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Abstract

We describe a novel method for the fully disaggregate calibration of a motorist demand
simulator from aggregate measurements of flows, densities or velocities that are obtained
at a limited set of network locations. The problem is solved in a Bayesian setting where
the prior assumption about an individual’s choice distribution is combined with the avail-
able measurements’ likelihood into an estimated posterior choice distribution. The ap-
proach is simulation-based in that it (i) only requires a simulation system to represent
the behavioral prior distribution, and (ii) only generates realizations from the behavioral
posterior distribution. We focus on the offline-calibration problem in conjunction with an
equilibrium-based dynamic traffic assignment system.
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1 Introduction

The subject matter of this text is the calibration of

a simulation-based dynamic traffic assignment (DTA) demand

system from aggregate measurements of flows, densi- simulator

ties or velocities that are obtained at a limited set of

network locations. Figure 1 outlines the considered network travel
type of simulation system. It consists of a demand conditions  behavior
simulator and a supply simulator. The demand simu-

lator maps network conditions (such as travel times) supply

on travel behavior (such as route, destination, and de- simulator

parture time choice). The supply simulator models
how well a road network serves a traveler’s need of

driving most conveniently along a route to a desti- Figure 1: Simulation-based DTA

nation in a potentially congested traffic situation. Time-dependent Nash equilibria are
computed on such models via iteration: Start with some version of time-dependent de-
mand. Have each vehicle execute its pre-computed trips in the supply simulator. Then,
re-compute the travel behavior for some fraction of travelers given the most recently ob-
served network conditions. This procedure is iterated until an approximate fixed point is
reached.
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In this article, we describe a method to calibrate the demand simulator. While our
approach can (and should) be complemented by an additional calibration component for
the supply simulator, the subsequent presentation assumes the supply simulator to be
modeled without error. To serve the purpose of this work, travel behavior in terms of
breaking, acceleration, and lane changing is subsumed in the physical representation of
traffic flow.

The arguably most frequently adopted approach to demand calibration is origin-destination
(OD) matrix estimation. An OD matrix models the demand of a given time interval in
terms of number of trips from every origin to every destination of a traffic system. The
originally static problem was to estimate such a matrix from observed link volumes, given
a linear assignment mapping of demand on link flows. Various methods such as entropy
maximization and information minimization [33|, Bayesian estimation |22|, generalized
least squares |2, 10|, and maximum likelihood estimation [31] were proposed to solve this
task. Non-constant assignment mappings were incorporated by a bilevel-approach that
iterates between a nonlinear assignment and a linearized estimation problem [23, 35, 36|
until a fixed point of this mutual mapping is reached [13]. The combined estimation of
OD matrices at subsequent time slices was demonstrated in [11], and many originally
static methods were applied to dynamical problems in this vein, e.g. |1, 21, 29, 37|. The
conceptual equivalence of the static and the dynamic OD matrix estimation problem was
demonstrated in [9)].

Since a time-dependent OD matrix maps (origin, destination, departure time) tuples on
demand levels, it directly represents destination and departure time choice. A motorist
OD matrix reflects mode choice at least in terms of decisions for or against the vehicular
mode. Route choice, however, constitutes no additional degree of freedom but is a function
of demand defined by the DTA procedure. The path flow estimators outlined below
constitute a notable exception to this, yet only in a (behaviorally) static setting.

The naming “path flow estimator” is usually associated with the approach proposed in [6].
It describes a macroscopic one-step network observer that estimates static path flows from
link volume measurements based on a stochastic user equilibrium modeling assumption
in a congested network |3]. The estimation problem is transformed into one of smooth
optimization which is iteratively solved. The model has been enhanced by multiple user
classes and a simple analytical queuing model to represent traffic flow dynamics [5], and
has been successfully implemented in various research and development projects [4]. The
limitations associated with its original assumption of a logit path choice model (“over-
lapping path problem”; e.g. [7]) have been mitigated by the implementation of a C-logit
path choice model |12, 34|. The path flow estimator’s non-stochastic user equilibrium
counterpart has been proposed in |28, 30] and was further advanced in |24, 25|.

The calibration of a fully disaggregate demand simulator from aggregate sensor data
appears to be a novel venture. Sophisticated calibration procedures are available for
random utility models (RUMs) which capture demand at the individual level [8, 32|.
However, we are not aware of any research that calibrates a RUM from aggregate sensor
data such as traffic counts.

