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We present an operational framework for the calibration of demand models for dynamic traffic simulations, where calibra-
tion refers to the estimation of a structurally predefined model’s parameters from real data. Our focus is on disaggregate
simulators that represent every traveler individually. Wecalibrate, at a likewise individual level, arbitrary choice dimen-
sions within a Bayesian framework, where the analyst’s prior knowledge is represented by the dynamic traffic simulator
itself and the measurements are comprised of time-dependent traffic counts. The approach is equally applicable to an
equilibrium-based planning model and to a telematics modelof spontaneous and imperfectly informed drivers. It is based
on consistent mathematical arguments, yet applicable in a purely simulation-based environment, and, as our experimental
results show, capable of handling large scenarios.
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1. Introduction

There is a broad consensus about the adequacy of microsimulators to the modeling of urban transportation
systems, and a wide scope of such simulation systems has beenput forward (e.g., Ben-Akiva et al. 2001a,
Mahmassani 2001, Raney and Nagel 2006, Waddell et al. 2007).The arguably most prominent advantage
of microsimulators is their superior expressiveness because of their arbitrarily fine-grained model structure.
However, increasing the resolution of a model also increases its degrees of freedom, which calls for more
interactions to be modeled and more parameters to be identified. That is, the potentially greater expressive-
ness of a microsimulator is faced with a likewise increased need for modeling, data, and calibration. By
calibration, we mean the estimation of a structurally predefined model’s parameters from real data. In our
specific case, these parameters represent the simulated travel behavior in a dynamic traffic simulation, and
the data consists of traffic counts. Typically, the calibration of a (nontrivial) model is cast in a statistical
framework and is carried out by some numerical procedure. The mathematical convenience of the model
under consideration, e.g., in terms of continuity, differentiability, normality or ergodicity, defines the com-
putational feasibility of this approach. A microsimulatoreasily reaches a level of detail at which most of
these features are lost.

In this article, we present a mathematically consistent andcomputationally efficient framework for the
calibration of microsimulation-based travel demand models in the context of dynamic traffic assignment
(DTA). The calibration of supply (network loading) models,although of great importance in a compre-
hensive DTA calibration procedure, is beyond the scope of this article. Flötteröd (2010) outlines how a
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supply calibration can be combined with the proposed demandcalibration in a unified Bayesian framework.
Specifically, we show how to calibrate a microscopic motorist demand simulator from time-dependent traf-
fic counts that are obtained at a limited set of network locations. The problem is solved in a Bayesian
setting, where the a priori assumption about every individual’s choice distribution is combined with the
available measurements’ likelihood into an estimated posterior choice distribution. The method is entirely
simulation-based in that it only requires a simulation system to represent the behavioral prior distribution
and only generates realizations from the behavioral posterior distribution. The approach is applicable both
in stochastic equilibrium conditions and in non-equilibrium conditions. We present experimental results
that demonstrate the method’s applicability to systems with ten thousands of network links and hundred
thousands of travelers.

The calibration of both DTA simulators and disaggregate demand models has received much attention
in the literature, which is detailed in the following. However, we are not aware of any work that estimates
individual-level travel behavior within a DTA simulation system from aggregate sensor data on a practically
relevant scale. All of the subsequently reviewed approaches consider either simplified or partial versions of
this problem.

The most frequently adopted method for demand calibration from traffic counts is origin-destination
(OD) matrix estimation. An OD matrix models the demand of a given time interval in terms of flows from
every origin to every destination of a traffic system. The originally static problem was to estimate such a
matrix given a linear assignment mapping of demand on link flows. Various methods such as entropy max-
imization and information minimization (van Zuylen and Willumsen 1980), Bayesian estimation (Maher
1983), generalized least squares (Bell 1991, Bierlaire andToint 1995, Cascetta 1984), and maximum like-
lihood estimation (Spiess 1987) were proposed to solve thistask. Nonlinear assignment mappings were
incorporated by a bilevel-approach that iterates between the nonlinear assignment and a linearized estima-
tion problem (Maher et al. 2001, Yang 1995, Yang et al. 1992) until a fixed point of this mutual mapping is
reached (Bierlaire and Crittin 2006, Cascetta and Posterino 2001). The combined estimation of OD matri-
ces in subsequent time slices was demonstrated in Cascetta et al. (1993), and many originally static methods
were applied to dynamic problems in this vein (e.g., Ashok 1996, Bierlaire 2002, Sherali and Park 2001,
Zhou 2004).

Since a time-dependent OD matrix maps (origin, destination, departure time) tuples on demand levels, it
represents destination and departure time choice on an aggregate level. Route choice, however, constitutes
no additional degree of freedom but is a function of demand that is defined through the DTA system’s
modeling assumptions. Path flow estimators (PFEs) overcomethis confinement.

The seminal PFE is a macroscopic one-step network observer that estimates static path flows from link
volume measurements based on a multinomial logit stochastic user equilibrium (SUE) modeling assump-
tion in a congested network (Bell 1995, Bell et al. 1997). Theestimation problem is transformed into one
of smooth optimization, which is iteratively solved. The model was enhanced by multiple user classes
and a simple analytical queuing model to represent traffic flow dynamics (Bell et al. 1996) and was suc-
cessfully implemented in various research and developmentprojects (Bell and Grosso 1999). The PFE’s
non-stochastic user equilibrium counterpart had been proposed in Sherali et al. (1994, 2003) and was fur-
ther advanced in Nie and Lee (2002), Nie et al. (2005). PFEs also serve as OD matrix estimators since an
OD flow is the sum of the path flows between its OD pair.

All PFEs and OD matrix estimators are confined to their underlying modeling assumptions. PFEs only
consider static demand per time slice and rely on particularassumptions about route choice behavior. Time-
dependent OD matrix estimators represent demand correlations across subsequent time slices in a simplified
and aggregate way, e.g., by auto-regressive processes or polynomial trends (Ashok 1996, Zhou 2004). These
approaches disregard many aspects of real travel behavior,which results from highly individual activity pat-
terns and likewise complex constraints (Bowman and Ben-Akiva 1998, Kitamura 1988, 1996, Vovsha et al.
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2004). That is, even if a PFE or an OD matrix estimator is applied to a fully microscopic DTA simulator, the
aggregate estimator is unable to account for those facets that amount to the microscopic modeling approach.

Random utility models (RUMs) capture travel behavior at theindividual level, and sophisticated cal-
ibration procedures for this class of models are available (Ben-Akiva and Lerman 1985, Bierlaire 2003,
Train 2003). However, in order to maintain tractability, their calibration procedures require a mathemati-
cally well-behaved link between observations and model parameters. Here, this link is given through a DTA
microsimulator. We are not aware of any work that calibratesa RUM in such conditions.

