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We present an operational framework for the calibrationemhdnd models for dynamic traffic simulations, where calibra
tion refers to the estimation of a structurally predefinediels parameters from real data. Our focus is on disaggeegat
simulators that represent every traveler individually. ¥débrate, at a likewise individual level, arbitrary cheidimen-
sions within a Bayesian framework, where the analyst'srgamwledge is represented by the dynamic traffic simulator
itself and the measurements are comprised of time-depemadiic counts. The approach is equally applicable to an
equilibrium-based planning model and to a telematics mofighontaneous and imperfectly informed drivers. It is dase
on consistent mathematical arguments, yet applicable imeypsimulation-based environment, and, as our expetiahen
results show, capable of handling large scenarios.
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1. Introduction

There is a broad consensus about the adequacy of microsarauta the modeling of urban transportation
systems, and a wide scope of such simulation systems hagphetrward (e.g., Ben-Akiva et al. 2001a,
Mahmassani 2001, Raney and Nagel 2006, Waddell et al| 20@&)arguably most prominent advantage
of microsimulators is their superior expressiveness baeaftitheir arbitrarily fine-grained model structure.
However, increasing the resolution of a model also increésealegrees of freedom, which calls for more
interactions to be modeled and more parameters to be igghiifhat is, the potentially greater expressive-
ness of a microsimulator is faced with a likewise increaseeidnfor modeling, data, and calibration. By
calibration, we mean the estimation of a structurally pfieéel model’'s parameters from real data. In our
specific case, these parameters represent the simulatetiliedavior in a dynamic traffic simulation, and
the data consists of traffic counts. Typically, the calilratof a (nontrivial) model is cast in a statistical
framework and is carried out by some numerical procedure.mhthematical convenience of the model
under consideration, e.g., in terms of continuity, diffdiability, normality or ergodicity, defines the com-
putational feasibility of this approach. A microsimulatasily reaches a level of detail at which most of
these features are lost.

In this article, we present a mathematically consistent@nrdputationally efficient framework for the
calibration of microsimulation-based travel demand msedelthe context of dynamic traffic assignment
(DTA). The calibration of supply (network loading) mode#dthough of great importance in a compre-
hensive DTA calibration procedure, is beyond the scope isfdtticle. Flotterdd| (2010) outlines how a
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supply calibration can be combined with the proposed derpalilgration in a unified Bayesian framework.
Specifically, we show how to calibrate a microscopic motate&snand simulator from time-dependent traf-
fic counts that are obtained at a limited set of network locesti The problem is solved in a Bayesian
setting, where the a priori assumption about every indafdwchoice distribution is combined with the
available measurements’ likelihood into an estimatedgrastchoice distribution. The method is entirely
simulation-based in that it only requires a simulation egsto represent the behavioral prior distribution
and only generates realizations from the behavioral postéistribution. The approach is applicable both
in stochastic equilibrium conditions and in non-equilibn conditions. We present experimental results
that demonstrate the method’s applicability to systemk wgh thousands of network links and hundred
thousands of travelers.

The calibration of both DTA simulators and disaggregate alginmodels has received much attention
in the literature, which is detailed in the following. Hovexywe are not aware of any work that estimates
individual-level travel behavior within a DTA simulatiogsgtem from aggregate sensor data on a practically
relevant scale. All of the subsequently reviewed appraacbasider either simplified or partial versions of
this problem.

The most frequently adopted method for demand calibratiom ftraffic counts is origin-destination
(OD) matrix estimation. An OD matrix models the demand of\egitime interval in terms of flows from
every origin to every destination of a traffic system. Theioilly static problem was to estimate such a
matrix given a linear assignment mapping of demand on linkgld/arious methods such as entropy max-
imization and information minimization_(van Zuylen and Wihsen 1980), Bayesian estimation (Maher
1983), generalized least squares (Bell 1991, BierlaireTamu|1995, Casceita 1984), and maximum like-
lihood estimation|(Spiess 1987) were proposed to solvetétsils. Nonlinear assignment mappings were
incorporated by a bilevel-approach that iterates betwieemonlinear assignment and a linearized estima-
tion problem|(Maher et al. 2001, Yahg 1995, Yang et al. 199 a fixed point of this mutual mapping is
reached.(Bierlaire and Critlin 2006, Cascetta and Post2@®1). The combined estimation of OD matri-
ces in subsequenttime slices was demonstrated in Castell#1®993), and many originally static methods
were applied to dynamic problems in this vein (e.g., Ashof€l Bierlairel 2002, Sherali and Park 2001,
Zhou/2004).

Since a time-dependent OD matrix maps (origin, destinatdeparture time) tuples on demand levels, it
represents destination and departure time choice on aegagrlevel. Route choice, however, constitutes
no additional degree of freedom but is a function of demarad it defined through the DTA system’s
modeling assumptions. Path flow estimators (PFEs) overtoimeonfinement.

The seminal PFE is a macroscopic one-step network obséraeestimates static path flows from link
volume measurements based on a multinomial logit stochasér equilibrium (SUE) modeling assump-
tion in a congested network (Bell 1995, Bell etlal. 1997). €s@mation problem is transformed into one
of smooth optimization, which is iteratively solved. The aebwas enhanced by multiple user classes
and a simple analytical queuing model to represent traffig ignamicsi(Bell et al. 1996) and was suc-
cessfully implemented in various research and developmer¢cts (Bell and Grosso 1999). The PFE's
non-stochastic user equilibrium counterpart had beengz®gin Sherali et al. (1994, 2003) and was fur-
ther advanced in Nie and Liee (2002), Nie etial. (2005). PF&s s#rve as OD matrix estimators since an
OD flow is the sum of the path flows between its OD pair.

All PFEs and OD matrix estimators are confined to their unyilegl modeling assumptions. PFEs only
consider static demand per time slice and rely on parti@gdanmptions about route choice behavior. Time-
dependent OD matrix estimators represent demand coomdadicross subsequent time slices in a simplified
and aggregate way, e.g., by auto-regressive processelynopuoal trends/ (Ashok 1996, Zhou 2004). These
approaches disregard many aspects of real travel behawiwh results from highly individual activity pat-
terns and likewise complex constraints (Bowman and BenvahkB98| Kitamura 1988, 1996, Vovsha et al.
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2004). That s, even if a PFE or an OD matrix estimator is &gjtio a fully microscopic DTA simulator, the
aggregate estimator is unable to account for those facatamhount to the microscopic modeling approach.

Random utility models (RUMs) capture travel behavior at itidividual level, and sophisticated cal-
ibration procedures for this class of models are availeBEn{Akiva and Lerman 1935, Bierlaire 2003,
Train|2003). However, in order to maintain tractabilityeithcalibration procedures require a mathemati-
cally well-behaved link between observations and modelpeters. Here, this link is given through a DTA
microsimulator. We are not aware of any work that calibrat€JM in such conditions.

A calibration of the UrbanSim microsimulator in a Bayesiatiiag is reported in (Sevcikova et/al. 2007),
where a sampling importance resampling (SIR) type algariih applied to the estimation of almost 300
model parameters. However, concerns regarding the cotigrutanes for larger problems are mentioned.

The remainder of this article is organized as follows. Theadgregate demand calibration is incremen-
tally developed in Sectioris 2 through 4: First, Secfibn dvésra macroscopic and static version of the
calibration. Second, Sectidh 3 carries this result overftoladisaggregate DTA microsimulation. Finally,
Sectiorl 4 discusses the operational aspects of the cadibi@id summarizes the conceptual developments
with a specification of the interactions between the calibraand a DTA microsimulator. A large real-
world case study is presented in Secfibn 5. Segfion 6 coasliln article and gives an overview of ongoing
and future research topics.

2. Aggregate path flow estimation

This section develops a new solution to the familiar probtdrastimating aggregate path flows between a
set of OD pairs from traffic counts. For simplicity, the timiengénsion is omitted and homogeneous travelers
are assumed. The next section generalizes this result fovaa krlass of DTA microsimulations, which
naturally account for both dynamics and heterogeneity éngbpulation. However, since these properties
can also be incorporated in the macroscopic framework densd here, the result of this section is a novel
PFE in its own right.

Throughout this article, probability density functiong atenoted by a lowercageand discrete proba-
bility functions by an uppercask. Instead of noting the probability that random variaBlletakes value
x by some expression of the forfd(X = x), P(z) is briefly written and ambiguities are avoided by self-
explanatory variables.

2.1. Specification

A network of nodes and links is considered, where some orales constitute demand origins and/or
destinations. There a¥ OD pairs. The largest possible number of trips between Obrpii denoted by
d,, the symbolC,, represents the set of available paths that connect ODnpaindd,,; is the number of
trips on pathi € C,,, whered,, =}, .. d,;. Variations in the total OD flows can be enabled by adding one
fictitious path to every OD pair that bypasses the physicavoidk (Shefli 1985).

The share of travelers in OD relatienthat choose pathis denoted byP, (i|x(d)) whered = (d,,;) is
the vector of all path flows andl is the vector of network conditions, which depend on the gatbice in
the entire population. Network conditions can be any aiteb attached to (parts of) the network that may
affect the route choice model and/or may be observed by sgr®ah as travel times, flows or densities.
An SUE in this system is defined as a path flow patteea (d,,;) that satisfies

dni = P, (iJx(d))d, Vn=1...N, i€ C,, 1)
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which states that the path flows, when loaded on the netwesktrin path choice fractions that reproduce
these path flows (Daganzo and Sheffi 1977). Appehndlix A shoatdils model can be reformulated as the
problem of finding path flowd that maximize therior entropy function

N N
W(d)=> > [duInP,(i|x(d)) — dy;Ind,;] + > d,Ind,
n=1ieCyp n=1 2
st.Y dy=d,Yn=1...N,

1€Chp

which represents for a large population the logarithm ofpfabability that, for giverprior route choice
fractions P,(i|x(d)) at the microscopic level, the path flowloccur at the macroscopic level. (The second
sumy_ d,Ind, only affects the maximum value ®F (d) but not the maximizing path flows = (d,,;); is
maintained here for consistency with the derivation in Ampgig[Al)

Given the traffic county that are observed on some or all links of the network, théoation should
adjust the path flows in a way such that these counts are nepeddo a reasonable degree. For this purpose,
the path flowsd that maximize thgosterior entropy function

W(dly) =Inp(y[x(d)) +W(d)
sty dy=d,¥n=1...N 3)

1€Chp

are identified, where the likelihogdy|x(d)) is the probability of observing the measurementgven the
network conditions that result from the path flowd. The posterior entropy models, apart from an additive
constant and again for a large population, the logarithrh@firobability that a certain aggregate path flow
patternd occurs given both the prior route choice mo#el(i|x(d)) and the measurements

Appendix[B shows that a maximization &f (3) with respectltyields the followingposterior route

choice fractions :
exp(Am + Fm)Pn(Z‘X(d))

P, (i[x(d),y) = > s, exXp(Ay; + D) Pa(]x(d)) @
where
_ Olnp(y|x(d))
A Pmplyx( ) 5)
= dj  OPn(jlx(d))
f mzzm Pu(iix(d)) 0d v

This result follows from the first order necessary optinyatibnditions. Without further assumptions about
the functionsP, (i|x(d)) and p(y|x(d)), it is not guaranteed to be a global maximizer of the posterio
entropy function. However, for a concave log-likelihooahétion and fixed path choice fractions (which
result in a concave prior entropy), the posterior entropgoiscave as well and the above solution is the
unique maximizer.