The remainder of this article is organized as follows. Section 2 states the formal require-
ments on a DTA system to be calibrated by our methodology. Section 3 describes the



estimation framework and presents two operational estimators. Section 4 demonstrates
the method’s practical applicability. Finally, Section 5 concludes the article and sketches
our continuative research.

2 Modeling requirements

We assume a microsimulation-based demand model and a mixed micro/macro (“meso-
scopic”) supply simulator to be given. Microsimulation greatly simplifies modeling issues
and likewise complicates the calibration task. Consequently, every property of the simula-
tor has to be carefully matched by a formal representation that allows for a mathematical
treatment. The formalism set up in this section captures a wide variety of microscopic
aspects while ensuring tractability of the mathematical estimation problem.

2.1 Macroscopic traffic low model

A deterministic and macroscopic representation of traffic flow dynamics is required since
these dynamics need to be linearized: The supply simulator maps travel demand on
link volumes. Basically, an inverse mapping is needed to deduce the demand from these
volumes. Since such an inversion does generally not exist, a linearization of this mapping
is used and non-linearities are accounted for in an iterative manner.

For calibration purposes, the traffic flow dynamics are represented in terms of a general
state space model

X" (0) = xI* (1)
X" (k+1) = f™[x"(k), B(k), k. (2)

The vector x"*(k) denotes this mobility simulation’s state at discrete simulation time
step k. For a spatially discretized 1st order model (such as the cell-transmission model
|14, 15]) this vector contains one element for every cell in the network. Single-commodity
flow splits B(k) = (B;;(k)) from every upstream link ¢ to every downstream link j at
all intersections are exogenously provided. The vector-valued transition function f°
defines the system’s evolution through time. It fully encapsulates the specifically chosen
traffic flow model. It is required that at least approximate Jacobians 0f™*[.. . k|/0x™* (k)
and of™*|... k]/0B(k) can be calculated. The handling of demand sources and sinks is
described later in this section.

This state space model is supplemented with an output equation

y (k) = g[x™*(k), (k)] (3)

that maps x”*(k) by a linearizable function g on the vector y(k) of macroscopic observ-
ables. These may include flows, velocities, and densities generated by sensors such as
inductive loops, floating cars, and traffic surveillance cameras. The influence of various
sources of error on these observations is accounted for by the random disturbance vec-
tor €(k) that turns y(k) into a random variable itself. The resulting probability density
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function (p.d.f.) of y(k) is

p(y(R)|x(k)) = [ o(y (k) — glx(k), e])p(€)de (4)

where ¢ is the Dirac function and p(e) is the known p.d.f. of €. Here and in the following,
a lower-case p denotes a p.d.f. while an upper-case P represents a discrete probability.

An exemplary traffic flow model that meets all requirements of this subsection is described
in [16, 17].

2.2 Mesoscopic supply simulation

Consider a set of particles n = 1...N (a population of travelers, agents or vehicles)
moving through the network. Particles have no “mass” insofar as they do not contribute
to the macroscopic occupancy of a link. At the time of a particle’s entrance into the
network an appropriate amount of macroscopic flow is also dismissed into the system,
resulting in a mass balance between particles and total macroscopic occupancy.

The macroscopic traffic flow model is required to specify a local velocity v;(k) on every
link 7 at every time step k. At any such time step of duration 7', each particle n advances
according to the local velocity of its current link. Particle locations within a link are
continuous variables and particle movement is regarded as continuous in time as well:
When n crosses a link boundary during a single move of duration 7T, it freely chooses
its next link (if there is more than one downstream link) and continues with the velocity
encountered there until its available move time ends. When a particle has reached its
destination, it is removed from the system and an appropriate amount of macroscopic
flow is also filtered out of the traffic stream passing the exit location.

The route choice of particle n is expressed by a vector u,(k) = (u;;,(k)) of turning
move indicators where

(5)

wis (k) = 1 if n proceeds from link 7 to 7 at time step k
SIS 0 otherwise.,

An additional state vector X (k) = (x;;(k)) is introduced. Each element x;;(k) represents
the accumulated count of particles having moved from link ¢ to j until time step k. The
dynamics of this turning counter x“"(k) are defined by

x(0) = 0 (6)
Xk 4 1) = X (k) + N ua (k). (7)

The macroscopic flow splits B(k) = (8;;(k)) of the state space model (2) are now specified

through
By (xT (k) = @i (k) 32 (k). (8)