A calibration of the UrbanSim microsimulator in a Bayesian setting is reported in (Sevcikova et al. 2007),
where a sampling importance resampling (SIR) type algorithm is applied to the estimation of almost 300
model parameters. However, concerns regarding the computation times for larger problems are mentioned.

The remainder of this article is organized as follows. The disaggregate demand calibration is incremen-
tally developed in Sections 2 through 4: First, Section 2 derives a macroscopic and static version of the
calibration. Second, Section 3 carries this result over to afully disaggregate DTA microsimulation. Finally,
Section 4 discusses the operational aspects of the calibration and summarizes the conceptual developments
with a specification of the interactions between the calibration and a DTA microsimulator. A large real-
world case study is presented in Section 5. Section 6 concludes the article and gives an overview of ongoing
and future research topics.

2. Aggregate path flow estimation

This section develops a new solution to the familiar problemof estimating aggregate path flows between a
set of OD pairs from traffic counts. For simplicity, the time dimension is omitted and homogeneous travelers
are assumed. The next section generalizes this result for a broad class of DTA microsimulations, which
naturally account for both dynamics and heterogeneity in the population. However, since these properties
can also be incorporated in the macroscopic framework considered here, the result of this section is a novel
PFE in its own right.

Throughout this article, probability density functions are denoted by a lowercasep and discrete proba-
bility functions by an uppercaseP . Instead of noting the probability that random variableX takes value
x by some expression of the formP (X = x), P (x) is briefly written and ambiguities are avoided by self-
explanatory variables.

2.1. Specification

A network of nodes and links is considered, where some or all nodes constitute demand origins and/or
destinations. There areN OD pairs. The largest possible number of trips between OD pair n is denoted by
dn, the symbolCn represents the set of available paths that connect OD pairn, anddni is the number of
trips on pathi∈Cn, wheredn =

∑

i∈Cn
dni. Variations in the total OD flows can be enabled by adding one

fictitious path to every OD pair that bypasses the physical network (Sheffi 1985).

The share of travelers in OD relationn that choose pathi is denoted byPn(i|x(d)) whered = (dni) is
the vector of all path flows andx is the vector of network conditions, which depend on the pathchoice in
the entire population. Network conditions can be any attributes attached to (parts of) the network that may
affect the route choice model and/or may be observed by sensors, such as travel times, flows or densities.
An SUE in this system is defined as a path flow patternd = (dni) that satisfies

dni = Pn(i|x(d))dn ∀n = 1 . . .N, i∈Cn, (1)
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which states that the path flows, when loaded on the network, result in path choice fractions that reproduce
these path flows (Daganzo and Sheffi 1977). Appendix A shows that this model can be reformulated as the
problem of finding path flowsd that maximize theprior entropy function

W (d) =
N
∑

n=1

∑

i∈Cn

[dni lnPn(i|x(d))− dni lndni] +
N
∑

n=1

dn lndn

s.t.
∑

i∈Cn

dni = dn ∀n = 1 . . .N,
(2)

which represents for a large population the logarithm of theprobability that, for givenprior route choice
fractions Pn(i|x(d)) at the microscopic level, the path flowsd occur at the macroscopic level. (The second
sum

∑

n
dn lndn only affects the maximum value ofW (d) but not the maximizing path flowsd = (dni); is

maintained here for consistency with the derivation in Appendix A.)

Given the traffic countsy that are observed on some or all links of the network, the calibration should
adjust the path flows in a way such that these counts are reproduced to a reasonable degree. For this purpose,
the path flowsd that maximize theposterior entropy function

W (d|y) = lnp(y|x(d)) +W (d)

s.t.
∑

i∈Cn

dni = dn ∀n = 1 . . .N (3)

are identified, where the likelihoodp(y|x(d)) is the probability of observing the measurementsy given the
network conditionsx that result from the path flowsd. The posterior entropy models, apart from an additive
constant and again for a large population, the logarithm of the probability that a certain aggregate path flow
patternd occurs given both the prior route choice modelPn(i|x(d)) and the measurementsy.

Appendix B shows that a maximization of (3) with respect tod yields the followingposterior route
choice fractions:

Pn(i|x(d),y) =
exp(Λni +Γni)Pn(i|x(d))

∑

j∈Cn
exp(Λnj +Γnj)Pn(j|x(d))

(4)

where

Λni =
∂ lnp(y|x(d))

∂dni

(5)

Γni =
N
∑

m=1

∑

j∈Cm

dmj

Pm(j|x(d))

∂Pm(j|x(d))

∂dni

. (6)

This result follows from the first order necessary optimality conditions. Without further assumptions about
the functionsPn(i|x(d)) andp(y|x(d)), it is not guaranteed to be a global maximizer of the posterior
entropy function. However, for a concave log-likelihood function and fixed path choice fractions (which
result in a concave prior entropy), the posterior entropy isconcave as well and the above solution is the
unique maximizer.

The specification (4) – (6) is at the heart of the disaggregatedemand calibration procedure presented in
the next sections. It requires to scale the choice fractionsof every pathi of every OD pairn by exp(Λni +
Γni) and to re-normalize.Λni captures the effect of the path flowdni on the log-likelihood, i.e., on the
measurement reproduction.Γni vanishes if the route choice model is insensitive to the network conditions
(such that the respective derivatives in (6) become zero) and/or if the path flows are in an SUE (which can
be seen by substituting (1) into (6)). That is,Γni only takes effect if the route choice model is sufficiently
sensitive to the network conditions and the calibration moves the system sufficiently far out of an SUE.
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A nonzeroΓni parameter consists of a sum over all OD pairsm = 1 . . .N and all pathsj ∈ Cm, cf. (6).
In calibrated conditions withdmj = Pm(j|x(d),y)dm, every such addend can be written as

dm

Pm(j|x(d),y)

Pm(j|x(d))
·
∂Pm(j|x(d))

∂dni

. (7)

The first factor,dm
Pm(j|x(d),y)

Pm(j|x(d))
, is non-negative and the larger the more the calibration increases the flow on

pathj ∈Cm over a plain simulation. An analysis ofΓni should therefore focus on those addends in (6) that
correspond to path flows that are most increased by the calibration.

For the analysis of these addends, the second factor in (7) reveals directional information: If∂Pm(j|x(d))

∂dni
<

0, an increase indni reduces the flow share of routej in OD pair m. The respective addend becomes
negative, which reducesPn(i|x(d),y) and hencedni in (4). If ∂Pm(j|x(d))

∂dni
> 0, an increase indni increases

the flow share of routej in OD pairm. The respective addend becomes positive, which increasesdni. The
next subsection makes this analysis concrete for an intuitive example.

