
A fully disaggregate approa
h to the 
alibration ofsimulation-based DTAGunnar Flötteröd1Berlin Institute of Te
hnology, GermanyAbstra
tWe des
ribe a novel method for the fully disaggregate 
alibration of a motorist demandsimulator from aggregate measurements of �ows, densities or velo
ities that are obtainedat a limited set of network lo
ations. The problem is solved in a Bayesian setting wherethe prior assumption about an individual's 
hoi
e distribution is 
ombined with the avail-able measurements' likelihood into an estimated posterior 
hoi
e distribution. The ap-proa
h is simulation-based in that it (i) only requires a simulation system to representthe behavioral prior distribution, and (ii) only generates realizations from the behavioralposterior distribution. We fo
us on the o�ine-
alibration problem in 
onjun
tion with anequilibrium-based dynami
 tra�
 assignment system.Keywords: demand 
alibration, tra�
 state estimation, dynami
 tra�
 assignment1 Introdu
tionThe subje
t matter of this text is the 
alibration of

Figure 1: Simulation-based DTA
a simulation-based dynami
 tra�
 assignment (DTA)system from aggregate measurements of �ows, densi-ties or velo
ities that are obtained at a limited set ofnetwork lo
ations. Figure 1 outlines the 
onsideredtype of simulation system. It 
onsists of a demandsimulator and a supply simulator. The demand simu-lator maps network 
onditions (su
h as travel times)on travel behavior (su
h as route, destination, and de-parture time 
hoi
e). The supply simulator modelshow well a road network serves a traveler's need ofdriving most 
onveniently along a route to a desti-nation in a potentially 
ongested tra�
 situation. Time-dependent Nash equilibria are
omputed on su
h models via iteration: Start with some version of time-dependent de-mand. Have ea
h vehi
le exe
ute its pre-
omputed trips in the supply simulator. Then,re-
ompute the travel behavior for some fra
tion of travelers given the most re
ently ob-served network 
onditions. This pro
edure is iterated until an approximate �xed point isrea
hed.1This proje
t was funded in part by the German resear
h so
iety DFG under the grant �State esti-mation for tra�
 simulations as 
oarse grained systems�. Signi�
ant amounts of 
omputing time on the
omputing 
luster of TU Berlin's mathemati
al fa
ulty are gratefully a
knowledged.1



In this arti
le, we des
ribe a method to 
alibrate the demand simulator. While ourapproa
h 
an (and should) be 
omplemented by an additional 
alibration 
omponent forthe supply simulator, the subsequent presentation assumes the supply simulator to bemodeled without error. To serve the purpose of this work, travel behavior in terms ofbreaking, a

eleration, and lane 
hanging is subsumed in the physi
al representation oftra�
 �ow.The arguably most frequently adopted approa
h to demand 
alibration is origin-destination(OD) matrix estimation. An OD matrix models the demand of a given time interval interms of number of trips from every origin to every destination of a tra�
 system. Theoriginally stati
 problem was to estimate su
h a matrix from observed link volumes, givena linear assignment mapping of demand on link �ows. Various methods su
h as entropymaximization and information minimization [33℄, Bayesian estimation [22℄, generalizedleast squares [2, 10℄, and maximum likelihood estimation [31℄ were proposed to solve thistask. Non-
onstant assignment mappings were in
orporated by a bilevel-approa
h thatiterates between a nonlinear assignment and a linearized estimation problem [23, 35, 36℄until a �xed point of this mutual mapping is rea
hed [13℄. The 
ombined estimation ofOD matri
es at subsequent time sli
es was demonstrated in [11℄, and many originallystati
 methods were applied to dynami
al problems in this vein, e.g. [1, 21, 29, 37℄. The
on
eptual equivalen
e of the stati
 and the dynami
 OD matrix estimation problem wasdemonstrated in [9℄.Sin
e a time-dependent OD matrix maps (origin, destination, departure time) tuples ondemand levels, it dire
tly represents destination and departure time 
hoi
e. A motoristOD matrix re�e
ts mode 
hoi
e at least in terms of de
isions for or against the vehi
ularmode. Route 
hoi
e, however, 
onstitutes no additional degree of freedom but is a fun
tionof demand de�ned by the DTA pro
edure. The path �ow estimators outlined below
onstitute a notable ex
eption to this, yet only in a (behaviorally) stati
 setting.The naming �path �ow estimator� is usually asso
iated with the approa
h proposed in [6℄.It des
ribes a ma
ros
opi
 one-step network observer that estimates stati
 path �ows fromlink volume measurements based on a sto
hasti
 user equilibrium modeling assumptionin a 
ongested network [3℄. The estimation problem is transformed into one of smoothoptimization whi
h is iteratively solved. The model has been enhan
ed by multiple user
lasses and a simple analyti
al queuing model to represent tra�
 �ow dynami
s [5℄, andhas been su

essfully implemented in various resear
h and development proje
ts [4℄. Thelimitations asso
iated with its original assumption of a logit path 
hoi
e model (�over-lapping path problem�, e.g. [7℄) have been mitigated by the implementation of a C-logitpath 
hoi
e model [12, 34℄. The path �ow estimator's non-sto
hasti
 user equilibrium
ounterpart has been proposed in [28, 30℄ and was further advan
ed in [24, 25℄.The 
alibration of a fully disaggregate demand simulator from aggregate sensor dataappears to be a novel venture. Sophisti
ated 
alibration pro
edures are available forrandom utility models (RUMs) whi
h 
apture demand at the individual level [8, 32℄.However, we are not aware of any resear
h that 
alibrates a RUM from aggregate sensordata su
h as tra�
 