The specificatior[(4) £{6) is at the heart of the disaggredeteand calibration procedure presented in
the next sections. It requires to scale the choice fractibesery path of every OD paim by exp(A..; +
I',;) and to re-normalizeA,,; captures the effect of the path flady; on the log-likelihood, i.e., on the
measurement reproduction,,; vanishes if the route choice model is insensitive to the agtwonditions
(such that the respective derivatives[ih (6) become zempaif the path flows are in an SUE (which can
be seen by substitutingl(1) intdl (6)). Thatls,; only takes effect if the route choice model is sufficiently
sensitive to the network conditions and the calibration esahe system sufficiently far out of an SUE.
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A nonzeral',,; parameter consists of a sum over all OD pairs=1... N and all pathg € C,,, cf. (@).
In calibrated conditions with,,,; = P,,(j|x(d),y)d.., every such addend can be written as

P(jlx(d),y) 9P, (jx(d))
The first factordm%, is non-negative and the larger the more the calibratioreases the flow on
pathj € C,, over a plain simulation. An analysis bf,; should therefore focus on those addend§lin (6) that
correspond to path flows that are most increased by the aabbr

For the analysis of these addends, the second fac{dr in&alsedirectional information: IM <
0, an increase inl,; reduces the flow share of rougein OD pair m. The respective addenéf becomes
negative, which reduceB, (i|x(d),y) and hencel,,; in (). If ap’”a;i‘x) > 0, an increase id,,; increases
the flow share of routg in OD pairm. The respective addend becomes positive, which incregseghe

next subsection makes this analysis concrete for an meugtkample.

i,

(7)

The presented approach constitutes a generic PFE in thatkésnapart from differentiability, no as-
sumptions about the deployed route choice and networkdgadbdel, and it functions with arbitrarily few
measurements, the precision of which can be accountedrfargh an arbitrary likelihood function. This is
an important advantage over all PFEs reviewed in Sectiomichwequire special route choice and network
loading models and do not deal with incomplete and incoasisheasurements in the integrated and sta-
tistically consistent manner a generic likelihood funotjwrovides. However, the arguably most important
advantage of the proposed PFE is its transferability to adabass DTA microsimulations, which consti-
tutes the main objective of this article. Further applizasi to formal mathematical models are therefore left
as a subject of future research.

The following subsection illustrates the workings of thevii®-E in terms of an academic example, which
is revisited in a microsimulation setting in Sectlon|4.4.

2.2. Example: two routes network

The purpose of this example is to test the new PFE in a setigigid simple enough to enable a detailed
analysis of its functionality. More complex problems, sastihe real-world application presented in Section
[, would render such a detailed analysis extremely cumbeso

A simple network that consists of two unidirectional, ideal, and parallel links (1 and 2) that connect a
single OD pair is considered. For simplicity, the OD indegiigitted in this example. The demand amounts
to d = 1000 travelers in the considered analysis period. Either linkstitutes a feasible routing alternative.
The travel times on either path result from identical linkfpemance functions

t(d;) = (7‘?0)2, i=1,2 (8)

that depend on the flow; (in vehicle units) on the respective path. Keeping with thié iotation of the
previous subsection, a three-dimensional vector of rekavetwork conditions is specified:

z1(d) t(dy)
x(d) = [ z2(d) | = | t(d2) 9)
x3(d) dy

where the first two components, the route travel times, agdedfor feedback into the route choice model
and the third component is used to specify a likelihood fiomcturther below.
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Table 1  System responses to different path flows

| path flows]| d; =500, d, = 500 | d; = 250, d5 = 750 |
t1, t, according to[(B 0.44,0.44 0.11,1.0
P(1), P(2) according to[(10 0.5,0.5 0.71,0.29

Route choice is captured by the logit model

. B exp(—t(d;))
PR = ) + exp(—t(@)”

The symmetry of this setting implies prior route flows of 5@hicle units on either path in SUE conditions.
The concrete values in this example are chosen in order toroblear system responses that facilitate the
discussion. For illustration, some numbers are given in€l@b

i=1,2. (10)

A single flow sensor is located on link 1, which couptvehicle units during the analysis period. Writing
y = (y1), the likelihood function is specified as

(y1 — dl)Q]

2
207

plyx(d)) coxp | - D)
whereo; (in vehicle units) is the standard deviation of the sensta.dehis corresponds to the assumption
of a normally distributed link flow measurement with variang; the distribution is centered dt, the path
flow across the link.

The posterior entropy of this simple scenario is strictipcave and has a unigue maximum. Observing
thatd, = d — d,, the posterior route choice fractid?(1|x(d),y) can be expressed as a single nonlinear
equation by substitution of{8) £ (IL1) intbl (4) H (6), whichthis setting guarantees global optimality.
However, the resulting expression is fairly unwieldy aneréifore given only in graphical terms.

Figure[1 shows the estimated flows on path 1 over measuremetitat are varied between 0veh and
1000veh and variances that are varied between 0vehnd 1000 veh The results are consistent with
what one would intuitively expect: The smallef, the more belief is put on the measurement and the better
it is reproduced. For large? values, the estimator becomes independent of the sensoaddtfalls back
to the prior path flows. Between these extremes, there is atbntiansition that reflects the PFE’s ability
to interpolate between the prior information containechiminodel and the measurements.

In the full PFE, thel’ coefficients require to calculate the derivatives of allhpatioice fractions with
respect to all path flows, where the coupling of these guesii given through the network loading in that
the interactions of all path flows generate network conddithat in turn are evaluated in the route choice
model. These derivatives are available in simple settimgighey may be hard to obtain for generic demand
and supply models. This difficulty is not specific to this PREdpplies more generally to all instances of the
OD matrix estimation problem in congested conditions, whbe most widespread solution is to assume a
“proportional assignment” that essentially assumes figaiterchoice fractions (Cascetta and Nguyen 1988)
and to account for their actual dependency on the networ#itons in a heuristic, iterative fashion (e.qg.,
Lundgren and Peterson 2008). This coincides with the sttewf zero derivatives of route shares with
respect to path flows and hence implies that Zeomefficients may be an operationally attractive simplifi-
cation. Even for zer@' coefficients, congestion is accounted for[ih (4) ddd (5)uglothe dependency of
both the route choice model and the likelihood function anrietwork conditions.

Figure2 demonstrates the effect of this simplification anehtimation results. It plots the difference be-
tween the exactly estimated route flows and their approximafor zerd coefficients. The concrete form
of these curves for the extreme cases of very lagge {000 veh) and very smal(y = 0 veh) measurements
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Figure 1  Calibration results for two routes example

follows from the discussion of thié parameters in the previous subsectiony # 1000 veh,d; is increased
by the calibration and hence defines the dominant adgend in (€). Since the route choice model is
congestion-dependent, we ha?%” <0 and‘%(;) > 0, such that/, is decreased by the coefficients and
hence is overestimated by the approximation.# 0 veh,d, is increased by the calibration and defines the
dominant addengl = 2 in (8). Since we hav@%f) >0and apf) <0, d, is increased by thE coefficients,

od
which leads to an underestimationdfin the approximation.

The bias attains a maximum value of e&7% of the total demand aroungf = 100 velt for y; = 0veh
andy; = d. For very small and very large variances, the bias ceas#® first case, tha& coefficients abso-
lutely dominate[(#), whereas in the second case the cabbrtlls back to the prior model, i.e., to an SUE.
Since the bias is of moderate magnitude, it appears justdiedoose zerd' coefficients in favor of the op-
erational advantages this brings along. This course afaddichosen in the remaining experiments of this
article. However, accounting more precisely for the SUE Bk effects that here are represented by'the
coefficients is an important subject of ongoing and futuse2aech|(Lundgren and Peterson 2008). Related
progress in the field of OD matrix estimation is likely to bansferable to the methodology proposed here.

Summarizing, this section introduces a new PFE that maket milder assumptions about the under-
lying model components and the amount and quality of avigilsdnsor data than the PFEs presented so far
in the literature. Its functioning is demonstrated throagtacademic example, and some intuition about an
operationally advantageous simplification is provided.

3. Disaggregate demand calibration

This section carries the macroscopic PFE over to the céililoraf DTA microsimulations. It is organized in
two parts. First, the considered type of DTA simulator isatifed. Second, the considerations that enable
a mathematically consistent application of the PFE to #pe tof simulation are discussed.
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100 +

y = 1000 veh

o? [veh?]

—100 1 1 1 1 1 1 1 1 1 —>
0 100 200 300 400 500 600 700 800 900 1000

Figure 2 Bias of simplified calibration for two routes exampl e

3.1. Considered DTA simulator

This specification builds on the seminal model of Casce®8%), which it simplifies in some regards and
extends in others. The notation of the previous sectionlgrge parts re-defined here in a microsimulation
context. The most important changes are the following:

1. The new setting is fully disaggregate in that every trawviesl modeled as an individual entity. For this,
the OD pair variables = 1... N now refer to individual travelers),, represents the choice set of agent
n instead of the route set connecting OD pajand the route variables= C,, now refer to all-day travel
plans.