This is a maximum likelihood estimator of the turning probabilities if the particle turning
moves follows a multinomial distribution [19]. While the update equation (7) assumes



time-independent turning probabilities, a straightforward approach to introduce time de-
pendency is to define an additional forgetting parameter w € (0,1) in a modified turning
counter state equation

X (1) = wx (k) + (1 - w) YN u, (k). (9)

In the absence of newly observed turning moves, this scheme causes an exponential for-
getting of previously learned counts. A useful property of this filter is its infinite memory:
Even if no particles arrive at an intersection for a while, turning counts remain strictly
positive and thus ensure well-defined flow splits (8). In order to avoid undefined 0/0 di-
visions at the beginning of a simulation, turning counters should be initialized with small
positive values instead of all zeros.

A state space representation of the combined system (2) and (9) can now be given. Defin-

ing
()= | o) | (10)

and
frefxms(k), B(x"(k)), k]

£lx(k), w (k) ... uy(k), k] = [ w0 (1) 5 (k) | (11)

one obtains
x(k+1) =fx(k),u(k)...un(k), k] (12)

Given a linearizable model (2) of traffic flow dynamics, the combined state transition
function f is likewise linearizable with respect to the macroscopic states x and all u,,.

A more elaborate description of this combined micro/macro simulation logic that includes
a number of exerimental results can be found in |16, 18|.

2.3 Microscopic demand simulation

The decision making process of a traveler is structured according to the framework given
in [8]:

1. definition of the choice problem,
generation of alternatives,

evaluation of attributes of alternatives,
choice,

implementation.

ot L

These steps are made precise in the remainder of this section. The discussion omits
specific modeling assumptions and algorithmic details that would be necessary for the
implementation of an applicable behavioral model. This is justified by the intention
to provide a calibration procedure that is compatible with a broad range of demand
simulators.



2.3.1 Definition of choice problem

The activity and traveling intentions of a motorist are denoted as her plan. For simplicity,
only plans for a single day are considered. Physically, a plan describes a round trip through
the transportation network. This round trip comprises a sequence of routes that connect
intermediate stops during which activities are conducted. The first and last activity of a
plan typically take place at the individual’s home location.

Formally, a (simple) route U can be specified as a (physically feasible) sequence of
turning moves

U= ulk—1),ulk),ulk+1)...={ulk)} (13)

with u(k) defined in (5). This notation can be extended to express all mobility related
aspects of a complete plan if additional turning moves for all possible network entrances
and exits are specified: The concatenation of all (network entry, route, network exit)
turning move sequences for all trips in a particular plan is defined as the (generalized)
path U of that plan.

Any traffic flow model of structure (12) can be steered by the turning move indicators of
generalized paths instead of simple routes without formal modification. Macroscopically,
a particle entry or exit merely corresponds to a local density modification the effect of
which can be globally extrapolated by the linearizable state space model. Consequently,
the model is also linearizable with respect to the newly introduced turning moves that
represent such entries and exits. That is, the mobility simulation can linearly predict the
effect of a single traveler’s plan choice on the global network conditions.

2.3.2 Generation and evaluation of alternatives, choice

The choice set of behavioral alternatives available to decision maker (agent) n is denoted
by C,,. The elements of this set are plans, formally represented by (generalized) paths U.
It is required that a non-empty choice set C,, is available to every decision maker n. Since
the goal of this work is to treat the behavioral model as much as a black box as possible,
it is only required that there exists a nonempty set C,, of alternatives that contains all
possible choices of n in a given situation. However, an enumeration of this set is not
required.

The systematic (deterministic) utility of an alternative, represented by a real-valued
number, is a model of the benefits the decision maker expects from choosing this alter-
native. It reflects the decision maker’s preferences. The perception of utility can vary
among decision makers, and clearly utility can differ among alternatives. Formally, a sys-
tematic (deterministic) utility V,(U) is associated with every plan U in the choice set C,,
of traveler n. An evaluation of this function only has to be available on request and on a
per-plan basis. It is not required that the choice set is enumerated for evaluation before a
choice is made. Furthermore, if the decision protocol sequentially composes a choice, e.g.
by incrementally building a plan as a sequence of activities and legs, the utility function
may be limited to an evaluation of the according plan components.