The presented approach constitutes a generic PFE in that it makes, apart from differentiability, no as-
sumptions about the deployed route choice and network loading model, and it functions with arbitrarily few
measurements, the precision of which can be accounted for through an arbitrary likelihood function. This is
an important advantage over all PFEs reviewed in Section 1, which require special route choice and network
loading models and do not deal with incomplete and inconsistent measurements in the integrated and sta-
tistically consistent manner a generic likelihood function provides. However, the arguably most important
advantage of the proposed PFE is its transferability to a broad class DTA microsimulations, which consti-
tutes the main objective of this article. Further applications to formal mathematical models are therefore left
as a subject of future research.

The following subsection illustrates the workings of the new PFE in terms of an academic example, which
is revisited in a microsimulation setting in Section 4.4.

2.2. Example: two routes network

The purpose of this example is to test the new PFE in a setting that is simple enough to enable a detailed
analysis of its functionality. More complex problems, suchas the real-world application presented in Section
5, would render such a detailed analysis extremely cumbersome.

A simple network that consists of two unidirectional, identical, and parallel links (1 and 2) that connect a
single OD pair is considered. For simplicity, the OD index isomitted in this example. The demand amounts
to d = 1000 travelers in the considered analysis period. Either link constitutes a feasible routing alternative.
The travel times on either path result from identical link performance functions

t(di) =

(

di

750

)2

, i = 1,2 (8)

that depend on the flowdi (in vehicle units) on the respective path. Keeping with the full notation of the
previous subsection, a three-dimensional vector of relevant network conditions is specified:

x(d) =





x1(d)
x2(d)
x3(d)



=





t(d1)
t(d2)
d1



 (9)

where the first two components, the route travel times, are needed for feedback into the route choice model
and the third component is used to specify a likelihood function further below.
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Table 1 System responses to different path flows

path flows d1 = 500, d2 = 500 d1 = 250, d2 = 750

t1, t2 according to (8) 0.44, 0.44 0.11, 1.0
P (1), P (2) according to (10) 0.5, 0.5 0.71, 0.29

Route choice is captured by the logit model

P (i|x(d)) =
exp(−t(di))

exp(−t(d1)) + exp(−t(d2))
, i = 1,2. (10)

The symmetry of this setting implies prior route flows of 500 vehicle units on either path in SUE conditions.
The concrete values in this example are chosen in order to obtain clear system responses that facilitate the
discussion. For illustration, some numbers are given in Table 1.

A single flow sensor is located on link 1, which countsy1 vehicle units during the analysis period. Writing
y = (y1), the likelihood function is specified as

p(y|x(d))∝ exp

[

−
(y1 − d1)

2

2σ2
1

]

(11)

whereσ1 (in vehicle units) is the standard deviation of the sensor data. This corresponds to the assumption
of a normally distributed link flow measurement with varianceσ2

1 ; the distribution is centered atd1, the path
flow across the link.

The posterior entropy of this simple scenario is strictly concave and has a unique maximum. Observing
thatd2 = d − d1, the posterior route choice fractionP (1|x(d),y) can be expressed as a single nonlinear
equation by substitution of (8) – (11) into (4) – (6), which inthis setting guarantees global optimality.
However, the resulting expression is fairly unwieldy and therefore given only in graphical terms.

Figure 1 shows the estimated flows on path 1 over measurementsy1 that are varied between 0 veh and
1000 veh and variancesσ2

1 that are varied between 0 veh2 and 1000 veh2. The results are consistent with
what one would intuitively expect: The smallerσ2

1 , the more belief is put on the measurement and the better
it is reproduced. For largeσ2

1 values, the estimator becomes independent of the sensor data and falls back
to the prior path flows. Between these extremes, there is a smooth transition that reflects the PFE’s ability
to interpolate between the prior information contained in the model and the measurements.

In the full PFE, theΓ coefficients require to calculate the derivatives of all path choice fractions with
respect to all path flows, where the coupling of these quantities is given through the network loading in that
the interactions of all path flows generate network conditions that in turn are evaluated in the route choice
model. These derivatives are available in simple settings,but they may be hard to obtain for generic demand
and supply models. This difficulty is not specific to this PFE but applies more generally to all instances of the
OD matrix estimation problem in congested conditions, where the most widespread solution is to assume a
“proportional assignment” that essentially assumes fixed route choice fractions (Cascetta and Nguyen 1988)
and to account for their actual dependency on the network conditions in a heuristic, iterative fashion (e.g.,
Lundgren and Peterson 2008). This coincides with the statement of zero derivatives of route shares with
respect to path flows and hence implies that zeroΓ coefficients may be an operationally attractive simplifi-
cation. Even for zeroΓ coefficients, congestion is accounted for in (4) and (5) through the dependency of
both the route choice model and the likelihood function on the network conditions.

Figure 2 demonstrates the effect of this simplification on the estimation results. It plots the difference be-
tween the exactly estimated route flows and their approximations for zeroΓ coefficients. The concrete form
of these curves for the extreme cases of very large (y = 1000veh) and very small(y = 0veh) measurements
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Figure 1 Calibration results for two routes example

follows from the discussion of theΓ parameters in the previous subsection: Ify = 1000veh,d1 is increased
by the calibration and hence defines the dominant addendj = 1 in (6). Since the route choice model is
congestion-dependent, we have∂P (1)

∂d1
< 0 and ∂P (1)

∂d2
> 0, such thatd1 is decreased by theΓ coefficients and

hence is overestimated by the approximation. Ify = 0 veh,d2 is increased by the calibration and defines the
dominant addendj = 2 in (6). Since we have∂P (2)

∂d1
> 0 and ∂P (2)

∂d2
< 0, d1 is increased by theΓ coefficients,

which leads to an underestimation ofd1 in the approximation.

The bias attains a maximum value of ca.±7% of the total demand aroundσ2
1 = 100veh2 for y1 = 0veh

andy1 = d. For very small and very large variances, the bias ceases: Inthe first case, theΛ coefficients abso-
lutely dominate (4), whereas in the second case the calibration falls back to the prior model, i.e., to an SUE.
Since the bias is of moderate magnitude, it appears justifiedto choose zeroΓ coefficients in favor of the op-
erational advantages this brings along. This course of action is chosen in the remaining experiments of this
article. However, accounting more precisely for the SUE feedback effects that here are represented by theΓ
coefficients is an important subject of ongoing and future research (Lundgren and Peterson 2008). Related
progress in the field of OD matrix estimation is likely to be transferable to the methodology proposed here.

Summarizing, this section introduces a new PFE that makes much milder assumptions about the under-
lying model components and the amount and quality of available sensor data than the PFEs presented so far
in the literature. Its functioning is demonstrated throughan academic example, and some intuition about an
operationally advantageous simplification is provided.