2. The new setting is fully dynamic both on the demand sidethedupply side. That is, both the travel
plans and the network conditiomsare now time-dependent entities.

The remainder of this subsection explains these re-deifivstin detail.

Agents and plansWe assume a microsimulation-based approach where evegjdras modeled as an
individualagentn = 1... N. At every point in simulated time, every agentisposes of glan i, that
describes the intended travel behavior of that agent. Aalplan comprises a sequence of trips that connect
intermediate stops during which activities are condudteayuding all associated timing information. We
subsequently writ¢i} as a shortcut for the whole population’s plan &gt . .., iy} and omit the subscript
n of a plani,, when the agent the plan refers to is not of relevance.

A plan constitutes a fully dynamic demand specification tegtures arbitrary choice dimensions such
as route choice, departure time choice, and mode choicenfArmial example of a plan would be “Leave
home by car for work at 7am with a planned arrival at 7:30 akintathe habitual route; work until 5 pm;
then take the highway to get to the local mall for one hour afpgting; finally return home for the rest of
the day, again using the habitual route.”
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Supply simulator The supply simulator executes the plans of all agents simultaneously on the net-
work. It models the physical interactions of the agentduiding congestion. The result of suclilgnamic
network loading are thedynamic network conditions x, which comprise all time-dependent, aggregate
network characteristics (such as flows, densities, veésgithat are relevant to the decision making of the
agents. (No time index is used here for notational simpticdhe may think ok as a large vector in which
time-dependent(k) vectors are stacked, whekas the simulation time step index.)

Formally, the supply simulator draws from a distributipfx|{:}) of the time dependent network con-
ditionsx that result from the dynamic network loading of a particydkan set{:} in the population. In its
most widespread form, this distribution is implicitly dedhthrough a stochastic supply microsimulator.
However, a deterministic, macroscopic supply simulatoesep(x|{:}) collapses into a singleton is just as
feasible.

Demand simulator Thedemand simulator models the decision making of travelers. It maps, for every
agentn = 1... N individually, the expected network conditiogson a plani,, the agent chooses in these
conditions.P, (i|x) is the probability that plahis chosen by agentgiven the expected network conditions
x, andC,, denotes agent’s choice sebf available plan alternatives.

It is assumed that the agents’ plan choice distributiongratependent once the expected network con-
ditions are given. That is,

P({i}|x) = [ [ Pu(inl), (12)

which implies that the agents do not interact directly bulyathrough the aggregate network con-
ditions. This is a reasonable assumption for large-scatfoartime-critical simulations where traffic
flow dynamics are typically represented by aggregate lawsation (“mesoscopic simulators”) instead
of vehicle-by-vehicle interactions (“car-following madd® (Astarita et al! 2001, Ben-Akiva etlal. 2001a,
De Palma and Marchal 2002, Mahmassani 2001, Nokel and SCROO).

The choice distributiond’, (i|x) and the choice set§,, are arbitrary and entirely transparent to the
proposed calibration approach. The demand simulator i @guired to generate realizations of these
distributions.

Iterative simulation logic So far, the DTA simulator is defined in terms of a supply sirtarand a
demand simulator. A solution to the DTA problem represergguation in which demand and supply are
consistent with each other. It typically is impossible tmglate this situation directly, but it is possible to
alternately execute the supply simulator and the demandlaior. After a burn-in period, these draws can
be tested for convergence towards a stationary distribuéind their continuation in stationary conditions
allows to extract the relevant characteristics of mutuatipsistent demand and supply (Balijepalli et al.
2007, Cascetta and Cantarella 1991, Nagellet al.| 1998 A¥attid Hazelton 2003).

To clarify the causal structure of this logic, @@ration cycle counterc is introduced. In a given iteration
¢, the demand simulator first draws plans frét({:}°|x) conditional on expected network conditiors
that are inferred from the simulated network conditionsrefous iterations, and then the supply simulator
draws network conditions that result from an execution esthplans fromp(x¢|{i}¢).

The loop is closed by a model component that infers the egdewtwork conditiong® from the pre-
viously simulated network conditions’=!,x~2. . ... Possible realizations of this filter are a moving aver-
age over a number of previous iterations (e.g.,[Liu 2005p#0regressive process (eld., Ben-Akiva ét al.
2001b/ Raney and Nagel 2006), or the method of successivagese(MSA, e.g., Liu et al. 2007). For the
calibration, it only is required that the expected netwookditions attain a low variability as becomes
large. This requirement is made more precise further below.



Flotterod, Bierlaire, Nagel: Bayesian demand calibration for dynamic traffic simulasion
10 Transportation Science 00(0), pp. 000-0@P000 INFORMS

Algorithm 1 Iterative dynamic traffic assignment

1. Initialize cycle countee = 0.

2. Choose initial network conditiong’,x~!,... (e.g., free-flow conditions).

3. Repeat for as many iterations as necessary to extragargleharacteristics in stationary conditions:
(@) Increase by one.
(b) Calculate expected network conditickfsfrom x¢—1, x=2, .. ..
(c) Replanning. Forn =1... N, draw plani¢ from P, (i¢ |x°).
(d) Network loading. Draw network conditions from p(x¢|{i}).

Algorithm[1 summarizes the workings of this approach. Itstitates a stochastic process that eventually
stabilizes at a stationary distribution of plan choices e®lilting network conditions that constitute the
simulation-based solution of the DTA problem. It is calléxa prior solution of the model because it
incorporates no sensor data. (The existence of a uniquersiat distribution depends on the involved
model components. It can, for example, be guaranteed ifithelation process is designed as an ergodic
Markov chainl(Ross 2006).)

Denoting byr a continuous and b a discrete stationary probability distribution, the pigotution can
be formally given in terms of the following system of equaso

I1,,(4) :]-;’\7( ix),i€Cpyn=1...N (13)
n({i}) = [ (i) (14)
m(x) = p(x|{i} ~TI({i})) (15)
% ~ E{x[x ~(x)}. (16)

Equation[(1B) specifies the individual-level prior choigstidbution of every agent. Equation[(14) states
that the population prior choice distributidi{{i}) results from the independent choices of all agents (where
the mutual interactions are fully captured through the etgmbnetwork conditiong). The prior distribution

of the network conditions is defined in_{15), and the expeptaat network conditions are given ib_(16).

The requiremeni(16) that the agents replan based on (amapation of) the expected network condi-
tions is motivated as follows. The macroscopic PFE solves#iibration problem through an adjustment
of all choice distributions in equilibrated conditions.élbounterpart of these distributions in a microsim-
ulation are the stationary choice distributions, whichiarplicitly defined through the iterative dynamics
of the stochastic simulation process. If, however, the etqubnetwork conditiong eventually stabilize
at constant values, then the transition distributiéh)$i|x) and the stationary choice distributiofis, (7)
coincide and the calibration problem can be tackled by a fivadion of the operationally more accessible
transition distributions only.

The transition distributions and the stationary choicérithstions coincide well even if some variability
in the expected network conditiogsis left in that they are distributed according to some disitibn 7 (x)
in stationary conditions. To see this, the stationary plasice distribution[(IB) is rewritten as

- / P, (i|%)7(%)dx. 17)

If the expectation ofr(x) equals the expectation{k|x ~ 7(x)} of the simulated network conditions and
if the distributionz (%) is tight enough to allow for a linearization %, (i|x) aroundx’ = E{x|x ~ m(x)}

then OP. (il
Hn(z’)z/ [Pn(i|i0)+$(

bl

—)‘(0)} m(X)dx = P,(i|X"), (18)
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which implies that the stationary plan choice distributiord the transition distribution coincide well even
if (L6) is implemented through a filter that maintains somealality in the expected network conditions.

Also, the expected network conditions may differ for indival agents within the aforementioned limits.
However, for notational convenience the model will subseqly be specified in terms of an approximation
of the expected network conditions only, as it is expressdi@) by the %" symbol.

The iterative assignment logic is equally applicable toudate an SUE-based planning model and a
telematics model where drivers are spontaneous and ingblgriaformed. From a simulation point of
view, the only difference between these two models is thaBdiE demand simulator typically utilizes
all information from the most recent network loadings, vdeer a telematics demand simulator generates
every elementary decision of a plan only based on such irgtiom that could have actually been gathered
up to the according point in simulated time. The filteringlod xpected network conditions has different
meanings in either approach: In an equilibrium model, it banseen as a learning mechanism through
which travelers remove random fluctuations from their okegons. For a non-equilibrium model, the same
mechanism can be employed to stabilize the iterative swiyirocedure, but no behavioral interpretation
is available in this case (Bottom 2000, Bottom et al. 19986)kd@ep the terminology simple, the remaining
presentation is given only in terms of an SUE planning model.

3.2. Disaggregate application of the calibration

The macroscopic PFE developed in Secfibn 2 is now carried tovthe previously described DTA mi-
crosimulator. Essentially, the OD pairs are replaced byhtsgand the routes are replaced by plans. That
is,n=1...N now represents the agent population instead of the OD pajrsepresents the choice set
of agentn instead of the route set connecting OD pajrandi € C,, indicates a plan available to agent
n instead of a route that connects OD paifThe transition from a static specification that only coesid
paths to a dynamic specification that accounts for full plarfeasible because a time-dependent network
can be equivalently modeled as a time-expanded static netwal a full-day plan constitutes a simple path
in the expanded network (Bierlaire 2002, Fl6tterdd 2008, der Zijpp and Lindveld 2001).

The basic assumption of this approach is that the macroas@pE model of Sectiohl2 captures the
average conditions in the microsimulation such that therosaopic PFE can be deployed to adjust the
average conditions in the microsimulation as well. For,tis first specify an idealized macroscopic SUE
counterpart of the microsimulation. Second, we describedtviations between the idealized and the real
setting.

