized with su�ient preision. Sine this linearizationis likely to be di�erent given the network onditions that result either from the behavioralprior or the posterior, an iterative approah is appropriate: Starting from the behavioralprior, suessively improved linearizations are generated from iteration to iteration untila stable state is reahed where the estimator draws from the behavioral posterior basedon a linearization that in turn is most appropriate given this very posterior. That is, a�xed point of the Λ oe�ients is sought after. Here, the existene of suh a �xed pointis merely assumed and an elementary stohasti approximation method is employed forits identi�ation.The AR estimator is summarized in Algorithm 1. The behavioral prior implementedby the demand simulator is arbitrary. Sine a hoie set enumeration is only required toprovide a lower bound for the aeptane probabilities' denominator de�ned in (28), it anbe avoided if this denominator is treated as a tuning parameter. Choosing a large valueis likely to omply with the (unknown) lower bound but also to result in low aeptaneprobabilities and inreased omputational ost. Vie versa, a smaller denominator yieldsfaster but also inreasingly impreise estimates. A omputationally more e�ient yet notas broadly appliable estimator is presented in the next setion.10



3.3 Operational utility-modi�ation estimatorThis estimator assumes a partiular prior hoie distribution
Pn(U) ∝ sn(U)eµVn(U) (29)whih is a multinomial logit model with positive sale parameter µ and a likewise positiveplan-spei� probability saling funtion sn(U). Substituting this prior into the behavioralposterior (26) for a single deision maker yields

Pn(U|Y) ∝ sn(U)eµ(Vn(U)+〈Λ,U〉/µ). (30)This posterior is struturally idential to its prior. Only the addition of 〈Λ,U〉/µ to Vn(U)is di�erent. This allows to fore a demand simulator that implements (29) to immediatelydraw from the posterior only by adding a orretion term 〈Λ,U〉/µ to every alternative
U 's systemati utility. For this, the sn(·) oe�ients need not be known by the estimator.This approah is alled the utility-modi�ation (UM) estimator. Its requirements aremore restritive than those of the AR estimator sine the demand simulator is required toimplement (29). However, if this prior is given, the UM estimator and the AR estimatoryield equivalent results sine both rely on the same linearization-based approximation(26) of the posterior. In this ase, the UM estimator is to be preferred over the ARestimator sine it is omputationally more e�ient in that it rejets no draws from theprior but immediately draws from the posterior. The UM estimator follows the samelogi as outlined in Algorithm 1, only that steps 2(a)i to 2(a)iii need to be replaed by anappropriate utility-modi�ation logi.Tehnially, the UM estimator an be applied in onjuntion with an arbitrary utility-driven demand simulator. The following analysis identi�es the oneptual limitations ofsuh an approah. Assume that deision maker n disposes of a hoie set Cn and thatprespei�ed utilities V 0

n (U) for every U ∈ Cn are given. Based on these utilities, thearbitrary demand simulator draws from well-de�ned but to the estimator unknown hoieprobabilities P 0
n(U). These hoie probabilities an be perfetly reprodued by the model(29) if the sn(·) oe�ients are re-de�ned as

sn(U) = P 0
n(U)/eµV 0

n (U). (31)The resulting hoie probabilities are
Pn(U) ∝ P 0

n(U)eµ(Vn(U)−V 0
n (U)) (32)suh that Vn(U) = V 0

n (U) results in Pn(U) = P 0
n(U) for all U ∈ Cn. Loosely speaking, anybehavioral prior an be approximated up to 0th order in this way. The adequay of thisapproximation for others than the prespei�ed utilities only depends on the approximatedprior's elastiities, i.e. the way relative utility hanges indue relative hanges in the hoieprobabilities.Reall that the UM estimator funtions without expliit knowledge of the sn(·) oe�-ients. This implies that an appliation of the UM estimator an be justi�ed by the11



Figure 2: Berlin network. Left: toll zone, right: sensor loations.approximation (32) even if the P 0
n and V 0

n values that de�ne the sn(·) oe�ients in (31)are unknown. However, it is required that the prior hoie distribution's elastiities aresu�iently similar to those of (29). Otherwise, only a heuristi appliation of the UMestimator is possible.Summarizing, this setion derives two operational proedures for drawing from a Bayesianposterior hoie distribution that results from the ombination of aggregate sensor dataand a general demand simulator. The omputational e�ieny of these proedures resultsfrom a linearization of the log-likelihood funtion that allows to deompose the popula-tion's joint posterior hoie distribution at the level of individual deision makers.4 Test aseThis setion outlines a number of experimental results. A detailed desription an befound in [16℄. The onsidered test ase omprises the metropolitan region of GreaterBerlin. The underlying network has 2459 links and 1083 nodes. A syntheti populationof 206'353 travelers with omplete ativity plans is available for this senario [27℄. Allexperiments are onstrained to the time span from 6 to 9 am. This interval exhibits themost variable tra� onditions beause of the morning rush hour.4.1 Simulation proedureThe only behavioral degree of freedom onsidered here is route hoie. That is, all behav-ioral aspets apart from route hoie are retained unhanged in the original plans. Sineroute hoie an be generalized to plan hoie by minor modi�ations to the original net-work as shown in Setion 2.3, an e�etive route hoie estimator is likely to be appliablein a more general setting as well.A time-independent toll of 0.24 EUR/km is harged on all link in the ity enter shown inFigure 2 (left), and no toll is harged outside of this area. The unitless utility of a route
U is