3. Disaggregate demand calibration

This section carries the macroscopic PFE over to the calibration of DTA microsimulations. It is organized in
two parts. First, the considered type of DTA simulator is described. Second, the considerations that enable
a mathematically consistent application of the PFE to this type of simulation are discussed.
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Figure 2 Bias of simplified calibration for two routes exampl e

3.1. Considered DTA simulator

This specification builds on the seminal model of Cascetta (1989), which it simplifies in some regards and
extends in others. The notation of the previous section is inlarge parts re-defined here in a microsimulation
context. The most important changes are the following:

1. The new setting is fully disaggregate in that every traveler is modeled as an individual entity. For this,
the OD pair variablesn = 1 . . .N now refer to individual travelers,Cn represents the choice set of agent
n instead of the route set connecting OD pairn, and the route variablesi ∈ Cn now refer to all-day travel
plans.

2. The new setting is fully dynamic both on the demand side andthe supply side. That is, both the travel
plans and the network conditionsx are now time-dependent entities.

The remainder of this subsection explains these re-definitions in detail.

Agents and plansWe assume a microsimulation-based approach where every traveler is modeled as an
individual agent n = 1 . . .N . At every point in simulated time, every agentn disposes of aplan in that
describes the intended travel behavior of that agent. A typical plan comprises a sequence of trips that connect
intermediate stops during which activities are conducted,including all associated timing information. We
subsequently write{i} as a shortcut for the whole population’s plan set{i1, . . . , iN} and omit the subscript
n of a planin when the agent the plan refers to is not of relevance.

A plan constitutes a fully dynamic demand specification thatcaptures arbitrary choice dimensions such
as route choice, departure time choice, and mode choice. An informal example of a plan would be “Leave
home by car for work at 7 am with a planned arrival at 7:30 am, taking the habitual route; work until 5 pm;
then take the highway to get to the local mall for one hour of shopping; finally return home for the rest of
the day, again using the habitual route.”
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Supply simulator The supply simulator executes the plans of all agents simultaneously on the net-
work. It models the physical interactions of the agents, including congestion. The result of such adynamic
network loading are thedynamic network conditions x, which comprise all time-dependent, aggregate
network characteristics (such as flows, densities, velocities) that are relevant to the decision making of the
agents. (No time index is used here for notational simplicity; one may think ofx as a large vector in which
time-dependentx(k) vectors are stacked, wherek is the simulation time step index.)

Formally, the supply simulator draws from a distributionp(x|{i}) of the time dependent network con-
ditionsx that result from the dynamic network loading of a particularplan set{i} in the population. In its
most widespread form, this distribution is implicitly defined through a stochastic supply microsimulator.
However, a deterministic, macroscopic supply simulator wherep(x|{i}) collapses into a singleton is just as
feasible.

Demand simulator Thedemand simulatormodels the decision making of travelers. It maps, for every
agentn = 1 . . .N individually, the expected network conditionsx̄ on a planin the agent chooses in these
conditions.Pn(i|x̄) is the probability that plani is chosen by agentn given the expected network conditions
x̄, andCn denotes agentn’s choice setof available plan alternatives.

It is assumed that the agents’ plan choice distributions areindependent once the expected network con-
ditions are given. That is,

P ({i}|x̄) =
N
∏

n=1

Pn(in|x̄), (12)

which implies that the agents do not interact directly but only through the aggregate network con-
ditions. This is a reasonable assumption for large-scale and/or time-critical simulations where traffic
flow dynamics are typically represented by aggregate laws ofmotion (“mesoscopic simulators”) instead
of vehicle-by-vehicle interactions (“car-following models”) (Astarita et al. 2001, Ben-Akiva et al. 2001a,
De Palma and Marchal 2002, Mahmassani 2001, Nökel and Schmidt 2002).

The choice distributionsPn(i|x̄) and the choice setsCn are arbitrary and entirely transparent to the
proposed calibration approach. The demand simulator is only required to generate realizations of these
distributions.

Iterative simulation logic So far, the DTA simulator is defined in terms of a supply simulator and a
demand simulator. A solution to the DTA problem represents asituation in which demand and supply are
consistent with each other. It typically is impossible to simulate this situation directly, but it is possible to
alternately execute the supply simulator and the demand simulator. After a burn-in period, these draws can
be tested for convergence towards a stationary distribution, and their continuation in stationary conditions
allows to extract the relevant characteristics of mutuallyconsistent demand and supply (Balijepalli et al.
2007, Cascetta and Cantarella 1991, Nagel et al. 1998, Watling and Hazelton 2003).

To clarify the causal structure of this logic, aniteration cycle counterc is introduced. In a given iteration
c, the demand simulator first draws plans fromP ({i}c|x̄c) conditional on expected network conditionsx̄c

that are inferred from the simulated network conditions of previous iterations, and then the supply simulator
draws network conditions that result from an execution of these plans fromp(xc|{i}c).

The loop is closed by a model component that infers the expected network conditions̄xc from the pre-
viously simulated network conditionsxc−1,xc−2, . . .. Possible realizations of this filter are a moving aver-
age over a number of previous iterations (e.g., Liu 2005), anautoregressive process (e.g., Ben-Akiva et al.
2001b, Raney and Nagel 2006), or the method of successive averages (MSA, e.g., Liu et al. 2007). For the
calibration, it only is required that the expected network conditions attain a low variability asc becomes
large. This requirement is made more precise further below.
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Algorithm 1 Iterative dynamic traffic assignment
1. Initialize cycle counterc = 0.
2. Choose initial network conditionsx0,x−1, . . . (e.g., free-flow conditions).
3. Repeat for as many iterations as necessary to extract relevant characteristics in stationary conditions:

(a) Increasec by one.
(b) Calculate expected network conditionsx̄c from xc−1,xc−2, . . ..
(c) Replanning. Forn = 1 . . .N , draw planicn from Pn(icn|x̄

c).
(d) Network loading. Draw network conditionsxc from p(xc|{i}c).

Algorithm 1 summarizes the workings of this approach. It constitutes a stochastic process that eventually
stabilizes at a stationary distribution of plan choices andresulting network conditions that constitute the
simulation-based solution of the DTA problem. It is called the prior solution of the model because it
incorporates no sensor data. (The existence of a unique stationary distribution depends on the involved
model components. It can, for example, be guaranteed if the simulation process is designed as an ergodic
Markov chain (Ross 2006).)

Denoting byπ a continuous and byΠ a discrete stationary probability distribution, the priorsolution can
be formally given in terms of the following system of equations:

Πn(i) = Pn(i|x̄), i∈Cn, n = 1 . . .N (13)

Π({i}) =
N
∏

n=1

Πn(in) (14)

π(x) = p(x|{i} ∼Π({i})) (15)
x̄ ≈ E{x|x∼ π(x)}. (16)

Equation (13) specifies the individual-level prior choice distribution of every agentn. Equation (14) states
that the population prior choice distributionΠ({i}) results from the independent choices of all agents (where
the mutual interactions are fully captured through the expected network conditions̄x). The prior distribution
of the network conditions is defined in (15), and the expectedprior network conditions are given in (16).