A macroscopic perspective on the discrete agent popul&iadopted in terms of aontinuous limit
where every agent is (only hypothetically) replaced h¥ — oo identical agents of sizé/Z that all draw
independently from the original agent’s plan choice disttion. In the continuous limit andithout the
agent size adjustment,, (originally the number of trips between OD paiy would becomeZ (now the
number of replications of agen) and the path flow,,; (now rather “plan flow”; originally the number of
trips on route € C,) would become a multinomial random variable with statigrexpectatior?1L, () and
varianceZ11,,(i)(1—11,(7) ). Afterthe size adjustment, the plan flodig have expectations{td,,; } =11, (¢)
and variances VARd,,;} = 11, (i) (1 — IL,,(4)), which means that their variability ceases in the contisuou
limit. However, the network loading may still be stochasfibe counterpart of the macroscopic network
loadingx(d) of Sectior 2 is therefore specified in terms of the expectédaré& conditionsx defined in
(@8), which depend deterministically @h

The continuous limit perspective is relevant because theresaopic PFE maximizes entropy, which
assumes a large population of decision makers. The finitet age in a real microsimulation deviates from
the macroscopic PFE’s assumption that the network comditiesult from a deterministic network loading
of the continuous-valued demand because the microscopdeln®based on an expectation of stochastic
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Table 2 Microscopic redefinition of macroscopic PFE entitie S

symbol macroscopic microscopic (continuous
limit)

n=1...N | OD pairs agents

C, routes connecting OD pair | plans available to agent

1eCy a route connecting OD pair | a plan available to agent

dpi number of trips on route stationary probability that
1eC, agentn chooses plan

d, number of trips in OD pain |one @, =), ... dn:)

network conditions that result from a stochastic demantt&ihe network loading is in general a nonlinear
operation, the expected network conditions differ fromrbsult of a deterministic network loading of the
expected demand levels.

This deviation between aggregate SUE assignments andasticmicrosimulations has been identified
by|Cascetta (1989), who concludes that “in the limiting cafse number of remembered costs tending to
infinity with uniform weights, users tend to base their clesion average costs, which are still different
from costs computed for average flows in the case of nonlicestrfunctions. Also in this case [the iterated
microsimulation] and SUE expected flows are only approxaétyatqual.” However, he also shows that
“in general, however, they can be considered coincidertinihe limits of a first-order approximation”.
Overall, a limited bias in the average network conditiorsbdeads to a limited bias in the plan choice
distributions, which results in a limited yet systematiwidéon between the idealized model and the real
microsimulation.

Table[2 gives a summary of these re-definitions. Based oe tt@ssiderations, the macroscopic PEE (4)
— (6) can be combined with the solutidn [13Y=I(16) of the satiah-based DTA model into the following
specification:

exp(Am- + Fnz)Pn(Z’i\}’)

IL, (ily) = dec exp(Aananj)Pn(j\)‘qy)’ieC”’ n=1...N (19)
H({i}ly) = HH (inly) (20)
r(xly) = p(x|{i} ~TI({i}]y)) (21)

Xy ~ E{x|x ~7(x|y)}, (22)

where [19) and (20) now specify the stationary posterion plaoice distributions in the population sym-
metrically to (4), and the (expected) posterior networkditons are defined i (21) and (22),,; andl’,,;
are defined in[(5) and6), only that they are now evaluatecjreeted posterior network conditioss,
and with the path flowd,,; being replaced by the stationary posterior choice disiobs 11, (i|y).

Recall that[(#) —{(6) only specify a stationary point of thesigoior entropy function but not necessarily
a global maximum. If there are several stationary points tdditional measures are necessary to ensure
a proper maximization, e.g., by running the above modelrsgtines and comparing the results. Having
run a large number of experiments in a variety of settingshaxe never observed that repetitions of the
same experiment converge to significantly different sohgi However, it can not be excluded that our
experiences are positively influenced by the use of (i) alvehaved” DTA microsimulation that tends to
generate reproducible results and (ii) real-world measergs that may consistently point to one particular
solution of the calibration problem.

The model [(IB) —[(22) can be solved by the same iterative aitionl approach that is used to solve
@3) — (16), the only difference being that the plan choicritiution of every replanning agent is now
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Algorithm 2 Calibration of a generic DTA microsimulator
1. Initialize the calibration and the DTA simulator.
2. Repeat for as many iterations as necessary to extracargleharacteristics in stationary conditions:
() Calculate all\,,; andT",,; coefficients.
(b) Forallagents=1...N, draw a new plan from a choice distribution that is scaledxyy(A,.; +
r,;) foralliedC,.
(c) Load all agents on the network.

scaled by the exponential of the accordihgandT" coefficients. This is a computationally very efficient
specification because it only affects the agent behavidreaindividual level, which turns the joint demand
calibration problem forV agents intaV individual-level calibration problems, where all intetiaos are
captured through the iterations of the simulation.

Algorithm [2 outlines, as for now only conceptually, how thailoration is applied to a generic DTA
microsimulator. Clearly, the applicability of this caldéiion logic is very broad.

In order to make the calibration operational, two more goastneed to be answered: how to calculate
the A andT" coefficients in Step 2a and how to implement the scaling ofcti@ce probabilities in Step
[28, both for a generic microsimulation that can only be etgat¢o generateealizationsof the choice
distributions and network conditions. This is discusseithénnext section.

4. Making the framework operational

This section details the technical steps that are necessapply the demand calibration to a DTA mi-
crosimulation. First, Subsection 4.1 clarifies how to clltaitheA coefficients, given an arbitrary supply
simulator. Second, Subsectionl4.2 explains different pusho enforce the scaled plan choice distribution
(@9) in an arbitrary demand simulator. Third, Subsedtidhglves a step-by-step specification of how to
apply the calibration to a generic DTA microsimulation. &y, Subsection 414 clarifies the developments
with a continuation of the two routes example of Secfion 2.2.

As from now, thel” coefficients in[(IB) are set to zero because of the operatieasons given in Section
[2.2. If they are to be accounted for, they can be added to thesponding\ coefficients wherever the latter
are used in the following to affect the simulated agent benav

4.1. Linearization of the log-likelihood

Stationary posterior conditions are assumed in this stieseavhich means that all agents draw their plans
from posterior choice distributiond,, (i|y). This is justified by the specification of the calibrated syst
state that relies on a linearization of the log-likelihongbbsterior conditions. Since in stationary conditions
the choices of all agents depend on stablevalues and hence are not affected by the particular remlizsat
of x in recent network loadings, the iteration counté omitted in this subsection.

According to [5), a calculation of th& coefficients requires to differentiate the log-likelihofahction
Inp(y|x(d)) with respect tal,,;, which in the microscopic case carries over to a differeiotiewith respect
to the according stationary choice probabilily, (i|y) in expected posterior network conditioRs,, cf.

Sectiol3.P:
A — alnp()"ily) _ <alnp(3"ily) ai\y >
" OIL (ily) oxy " OIL(ily)

where (-, -) denotes the inner product. The first vectahfgf,:‘i‘y)
Yy

(23)

, will turn out to be relatively easy to

compute. The evaluation of the second vecgga%, however, requires some additional effort. For this
purpose, the notion of a “proportional networkToading"risrd)duced.
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A proportional network loading describes a situation in which the time-dependent trameddion all
links in the network are known and fixed. This implies thatréhare no interactions between the flows,
which move through an exogenously specified network enwiemt. The resulting flow on any link be-
comes a linear superposition of all path flows across thkt For a microsimulator, this implies that the
agents linearly superpose on each link. In order to obtairathematically tractable relation between de-
mand and resulting network conditions, the true dynamidh@&upply simulator are captured by a linear
network loading. Formally, this implies that the simulateaffic countz, (k) on link a in simulation time
stepk is written as

zo(k) =) 1(ak€iy) (24)

wherel(+) is the indicator function andk € i,, indicates that plai, requires agent to enter linka in time
stepk (where, for simplicity, it is assumed that the sensors aratkxd at the upstream end of a link). This is
an imperfect model of the actual network loading in that th&uanption of constant travel times implies that
the inflow of links at the capacity limit increases beyond {imit if the demand is increased. Consequently,
(24) is an imperfect representation of the supply simulst@ongested conditiofsAn alternative approx-
imation that captures congestion with greater precisiateiscribed in Flotterdd and Bierlgire (2009) and
outlined in Appendix_C of this article. However, for clarioynly the simple case of a proportional network
loading is considered in the following. The results carrgovery closely to the congested case.

Assuming [(24) to be applicable, the vecty of expected posterior network conditions contains the

elements
Z Z 1(ak € )L, (ily) (25)

n=1i€Chp

wherez, (k) is the posterior expectation of, (k). This yields when inserted intb (23)
1
M=) g olnp ‘V|X‘y 26)

This means that tha coefficients can be evaluated by summing up the derivatif/¢iseolog-likelihood
function with respect to the simulated traffic counts alolhgrks that are contained in the considered plan.

In order to show that this is not a difficult task, univariatemal likelihood functions are considered as
an example. Denoting the measured counterpatt, O0F) by vy, (k) and maintaining the symbgl for the
vector of all available measurements, one has

(ya(k) - a_;a(k)ly)Q
207 (k)

Inp(y|x)y) = const- (27)

ak

where the sum runs only over sensor-equipped linkscitd) is the variance of the sensor data on link
in time stepk. In this case, an evaluation ¢f (26) yields

ya - a
Mi=D 0wy (28)
g,
ak€i
where the expectation can be obtained by averaging the atiedldraffic counts over many stationary itera-

tions in the DTA simulator.

! Note that a proportional assignment, which is widely ana:sssfully assumed in the field of time-dependent OD mattixes
tion, implies the same assumption of constant travel tiffikat is, although{24) is consistent only in uncongesteditimms, the
state of practice suggests its applicability even in the cdigongestion.
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Algorithm 3 Calibration with the accept/reject estimator
1. Initialize cycle countee = 0.
2. Choose initial network conditiong’,x~!,... (e.g., free-flow conditions).
3. Repeat for as many iterations as necessary to extragargleharacteristics in stationary conditions:
(@) Increase by one.
(b) Calculate expected network conditickfg from x°~1,x°~2, .. ..
(c) Replanning. Fon=1...N, do:
i. Run the demand simulator and obtain a plan
ii. CalculateA,,; according to[(26) usingy, .
iii. With probability 1 — Pjeceps (4") according to[(29), goto stép 3(c)i.
iv. Retain the first accepted dravj:='.
(d) Network loading. Dravk® from p(x¢|{i}¢).