The choice of a plan is modeled non-deterministically. The probability that decision maker
n chooses plan U € C,, is denoted as P, (). This choice distribution may be parame-
terized in an agent-specific way but otherwise is required to depend only on the systematic
utilities of the elements in C),. (In its general form, the calibration procedure does not
even require a utility function. This is detailed in Section 3.) A probabilistic choice logic
may represent randomness in human behavior or account for modeling imprecisions [§].
The specific modeling assumptions that underly a particular choice distribution are not
relevant for the subsequently developed calibration approach. Furthermore, no explicit
(e.g. closed-form) representation of the choice distribution is required. Only realizations
of choices need to be generated by the demand simulator.

2.3.3 Implementation

The implementation of a choice requires its realization in the mobility simulation. How-
ever, a traveler with imperfect knowledge of the actual traffic conditions may observe an
inconsistency between what she wants to do and what is physically possible. In particu-
lar, the generalized path representation of a plan comprises a sequence of turning move
indicators that prespecify the timing of every turning move and every entry/exit move in
the network. Tt is unlikely that (congested) traffic conditions admit precisely this timing.
A generalized path does, however, implicate a logically feasible sequence of activities and
routes. It therefore is assumed that the mobility simulation extracts the physically rele-
vant information from a generalized path whenever it is stated that “U; .. .Uy are loaded
on the network” or “U; ...Uy are fed into the mobility simulation”.

The specific properties of the simulation components described in this section are now
exploited in the formulation and solution of a DTA calibration problem.

3 Calibration methodology

The considered problem is to use spatially and temporally incomplete sensor information
to reconstruct spatially and temporally complete system state information. Macroscopi-
cally, the system state to be reconstructed is represented by the state vector sequence

A = {x(k)}x (14)

of traffic flow model (12). Since this model unfolds deterministically given an initial state
and a driver population’s plans U, ...Uy, the calibration problem becomes to identify
control sequences U . ..Uy that steer X = X (U, ... Uy) towards most likely values given
the available measurements and the behavioral a priori knowledge represented by the
demand simulator.

3.1 General formulation of estimator

Aggregate measurements alone do not provide sufficient information for unique plan es-
timates since usually there are many behavioral combinations that generate the same



observations. Here, this problem is resolved by the incorporation of additional behavioral
information in a Bayesian setting.

Consider a single iteration of a simulation-based DTA procedure. An (arbitrary) demand
simulator draws choices U € (), according to an individual choice distribution P, (i) for
every agent n = 1...N. Only realizations from these distributions are available. Given
mutually independent traveler decisions, the behavioral prior for the whole population
is defined as

Py ... Uy) =TI, P.(U,). (15)

According to (4), the measurements

Y ={y(k)} (16)

result from a joint distribution

p(V[X) =TI, p(y(K)|x(k)) (17)

where stochastic independence between outputs on different time steps is assumed. This
is, so far, the not unexpected result that all spatiotemporal measurements ) can be
probabilistically described if all spatiotemporal system states X are known no behavioral
information is needed directly. However, since X = X (U; ...Uy), the likelihood of a
particular plan choice combination U . ..Uy is

pV|U .. . Un) = pV|X (U ... UN)). (18)

Bayes’ theorem allows to combine the behavioral prior and the likelihood into a behav-
ioral posterior

P(Uy ... UN|Y) = const - p(Y|Uy .. . Un)P(U .. . Uy). (19)

The estimation objective is to make the population choose its plans according to the
posterior (19) instead of the prior (15). This can be enforced if draws are taken from
the prior but are rejected with a certain probability that depends on the measurements.
Denote by ¢(U; ...Uy) the probability to accept a draw U ...Uy from the prior. If this
probability is specified as

pU, ... Uy) = pY|U ... UN)/D, (20)

>
D > Vlecfr}%ech(y\Ul Uy), (21)

then the following accept/reject procedure draws from the posterior, as can be shown by
straightforward manipulations.

1. Draw candidate choices U; ...Uy from the prior (15).
2. With probability 1 — ¢(U; . .. Uy), discard the candidates and goto 1.
3. The first accepted plans U ...Uy constitute a draw from the posterior (19).

The behavioral posterior can thus be generated by suppressing certain draws from the
prior. Somewhat coarsely expressed: (i) The simulation is run many times with different
random seeds, (i) a large portion of these runs is “thrown away”, based on the above
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rejection criterion, and (74) the remaining runs are draws from an accurate Bayesian
combination of the behavioral prior and the measurements. Although appealing because
of its simplicity, this approach is in this form computationally intractable in all but trivial
cases. There are two major problems.