Vn(U) = (−tt(U) − toll(U)/VOTn)/1s (33)12



where tt(U) is the travel time on route U , toll(U) is the toll aumulated along route U , andVOTn is individual n's value of time (in monetary units per time unit). For simpliity, itis assumed that all drivers have an idential value of time, i.e. VOTn = VOT, n = 1 . . .N .The employed simulation logi is very simple. It realulates the routes for 10% of alltravelers in every iteration. For eah replanning agent, a �proposal route� is generated byalulation of a time-dependent best path based on a randomly hosen VOT and the linktravel times of the previous iteration. The proposal route is adopted by the agent if andonly if has a higher utility than the hitherto applied route aording to the agents atualVOT. Otherwise, the agent maintains its previous route.4.2 Calibration proedureA syntheti reality is generated by a simulation where all travelers reat to the toll a-ording to a 12 EUR/h VOT. Time-dependent �ow rates are olleted as syntheti sensordata at the 50 sensor loations indiated in Figure 2 (right). Sine the sensors loa-tions are fairly sattered, the measurements are assumed to follow independent normaldistributions with idential variane σ2.The UM estimator is deployed. It does not interfere with the proposal route generationitself but only a�ets the subsequent hoie between the proposal route and the hithertoapplied route. Sine the underlying route hoie model annot be shown to be of struture(29), this onstitutes a heuristi appliation of the UM estimator.The UM estimator replaes the original utility Vn(U) of a route by Vn(U) + 〈Λ,U〉/µ,f (30), where the seond addend results from a linearization of the sensor data's log-likelihood. For univariate normal measurements, this log-likelihood beomes a sum ofsquared deviations between estimated and measured �ows, whih are weighted by σ−2.That is, the overall utility modi�ation is e�etively divided by µσ2. This produt de�nesthe sole tuning parameter of the UM estimator, whih is
wprior =

√

µσ2. (34)This parameter de�nes the weight of the behavioral prior information (represented by
Vn(U)) when ompared to the sensor data (basially represented by 〈Λ,U〉).4.3 ResultsA prior senario with an in�nite VOT is assumed. That is, the demand simulator itselfe�etively ignores the toll. The question is investigated to what degree the UM estimatoris able to reonstrut the network-wide tra� onditions of the syntheti reality (whihresults from a 12 EUR/h VOT) given only a limited set of �ow measurements.Figure 3 shows the resulting root mean square error measures over di�erent wprior values.The �ow measurement reprodution error at the 50 sensor loations is given on the left,and the network state reprodution error between the estimated oupanies of all linksin the network and those in the syntheti reality is shown on the right. For omparison,13



Figure 3: Result overview. Blue dots: estimation, red dots: plain simulation.the error measures of four plain simulations of the prior senario are also given in eahdiagram. They are equivalent to running the estimator without sensor input. For ease ofomparison, they are re-drawn over every wprior value in red olor. The three estimationresults per wprior value are drawn in blue.All results are fairly stable in that there is limited variability among repeated runs. Oftenenough, the dots lie on top of eah other and annot be distinguished. Reproduibleonvergene is a desirable and not at all self-evident feature for a nonlinear estimator. Inthese experiments, it an be observed with good preision.The left diagram of Figure 3 shows that the measurement reprodution error dereasesmonotonously with wprior. This is plausible: the smaller the belief in the behavioralmodel, the more weight is put on measurement reprodution. The greatest estimationimprovement over a plain simulation of the prior is 86%.The right diagram of Figure 3 shows a non-monotonous relation between wprior and thenetwork state reprodution error. As wprior grows, the measurement in�uene vanishesand the estimation quality graefully deteriorates towards that of a plain simulation.However, as wprior dereases, a minimum error value is invariably enountered after whiha further derease of wprior results in an inreased network state reprodution error. Thisis an over-�tting e�et. The attained minimum error value re�ets the estimator's abilityto spatiotemporally extrapolate the available �ow measurements. A 48% improvementin network-wide tra� onditions is ahieved � based on tra� ounts from only 50measurement loations out of altogether 2459 links.Overall, these quality measures must be onsidered in light of the idealized setting inwhih they were obtained. However, it an be onluded that the estimator performsstruturally orret, and that the alibration results in a spei� appliation will mainlydepend on the available data and modeling quality.14