ounts.The remainder of this arti
le is organized as follows. Se
tion 2 states the formal require-ments on a DTA system to be 
alibrated by our methodology. Se
tion 3 des
ribes the2



estimation framework and presents two operational estimators. Se
tion 4 demonstratesthe method's pra
ti
al appli
ability. Finally, Se
tion 5 
on
ludes the arti
le and sket
hesour 
ontinuative resear
h.2 Modeling requirementsWe assume a mi
rosimulation-based demand model and a mixed mi
ro/ma
ro (�meso-s
opi
�) supply simulator to be given. Mi
rosimulation greatly simpli�es modeling issuesand likewise 
ompli
ates the 
alibration task. Consequently, every property of the simula-tor has to be 
arefully mat
hed by a formal representation that allows for a mathemati
altreatment. The formalism set up in this se
tion 
aptures a wide variety of mi
ros
opi
aspe
ts while ensuring tra
tability of the mathemati
al estimation problem.2.1 Ma
ros
opi
 tra�
 �ow modelA deterministi
 and ma
ros
opi
 representation of tra�
 �ow dynami
s is required sin
ethese dynami
s need to be linearized: The supply simulator maps travel demand onlink volumes. Basi
ally, an inverse mapping is needed to dedu
e the demand from thesevolumes. Sin
e su
h an inversion does generally not exist, a linearization of this mappingis used and non-linearities are a

ounted for in an iterative manner.For 
alibration purposes, the tra�
 �ow dynami
s are represented in terms of a generalstate spa
e model
xms(0) = xms

0 (1)
xms(k + 1) = fms[xms(k), β(k), k]. (2)The ve
tor xms(k) denotes this mobility simulation's state at dis
rete simulation timestep k. For a spatially dis
retized 1st order model (su
h as the 
ell-transmission model[14, 15℄) this ve
tor 
ontains one element for every 
ell in the network. Single-
ommodity�ow splits β(k) = (βij(k)) from every upstream link i to every downstream link j atall interse
tions are exogenously provided. The ve
tor-valued transition fun
tion fmsde�nes the system's evolution through time. It fully en
apsulates the spe
i�
ally 
hosentra�
 �ow model. It is required that at least approximate Ja
obians ∂fms[. . . , k]/∂xms(k)and ∂fms[. . . , k]/∂β(k) 
an be 
al
ulated. The handling of demand sour
es and sinks isdes
ribed later in this se
tion.This state spa
e model is supplemented with an output equation

y(k) = g[xms(k), ǫ(k)] (3)that maps xms(k) by a linearizable fun
tion g on the ve
tor y(k) of ma
ros
opi
 observ-ables. These may in
lude �ows, velo
ities, and densities generated by sensors su
h asindu
tive loops, �oating 
ars, and tra�
 surveillan
e 
ameras. The in�uen
e of varioussour
es of error on these observations is a

ounted for by the random disturban
e ve
-tor ǫ(k) that turns y(k) into a random variable itself. The resulting probability density3



fun
tion (p.d.f.) of y(k) is
p(y(k)|x(k)) =

�
δ(y(k) − g[x(k), ǫ])p(ǫ)dǫ (4)where δ is the Dira
 fun
tion and p(ǫ) is the known p.d.f. of ǫ. Here and in the following,a lower-
ase p denotes a p.d.f. while an upper-
ase P represents a dis
rete probability.An exemplary tra�
 �ow model that meets all requirements of this subse
tion is des
ribedin [16, 17℄.2.2 Mesos
opi
 supply simulationConsider a set of parti
les n = 1 . . . N (a population of travelers, agents or vehi
les)moving through the network. Parti
les have no �mass� insofar as they do not 
ontributeto the ma
ros
opi
 o

upan
y of a link. At the time of a parti
le's entran
e into thenetwork an appropriate amount of ma
ros
opi
 �ow is also dismissed into the system,resulting in a mass balan
e between parti
les and total ma
ros
opi
 o

upan
y.The ma
ros
opi
 tra�
 �ow model is required to spe
ify a lo
al velo
ity vi(k) on everylink i at every time step k. At any su
h time step of duration T , ea
h parti
le n advan
esa

ording to the lo
al velo
ity of its 
urrent link. Parti
le lo
ations within a link are
ontinuous variables and parti
le movement is regarded as 
ontinuous in time as well:When n 
rosses a link boundary during a single move of duration T , it freely 
hoosesits next link (if there is more than one downstream link) and 
ontinues with the velo
ityen
ountered there until its available move time ends. When a parti
le has rea
hed itsdestination, it is removed from the system and an appropriate amount of ma
ros
opi
�ow is also �ltered out of the tra�
 stream passing the exit lo
ation.The route 
hoi
e of parti
le n is expressed by a ve
tor un(k) = (uij,n(k)) of turningmove indi
ators where

uij,n(k) =

{

1 if n pro
eeds from link i to j at time step k
0 otherwise. (5)An additional state ve
tor xcnt(k) = (xij(k)) is introdu
ed. Ea
h element xij(k) representsthe a

umulated 
ount of parti
les having moved from link i to j until time step k. Thedynami
s of this turning 
ounter xcnt(k) are de�ned by

xcnt(0) = 0 (6)
xcnt(k + 1) = xcnt(k) +

∑N
n=1 un(k). (7)The ma
ros
opi
 �ow splits β(k) = (βij(k)) of the state spa
e model (2) are now spe
i�edthrough