4.2. Affecting the agent behavior

The disaggregate demand calibration requires to scalehthieedistributionP, (i|-) of every replanning
agent individually byexp(A,,;) and to re-normalize. Given that thlecoefficients are available fro (26), a
universally applicable method to realize this scaling jeaton sampling (Ross 2006). Denote by

Paccepin(i) = eXp(Am-)/Dn (29)
the acceptance probability for plafrom agent:’s choice seC,, whereD,, must be such that

Dy, > max exp(Ay;) (30)
for (29) to be a proper probability. If repeated draws takemmf P, (i|-) are accepted with probability
Picceptn () and are rejected otherwise, then the first accepted draviitties a draw from the desired scaled
choice distribution. The correctness of this approachiigied in AppendiXD.

While the accept/reject estimator is arguably the most gg¢maethod to affect agent behavior, it is
by no means the only one. For example, if the demand simuiajgements a multinomial logit (MNL)
model (Ben-Akiva and Lerméan 1985) then a computationallyeveificient approach is to affect the agent
behavior by modifications of their utility functions. Appair [El shows that an MNL demand simulator
immediately generates draws from the calibrated choictildigions if the according\ coefficients are
added to the systematic utility of every considered altiéradefore the MNL model is evaluated. Note
that this result carries over to path-size logit (Ben-Alavel Bierlaire 2003) and C-logit (Cascetta et al.
1996) models. It also is noteworthy that a heuristic apfilicaof this technique is possible even if the
demand simulator does not implement an MNL choice distigoutSuch an approach is based on a weaker
theoretical foundation, but it may still produce practigaiseful results.

4.3. Algorithm

The definition of theA coefficients in[(2B6) requires to calculate the accordingvdéves in averag@os-
terior network conditions, which, however, are a priori unknowhisTconstitutes a fixed-point problem
that can be iteratively solved: Starting from the behaviprir, successively improved estimates of these
derivatives are generated from iteration to iterationlangtable state is reached where the estimator draws
from the behavioral posterior based on stableoefficients that in turn are consistent with this very poste
rior.

This process is illustrated in Algorithid 3, which affect thgents’ choice behavior using the general
rejection sampling technigque as an example. If the simardathaintains some variability in the expected
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Figure 3 Evolution of d; for two routes example

posterior network conditions;, then this variability also enters thecoefficients in Step 3(c)ii, which can
be avoided by applying, e.g., the method of successive ges@ISA) to these coefficients. This algorithm
calibrates whatever choice dimensions are representeebgamand simulator, is compatible with an
arbitrary supply simulator, and is fully consistent witle taxecution logic of a typical DTA microsimulator.

4.4. Example: two routes network, revisited

This subsection exemplifies the workings of Algorithin 3 imme of the two routes example introduced in
Sectior 2.R. The example is now microscopically simulatedfpopulation of 1000 identical agents, each
of which perceives travel time according [d (8) and choosesite according td_(10). The expected travel
times result from a moving average of the simulated tramat$ over five iterations.

For illustrative purposes, a measured flowyef= 250veh with a standard deviation ef, = 10veh
is assumed. The calibration is run for 100 iterations. Nbt tn this setting the\; coefficient can be
calculated according td (P8) and that is zero because there is no sensor on route 2. Figufés 3, & and
show, for a single calibration experiment, the fldyon route 1, the expected travel timeon that route,
and theA,; coefficient, respectively. For comparison, the uncaldutalows and travel times of a single
simulation are added in dashed lines.

The prior flows fluctuate in a stable manner around 500 vehglwisi consistent with the symmetry of
the scenario. After some overshooting, the posterior fldaiilize around 360 veh, which constitutes the
compromise the calibration identifies between the prior $lawd the measured value of 250 veh. Note that
although the calibration has been derived in terms of aweragwork conditions, the actually calibrated
network conditions are still distributed in a way that is sstent with the stochasticity of the demand
generator and (in general but not in this example) the sugipiylator.

The average travel time on route 1 changes from 0.45 in panditions to 0.23 in posterior conditions.
This constitutes an important driving force behind theriptdation of prior information and measurements:
As the calibration removes more and more vehicles from pathotder to fit the measurement, the travel
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time on this path decreases, which in turn increases iesctitteness. Upon convergence, the calibration has
compromised in a plausible Bayesian manner between theseftacts.
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Finally, the evolution of thé\; coefficient shows how the calibration takes effect. Afteew fterations
of transient oscillations, the coefficient stabilizes ambu-1.1. This value is consistent with the theory:
Insertingy,, o, and the average posterior flow of 360 vehlinl (28), one obta@same value. The negative
sign of A, indicates that there is too much simulated flow on route 1chtine calibration reduces by
scaling the choice probability of this route byp(A;) < 1.

This type of detailed analysis is hard to conduct for thedaggl-world test case presented in the next sec-
tion, which therefore resorts to more aggregate performameasures. However, the conceptual workings
of the calibration are the same as described in this example.

5. Zurich case study

This section presents results from an ongoing real-worse caudy for the city of Zurich (Fltterdd et al.
2009). First, the deployed simulation system is describe8actionf 5.1.. Second, the Zurich scenario is
presented in Sectidn 5.2. Third, the interactions betwémulation and calibration are investigated in
Sectiorl 5.B. Finally, Sectidn 5.4 reports on the validatibthe calibrated simulation system.

5.1. Deployed simulation system

The MATSIm (“Multi-agent transport simulation toolkit”, &bel et all accessed 2010) DTA microsimula-
tion is used for the purposes of this study. Its workings cioi@ well but not perfectly with the specification

of Sectiori 3.1.. This situation is likely to be encounterethimcalibration of other microsimulations as well.
An important aspect of this study is therefore to show thatdalibration is robust with respect to (mild)

violations of its underlying assumptions.

Consistently with all assumptions of the calibration, MAMSconsists of a microscopic and stochastic
demand and supply simulator, which are iteratively exetutil stationary conditions are attained. The
supply simulator is based on a queueing model that is fullystent with the assumptions of this work
(Cetin et all 2003). The choice dimensions accounted fdnérdemand simulator are route choice, depar-
ture time choice, and mode choice (car vs. no-car). The ddmiamulator has some unusual features that
are discussed in the following. It is described in detailRaiey and Nagel 2006).

Continuous choice set generatioriThe choice set generation and the choice simulation argwnited
in MATSiIm. The rationale behind this is that the choice setdti be appropriate in equilibrated network
conditions, which are not known a priori. The simulationrdfere proceeds in two stages. In the first stage,
as from now called thehoice set generation stag¢he choice set is continuously updated in that new plans
are generated and other plans are discarded during thedteraln the second stage, tbioice stagethe
choice set generation is turned off and the demand simubgierates based on fixed choice sets.

Implicit choice distribution. Agents make choices both in the choice set generation stebtha choice
stage. In the choice set generation stage, a newly gengrateds selected for execution with probability
one. This is necessary because MATSim calculates theyuiflia plan only after it is executed; this logic
is discussed in the next paragraph. Since the generatioavoplans is realized by random variations of
existing ones, the guaranteed selection of a newly gertepdd@ generates draws from the set of all plans
that can be possibly created by random variations. If no nlew [ generated for an agent, one of its
existing plans is selected according to a multinomial logitdel. In the choice stage, no new plans are
generated and the demand simulator only applies the maitaddogit model.

Simulation-based utility function. MATSim uses an all-day utility function that consists of jiive
terms for the execution of activities and negative termstfawvel (Charypar and Nagel 2005). Instead of
evaluating the utility function in average network coratits, MATSim deploys a (purely technical) sam-
pling adjustment that does not affect the stationary plasioghdistributions but reduces the frequency
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at which agents switch plans, which also leads to a redudtidhe variability of the simulated network
conditions|(Nagel and Flétterdd 2009).

Apart from these peculiarities, MATSim constitutes anatere DTA microsimulator that complies with
all assumptions of the proposed calibration.

5.2. Description of test case and uncalibrated simulation

Figurel6 shows the road network of the analysis zone. Anfefivaitzerland network with 60 492 links and
24180 nodes is used. It is based on a Swiss regional planeitvgprk, which has been made ready for
simulation purposes based on additional OpenStreetMayonietiata((Chen et al. 2008).

A synthetic population of travelers for all of Switzerlarstavailable from a previous study (Meister et al.
2008). All travelers have complete daily activity patteb@sed on microcensus information (SESO 2006).
The experiments consider only those agents who cross a 3Q8rérhiles) circle around the center of
Zurich at least once during their daily travel, includingsle agents who stay within that circle for the whole
day. In order to obtain a high computational speed, a randd# $ample is chosen for simulation, which
consists of 187 484 simulated travelers. All agents iteetiadapt route choice, departure time choice, and
mode choice. Public transit is simulated as described inh&ret al. [(2009), that is, it is assumed that it
provides door-to-door connectivity at twice the free speadel time by car.

Hourly traffic counts from 161 inductive loop sensors ardlatge from 06:00 to 20:00 of one day. The
deviation between measured and simulated traffic countstis dgraphically and quantitatively evaluated.
For visual inspection, scatter plots such as those giveigré{4 are used. Every point represents one pair
of measured/simulated traffic counts, where the measutad dafines the x-coordinate and the simulated
value defines the y-coordinate. If all measurements werfeq®r reproduced by the simulation, all points
would lie on the diagonal with slope one. Deviations fromt iagonal signalize inconsistencies between
measurements and simulation.
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Figure 7 Scatter plots for uncalibrated base case

Figure[T shows scatter plots that are obtained after 50@tibevs of uncalibrated simulation. The line
above (below) the main diagonal represents simulationegabf twice (half) the observed traffic counts
(note that the plots are double-logarithmic). Most poimes within this (admittedly loose) band, which

indicates that the simulation captures the overall sitmatairly well. However, there clearly is room for
improvement.

5.3. Inserting the calibration into the simulation

The proposed calibration methodology is implemented in tihee Cadyts (“Calibration of
dynamic traffic simulations”) software package (Flotteroaccessed 2010, 2009); see also
http://transp-or.epfl.ch/cadyts/.Cadyts is written with conceptual and technical flexitilit
in mind in that it offers various modes of interaction wittifeient DTA microsimulations. All experiments
reported in this section are based on an application of GadyWIATSim.
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In this case study, the agent behavior is affected by matifyfie utility of their available plans before
they make their choices, cf. Sectionl4.2. The only exceptare newly generated plans, which are always
executed. This implies that these parts of the demand reamaialibrated during the choice set generation
stage and that the calibration takes full effect only in theice stage.