5 Summary and outlookWe presented a novel approah for the Bayesian alibration of plan hoie distributionsfrom aggregate sensor data. The proposed method is independent of the underlyingdemand simulator. The main preondition for its appliation is the availability of a supplysimulator with linearizable tra� �ow dynamis. The weakening of this requirement isan important aspet of our future researh.Another relevant issue is the utilization of the obtained estimation results. The identi�-ation of plan hoie distributions learly has preditive power within a onsidered day(this motivates an appliation in a telematis ontext), but it does not immediately allowto predit plan hoie in hanged onditions. Therefore, our method is urrently extendedto the joint alibration of plan hoie distributions and the parameters of the underlyingdemand simulator. An example of suh parameters are the utility oe�ients of a randomutility model. The following paragraph outlines this approah.The AR estimator draws plans from an individual-level posterior hoie distribution
Pn(U|Y) ∝ e〈Λ,U〉Pn(U), f. (26). If the hoie Un of individual n depend on a parametervetor θn whih is distributed aording to p(θ), the AR estimator an immediately beapplied to a demand simulator that draws not only from n's parameterized hoie dis-tribution Pn(U|θn) but also from p(θ) itself. The modi�ed AR proedure for a singledeision maker n is as follows:1. Draw θn from p(θ).2. Draw Un from Pn(U|θn).3. Aept (θn,Un) with probability ∝ e〈Λ,Un〉, otherwise goto 1.The �rst aepted draw is from pn(U , θ|Y) whih is individual n's joint posterior plan andparameter distribution given the sensor data. That is, the plan hoie distributions arenow alibrated together with their underlying parameters. Our urrent work onentrateson an experimental investigation of this parameter alibration proedure.A Linearization of the log-likelihood funtionA linearization of the log-likelihood funtion with respet to plan hoie must aountfor the oupling between U and X through the dynamial system onstraint (12) thatrepresents the demand simulator. This di�ulty an be dealt with by well-known methodsfrom ontrol theory [20, 26℄. A self-ontained exposition is given in the following.For the sake of generality, a funtional Φ(X ) of the marosopi system states is linearizedwith respet to the population plan hoie U1 . . .UN . A time-additive struture of Φ isassumed. This orresponds to the struture of the log-likelihood sine the likelihood itselfis a produt over subsequent time steps, f. (17) and (18). Denote

Φ(k) =
∑K

κ=k ϕ[x(κ), κ] (35)
15



for k = 1 . . .K. This is the remaining ontribution to Φ(X ) from time step k on until the�nal time step K. It an be reursively written as
Φ(k) =

{

ϕ[x(k), k] + Φ(k + 1) k = 1 . . .K − 1
ϕ[x(K), K] k = K.

(36)As a �rst step, sensitivities with respet to states are omputed by
dΦ(k)

dx(k)
=















∂ϕ[x(k), k]

∂x(k)
+

dΦ(k + 1)

dx(k)
k = 1 . . .K − 1

∂ϕ[x(K), K]

∂x(K)
k = K.

(37)Sine the interplay between variables at di�erent time steps is fully de�ned by the stateequation (12),
dΦ(k + 1)

dx(k)
=

∂f [x(k),u1(k) . . .uN(k), k]T

∂x(k)

dΦ(k + 1)

dx(k + 1)
(38)holds for k < K, where x(k + 1) = f [. . .] was used and the supersript T denotes thetranspose.Now, sensitivities with respet to ontrol variables u1(k) . . .uN(k) result from

dΦ(X )

dun(k)
=

∂f [x(k),u1(k) . . .uN(k), k]

∂u(k)

T dΦ(k + 1)

dx(k + 1)
. (39)Here, ∂ϕ[x(k), k]/∂un(k) disappears sine un(k) in�uenes no state earlier than x(k + 1).

∂f [. . .]/∂u(k) denotes the partial derivative of f [. . .] with respet to any un(k), whihis independent of n. This independene allows to entirely omit the n subsript in Φ'ssensitivities and to subsequently write dΦ(X )/du(k) instead of dΦ(X )/dun(k), and itallows to ompute all sensitivities for all agents simultaneously.In summary, dΦ(X )/du(k) is obtained in a two-pass-proedure.1. Using (38), solve (37) reursively for k = K . . . 1. Moving bakwards through timeintrodues a �far sightedness� into the alulation that is neessary to predit thein�uene of present state variations on future system states.2. Determine the in�uene of ontrols by (39) for k = 0 . . .K−1. Sine this expressionis idential for all agents, it needs to be evaluated only one for the entire population.One obtains the following linearization of Φ(X ) with respet to U1 . . .UN :
Φ(X (U1 . . .UN )) ≈ Φ(X 0) +

∑K−1
k=0 dΦ(X 0)/du(k)T

∑N
n=1(un(k) − u0

n(k)) (40)where u0
n(k) is the ontrol vetor of traveler n at step k around whih linearization tookplae and X 0 is the resulting marosopi state sequene. The omputational logi behindthis approximation an be seen most learly if it is fully expanded:

Φ(X (U1 . . .UN )) ≈
∑N

n=1

(

∑

k

∑

ij λij(k)uij,n(k)
)

+ onst (41)16



with
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