βij(x
cnt(k)) = xij(k)/

∑

l xil(k). (8)This is a maximum likelihood estimator of the turning probabilities if the parti
le turningmoves follows a multinomial distribution [19℄. While the update equation (7) assumes4



time-independent turning probabilities, a straightforward approa
h to introdu
e time de-penden
y is to de�ne an additional forgetting parameter w ∈ (0, 1) in a modi�ed turning
ounter state equation
xcnt(k + 1) = wxcnt(k) + (1 − w)

∑N
n=1 un(k). (9)In the absen
e of newly observed turning moves, this s
heme 
auses an exponential for-getting of previously learned 
ounts. A useful property of this �lter is its in�nite memory:Even if no parti
les arrive at an interse
tion for a while, turning 
ounts remain stri
tlypositive and thus ensure well-de�ned �ow splits (8). In order to avoid unde�ned 0/0 di-visions at the beginning of a simulation, turning 
ounters should be initialized with smallpositive values instead of all zeros.A state spa
e representation of the 
ombined system (2) and (9) 
an now be given. De�n-ing

x(k) =

[

xms(k)
xcnt(k)

] (10)and
f [x(k),u1(k) . . .uN (k), k] =

[

fms[xms(k), β(xcnt(k)), k]

wxcnt(k) + (1 − w)
∑N

n=1 un(k)

]

, (11)one obtains
x(k + 1) = f [x(k),u1(k) . . .uN (k), k]. (12)Given a linearizable model (2) of tra�
 �ow dynami
s, the 
ombined state transitionfun
tion f is likewise linearizable with respe
t to the ma
ros
opi
 states x and all un.A more elaborate des
ription of this 
ombined mi
ro/ma
ro simulation logi
 that in
ludesa number of exerimental results 
an be found in [16, 18℄.2.3 Mi
ros
opi
 demand simulationThe de
ision making pro
ess of a traveler is stru
tured a

ording to the framework givenin [8℄:1. de�nition of the 
hoi
e problem,2. generation of alternatives,3. evaluation of attributes of alternatives,4. 
hoi
e,5. implementation.These steps are made pre
ise in the remainder of this se
tion. The dis
ussion omitsspe
i�
 modeling assumptions and algorithmi
 details that would be ne
essary for theimplementation of an appli
able behavioral model. This is justi�ed by the intentionto provide a 
alibration pro
edure that is 
ompatible with a broad range of demandsimulators.

5



2.3.1 De�nition of 
hoi
e problemThe a
tivity and traveling intentions of a motorist are denoted as her plan. For simpli
ity,only plans for a single day are 
onsidered. Physi
ally, a plan des
ribes a round trip throughthe transportation network. This round trip 
omprises a sequen
e of routes that 
onne
tintermediate stops during whi
h a
tivities are 
ondu
ted. The �rst and last a
tivity of aplan typi
ally take pla
e at the individual's home lo
ation.Formally, a (simple) route U 
an be spe
i�ed as a (physi
ally feasible) sequen
e ofturning moves
U = . . .u(k − 1),u(k),u(k + 1) . . . = {u(k)}k (13)with u(k) de�ned in (5). This notation 
an be extended to express all mobility relatedaspe
ts of a 
omplete plan if additional turning moves for all possible network entran
esand exits are spe
i�ed: The 
on
atenation of all (network entry, route, network exit)turning move sequen
es for all trips in a parti
ular plan is de�ned as the (generalized)path U of that plan.Any tra�
 �ow model of stru
ture (12) 
an be steered by the turning move indi
ators ofgeneralized paths instead of simple routes without formal modi�
ation. Ma
ros
opi
ally,a parti
le entry or exit merely 
orresponds to a lo
al density modi�
ation the e�e
t ofwhi
h 
an be globally extrapolated by the linearizable state spa
e model. Consequently,the model is also linearizable with respe
t to the newly introdu
ed turning moves thatrepresent su
h entries and exits. That is, the mobility simulation 
an linearly predi
t thee�e
t of a single traveler's plan 
hoi
e on the global network 
onditions.2.3.2 Generation and evaluation of alternatives, 
hoi
eThe 
hoi
e set of behavioral alternatives available to de
ision maker (agent) n is denotedby Cn. The elements of this set are plans, formally represented by (generalized) paths U .It is required that a non-empty 
hoi
e set Cn is available to every de
ision maker n. Sin
ethe goal of this work is to treat the behavioral model as mu
h as a bla
k box as possible,it is only required that there exists a nonempty set Cn of alternatives that 
ontains allpossible 
hoi
es of n in a given situation. However, an enumeration of this set is notrequired.The systemati
 (deterministi
) utility of an alternative, represented by a real-valuednumber, is a model of the bene�ts the de
ision maker expe
ts from 
hoosing this alter-native. It re�e
ts the de
ision maker's preferen
es. The per
eption of utility 
an varyamong de
ision makers, and 
learly utility 
an di�er among alternatives. Formally, a sys-temati
 (deterministi
) utility Vn(U) is asso
iated with every plan U in the 
hoi
e set Cnof traveler n. An evaluation of this fun
tion only has to be available on request and on aper-plan basis. It is not required that the 
hoi
e set is enumerated for evaluation before a
hoi
e is made. Furthermore, if the de
ision proto
ol sequentially 
omposes a 
hoi
e, e.g.by in
rementally building a plan as a sequen
e of a
tivities and legs, the utility fun
tionmay be limited to an evaluation of the a