The requirement (16) that the agents replan based on (an approximation of) the expected network condi-
tions is motivated as follows. The macroscopic PFE solves the calibration problem through an adjustment
of all choice distributions in equilibrated conditions. The counterpart of these distributions in a microsim-
ulation are the stationary choice distributions, which areimplicitly defined through the iterative dynamics
of the stochastic simulation process. If, however, the expected network conditions̄x eventually stabilize
at constant values, then the transition distributionsPn(i|x̄) and the stationary choice distributionsΠn(i)
coincide and the calibration problem can be tackled by a modification of the operationally more accessible
transition distributions only.

The transition distributions and the stationary choice distributions coincide well even if some variability
in the expected network conditionsx̄ is left in that they are distributed according to some distributionπ(x̄)
in stationary conditions. To see this, the stationary plan choice distribution (13) is rewritten as

Πn(i) =

ˆ

Pn(i|x̄)π(x̄)dx̄. (17)

If the expectation ofπ(x̄) equals the expectation E{x|x ∼ π(x)} of the simulated network conditions and
if the distributionπ(x̄) is tight enough to allow for a linearization ofPn(i|x̄) aroundx̄0 = E{x|x∼ π(x)}
then

Πn(i)≈

ˆ

[

Pn(i|x̄0) +
∂Pn(i|x̄0)

∂x̄0
(x̄− x̄0)

]

π(x̄)dx̄ = Pn(i|x̄0), (18)
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which implies that the stationary plan choice distributionand the transition distribution coincide well even
if (16) is implemented through a filter that maintains some variability in the expected network conditions.
Also, the expected network conditions may differ for individual agents within the aforementioned limits.
However, for notational convenience the model will subsequently be specified in terms of an approximation
of the expected network conditions only, as it is expressed in (16) by the “≈” symbol.

The iterative assignment logic is equally applicable to simulate an SUE-based planning model and a
telematics model where drivers are spontaneous and imperfectly informed. From a simulation point of
view, the only difference between these two models is that anSUE demand simulator typically utilizes
all information from the most recent network loadings, whereas a telematics demand simulator generates
every elementary decision of a plan only based on such information that could have actually been gathered
up to the according point in simulated time. The filtering of the expected network conditions has different
meanings in either approach: In an equilibrium model, it canbe seen as a learning mechanism through
which travelers remove random fluctuations from their observations. For a non-equilibrium model, the same
mechanism can be employed to stabilize the iterative solution procedure, but no behavioral interpretation
is available in this case (Bottom 2000, Bottom et al. 1999). To keep the terminology simple, the remaining
presentation is given only in terms of an SUE planning model.

3.2. Disaggregate application of the calibration

The macroscopic PFE developed in Section 2 is now carried over to the previously described DTA mi-
crosimulator. Essentially, the OD pairs are replaced by agents and the routes are replaced by plans. That
is, n = 1 . . .N now represents the agent population instead of the OD pairs,Cn represents the choice set
of agentn instead of the route set connecting OD pairn, andi ∈ Cn indicates a plan available to agent
n instead of a route that connects OD pairn. The transition from a static specification that only considers
paths to a dynamic specification that accounts for full plansis feasible because a time-dependent network
can be equivalently modeled as a time-expanded static network and a full-day plan constitutes a simple path
in the expanded network (Bierlaire 2002, Flötteröd 2008, van der Zijpp and Lindveld 2001).

The basic assumption of this approach is that the macroscopic SUE model of Section 2 captures the
average conditions in the microsimulation such that the macroscopic PFE can be deployed to adjust the
average conditions in the microsimulation as well. For this, we first specify an idealized macroscopic SUE
counterpart of the microsimulation. Second, we describe the deviations between the idealized and the real
setting.

A macroscopic perspective on the discrete agent populationis adopted in terms of acontinuous limit
where every agentn is (only hypothetically) replaced byZ →∞ identical agents of size1/Z that all draw
independently from the original agent’s plan choice distribution. In the continuous limit andwithout the
agent size adjustment,dn (originally the number of trips between OD pairn) would becomeZ (now the
number of replications of agentn) and the path flowdni (now rather “plan flow”; originally the number of
trips on routei ∈Cn) would become a multinomial random variable with stationary expectationZΠn(i) and
varianceZΠn(i)(1−Πn(i)). After the size adjustment, the plan flowsdni have expectations E{dni}= Πn(i)
and variances VAR{dni}= 1

Z
Πn(i)(1−Πn(i)), which means that their variability ceases in the continuous

limit. However, the network loading may still be stochastic. The counterpart of the macroscopic network
loadingx(d) of Section 2 is therefore specified in terms of the expected network conditionsx̄ defined in
(16), which depend deterministically ond.

The continuous limit perspective is relevant because the macroscopic PFE maximizes entropy, which
assumes a large population of decision makers. The finite agent size in a real microsimulation deviates from
the macroscopic PFE’s assumption that the network conditions result from a deterministic network loading
of the continuous-valued demand because the microscopic model is based on an expectation of stochastic
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Table 2 Microscopic redefinition of macroscopic PFE entitie s

symbol macroscopic microscopic (continuous
limit)

n = 1 . . .N OD pairs agents
Cn routes connecting OD pairn plans available to agentn
i∈Cn a route connecting OD pairn a plan available to agentn
dni number of trips on route

i ∈Cn

stationary probability that
agentn chooses plani

dn number of trips in OD pairn one (dn =
∑

i∈Cn
dni)

network conditions that result from a stochastic demand. Since the network loading is in general a nonlinear
operation, the expected network conditions differ from theresult of a deterministic network loading of the
expected demand levels.

This deviation between aggregate SUE assignments and stochastic microsimulations has been identified
by Cascetta (1989), who concludes that “in the limiting caseof a number of remembered costs tending to
infinity with uniform weights, users tend to base their choices on average costs, which are still different
from costs computed for average flows in the case of nonlinearcost functions. Also in this case [the iterated
microsimulation] and SUE expected flows are only approximately equal.” However, he also shows that
“in general, however, they can be considered coincident within the limits of a first-order approximation”.
Overall, a limited bias in the average network conditions also leads to a limited bias in the plan choice
distributions, which results in a limited yet systematic deviation between the idealized model and the real
microsimulation.

Table 2 gives a summary of these re-definitions. Based on these considerations, the macroscopic PFE (4)
– (6) can be combined with the solution (13) – (16) of the simulation-based DTA model into the following
specification:

Πn(i|y) =
exp(Λni +Γni)Pn(i|x̄|y)

∑

j∈Cn
exp(Λnj +Γnj)Pn(j|x̄|y)

, i∈Cn, n = 1 . . .N (19)

Π({i}|y) =
N
∏

n=1

Πn(in|y) (20)

π(x|y) = p(x|{i} ∼Π({i}|y)) (21)
x̄|y ≈ E{x|x∼ π(x|y)}, (22)

where (19) and (20) now specify the stationary posterior plan choice distributions in the population sym-
metrically to (4), and the (expected) posterior network conditions are defined in (21) and (22).Λni andΓni

are defined in (5) and (6), only that they are now evaluated in expected posterior network conditions̄x|y

and with the path flowsdni being replaced by the stationary posterior choice distributionsΠn(i|y).