1. It is computationally infeasible to evaluate all possible p(Y|U; . .. Uy) values before-
hand since every such evaluation requires a full network loading in order to map
U, ... Uy on a macroscopic state sequence X that enters the likelihood via (18).
However, these evaluations are required in order to guarantee a feasible denomina-
tor (21) for the acceptance probabilities. Furthermore, the need for a choice set
enumeration implies that the estimation logic is aware of this set, which constitutes
an unwanted dependency of the estimator on modeling details.

2. Even if the acceptance probabilities’ denominator was replaced by an estimate in
order to mitigate problem 1, a single draw from the posterior might still require
a substantial number of mobility simulation runs since every draw from the prior
needs to be loaded on the network at least once, and since it cannot be guaranteed
that an “accept” occurs after a fixed number of draws from the prior.

In light of these difficulties, simplifying assumptions that speed up the simulation of
the posterior are highly desirable even at the cost of some loss in accuracy. Two such
simplifications are proposed in the following.

3.2 Operational accept/reject estimator

The estimation problem is considerably simplified if the full likelihood is replaced by
an approximation. Appendix A derives the following linearization of the log-likelihood
Inp(Y|U; ... Uy) with respect to the plans Uy ... Uy:

InpV|U .. . Uy) = SN (A U,) + const (22)
where the “inner product” (A,U,,) is defined as
(N Un) = D2k Dy Nig (Rt g5 (k). (23)

The time-dependent A coefficients represent the sensitivities of the log-likelihood with
respect to the corresponding turning move indicators. These coefficients are identical for
all agents. Subsequently, A will be used as a collective term for all \ coefficients. The
linearized log-likelihood implies the following likelihood approximation:

p(V|Uy .. . Uy) = const - []1_, ethn), (24)
Substitution of this in the behavioral posterior (19) yields
P(Uy ... Uy|Y) ~ const - [[_, e P, (U,). (25)

The benefits of the linearization are twofold. First, the population’s joint posterior (25) is
decomposed into a product of individual posteriors that can be evaluated agent by agent.
These individual-level posteriors are subsequently denoted by

P,(U|Y) = const - NP (U). (26)
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Algorithm 1 Accept/reject estimator

1. Initialization.
(a) Set iteration counter m = 0.
(b) Fill At (estimate of A fixed point) with all zeros.
2. One iteration of simulation-based DTA (plus calibration procedure).
(a) Foralln=1...N:
i. Draw candidate choice L[,Sm) from n’s behavioral prior.
ii. Evaluate acceptance probability gbn(u(m)) based on A™) as defined in (27).
With probability 1 — gbn( )) dls('ard the candidate and goto 2(a)i.
iii. Retaln the first accepted choice L[n
(b) Load 2™ .. .U{™ on the network and obtain X'
(¢) Linearize Inp(Y|U; .. Z/IN) and obtain A™)
(d) Update A" = (mA™ + A™)/(m +1).
3. If another iteration is desired:
(a) Increase m by one.
(b)

b) Goto step 2.

Second, a single run of the mobility simulation (plus one calculation of the A coefficients)
is sufficient to parameterize these posteriors for all agents in the population.

The accept/reject procedure can now be applied to every decision maker individually.
The acceptance probability for plan U from n’s choice set is defined as

ouUt) = /D, (27)
D, > maxeMV (28)
velCy,

but otherwise the method remains unchanged. This approach is subsequently denoted
as the accept/reject (AR) estimator. The only simplifying assumption made here is
that the log-likelihood can be linearized with sufficient precision. Since this linearization
is likely to be different given the network conditions that result either from the behavioral
prior or the posterior, an iterative approach is appropriate: Starting from the behavioral
prior, successively improved linearizations are generated from iteration to iteration until
a stable state is reached where the estimator draws from the behavioral posterior based
on a linearization that in turn is most appropriate given this very posterior. That is, a
fixed point of the A coefficients is sought after. Here, the existence of such a fixed point
is merely assumed and an elementary stochastic approximation method is employed for
its identification.