ording plan 
omponents.6



The 
hoi
e of a plan is modeled non-deterministi
ally. The probability that de
ision maker
n 
hooses plan U ∈ Cn is denoted as Pn(U). This 
hoi
e distribution may be parame-terized in an agent-spe
i�
 way but otherwise is required to depend only on the systemati
utilities of the elements in Cn. (In its general form, the 
alibration pro
edure does noteven require a utility fun
tion. This is detailed in Se
tion 3.) A probabilisti
 
hoi
e logi
may represent randomness in human behavior or a

ount for modeling impre
isions [8℄.The spe
i�
 modeling assumptions that underly a parti
ular 
hoi
e distribution are notrelevant for the subsequently developed 
alibration approa
h. Furthermore, no expli
it(e.g. 
losed-form) representation of the 
hoi
e distribution is required. Only realizationsof 
hoi
es need to be generated by the demand simulator.2.3.3 ImplementationThe implementation of a 
hoi
e requires its realization in the mobility simulation. How-ever, a traveler with imperfe
t knowledge of the a
tual tra�
 
onditions may observe anin
onsisten
y between what she wants to do and what is physi
ally possible. In parti
u-lar, the generalized path representation of a plan 
omprises a sequen
e of turning moveindi
ators that prespe
ify the timing of every turning move and every entry/exit move inthe network. It is unlikely that (
ongested) tra�
 
onditions admit pre
isely this timing.A generalized path does, however, impli
ate a logi
ally feasible sequen
e of a
tivities androutes. It therefore is assumed that the mobility simulation extra
ts the physi
ally rele-vant information from a generalized path whenever it is stated that �U1 . . .UN are loadedon the network� or �U1 . . .UN are fed into the mobility simulation�.The spe
i�
 properties of the simulation 
omponents des
ribed in this se
tion are nowexploited in the formulation and solution of a DTA 
alibration problem.3 Calibration methodologyThe 
onsidered problem is to use spatially and temporally in
omplete sensor informationto re
onstru
t spatially and temporally 
omplete system state information. Ma
ros
opi-
ally, the system state to be re
onstru
ted is represented by the state ve
tor sequen
e

X = {x(k)}k (14)of tra�
 �ow model (12). Sin
e this model unfolds deterministi
ally given an initial stateand a driver population's plans U1 . . .UN , the 
alibration problem be
omes to identify
ontrol sequen
es U1 . . .UN that steer X = X (U1 . . .UN) towards most likely values giventhe available measurements and the behavioral a priori knowledge represented by thedemand simulator.3.1 General formulation of estimatorAggregate measurements alone do not provide su�
ient information for unique plan es-timates sin
e usually there are many behavioral 
ombinations that generate the same7



observations. Here, this problem is resolved by the in
orporation of additional behavioralinformation in a Bayesian setting.Consider a single iteration of a simulation-based DTA pro
edure. An (arbitrary) demandsimulator draws 
hoi
es U ∈ Cn a

ording to an individual 
hoi
e distribution Pn(U) forevery agent n = 1 . . .N . Only realizations from these distributions are available. Givenmutually independent traveler de
isions, the behavioral prior for the whole populationis de�ned as
P (U1 . . .UN) =

∏N
n=1 Pn(Un). (15)A

ording to (4), the measurements

Y = {y(k)}k (16)result from a joint distribution
p(Y|X ) =

∏

k p(y(k)|x(k)) (17)where sto
hasti
 independen
e between outputs on di�erent time steps is assumed. Thisis, so far, the not unexpe
ted result that all spatiotemporal measurements Y 
an beprobabilisti
ally des
ribed if all spatiotemporal system states X are known � no behavioralinformation is needed dire
tly. However, sin
e X = X (U1 . . .UN), the likelihood of aparti
ular plan 
hoi
e 
ombination U1 . . .UN is
p(Y|U1 . . .UN) = p(Y|X (U1 . . .UN )). (18)Bayes' theorem allows to 
ombine the behavioral prior and the likelihood into a behav-ioral posterior

P (U1 . . .UN |Y) = 
onst · p(Y|U1 . . .UN)P (U1 . . .UN ). (19)The estimation obje
tive is to make the population 
hoose its plans a

ording to theposterior (19) instead of the prior (15). This 
an be enfor
ed if draws are taken fromthe prior but are reje
ted with a 
ertain probability that depends on the measurements.Denote by φ(U1 . . .UN ) the probability to a

ept a draw U1 . . .UN from the prior. If thisprobability is spe
i�ed as
φ(U1 . . .UN) = p(Y|U1 . . .UN)/D, (20)