Recall that (4) – (6) only specify a stationary point of the posterior entropy function but not necessarily
a global maximum. If there are several stationary points then additional measures are necessary to ensure
a proper maximization, e.g., by running the above model several times and comparing the results. Having
run a large number of experiments in a variety of settings, wehave never observed that repetitions of the
same experiment converge to significantly different solutions. However, it can not be excluded that our
experiences are positively influenced by the use of (i) a “well-behaved” DTA microsimulation that tends to
generate reproducible results and (ii) real-world measurements that may consistently point to one particular
solution of the calibration problem.

The model (19) – (22) can be solved by the same iterative simulation approach that is used to solve
(13) – (16), the only difference being that the plan choice distribution of every replanning agent is now
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Algorithm 2 Calibration of a generic DTA microsimulator
1. Initialize the calibration and the DTA simulator.
2. Repeat for as many iterations as necessary to extract relevant characteristics in stationary conditions:

(a) Calculate allΛni andΓni coefficients.
(b) For all agentsn = 1 . . .N , draw a new plan from a choice distribution that is scaled byexp(Λni +

Γni) for all i∈Cn.
(c) Load all agents on the network.

scaled by the exponential of the accordingΛ andΓ coefficients. This is a computationally very efficient
specification because it only affects the agent behavior at the individual level, which turns the joint demand
calibration problem forN agents intoN individual-level calibration problems, where all interactions are
captured through the iterations of the simulation.

Algorithm 2 outlines, as for now only conceptually, how the calibration is applied to a generic DTA
microsimulator. Clearly, the applicability of this calibration logic is very broad.

In order to make the calibration operational, two more questions need to be answered: how to calculate
the Λ andΓ coefficients in Step 2a and how to implement the scaling of thechoice probabilities in Step
2b, both for a generic microsimulation that can only be expected to generaterealizationsof the choice
distributions and network conditions. This is discussed inthe next section.

4. Making the framework operational

This section details the technical steps that are necessaryto apply the demand calibration to a DTA mi-
crosimulation. First, Subsection 4.1 clarifies how to calculate theΛ coefficients, given an arbitrary supply
simulator. Second, Subsection 4.2 explains different methods to enforce the scaled plan choice distribution
(19) in an arbitrary demand simulator. Third, Subsection 4.3 gives a step-by-step specification of how to
apply the calibration to a generic DTA microsimulation. Finally, Subsection 4.4 clarifies the developments
with a continuation of the two routes example of Section 2.2.

As from now, theΓ coefficients in (19) are set to zero because of the operational reasons given in Section
2.2. If they are to be accounted for, they can be added to the correspondingΛ coefficients wherever the latter
are used in the following to affect the simulated agent behavior.

4.1. Linearization of the log-likelihood

Stationary posterior conditions are assumed in this subsection, which means that all agents draw their plans
from posterior choice distributionsΠn(i|y). This is justified by the specification of the calibrated system
state that relies on a linearization of the log-likelihood in posterior conditions. Since in stationary conditions
the choices of all agents depend on stablex̄|y values and hence are not affected by the particular realizations
of x in recent network loadings, the iteration counterc is omitted in this subsection.

According to (5), a calculation of theΛ coefficients requires to differentiate the log-likelihoodfunction
lnp(y|x(d)) with respect todni, which in the microscopic case carries over to a differentiation with respect
to the according stationary choice probabilityΠn(i|y) in expected posterior network conditionsx̄|y, cf.
Section 3.2:

Λni =
∂ lnp(y|x̄|y)

∂Πn(i|y)
=

〈

∂ lnp(y|x̄|y)

∂x̄|y

,
∂x̄|y

∂Πn(i|y)

〉

(23)

where〈·, ·〉 denotes the inner product. The first vector,
∂ lnp(y|x̄|y)

∂x̄|y
, will turn out to be relatively easy to

compute. The evaluation of the second vector,
∂x̄|y

∂Πn(i|y)
, however, requires some additional effort. For this

purpose, the notion of a “proportional network loading” is introduced.
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A proportional network loading describes a situation in which the time-dependent travel times on all
links in the network are known and fixed. This implies that there are no interactions between the flows,
which move through an exogenously specified network environment. The resulting flow on any link be-
comes a linear superposition of all path flows across that link. For a microsimulator, this implies that the
agents linearly superpose on each link. In order to obtain a mathematically tractable relation between de-
mand and resulting network conditions, the true dynamics ofthe supply simulator are captured by a linear
network loading. Formally, this implies that the simulatedtraffic countxa(k) on link a in simulation time
stepk is written as

xa(k) =
N
∑

n=1

1(ak ∈ in) (24)

where1(·) is the indicator function andak ∈ in indicates that planin requires agentn to enter linka in time
stepk (where, for simplicity, it is assumed that the sensors are located at the upstream end of a link). This is
an imperfect model of the actual network loading in that the assumption of constant travel times implies that
the inflow of links at the capacity limit increases beyond this limit if the demand is increased. Consequently,
(24) is an imperfect representation of the supply simulatorin congested conditions.1 An alternative approx-
imation that captures congestion with greater precision isdescribed in Flötteröd and Bierlaire (2009) and
outlined in Appendix C of this article. However, for clarityonly the simple case of a proportional network
loading is considered in the following. The results carry over very closely to the congested case.

Assuming (24) to be applicable, the vectorx̄|y of expected posterior network conditions contains the
elements

x̄a(k)|y =
N
∑

n=1

∑

i∈Cn

1(ak ∈ i)Πn(i|y) (25)

wherex̄a(k)|y is the posterior expectation ofxa(k). This yields when inserted into (23)

Λni =
∑

ak∈i

∂ lnp(y|x̄|y)

∂x̄a(k)|y
. (26)

This means that theΛ coefficients can be evaluated by summing up the derivatives of the log-likelihood
function with respect to the simulated traffic counts along all links that are contained in the considered plan.

In order to show that this is not a difficult task, univariate normal likelihood functions are considered as
an example. Denoting the measured counterpart ofxa(k) by ya(k) and maintaining the symboly for the
vector of all available measurements, one has

lnp(y|x̄|y) = const−
∑

ak

(ya(k)− x̄a(k)|y)
2

2σ2
a(k)

(27)

where the sum runs only over sensor-equipped links andσ2
a(k) is the variance of the sensor data on linka

in time stepk. In this case, an evaluation of (26) yields

Λni =
∑

ak∈i

ya(k)− x̄a(k)|y
σ2

a(k)
(28)

where the expectation can be obtained by averaging the simulated traffic counts over many stationary itera-
tions in the DTA simulator.