The AR estimator is summarized in Algorithm 1. The behavioral prior implemented
by the demand simulator is arbitrary. Since a choice set enumeration is only required to
provide a lower bound for the acceptance probabilities’ denominator defined in (28), it can
be avoided if this denominator is treated as a tuning parameter. Choosing a large value
is likely to comply with the (unknown) lower bound but also to result in low acceptance
probabilities and increased computational cost. Vice versa, a smaller denominator yields
faster but also increasingly imprecise estimates. A computationally more efficient yet not
as broadly applicable estimator is presented in the next section.
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3.3 Operational utility-modification estimator

This estimator assumes a particular prior choice distribution
P, (U) s, (U)etV™) (29)

which is a multinomial logit model with positive scale parameter y and a likewise positive
plan-specific probability scaling function s, (). Substituting this prior into the behavioral
posterior (26) for a single decision maker yields

P,(U|Y) Sn(u)eu(Vn(u)HAM/u). (30)

This posterior is structurally identical to its prior. Only the addition of (A,U)/u to V,(U)
is different. This allows to force a demand simulator that implements (29) to immediately
draw from the posterior only by adding a correction term (A,U)/u to every alternative
U’s systematic utility. For this, the s,(-) coefficients need not be known by the estimator.

This approach is called the utility-modification (UM) estimator. Its requirements are
more restrictive than those of the AR estimator since the demand simulator is required to
implement (29). However, if this prior is given, the UM estimator and the AR estimator
yield equivalent results since both rely on the same linearization-based approximation
(26) of the posterior. In this case, the UM estimator is to be preferred over the AR
estimator since it is computationally more efficient in that it rejects no draws from the
prior but immediately draws from the posterior. The UM estimator follows the same
logic as outlined in Algorithm 1, only that steps 2(a)i to 2(a)iii need to be replaced by an
appropriate utility-modification logic.

Technically, the UM estimator can be applied in conjunction with an arbitrary utility-
driven demand simulator. The following analysis identifies the conceptual limitations of
such an approach. Assume that decision maker n disposes of a choice set C, and that
prespecified utilities V2(U) for every U € C,, are given. Based on these utilities, the
arbitrary demand simulator draws from well-defined but to the estimator unknown choice
probabilities PY(U/). These choice probabilities can be perfectly reproduced by the model
(29) if the s,(-) coefficients are re-defined as

snU) = PO(U) )V, (31)
The resulting choice probabilities are
Po(U) o PO(U)erVn@=V2) (32)

such that V,,(U) = VO(U) results in P, (U) = P2(U) for all U € C,,. Loosely speaking, any
behavioral prior can be approximated up to Oth order in this way. The adequacy of this
approximation for others than the prespecified utilities only depends on the approximated
prior’s elasticities, i.e. the way relative utility changes induce relative changes in the choice
probabilities.

Recall that the UM estimator functions without explicit knowledge of the s,(-) coeffi-
cients. This implies that an application of the UM estimator can be justified by the
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Figure 2: Berlin network. Left: toll zone, right: sensor locations.

approximation (32) even if the P? and V.2 values that define the s,(-) coefficients in (31)
are unknown. However, it is required that the prior choice distribution’s elasticities are
sufficiently similar to those of (29). Otherwise, only a heuristic application of the UM
estimator is possible.

Summarizing, this section derives two operational procedures for drawing from a Bayesian
posterior choice distribution that results from the combination of aggregate sensor data
and a general demand simulator. The computational efficiency of these procedures results
from a linearization of the log-likelihood function that allows to decompose the popula-
tion’s joint posterior choice distribution at the level of individual decision makers.

4 Test case

This section outlines a number of experimental results. A detailed description can be
found in [16]. The considered test case comprises the metropolitan region of Greater
Berlin. The underlying network has 2459 links and 1083 nodes. A synthetic population
of 206’353 travelers with complete activity plans is available for this scenario [27]. All
experiments are constrained to the time span from 6 to 9 am. This interval exhibits the
most variable traffic conditions because of the morning rush hour.

4.1 Simulation procedure

The only behavioral degree of freedom considered here is route choice. That is, all behav-
ioral aspects apart from route choice are retained unchanged in the original plans. Since
route choice can be generalized to plan choice by minor modifications to the original net-
work as shown in Section 2.3, an effective route choice estimator is likely to be applicable
in a more general setting as well.

A time-independent toll of 0.24 EUR /km is charged on all link in the city center shown in
Figure 2 (left), and no toll is charged outside of this area. The unitless utility of a route
U is

Vo(U) = (—=tt(U) — toll(d)/VOT,,)/1s (33)
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where tt(Uf) is the travel time on route U, toll(i) is the toll accumulated along route U, and
VOT,, is individual n’s value of time (in monetary units per time unit). For simplicity, it
is assumed that all drivers have an identical value of time, i.e. VOT,, = VOT, n=1...N.