D ≥ max
V1∈C1...VN∈CN

p(Y|U1 . . .UN ), (21)then the following a

ept/reje
t pro
edure draws from the posterior, as 
an be shown bystraightforward manipulations.1. Draw 
andidate 
hoi
es U1 . . .UN from the prior (15).2. With probability 1 − φ(U1 . . .UN), dis
ard the 
andidates and goto 1.3. The �rst a

epted plans U1 . . .UN 
onstitute a draw from the posterior (19).The behavioral posterior 
an thus be generated by suppressing 
ertain draws from theprior. Somewhat 
oarsely expressed: (i) The simulation is run many times with di�erentrandom seeds, (ii) a large portion of these runs is �thrown away�, based on the above8



reje
tion 
riterion, and (iii) the remaining runs are draws from an a

urate Bayesian
ombination of the behavioral prior and the measurements. Although appealing be
auseof its simpli
ity, this approa
h is in this form 
omputationally intra
table in all but trivial
ases. There are two major problems.1. It is 
omputationally infeasible to evaluate all possible p(Y|U1 . . .UN) values before-hand sin
e every su
h evaluation requires a full network loading in order to map
U1 . . .UN on a ma
ros
opi
 state sequen
e X that enters the likelihood via (18).However, these evaluations are required in order to guarantee a feasible denomina-tor (21) for the a

eptan
e probabilities. Furthermore, the need for a 
hoi
e setenumeration implies that the estimation logi
 is aware of this set, whi
h 
onstitutesan unwanted dependen
y of the estimator on modeling details.2. Even if the a

eptan
e probabilities' denominator was repla
ed by an estimate inorder to mitigate problem 1, a single draw from the posterior might still requirea substantial number of mobility simulation runs sin
e every draw from the priorneeds to be loaded on the network at least on
e, and sin
e it 
annot be guaranteedthat an �a

ept� o

urs after a �xed number of draws from the prior.In light of these di�
ulties, simplifying assumptions that speed up the simulation ofthe posterior are highly desirable even at the 
ost of some loss in a

ura
y. Two su
hsimpli�
ations are proposed in the following.3.2 Operational a

ept/reje
t estimatorThe estimation problem is 
onsiderably simpli�ed if the full likelihood is repla
ed byan approximation. Appendix A derives the following linearization of the log-likelihood

ln p(Y|U1 . . .UN ) with respe
t to the plans U1 . . .UN :
ln p(Y|U1 . . .UN) ≈

∑N
n=1〈Λ,Un〉 + 
onst (22)where the �inner produ
t� 〈Λ,Un〉 is de�ned as

〈Λ,Un〉 =
∑

k

∑

ij λij(k)un,ij(k). (23)The time-dependent λ 
oe�
ients represent the sensitivities of the log-likelihood withrespe
t to the 
orresponding turning move indi
ators. These 
oe�
ients are identi
al forall agents. Subsequently, Λ will be used as a 
olle
tive term for all λ 
oe�
ients. Thelinearized log-likelihood implies the following likelihood approximation:
p(Y|U1 . . .UN ) ≈ 
onst · ∏N

n=1 e〈Λ,Un〉. (24)Substitution of this in the behavioral posterior (19) yields
P (U1 . . .UN |Y) ≈ 
onst · ∏N

n=1 e〈Λ,Un〉Pn(Un). (25)The bene�ts of the linearization are twofold. First, the population's joint posterior (25) isde
omposed into a produ
t of individual posteriors that 
an be evaluated agent by agent.These individual-level posteriors are subsequently denoted by
Pn(U|Y) = 
onst · e〈Λ,U〉Pn(U). (26)9



Algorithm 1 A

ept/reje
t estimator1. Initialization.(a) Set iteration 
ounter m = 0.(b) Fill Λ̄(m) (estimate of Λ �xed point) with all zeros.2. One iteration of simulation-based DTA (plus 
alibration pro
edure).(a) For all n = 1 . . .N :i. Draw 
andidate 
hoi
e U
(m)
n from n's behavioral prior.ii. Evaluate a

eptan
e probability φn(U

(m)
n ) based on Λ̄(m) as de�ned in (27).With probability 1 − φn(U

(m)
n ), dis
ard the 
andidate and goto 2(a)i.iii. Retain the �rst a

epted 
hoi
e U

(m)
n .(b) Load U

(m)
1 . . .U

(m)
N on the network and obtain X (m).(
) Linearize ln p(Y|U1 . . .UN ) and obtain Λ(m).(d) Update Λ̄(m+1) = (mΛ̄(m) + Λ(m))/(m + 1).3. If another iteration is desired:(a) In
rease m by one.(b) Goto step 2.Se
ond, a single run of the mobility simulation (plus one 
al
ulation of the Λ 
oe�
ients)is su�
ient to parameterize these posteriors for all agents in the population.The a

ept/reje
t pro
edure 
an now be applied to every de
ision maker individually.The a

eptan
e probability for plan U from n's 
hoi
e set is de�ned as

φn(U) = e〈Λ,U〉/Dn (27)
Dn ≥ max

V∈Cn

e〈Λ,V〉 (28)but otherwise the method remains un
hanged. This approa
h is subsequently denotedas the a

ept/reje
t (AR) estimator. The only simplifying assumption made here isthat the log-likelihood 
an be linearized with su�
ient pre
ision. Sin
e this linearizationis likely to be di�erent given the network 
onditions that result either from the behavioralprior or the posterior, an iterative approa
h is appropriate: Starting from the behavioralprior, su

essively improved linearizations are generated from iteration to iteration untila stable state is rea
hed where the estimator draws from the behavioral posterior basedon a linearization that in turn is most appropriate given this very posterior. That is, a�xed point of the Λ 
oe�
ients is sought after. Here, the existen
e of su
h a �xed pointis merely assumed and an elementary sto
hasti
 approximation method is employed forits identi�
ation.The AR estimator is summarized in Algorithm 1. The behavioral prior implementedby the demand simulator is arbitrary. Sin
e a 
hoi
e set enumeration is only required toprovide a lower bound for the a

eptan
e probabilities' denominator de�ned in (28), it 
anbe avoided if this denominator is treated as a tuning parameter. Choosing a large valueis likely to 
omply with the (unknown) lower bound but also to result in low a

eptan
eprobabilities and in
reased 
omputational 
ost. Vi
e versa, a smaller denominator yieldsfaster but also in
reasingly impre
ise estimates. A 
omputationally more e�
ient yet notas broadly appli
able estimator is presented in the next se
tion.10