The evolution of the calibrated simulation over the itaeras is visualized in Figurg 8, which shows the
mean weighted square error (MWSE) of all measurements bedtdration number. This error measure is

defined as (0. (8) h))?
_ Ya — T
s = ({00 5D

whereo, (k) is the standard deviation assigned to the sensongdéta on link a in hourk, =, (k) is its sim-
ulated counterpart, and),, indicates an average over all sensor locations and hoogyititervalsy, (k),
z.(k), ando, (k) are in vehicle units. The form of (81) resembles the logllitkood function that is used
in the calibration, which corresponds to the assumptiomaé&pendent normally distributed measurement
errors. The variance of a measurement is calculated as

o2(k) =0.5-max{(y,(k) - 1veh), (25veh?*}, (32)
which reflects two considerations. First, there is the aggiom that the variance of a measurement error
is proportional to the measured value, which is justifiedhia given setting since we are dealing with
count data. The “1 veh”-factor ensures that both sides oéthation are in vehunits. Second, there is a
positive lower bound on the variance, which ensures that serall measurements are not over-weighted
and avoids numerical problems in the evaluatior of (31). Aumaerical values used in this specification are
experimentally obtained. (No raw traffic counts are avaddibr this study, but only counts that are already
averaged in one-hour time bins. It therefore is not posgiblefer the variances directly from the data,
which otherwise would be a preferable course of action.)

When applying the calibration, the system starts in an dyresmuilibrated state that has been attained
after 500 uncalibrated iterations. The calibrated sinuteits then run for another 500 iterations, i.e., from
total iteration number 500 to 1000. Running the calibrafimintly with the simulation for another 500
iterations requires approximatel 1 h on a 64 bit Intel Nehalem machine at 2.67 GHz using at most8.0 G
of RAM. Not even 9 % of the computing time (apprd>§. h) are calibration overhead.

Since the system starts already in an equilibrated stdteystematic changes of MWSE in Figure 8
can be attributed to the calibration. The MWSE is quicklyuged from more than 100 in iteration 500 to
around 45 in iteration 600. After this, the curve flattenss Iplausible to assume that in the first iterations
the calibration “fills up” the measurement locations by &y plans and that in the following iterations
the simulation rearranges the plans such that behaviaradke reasonable plans take the place of other
plans that have been used by the calibration before.

The choice set generation stage finishes at iteration 80@hvgenerates a jump in the system behavior:
Since the immediate execution of newly generated plans igexmnthe calibration can affect the whole
plan choice distribution, which results in another impmest of MWSE from around 35 to little more than
20. The variability of MWSE is reduced to almost zero afteration 800, which is a consequence of the
reduced variability in the executed plans once the choitgesgeration is turned off.

Figure[9 shows scatter plots that are obtained from the tasdtion of the calibrated simulation, i.e.,
iteration 1000. A comparison with the uncalibrated scpttas of Figurd ¥ shows that the data points are
clearly more centered around the main diagonal. A quaivétat/aluation of this effect is possible in terms
of the MWSE of Figuré18: The MWSE at iteration 500 correspaadbe scatter plots of Figufé 7, and the
MWSE at iteration 1000 corresponds to those of Figlire 9.
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Figure 8 Mean weighted square error (MWSE) using all countin g stations

Overall, the calibration generates a clear improvementaasarement fit at an extremely low compu-
tational cost. However, this alone does not prove that tlibrated agent behavior becomes more realistic
because there are many plausible and not-so-plausibleigatiams of plan choices that reproduce the mea-
surements equally well. The next section provides cro$idatéon results that indicate that the calibrated
demand is indeed more realistic.

5.4. Cross-validation results

While the previous section clearly demonstrates that thibraesion improves the measurement reproduc-
tion, this section demonstrates that it does so in a way teatimproves the realism of the global traffic

situation. This is an important issue that applies to dencatidration from traffic counts in general because
this problem is highly under-determined, which impliestttigere is a large number of demand config-
urations that reproduce the traffic counts equally well. &letbat the proposed calibration resolves this
under-determination by taking the choice logic that is iempénted in the simulation system itself as the
prior information about the demand. The traffic counts aemthdded to this information in order to obtain

an improved posterior choice distribution.

For cross-validation, the 161 sensor locations are ranglasdigned to ten disjoivalidation data sets
of roughly equal size. For each validation data set, thesedsrrespondingneasurement data sethat
contains the traffic counts from all sensors that are noesaprted by the respective validation data set. For
every measurement/validation data set pair, one caldrégiconducted, where only the measurement data
is made available to the calibration and the correspondatigation data is used to evaluate how well the
calibrated demand generates a spatiotemporal extrapolaitihe traffic counts.

Figure[10 shows the MWSE trajectories of the measuremeatfdatll ten experiments over the itera-
tions, where all trajectories are normalized to their valakiteration zero for better comparability. Figure
[11 shows the same type of curves for the validation data. ifiliéas dynamics of the measurement MWSE
values indicate that the calibrated simulation exhibitd-lwehaved dynamics and generates reproducible
results. Overall, the measurement reproduction errodisaed by around 80 % in all cases.

The validation MWSE curves exhibit a greater variabilithieh can be explained by the lower number
of measurements that enter the averagin@_ih (31). Againvahability is substantially decreased once the
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Figure 9  Scatter plots after calibration

choice set generation is turned off. The different expenitmattain different MWSE values because disjoint
sets of sensor data are evaluated. Overall, an improverh2b®6 to 45 % is attained. This clearly indicates
that the local information that is contained in the meas@midata is used by the calibration in a way that
affects the network-wide agent behavior such that morést@aglobal network conditions result. One also
should keep in mind that the relative positioning of the sessffects the validation results in that the ex-
trapolation power of the calibration is limited by the sp&gmporal correlations in the network conditions:
If the validation sensors are too far away, they simply ateaffected any more by the calibration, no matter
how well it performs.

The estimated items are the travel plans in the populatibeyeas the network conditions evaluated here
constitute only low-dimensional projections of those. Aligtic network-wide extrapolation of the mea-
sured flows can hence be seen as a necessary validationiaodit not as a sufficient indication of valid
improvements in the travel plans. We still consider thesalts to be a strong indication of the method’s
proper functioning because the calibration even functionlse complete absence of measurements, where
it falls back to a plain simulation (considér {19) with zexacoefficients and recall that tHécoefficients
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Figure 10  Validation results — measurement reproduction
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Figure 11  Validation results — measurement extrapolation

vanish in an SUE, cf. Sectign 2.1). In consequence, thererngwan under-specification problem, and the
inclusion of traffic counts only enriches already well-defirbehavior.

These results show clearly that the calibration conduatsashel modifications that are structurally mean-
ingful in that they do not only fit the sensor data well but désad to a global improvement in the system’s
realism. At this point, the difficulty of the calibration golem that is solved here needs to be stressed. The
calibration adjusts simultaneously the route choice, nadugce, and departure time choice of hundreds
of thousands of individual travelers in a purely simulatlmased environment on a network with many ten
thousand links. The number of iterations required to obssatle and realistic results is in the order of a
plain simulation, and the computational overhead intreduloy the calibration is almost negligible. The
authors are not aware of any other calibration techniquecthraes close to such results.
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6. Summary and outlook

We present a new demand calibration framework that oversamany of the simplifying assumptions
typically adopted in the calibration of dynamic traffic silaors. Our approach allows for the estimation of
arbitrary demand dimensions at the individual level in ad&a&n setting where traffic counts are combined
with a simulation-based representation of the analysit pinowledge. The approach is compatible with
both an equilibrium-based modeling assumption and a talesy@odel where drivers are spontaneous and
imperfectly informed. Experimental results for a largeltwarld test case are presented that demonstrate
the effectiveness and adequacy of the proposed methodtwasefimplementation of the approach is freely
available on the Internet (Flotterdd accessed 2010).

Our current work focuses on the calibration of behavioratlelparametergsuch as the coefficients of a
utility function) from traffic counts. Since this is likelp treach the limits of what can be inferred from this
type of measurements, the incorporation of additional @etiata is another important research topic. The
free software implementation of the calibration is continsly applied to different DTA microsimulations,
which yields important insights on how to improve the sysseronceptual and technical flexibility.

Finally, the joint calibration of demand and supply is a tdrade that eventually needs to be tackled. The
current demand calibration assumes the supply simulatbe tmodeled without error (an assumption it
shares with all PFEs and OD matrix estimators that treat ¢éork loading as a deterministic mapping),
which should be relaxed in future research.
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Appendix A:  Maximization of prior entropy

Denote byd,, the total demand of OD pait and byd,,; the demand for pathe C,,, whereC, is the path set of OD
pairn. If the demand was integral then the path flalvs: (d,.;) would be distributed according to

N . i
]._.[iEC (P (ifx(d)))
Pd)= 1] d.! n 33
(d) 121 Mol (33)
where, differently from a standard multinomial distritmrtj the event probabilities are not fixed but themselvesaand
variables because they depend on the path flows through tvenkeconditionsx. Taking the logarithm and applying
Stirling’s approximationlfy Z! — Z1n Z — Z for large Z), one obtains therior entropy function
N
W(d)=InP(d) =Y |d.Ind, + > dpiln P, (i[x(d)) = Y _ dniInd,; | . (34)
n=1 i€Chp i€Chp
In order to show the equivalence of the global maxim&d(id) (with respect tal and subject to the flow conservation
constraintsziecn d,; = d,, ¥n) with the SUE flows, the following observations are made.

1. Amaximization ofi¥’ (d) with respect tal subject to the flow conservation constraints yields at mostgective
function value of zero: Fofixed path choice fraction$, (i) Vn,4, W(d) is strictly concave and its maximization
subject to the flow conservation constraints yields the fiaths d,,; = P, (i)d,, Vn, i and an objective function value
of zero. Now consider any candidate combinatiorvafiable path choice fractions and path flows. Fixing the path
choice fractions at their given values, a maximization wébhpect to the path flows again yields a uniqgue maximum
with a zero value ofV (d).
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2. Every SUE flow is a global maximizer & (d) with respect tal subject to the flow conservation constraints: A
substitution of the SUE flowd,,; = P, (i|x(d))d,, Vn, i yieldsW (d) = 0, which is the global maximum value.