The employed simulation logic is very simple. It recalculates the routes for 10% of all
travelers in every iteration. For each replanning agent, a “proposal route” is generated by
calculation of a time-dependent best path based on a randomly chosen VOT and the link
travel times of the previous iteration. The proposal route is adopted by the agent if and
only if has a higher utility than the hitherto applied route according to the agents actual
VOT. Otherwise, the agent maintains its previous route.

4.2 Calibration procedure

A synthetic reality is generated by a simulation where all travelers react to the toll ac-
cording to a 12 EUR/h VOT. Time-dependent flow rates are collected as synthetic sensor
data at the 50 sensor locations indicated in Figure 2 (right). Since the sensors loca-
tions are fairly scattered, the measurements are assumed to follow independent normal
distributions with identical variance o2.

The UM estimator is deployed. It does not interfere with the proposal route generation
itself but only affects the subsequent choice between the proposal route and the hitherto
applied route. Since the underlying route choice model cannot be shown to be of structure
(29), this constitutes a heuristic application of the UM estimator.

The UM estimator replaces the original utility V,,(U) of a route by V,(U) + (A, U)/pu,
cf (30), where the second addend results from a linearization of the sensor data’s log-
likelihood. For univariate normal measurements, this log-likelihood becomes a sum of
squared deviations between estimated and measured flows, which are weighted by o~2.
That is, the overall utility modification is effectively divided by puo?. This product defines
the sole tuning parameter of the UM estimator, which is

Wyrior = \/ HO2. (34)

This parameter defines the weight of the behavioral prior information (represented by
Vn.(U)) when compared to the sensor data (basically represented by (A,U)).

4.3 Results

A prior scenario with an infinite VOT is assumed. That is, the demand simulator itself
effectively ignores the toll. The question is investigated to what degree the UM estimator
is able to reconstruct the network-wide traffic conditions of the synthetic reality (which
results from a 12 EUR/h VOT) given only a limited set of flow measurements.

Figure 3 shows the resulting root mean square error measures over different w0, values.
The flow measurement reproduction error at the 50 sensor locations is given on the left,
and the network state reproduction error between the estimated occupancies of all links
in the network and those in the synthetic reality is shown on the right. For comparison,
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Figure 3: Result overview. Blue dots: estimation, red dots: plain simulation.

the error measures of four plain simulations of the prior scenario are also given in each
diagram. They are equivalent to running the estimator without sensor input. For ease of
comparison, they are re-drawn over every wp,;,, value in red color. The three estimation
results per wy,i,r value are drawn in blue.

All results are fairly stable in that there is limited variability among repeated runs. Often
enough, the dots lie on top of each other and cannot be distinguished. Reproducible
convergence is a desirable and not at all self-evident feature for a nonlinear estimator. In
these experiments, it can be observed with good precision.

The left diagram of Figure 3 shows that the measurement reproduction error decreases
monotonously with w,;,.. This is plausible: the smaller the belief in the behavioral
model, the more weight is put on measurement reproduction. The greatest estimation
improvement over a plain simulation of the prior is 86%.

The right diagram of Figure 3 shows a non-monotonous relation between wy,;,, and the
network state reproduction error. As Wprior GTOWS, the measurement influence vanishes
and the estimation quality gracefully deteriorates towards that of a plain simulation.
However, as wy,i,r decreases, a minimum error value is invariably encountered after which
a further decrease of w,,;,, results in an increased network state reproduction error. This
is an over-fitting effect. The attained minimum error value reflects the estimator’s ability
to spatiotemporally extrapolate the available flow measurements. A 48% improvement
in network-wide traffic conditions is achieved — based on traffic counts from only 50
measurement locations out of altogether 2459 links.

Overall, these quality measures must be considered in light of the idealized setting in
which they were obtained. However, it can be concluded that the estimator performs
structurally correct, and that the calibration results in a specific application will mainly
depend on the available data and modeling quality.
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5 Summary and outlook

We presented a novel approach for the Bayesian calibration of plan choice distributions
from aggregate sensor data. The proposed method is independent of the underlying
demand simulator. The main precondition for its application is the availability of a supply
simulator with linearizable traffic low dynamics. The weakening of this requirement is
an important aspect of our future research.