3.3 Operational utility-modi�
ation estimatorThis estimator assumes a parti
ular prior 
hoi
e distribution
Pn(U) ∝ sn(U)eµVn(U) (29)whi
h is a multinomial logit model with positive s
ale parameter µ and a likewise positiveplan-spe
i�
 probability s
aling fun
tion sn(U). Substituting this prior into the behavioralposterior (26) for a single de
ision maker yields

Pn(U|Y) ∝ sn(U)eµ(Vn(U)+〈Λ,U〉/µ). (30)This posterior is stru
turally identi
al to its prior. Only the addition of 〈Λ,U〉/µ to Vn(U)is di�erent. This allows to for
e a demand simulator that implements (29) to immediatelydraw from the posterior only by adding a 
orre
tion term 〈Λ,U〉/µ to every alternative
U 's systemati
 utility. For this, the sn(·) 
oe�
ients need not be known by the estimator.This approa
h is 
alled the utility-modi�
ation (UM) estimator. Its requirements aremore restri
tive than those of the AR estimator sin
e the demand simulator is required toimplement (29). However, if this prior is given, the UM estimator and the AR estimatoryield equivalent results sin
e both rely on the same linearization-based approximation(26) of the posterior. In this 
ase, the UM estimator is to be preferred over the ARestimator sin
e it is 
omputationally more e�
ient in that it reje
ts no draws from theprior but immediately draws from the posterior. The UM estimator follows the samelogi
 as outlined in Algorithm 1, only that steps 2(a)i to 2(a)iii need to be repla
ed by anappropriate utility-modi�
ation logi
.Te
hni
ally, the UM estimator 
an be applied in 
onjun
tion with an arbitrary utility-driven demand simulator. The following analysis identi�es the 
on
eptual limitations ofsu
h an approa
h. Assume that de
ision maker n disposes of a 
hoi
e set Cn and thatprespe
i�ed utilities V 0

n (U) for every U ∈ Cn are given. Based on these utilities, thearbitrary demand simulator draws from well-de�ned but to the estimator unknown 
hoi
eprobabilities P 0
n(U). These 
hoi
e probabilities 
an be perfe
tly reprodu
ed by the model(29) if the sn(·) 
oe�
ients are re-de�ned as

sn(U) = P 0
n(U)/eµV 0

n (U). (31)The resulting 
hoi
e probabilities are
Pn(U) ∝ P 0

n(U)eµ(Vn(U)−V 0
n (U)) (32)su
h that Vn(U) = V 0

n (U) results in Pn(U) = P 0
n(U) for all U ∈ Cn. Loosely speaking, anybehavioral prior 
an be approximated up to 0th order in this way. The adequa
y of thisapproximation for others than the prespe
i�ed utilities only depends on the approximatedprior's elasti
ities, i.e. the way relative utility 
hanges indu
e relative 
hanges in the 
hoi
eprobabilities.Re
all that the UM estimator fun
tions without expli
it knowledge of the sn(·) 
oe�-
ients. This implies that an appli
ation of the UM estimator 
an be justi�ed by the11



Figure 2: Berlin network. Left: toll zone, right: sensor lo
ations.approximation (32) even if the P 0
n and V 0

n values that de�ne the sn(·) 
oe�
ients in (31)are unknown. However, it is required that the prior 
hoi
e distribution's elasti
ities aresu�
iently similar to those of (29). Otherwise, only a heuristi
 appli
ation of the UMestimator is possible.Summarizing, this se
tion derives two operational pro
edures for drawing from a Bayesianposterior 
hoi
e distribution that results from the 
ombination of aggregate sensor dataand a general demand simulator. The 
omputational e�
ien
y of these pro
edures resultsfrom a linearization of the log-likelihood fun
tion that allows to de
ompose the popula-tion's joint posterior 
hoi
e distribution at the level of individual de
ision makers.4 Test 
aseThis se
tion outlines a number of experimental results. A detailed des
ription 
an befound in [16℄. The 
onsidered test 
ase 
omprises the metropolitan region of GreaterBerlin. The underlying network has 2459 links and 1083 nodes. A syntheti
 populationof 206'353 travelers with 
omplete a
tivity plans is available for this s
enario [27℄. Allexperiments are 
onstrained to the time span from 6 to 9 am. This interval exhibits themost variable tra�
 
onditions be
ause of the morning rush hour.4.1 Simulation pro
edureThe only behavioral degree of freedom 
onsidered here is route 
hoi
e. That is, all behav-ioral aspe
ts apart from route 
hoi
e are retained un
hanged in the original plans. Sin
eroute 
hoi
e 
an be generalized to plan 
hoi
e by minor modi�
ations to the original net-work as shown in Se
tion 2.3, an e�e
tive route 
hoi
e estimator is likely to be appli
ablein a more general setting as well.A time-independent toll of 0.24 EUR/km is 
harged on all link in the 
ity 
enter shown inFigure 2 (left), and no toll is 
harged outside of this area. The unitless utility of a route
U is