3. Every global maximizer of¥’(d) with respect tad subject to the flow conservation constraints is an SUE flow:
Assume that there was a global maximidet (d,,;) where at least twd,,; # P, (i|x(d))d,.. (There cannot be a single
suchd,,; because of the flow conservation constraints.) Fixing thk phoice fractions aP, (i) = P, (i|x(d)) Vn, i,

W (d) is maximized if and only ifl,,; = P, (i)d, Vn, 4, which contradicts the assumption.

Items[2 andB establish the equivalence of SUE flows and globalma of 17 (d) with respect tad subject to the
flow conservation constraints. The possible existence diipheiglobal maxima can only result from non-unique SUE
flows, which would indicate a modeling problem rather tharme fin the equivalent maximization problem.

Appendix B:  Maximization of posterior entropy
Before maximizing the posterior entropy function
W(d|y) =Inp(y|d) + W(d) (35)

with respect tod, the additional requirement of constant demand ledglper OD pairn is introduced in the La-
grangian

L(dly) =W(dly)+ Y _u, <Z i —dn> (36)
n=1 i€ECn

where theu,, are the Lagrangian multipliers. Usifg{34), the derivatt.(d|y) with respect ta,,,; (wherem is an
OD pair andj € C,,,) becomes

OL(dly) _ Olplylx(d)) | Pn(ilx(d))
Od,; Od,; n;
- d. 0P, (ilx(d))
+>0N P ) 9d.. — 1+ Up,. (37)

n=1:e€Cp

Setting this to zero and solving fdy,,; yields
iy = exp(ty — 1) exp(Ap; + Lij) P (j]x(d)) (38)

whereA,,; andT’,,; are as defined i {5) andl(6). Thep(u,, — 1) terms result from a substitution ¢f(38) i, =
ZiECm dmi:

dm
Diccy, P (A + L) P (i]x(d))
Inserting this in[(3B) finally results in the posterior chejarobabilities[(#), which hence prevail at every maximum of
the posterior entropy function with respectd@nd subject to the flow conservation constrains= > dpiVn,i.

exp(um, —1) = (39)

i€Chp

Appendix C: Linearization of congested network loading

We formally represent the mobility behavior represented Ipjani through a (large) vector dink entry indicators
1(ak € i) that are defined through

. | 1if plani requires to enter link in time stepk
Lak €)= { 0 otherwise (40)
Based on this,
N
do(k)=3_ > Lak €i)L,(ily) (41)
n=1:eCp

denotes the expected number of agents that plan to enter imime stepk in stationary posterior conditions.
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The sensitivity analysis of Subsectionl4.1 requires to cmimg% in (23), which is the derivative of link's

expected posterior entry flow in time stépwith respect to the stationary posterior probability of mige selecting
plani. Using [41), this can be written as

O0Ta(k)y _ 0za(k)yy Odu (k') _ 0za(k)y .,
O, (ily) _ZE TR BTLGly) ~ 2 2= du (o) MK €1) (42)

a k'<k

In other work, we present various approximations of theswatives (Fl6tterdd and Bierlaire 2009). The experiments
given in Sectiofb of this article are obtained by neglectingthing but the effect a vehicle entering a road has on this
very road such thak(42) simplifies into

aja(k)\y ~ 9z, (k)

ly :
. Gly) = (k) 1(ak €1). (43)

In order to approximaté==*2i¥ ' a recursive regression is set up on every sensor-e uipgedrhese regressions
pp RO g p y q g

observe in every iteration of the calibrated simulation ¢#gk),z.(k),,) input/output tuple with Ex, (k) } =
z,(k)y. From these tuples, the coefficients of the following regi@smodel are updated:

Ta(k)ly = @a(F)da (k) + Ba(k) + €a (k) (44)

wherea, (k) is used as an approximation efT in (@3), 8.(k) is the model's offset, and, (k) captures the
regression error. In perfectly uncongested conditiengk) becomes one and, (k) becomes zero such thai{44)
essentially coincides witlh (25). Complete spillback resird a zeray, (k), which means that the regression excludes

sensor-equipped links from the calibration when they sdiftam spillback.

aia(k)\y
da

Appendix D:  Derivation of accept/reject estimator

Given the acceptance probabiliti€&.c.p:, (1) defined in[(2D), the overall probability of a single rejeatfor agentn
is

Prejectn =1- Z Paccep,tn(i)Pn (2|) (45)

1€Cp
Consequently, the probability thais the first accepted draw can be expressed as

oo

Z(Pfejectn)zpaccepin(i)Pn (Z|)

z=0
_ Pacoepn ()P (i) (46)
1- Preject@ )
Pacceptn () P (i]-)
> ec, Paccepn (7) Pa (j]-)”

which coincides with the definition i (19) (for zefocoefficients).

Appendix E:  Derivation of utility-modification estimator

The individual-level posterior choice distributidn {1®nstitutes the starting point of this development. It isatesl
here for ease of reference (with zdt@oefficients):

exp(Ani) P, (i]x)y)
>ice, eXp(An;) Pa(ilX)y)

It is assumed that the demand simulator implements an MNbr gtioice model (which comprises path-size logit
(Ben-Akiva and Bierlaire 2003) and C-logit (Cascetta eflP6) specifications):

IL, (ily) = (47)

exp[ Vi (i%y )]

P (ilx)y) = > ice, exp[Va(jlxy )]

(48)
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whereV,,(i|x,,) denotes the systematic utility of plaras perceived by individuat given the expected posterior
network conditions,,.. A substitution of[(4B) in[(47) yields

exp[Vo (i[R)y) + Ani]
Zjecn eXp[Vn(.ﬂi\y) + An]]

This posterior is structurally identical to the prior MNL uhel. The only difference is thak,,; is added to the system-
atic utility of every considered plan This utility modification allows to force a demand simulatvat implements the
prior (48) to immediately draw from the posteribr{49), ahevoids the computational overhead of a possibly large
number of rejections in the accept/reject procedure.

IL,(ily) = (49)

References

2003. Monte Verita/Ascona, Switzerland.

Ashok, K. 1996. Estimation and prediction of time-dependagigin-destination flows. Ph.D. thesis, Massachusetts
Institute of Technology.

Astarita, V., K. Er-Rafia, M. Florian, M. Mahut, S. Velan. 200A comparison of three methods for dynamic network
loading. Transportation Research Recotd@71179-190.

Balijepalli, N.C., D.P. Watling, R. Liu. 2007. Doubly dynaertraffic assignment — simulation modeling framework
and experimental result3ransportation Research Reca202939-48.

Bell, M.G.H. 1991. The estimation of origin-destinationtnizes by constrained generalised least squaleans-
portation Research Part B5(1) 13-22.

Bell, M.G.H. 1995. Stochastic user equilibrium assignmemietworks with queuesliransportation Research Part B
29(2) 125-137.

Bell, M.G.H., S. Grosso. 1999. Estimating path flows fronffitacounts. W. Brilon, F. Huber, M. Schreckenberg,
H. Wallentowitz, eds.Traffic and Mobility: Simulation—Economics—Environmespringer, 85-102.

Bell, M.G.H., W.H.K. Lam, Y. lida. 1996. A time-dependent hinclass path flow estimator. Lesort (1996), 173—193.

Bell, M.G.H., C.M. Shield, F. Busch, G. Kruse. 1997. A stostiauser equilibrium path flow estimatdiransportation
Research Part G(3/4) 197-210.

Ben-Akiva, M., M. Bierlaire. 2003. Discrete choice modelghnapplications to departure time and route choice.
R. Hall, ed.,Handbook of Transportation Science, 2nd editi@perations Research and Management Science,
Kluwer, 7-38.

Ben-Akiva, M., M. Bierlaire, D. Burton, H.N. KoutsopouloR,. Mishalani. 2001a. Network state estimation and
prediction for real-time transportation management appitns.Networks and Spatial Economit293-318.

Ben-Akiva, M., H. Koutsopoulos, J. Walker. 2001b. DynaMtTdynamic traffic assignment model system for trans-
portation planningProceedings of the 2001 World Conference on Transport Relsedeoul, Korea.

Ben-Akiva, M.E., S.R. Lerman. 198Riscrete Choice AnalysiMIT Press series in transportation studies, The MIT
Press.

Bierlaire, M. 2002. The total demand scale: a new measureialty for static and dynamic origin-destination trip
tables.Transportation Research Part 85(9) 837-850.

Bierlaire, M. 2003. BIOGEME: a free package for the estimanf discrete choice models.|str (2003).

Bierlaire, M., F. Crittin. 2006. Solving noisy large scalgefil point problems and systems of nonlinear equations.
Transportation Sciencé0(1) 44—63.

Bierlaire, M., P.L. Toint. 1995. MEUSE: an origin-destiitat estimator that exploits structur@ransportation Re-
search Part B29(1) 47-60.

Bottom, J., M. Ben-Akiva, M. Bierlaire, I. Chabini, H. Kouipoulos, Q. Yang. 1999. Investigation of route guidance
generation issues by simulation with DynaMIT. A. Ceder, Bebceedings of the 14th International Symposium
on Transportation and Traffic TheariPergamon, Jerusalem, Israel, 577—-600.

Bottom, J.A. 2000. Consistent anticipatory route guidamteD. thesis, Massachusetts Institute of Technology.



Flotterdd, Bierlaire, Nagel: Bayesian demand calibration for dynamic traffic simulasion
Transportation Science 00(0), pp. 000—0@P000 INFORMS 29

Bowman, J.L., M.E. Ben-Akiva. 1998. Activity based travelndand model systems. P. Marcotte, S. Nguyen, eds.,
Equilibrium and advanced transportation modellinduwer, 27-46.

Cascetta, E. 1984. Estimation of trip matrices from traffiarts and survey data: a generalised least squares estimato
Transportation Research Part B3(4/5) 289-299.