Another relevant issue is the utilization of the obtained estimation results. The identifi-
cation of plan choice distributions clearly has predictive power within a considered day
(this motivates an application in a telematics context), but it does not immediately allow
to predict plan choice in changed conditions. Therefore, our method is currently extended
to the joint calibration of plan choice distributions and the parameters of the underlying
demand simulator. An example of such parameters are the utility coefficients of a random
utility model. The following paragraph outlines this approach.

The AR estimator draws plans from an individual-level posterior choice distribution
P,(U|Y) < M P (U), cf. (26). If the choice U, of individual n depend on a parameter
vector 6, which is distributed according to p(@), the AR estimator can immediately be
applied to a demand simulator that draws not only from n’s parameterized choice dis-
tribution P, (U|0,) but also from p(@) itself. The modified AR procedure for a single
decision maker n is as follows:

1. Draw 6,, from p(6).
2. Draw U, from P,(U|6,,).
3. Accept (0,,,U,) with probability oc e/®“) otherwise goto 1.

The first accepted draw is from p, (U, 0])) which is individual n’s joint posterior plan and
parameter distribution given the sensor data. That is, the plan choice distributions are
now calibrated together with their underlying parameters. Our current work concentrates
on an experimental investigation of this parameter calibration procedure.

A Linearization of the log-likelihood function

A linearization of the log-likelihood function with respect to plan choice must account
for the coupling between U and X through the dynamical system constraint (12) that
represents the demand simulator. This difficulty can be dealt with by well-known methods
from control theory |20, 26|. A self-contained exposition is given in the following.

For the sake of generality, a functional ®(X') of the macroscopic system states is linearized
with respect to the population plan choice U; ...Uy. A time-additive structure of ® is
assumed. This corresponds to the structure of the log-likelihood since the likelihood itself
is a product over subsequent time steps, c¢f. (17) and (18). Denote

(k) = 3y plx(), 4] (35)
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for k =1... K. This is the remaining contribution to ®(X’) from time step k on until the
final time step K. It can be recursively written as

_f elx(k), K+ ®(k+1) k=1...K—1
= { plx(K), K] k=K. (36)
As a first step, sensitivities with respect to states are computed by
Oplx(k), k] d®(k+1) ,
dd(k) _ ox (k) + ax(k) k=1...K—-1 o
(k) | 0glxli) ) -
0x(K) '

Since the interplay between variables at different time steps is fully defined by the state
equation (12),

A0k +1)  Of[x(k), wy(k). .. un(k), kT d®(k + 1)

(k) (k) Ix(k+ 1) (38)

holds for k < K, where x(k + 1) = f[...] was used and the superscript 7 denotes the
transpose.

Now, sensitivities with respect to control variables u; (k) ...uy(k) result from

do(X) _ Offx(k), wi(k). .. un(k), k]" dP(k + 1) (39)
du, (k) ou(k) dx(k+1)

Here, 0p[x(k), k]/0u, (k) disappears since u, (k) influences no state earlier than x(k +1).
of[...]/0u(k) denotes the partial derivative of f[...] with respect to any u,(k), which
is independent of n. This independence allows to entirely omit the n subscript in ®’s
sensitivities and to subsequently write d®(X')/du(k) instead of d®(X)/du,(k), and it
allows to compute all sensitivities for all agents simultaneously.

In summary, d®(X)/du(k) is obtained in a two-pass-procedure.

1. Using (38), solve (37) recursively for £ = K ... 1. Moving backwards through time
introduces a “far sightedness” into the calculation that is necessary to predict the
influence of present state variations on future system states.

2. Determine the influence of controls by (39) for k = 0... K —1. Since this expression
is identical for all agents, it needs to be evaluated only once for the entire population.

One obtains the following linearization of ®(X’) with respect to U ... Uy:

P(X (U ... Ux)) = P(X) + X2y dP(X°) /du(k)" 32,0, (wa (k) — u) (k) (40)

n=1

0

where u,,

(k) is the control vector of traveler n at step k around which linearization took
place and X is the resulting macroscopic state sequence. The computational logic behind
this approximation can be seen most clearly if it is fully expanded:

QXU Un)) ~ S0 (030, g (ks (k) ) + const (41)
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with
A (k) = dB(X) /duug (k). (42)

Only such \;;(k) coefficients are summed up in (41) that correspond to a nonzero turning
move u;;,(k) that is actually contained in U,,. Using the same X coefficients for all agents
reflects that the sensitivities of ® to a turning move (sequence) are independent of which
agent is actually moving.
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