Vn(U) = (−tt(U) − toll(U)/VOTn)/1s (33)12



where tt(U) is the travel time on route U , toll(U) is the toll a

umulated along route U , andVOTn is individual n's value of time (in monetary units per time unit). For simpli
ity, itis assumed that all drivers have an identi
al value of time, i.e. VOTn = VOT, n = 1 . . .N .The employed simulation logi
 is very simple. It re
al
ulates the routes for 10% of alltravelers in every iteration. For ea
h replanning agent, a �proposal route� is generated by
al
ulation of a time-dependent best path based on a randomly 
hosen VOT and the linktravel times of the previous iteration. The proposal route is adopted by the agent if andonly if has a higher utility than the hitherto applied route a

ording to the agents a
tualVOT. Otherwise, the agent maintains its previous route.4.2 Calibration pro
edureA syntheti
 reality is generated by a simulation where all travelers rea
t to the toll a
-
ording to a 12 EUR/h VOT. Time-dependent �ow rates are 
olle
ted as syntheti
 sensordata at the 50 sensor lo
ations indi
ated in Figure 2 (right). Sin
e the sensors lo
a-tions are fairly s
attered, the measurements are assumed to follow independent normaldistributions with identi
al varian
e σ2.The UM estimator is deployed. It does not interfere with the proposal route generationitself but only a�e
ts the subsequent 
hoi
e between the proposal route and the hithertoapplied route. Sin
e the underlying route 
hoi
e model 
annot be shown to be of stru
ture(29), this 
onstitutes a heuristi
 appli
ation of the UM estimator.The UM estimator repla
es the original utility Vn(U) of a route by Vn(U) + 〈Λ,U〉/µ,
f (30), where the se
ond addend results from a linearization of the sensor data's log-likelihood. For univariate normal measurements, this log-likelihood be
omes a sum ofsquared deviations between estimated and measured �ows, whi
h are weighted by σ−2.That is, the overall utility modi�
ation is e�e
tively divided by µσ2. This produ
t de�nesthe sole tuning parameter of the UM estimator, whi
h is
wprior =

√

µσ2. (34)This parameter de�nes the weight of the behavioral prior information (represented by
Vn(U)) when 
ompared to the sensor data (basi
ally represented by 〈Λ,U〉).4.3 ResultsA prior s
enario with an in�nite VOT is assumed. That is, the demand simulator itselfe�e
tively ignores the toll. The question is investigated to what degree the UM estimatoris able to re
onstru
t the network-wide tra�
 
onditions of the syntheti
 reality (whi
hresults from a 12 EUR/h VOT) given only a limited set of �ow measurements.Figure 3 shows the resulting root mean square error measures over di�erent wprior values.The �ow measurement reprodu
tion error at the 50 sensor lo
ations is given on the left,and the network state reprodu
tion error between the estimated o

upan
ies of all linksin the network and those in the syntheti
 reality is shown on the right. For 
omparison,13



Figure 3: Result overview. Blue dots: estimation, red dots: plain simulation.the error measures of four plain simulations of the prior s
enario are also given in ea
hdiagram. They are equivalent to running the estimator without sensor input. For ease of
omparison, they are re-drawn over every wprior value in red 
olor. The three estimationresults per wprior value are drawn in blue.All results are fairly stable in that there is limited variability among repeated runs. Oftenenough, the dots lie on top of ea
h other and 
annot be distinguished. Reprodu
ible
onvergen
e is a desirable and not at all self-evident feature for a nonlinear estimator. Inthese experiments, it 
an be observed with good pre
ision.The left diagram of Figure 3 shows that the measurement reprodu
tion error de
reasesmonotonously with wprior. This is plausible: the smaller the belief in the behavioralmodel, the more weight is put on measurement reprodu
tion. The greatest estimationimprovement over a plain simulation of the prior is 86%.The right diagram of Figure 3 shows a non-monotonous relation between wprior and thenetwork state reprodu
tion error. As wprior grows, the measurement in�uen
e vanishesand the estimation quality gra
efully deteriorates towards that of a plain simulation.However, as wprior de
reases, a minimum error value is invariably en
ountered after whi
ha further de
rease of wprior results in an in
reased network state reprodu
tion error. Thisis an over-�tting e�e
t. The attained minimum error value re�e
ts the estimator's abilityto spatiotemporally extrapolate the available �ow measurements. A 48% improvementin network-wide tra�
 
onditions is a
hieved � based on tra�
 
ounts from only 50measurement lo
ations out of altogether 2459 links.Overall, these quality measures must be 
onsidered in light of the idealized setting inwhi
h they were obtained. However, it 
an be 
on
luded that the estimator performsstru
turally 
orre
t, and that the 
alibration results in a spe
i�
 appli
ation will mainlydepend on the available data and modeling quality.14