Cascetta, E. 1989. A stochastic process approach to thegsaf temporal dynamics in transportation networks.
Transportation Research Part B3(1) 1-17.

Cascetta, E., G.E. Cantarella. 1991. A day-to-day and mitlaly dynamic stochastic assignment modehnsporta-
tion Research Part R5(5) 277-291.

Cascetta, E., D. Inaudi, G. Marquis. 1993. Dynamic estinsadd origin-destination matrices using traffic counts.
Transportation Scienc27(4) 363—-373.

Cascetta, E., S. Nguyen. 1988. A unified framework for edfigaor updating origin/destination matrices from traffic
counts.Transportation Research Part B(6) 437-455.

Cascetta, E., A. Nuzzolo, F. Russo, A. Vitetta. 1996. A medifogit route choice model overcoming path overlapping
problems. Specification and some calibration results fi@rimban networks. Lesort (1996), 697—711.

Cascetta, E., N.N. Posterino. 2001. Fixed point approatthtee estimation of o/d matrices using traffic counts on
congested networkgransportation Sciencgs(2) 134-147.

Cetin, N., A. Burri, K. Nagel. 2003. A large-scale agentdzhgraffic microsimulation based on queue model. str
(2003).

Charypar, D., K. Nagel. 2005. Generating complete all-daivigy plans with genetic algorithmsTransportation
32(4) 369-397.

Chen, Y., M. Rieser, D. Grether, K. Nagel. 2008. Improvingaegé-scale agent-based simulation scenario. VSP
working paper 08-15, Transport Systems Planning and Teah$plematics Laboratory, Berlin Institute of Tech-
nology.

Daganzo, C.F., Y. Sheffi. 1977. On stochastic models of trafsignmentTransportation Sciencél(3) 253-274.

De Palma, A., F. Marchal. 2002. Real cases applicationseofulty dynamic METROPOLIS tool-box: an advocacy
for large-scale mesoscopic transportation systévetworks and Spatial Economi2z847-369.

Flotterdd, G. 2008. Traffic state estimation with multi-aggmulations. Ph.D. thesis, Berlin Institute of Techrgylo
Berlin, Germany.

Flotterdd, G. 2009. Cadyts — a free calibration tool for dyiatraffic simulations. Proceedings of the 9th Swiss
Transport Research Conferenddonte Verita/Ascona, Switzerland.

Flotterdd, G. 2010. A general methodology and a free sofii@rthe demand calibration of DTA modeRroceed-
ings of the 3rd International Symposium on Dynamic Traffisigrement Takayama, Japan.

Flotterod, G. accessed 2010. Cadyts web site. http:/firangpfl.ch/cadyts/.

Flotterdd, G., M. Bierlaire. 2009. Improved estimation @ivel demand from traffic counts by a new linearization of

the network loading mapProceedings of the European Transport Conferemd@ordwijkerhout, The Nether-
lands.

Flotterod, G., Y. Chen, M. Rieser, K. Nagel. 2009. Behavioaibration of a large-scale travel behavior microsimu-
lation. Proceedings of 12th International Conference on Traveld®@ur Researchlaipur, India.

Grether, D., Y. Chen, M. Rieser, K. Nagel. 2009. Effects ofapée mode choice model in a large-scale agent-based
transport simulation. A. Reggiani, P. Nijkamp, edSomplexity and Spatial Networks. In Search of Simplicity
chap. 13. Advances in Spatial Science, Springer, 167-186.

Kitamura, R. 1988. An evaluation of activity-based travedlgsis. Transportationl59-34.

Kitamura, R. 1996. Applications of models of activity belwafor activity based demand forecastingroceedings
of the Activity-Based Travel Forecasting Confereridew Orleans, LA, USA, 119-150.

Lesort, J.-B., ed. 1996 Proceedings of the 13th International Symposium on Trartapion and Traffic Theory
Pergamon, Lyon, France.

Liu, H.X., X. He, B. He. 2007. Method of successive weightegrages (MSWA) and self-regulated averaging
schemes for solving stochastic user equilibrium problsietworks and Spatial Economics



Flotterod, Bierlaire, Nagel: Bayesian demand calibration for dynamic traffic simulasion
30 Transportation Science 00(0), pp. 000-0@P000 INFORMS

Liu, R. 2005. The DRACULA dynamic traffic network microsinatibn model. R. Kitamura, M. Kuwahara, eds.,
Simulation Approaches in Transportation Analysis: Re@ahtances and ChallengeSpringer, 23-56.

Lundgren, J.T., A. Peterson. 2008. A heuristic for the lElerigin-destination-matrix estimation problerfrans-
portation Research Part B2(4) 339-354.

Maher, M. 1983. Inferences on trip matrices from observegtion link volumes: a Bayesian statistical approach.
Transportation Research Part Br(6) 435-447.

Maher, M.J., X. Zhang, D. Van Vliet. 2001. A bi-level progranmg approach for trip matrix estimation and traffic
control problems with stochastic user equilibrium link fewransportation Research Part 85(1) 23—-40.

Mahmassani, H. S. 2001. Dynamic network traffic assignmadtsimulation methodology for advanced system
management applicationsletworks and Spatial Economit€3/4) 267—292.

Meister, K., M. Rieser, F. Ciari, A. Horni, M. Balmer, K.W. Aausen. 2008. Anwendung eines agentenbasierten
Modells der Verkehrsnachfrage auf die Schwélmceedings of Heureka '0&tuttgart, Germany.

Nagel, K., G. Flétteréd. 2009. Agent-based traffic assigmmgoing from trips to behavioral travelerBroceedings
of 12th International Conference on Travel Behaviour Redealaipur, India. Invited resource paper.

Nagel, K., M. Rickert, P.M. Simon, M. Pieck. 1998. The dynesf iterated transportation simulatiof¥oceedings
of the 3rd Triennial Symposium on Transportation AnalySan Juan, Puerto Rico.

Nagel, K., et al. accessed 2010. MATSim web site. http:/maisim.org.

Nie, Y., D.-H. Lee. 2002. An uncoupled method for the equilim-based linear path flow estimator for origin-
destination trip matriceslransportation Research Recat@8372—79.

Nie, Y., H.M. Zhang, W.W. Recker. 2005. Inferring origingtimation trip matrices with a decoupled GLS path flow
estimator.Transportation Research Part 8)(6) 497-518.

Nokel, K., M. Schmidt. 2002. Parallel DYNEMO: meso-scopiffic flow simulation on large networks\etworks
and Spatial Economicz(4) 387-403.

Raney, B., K. Nagel. 2006. An improved framework for largale multi-agent simulations of travel behavior. P. Ri-
etveld, B. Jourquin, K. Westin, edSowards better performing European Transportation Systétoutledge,
305-347.

Ross, S.M. 2006Simulation 4th ed. Elsevier.

Sevcikova, H., A.E. Raftery, P.A. Waddell. 2007. Assessingertainty in urban simulations using Bayesian melding.
Transportation Research Part81(6) 652—669.

SFSO. 2006. Ergebnisse des Mikrozensus 2005 zum Verkelss $e&deral Statistical Office, Neuchatel.

Sheffi, Y. 1985. Urban Transportation Networks: Equilibrium Analysis withathematical Programming Methods
Prentice-Hall.

Sherali, H.D., A.Narayan, R. Sivanandan. 2003. Estimatioorigin-destination trip-tables based on a partial set of
traffic link volumes.Transportation Research Part 87(9) 815-836.

Sherali, H.D., T. Park. 2001. Estimation of dynamic origiestination trip tables for a general networkansportation
Research Part B5(3) 217-235.

Sherali, H.D., R. Sivanandan, A.G. Hobeika. 1994. A lineagpamming approach for synthesizing origin-destination
trip tables from link traffic volumesTransportation Research Part B3(3) 213-233.

Spiess, H. 1987. A maximum likelihood model for estimatimgjim-destination modelsTransportation Research
Part B21(5) 395-412.

Train, K.E. 2003.Discrete Choice Methods with SimulatioBambridge University Press.

van der Zijpp, N.J., C.D.R. Lindveld. 2001. Estimation ofgim-destination demand for dynamic assignment with
simultaneous route and departure time choicansportation Research Recotd7175-82.

van Zuylen, H., L. G. Willumsen. 1980. The most likely trip tma estimated from traffic countsTransportation
Research Part B4(3) 281-293.

Vovsha, P., M. Bradley, J.L. Bowman. 2004. Activity-baseavel forecasting models in the United States: progress
since 1995 and prospects for the futuRFoceedings of the EIRASS Conference on Progress in AeBased
Analysis Maastricht, The Netherlands.



Flotterdd, Bierlaire, Nagel: Bayesian demand calibration for dynamic traffic simulasion
Transportation Science 00(0), pp. 000—0@P000 INFORMS 31

Waddell, P., G.F. Ulfarsson, J.P. Franklin, J. Lobb. 200i¢otporating land use in metropolitan transportation plan
ning. Transportation Research Part#1(5) 382—-410.

Watling, D., M.L. Hazelton. 2003. The dynamics and equitilof day-to-day assignment modelbletworks and
Spatial Economic8(3) 349-370.

Yang, H. 1995. Heuristic algorithms for the bilevel origlestination matrix estimation problenTransportation
Research Part R9(4) 231-242.

Yang, H., T. Sasaki, Y. lida. 1992. Estimation of origin-tieation matrices from link traffic counts on congested
networks.Transportation Research Part B5(6) 417-434.

Zhou, X. 2004. Dynamic origin-destination demand estioratind prediction for off-line and on-line dynamic traffic
assignment operation. Ph.D. thesis, University of Marg|aollege Park.



	Introduction
	Aggregate path flow estimation
	Specification
	Example: two routes network

	Disaggregate demand calibration
	Considered DTA simulator
	Disaggregate application of the calibration

	Making the framework operational
	Linearization of the log-likelihood
	Affecting the agent behavior
	Algorithm
	Example: two routes network, revisited

	Zurich case study
	Deployed simulation system
	Description of test case and uncalibrated simulation
	Inserting the calibration into the simulation
	Cross-validation results

	Summary and outlook
	Maximization of prior entropy
	Maximization of posterior entropy
	Linearization of congested network loading
	Derivation of accept/reject estimator
	Derivation of utility-modification estimator