1 Note that a proportional assignment, which is widely and successfully assumed in the field of time-dependent OD matrix estima-
tion, implies the same assumption of constant travel times.That is, although (24) is consistent only in uncongested conditions, the
state of practice suggests its applicability even in the case of congestion.
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Algorithm 3 Calibration with the accept/reject estimator
1. Initialize cycle counterc = 0.
2. Choose initial network conditionsx0,x−1, . . . (e.g., free-flow conditions).
3. Repeat for as many iterations as necessary to extract relevant characteristics in stationary conditions:

(a) Increasec by one.
(b) Calculate expected network conditionsx̄c

|y from xc−1,xc−2, . . ..
(c) Replanning. Forn = 1 . . .N , do:

i. Run the demand simulator and obtain a plani′.
ii. CalculateΛni′ according to (26) usinḡxc

|y.
iii. With probability 1−Paccept,n(i′) according to (29), goto step 3(c)i.
iv. Retain the first accepted draw:icn = i′.

(d) Network loading. Drawxc from p(xc|{i}c).

4.2. Affecting the agent behavior

The disaggregate demand calibration requires to scale the choice distributionPn(i|·) of every replanning
agent individually byexp(Λni) and to re-normalize. Given that theΛ coefficients are available from (26), a
universally applicable method to realize this scaling is rejection sampling (Ross 2006). Denote by

Paccept,n(i) = exp(Λni)/Dn (29)

the acceptance probability for plani from agentn’s choice setCn whereDn must be such that

Dn ≥max
i∈Cn

exp(Λni) (30)

for (29) to be a proper probability. If repeated draws taken from Pn(i|·) are accepted with probability
Paccept,n(i) and are rejected otherwise, then the first accepted draw constitutes a draw from the desired scaled
choice distribution. The correctness of this approach is verified in Appendix D.

While the accept/reject estimator is arguably the most general method to affect agent behavior, it is
by no means the only one. For example, if the demand simulatorimplements a multinomial logit (MNL)
model (Ben-Akiva and Lerman 1985) then a computationally more efficient approach is to affect the agent
behavior by modifications of their utility functions. Appendix E shows that an MNL demand simulator
immediately generates draws from the calibrated choice distributions if the accordingΛ coefficients are
added to the systematic utility of every considered alternative before the MNL model is evaluated. Note
that this result carries over to path-size logit (Ben-Akivaand Bierlaire 2003) and C-logit (Cascetta et al.
1996) models. It also is noteworthy that a heuristic application of this technique is possible even if the
demand simulator does not implement an MNL choice distribution. Such an approach is based on a weaker
theoretical foundation, but it may still produce practically useful results.

4.3. Algorithm

The definition of theΛ coefficients in (26) requires to calculate the according derivatives in averagepos-
terior network conditions, which, however, are a priori unknown. This constitutes a fixed-point problem
that can be iteratively solved: Starting from the behavioral prior, successively improved estimates of these
derivatives are generated from iteration to iteration until a stable state is reached where the estimator draws
from the behavioral posterior based on stableΛ coefficients that in turn are consistent with this very poste-
rior.

This process is illustrated in Algorithm 3, which affects the agents’ choice behavior using the general
rejection sampling technique as an example. If the simulation maintains some variability in the expected
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Figure 3 Evolution of d1 for two routes example

posterior network conditions̄x|y then this variability also enters theΛ coefficients in Step 3(c)ii, which can
be avoided by applying, e.g., the method of successive averages (MSA) to these coefficients. This algorithm
calibrates whatever choice dimensions are represented by the demand simulator, is compatible with an
arbitrary supply simulator, and is fully consistent with the execution logic of a typical DTA microsimulator.

4.4. Example: two routes network, revisited

This subsection exemplifies the workings of Algorithm 3 in terms of the two routes example introduced in
Section 2.2. The example is now microscopically simulated for a population of 1000 identical agents, each
of which perceives travel time according to (8) and chooses aroute according to (10). The expected travel
times result from a moving average of the simulated travel times over five iterations.

For illustrative purposes, a measured flow ofy1 = 250veh with a standard deviation ofσ1 = 10veh
is assumed. The calibration is run for 100 iterations. Note that in this setting theΛ1 coefficient can be
calculated according to (28) and thatΛ2 is zero because there is no sensor on route 2. Figures 3, 4, and5
show, for a single calibration experiment, the flowd1 on route 1, the expected travel timet̄1 on that route,
and theΛ1 coefficient, respectively. For comparison, the uncalibrated flows and travel times of a single
simulation are added in dashed lines.

The prior flows fluctuate in a stable manner around 500 veh, which is consistent with the symmetry of
the scenario. After some overshooting, the posterior flows stabilize around 360 veh, which constitutes the
compromise the calibration identifies between the prior flows and the measured value of 250 veh. Note that
although the calibration has been derived in terms of average network conditions, the actually calibrated
network conditions are still distributed in a way that is consistent with the stochasticity of the demand
generator and (in general but not in this example) the supplysimulator.

The average travel time on route 1 changes from 0.45 in prior conditions to 0.23 in posterior conditions.
This constitutes an important driving force behind the interpolation of prior information and measurements:
As the calibration removes more and more vehicles from path 1in order to fit the measurement, the travel
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Figure 5 Evolution of Λ1 for two-routes example

time on this path decreases, which in turn increases its attractiveness. Upon convergence, the calibration has
compromised in a plausible Bayesian manner between these two effects.
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Finally, the evolution of theΛ1 coefficient shows how the calibration takes effect. After a few iterations
of transient oscillations, the coefficient stabilizes around −1.1. This value is consistent with the theory:
Insertingy1, σ1 and the average posterior flow of 360 veh in (28), one obtains the same value. The negative
sign of Λ1 indicates that there is too much simulated flow on route 1, which the calibration reduces by
scaling the choice probability of this route byexp(Λ1) < 1.

This type of detailed analysis is hard to conduct for the large real-world test case presented in the next sec-
tion, which therefore resorts to more aggregate performance measures. However, the conceptual workings
of the calibration are the same as described in this example.

5. Zurich case study

This section presents results from an ongoing real-world case study for the city of Zurich (Flötteröd et al.
2009). First, the deployed simulation system is described in Section 5.1. Second, the Zurich scenario is
presented in Section 5.2. Third, the interactions between simulation and calibration are investigated in
Section 5.3. Finally, Section 5.4 reports on the validationof the calibrated simulation system.