5 Summary and outlookWe presented a novel approa
h for the Bayesian 
alibration of plan 
hoi
e distributionsfrom aggregate sensor data. The proposed method is independent of the underlyingdemand simulator. The main pre
ondition for its appli
ation is the availability of a supplysimulator with linearizable tra�
 �ow dynami
s. The weakening of this requirement isan important aspe
t of our future resear
h.Another relevant issue is the utilization of the obtained estimation results. The identi�-
ation of plan 
hoi
e distributions 
learly has predi
tive power within a 
onsidered day(this motivates an appli
ation in a telemati
s 
ontext), but it does not immediately allowto predi
t plan 
hoi
e in 
hanged 
onditions. Therefore, our method is 
urrently extendedto the joint 
alibration of plan 
hoi
e distributions and the parameters of the underlyingdemand simulator. An example of su
h parameters are the utility 
oe�
ients of a randomutility model. The following paragraph outlines this approa
h.The AR estimator draws plans from an individual-level posterior 
hoi
e distribution
Pn(U|Y) ∝ e〈Λ,U〉Pn(U), 
f. (26). If the 
hoi
e Un of individual n depend on a parameterve
tor θn whi
h is distributed a

ording to p(θ), the AR estimator 
an immediately beapplied to a demand simulator that draws not only from n's parameterized 
hoi
e dis-tribution Pn(U|θn) but also from p(θ) itself. The modi�ed AR pro
edure for a singlede
ision maker n is as follows:1. Draw θn from p(θ).2. Draw Un from Pn(U|θn).3. A

ept (θn,Un) with probability ∝ e〈Λ,Un〉, otherwise goto 1.The �rst a

epted draw is from pn(U , θ|Y) whi
h is individual n's joint posterior plan andparameter distribution given the sensor data. That is, the plan 
hoi
e distributions arenow 
alibrated together with their underlying parameters. Our 
urrent work 
on
entrateson an experimental investigation of this parameter 
alibration pro
edure.A Linearization of the log-likelihood fun
tionA linearization of the log-likelihood fun
tion with respe
t to plan 
hoi
e must a

ountfor the 
oupling between U and X through the dynami
al system 
onstraint (12) thatrepresents the demand simulator. This di�
ulty 
an be dealt with by well-known methodsfrom 
ontrol theory [20, 26℄. A self-
ontained exposition is given in the following.For the sake of generality, a fun
tional Φ(X ) of the ma
ros
opi
 system states is linearizedwith respe
t to the population plan 
hoi
e U1 . . .UN . A time-additive stru
ture of Φ isassumed. This 
orresponds to the stru
ture of the log-likelihood sin
e the likelihood itselfis a produ
t over subsequent time steps, 
f. (17) and (18). Denote

Φ(k) =
∑K

κ=k ϕ[x(κ), κ] (35)
15



for k = 1 . . .K. This is the remaining 
ontribution to Φ(X ) from time step k on until the�nal time step K. It 
an be re
ursively written as
Φ(k) =

{

ϕ[x(k), k] + Φ(k + 1) k = 1 . . .K − 1
ϕ[x(K), K] k = K.

(36)As a �rst step, sensitivities with respe
t to states are 
omputed by
dΦ(k)

dx(k)
=















∂ϕ[x(k), k]

∂x(k)
+

dΦ(k + 1)

dx(k)
k = 1 . . .K − 1

∂ϕ[x(K), K]

∂x(K)
k = K.

(37)Sin
e the interplay between variables at di�erent time steps is fully de�ned by the stateequation (12),
dΦ(k + 1)

dx(k)
=

∂f [x(k),u1(k) . . .uN(k), k]T

∂x(k)

dΦ(k + 1)

dx(k + 1)
(38)holds for k < K, where x(k + 1) = f [. . .] was used and the supers
ript T denotes thetranspose.Now, sensitivities with respe
t to 
ontrol variables u1(k) . . .uN(k) result from

dΦ(X )

dun(k)
=

∂f [x(k),u1(k) . . .uN(k), k]

∂u(k)

T dΦ(k + 1)

dx(k + 1)
. (39)Here, ∂ϕ[x(k), k]/∂un(k) disappears sin
e un(k) in�uen
es no state earlier than x(k + 1).

∂f [. . .]/∂u(k) denotes the partial derivative of f [. . .] with respe
t to any un(k), whi
his independent of n. This independen
e allows to entirely omit the n subs
ript in Φ'ssensitivities and to subsequently write dΦ(X )/du(k) instead of dΦ(X )/dun(k), and itallows to 
ompute all sensitivities for all agents simultaneously.In summary, dΦ(X )/du(k) is obtained in a two-pass-pro
edure.1. Using (38), solve (37) re
ursively for k = K . . . 1. Moving ba
kwards through timeintrodu
es a �far sightedness� into the 
al
ulation that is ne
essary to predi
t thein�uen
e of present state variations on future system states.2. Determine the in�uen
e of 
ontrols by (39) for k = 0 . . .K−1. Sin
e this expressionis identi
al for all agents, it needs to be evaluated only on
e for the entire population.One obtains the following linearization of Φ(X ) with respe
t to U1 . . .UN :
Φ(X (U1 . . .UN )) ≈ Φ(X 0) +

∑K−1
k=0 dΦ(X 0)/du(k)T

∑N
n=1(un(k) − u0

n(k)) (40)where u0
n(k) is the 
ontrol ve
tor of traveler n at step k around whi
h linearization tookpla
e and X 0 is the resulting ma
ros
opi
 state sequen
e. The 
omputational logi
 behindthis approximation 
an be seen most 
learly if it is fully expanded:

Φ(X (U1 . . .UN )) ≈
∑N

n=1

(

∑

k

∑

ij λij(k)uij,n(k)
)

+ 
onst (41)16



with
λij(k) = dΦ(X 0)/duij(k). (42)Only su
h λij(k) 
oe�
ients are summed up in (41) that 
orrespond to a nonzero turningmove uij,n(k) that is a
tually 
ontained in Un. Using the same λ 
oe�
ients for all agentsre�e
ts that the sensitivities of Φ to a turning move (sequen
e) are independent of whi
hagent is a
tually moving.Referen
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