5.1. Deployed simulation system

The MATSim (“Multi-agent transport simulation toolkit”, Nagel et al. accessed 2010) DTA microsimula-
tion is used for the purposes of this study. Its workings coincide well but not perfectly with the specification
of Section 3.1. This situation is likely to be encountered inthe calibration of other microsimulations as well.
An important aspect of this study is therefore to show that the calibration is robust with respect to (mild)
violations of its underlying assumptions.

Consistently with all assumptions of the calibration, MATSim consists of a microscopic and stochastic
demand and supply simulator, which are iteratively executed until stationary conditions are attained. The
supply simulator is based on a queueing model that is fully consistent with the assumptions of this work
(Cetin et al. 2003). The choice dimensions accounted for in the demand simulator are route choice, depar-
ture time choice, and mode choice (car vs. no-car). The demand simulator has some unusual features that
are discussed in the following. It is described in detail in (Raney and Nagel 2006).

Continuous choice set generation.The choice set generation and the choice simulation are intertwined
in MATSim. The rationale behind this is that the choice set should be appropriate in equilibrated network
conditions, which are not known a priori. The simulation therefore proceeds in two stages. In the first stage,
as from now called thechoice set generation stage, the choice set is continuously updated in that new plans
are generated and other plans are discarded during the iterations. In the second stage, thechoice stage, the
choice set generation is turned off and the demand simulatoroperates based on fixed choice sets.

Implicit choice distribution. Agents make choices both in the choice set generation stage and the choice
stage. In the choice set generation stage, a newly generatedplan is selected for execution with probability
one. This is necessary because MATSim calculates the utility of a plan only after it is executed; this logic
is discussed in the next paragraph. Since the generation of new plans is realized by random variations of
existing ones, the guaranteed selection of a newly generated plan generates draws from the set of all plans
that can be possibly created by random variations. If no new plan is generated for an agent, one of its
existing plans is selected according to a multinomial logitmodel. In the choice stage, no new plans are
generated and the demand simulator only applies the multinomial logit model.

Simulation-based utility function. MATSim uses an all-day utility function that consists of positive
terms for the execution of activities and negative terms fortravel (Charypar and Nagel 2005). Instead of
evaluating the utility function in average network conditions, MATSim deploys a (purely technical) sam-
pling adjustment that does not affect the stationary plan choice distributions but reduces the frequency
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Figure 6 Zurich network

at which agents switch plans, which also leads to a reductionin the variability of the simulated network
conditions (Nagel and Flötteröd 2009).

Apart from these peculiarities, MATSim constitutes an iterative DTA microsimulator that complies with
all assumptions of the proposed calibration.

5.2. Description of test case and uncalibrated simulation

Figure 6 shows the road network of the analysis zone. An all-of-Switzerland network with 60 492 links and
24 180 nodes is used. It is based on a Swiss regional planning network, which has been made ready for
simulation purposes based on additional OpenStreetMap network data (Chen et al. 2008).

A synthetic population of travelers for all of Switzerland is available from a previous study (Meister et al.
2008). All travelers have complete daily activity patternsbased on microcensus information (SFSO 2006).
The experiments consider only those agents who cross a 30 km (18.6 miles) circle around the center of
Zurich at least once during their daily travel, including those agents who stay within that circle for the whole
day. In order to obtain a high computational speed, a random 10 % sample is chosen for simulation, which
consists of 187 484 simulated travelers. All agents iteratively adapt route choice, departure time choice, and
mode choice. Public transit is simulated as described in Grether et al. (2009), that is, it is assumed that it
provides door-to-door connectivity at twice the free speedtravel time by car.

Hourly traffic counts from 161 inductive loop sensors are available from 06:00 to 20:00 of one day. The
deviation between measured and simulated traffic counts is both graphically and quantitatively evaluated.
For visual inspection, scatter plots such as those given in Figure 7 are used. Every point represents one pair
of measured/simulated traffic counts, where the measured value defines the x-coordinate and the simulated
value defines the y-coordinate. If all measurements were perfectly reproduced by the simulation, all points
would lie on the diagonal with slope one. Deviations from that diagonal signalize inconsistencies between
measurements and simulation.
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Figure 7 Scatter plots for uncalibrated base case

Figure 7 shows scatter plots that are obtained after 500 iterations of uncalibrated simulation. The line
above (below) the main diagonal represents simulation values of twice (half) the observed traffic counts
(note that the plots are double-logarithmic). Most points are within this (admittedly loose) band, which
indicates that the simulation captures the overall situation fairly well. However, there clearly is room for
improvement.

5.3. Inserting the calibration into the simulation

The proposed calibration methodology is implemented in thefree Cadyts (“Calibration of
dynamic traffic simulations”) software package (Flötterödaccessed 2010, 2009); see also
http://transp-or.epfl.ch/cadyts/. Cadyts is written with conceptual and technical flexibility
in mind in that it offers various modes of interaction with different DTA microsimulations. All experiments
reported in this section are based on an application of Cadyts to MATSim.
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In this case study, the agent behavior is affected by modifying the utility of their available plans before
they make their choices, cf. Section 4.2. The only exceptions are newly generated plans, which are always
executed. This implies that these parts of the demand remainuncalibrated during the choice set generation
stage and that the calibration takes full effect only in the choice stage.

The evolution of the calibrated simulation over the iterations is visualized in Figure 8, which shows the
mean weighted square error (MWSE) of all measurements over the iteration number. This error measure is
defined as

MWSE=

〈

(ya(k)−xa(k))2

2σ2
a(k)

〉

ak

(31)

whereσa(k) is the standard deviation assigned to the sensor dataya(k) on link a in hourk, xa(k) is its sim-
ulated counterpart, and〈·〉ak indicates an average over all sensor locations and hourly time intervals.ya(k),
xa(k), andσa(k) are in vehicle units. The form of (31) resembles the log-likelihood function that is used
in the calibration, which corresponds to the assumption of independent normally distributed measurement
errors. The variance of a measurement is calculated as

σ2
a(k) = 0.5 ·max{(ya(k) · 1veh), (25veh)2}, (32)

which reflects two considerations. First, there is the assumption that the variance of a measurement error
is proportional to the measured value, which is justified in the given setting since we are dealing with
count data. The “1 veh”-factor ensures that both sides of theequation are in veh2 units. Second, there is a
positive lower bound on the variance, which ensures that very small measurements are not over-weighted
and avoids numerical problems in the evaluation of (31). Thenumerical values used in this specification are
experimentally obtained. (No raw traffic counts are available for this study, but only counts that are already
averaged in one-hour time bins. It therefore is not possibleto infer the variances directly from the data,
which otherwise would be a preferable course of action.)

When applying the calibration, the system starts in an already equilibrated state that has been attained
after 500 uncalibrated iterations. The calibrated simulation is then run for another 500 iterations, i.e., from
total iteration number 500 to 1000. Running the calibrationjointly with the simulation for another 500
iterations requires approximately20 1

4
h on a 64 bit Intel Nehalem machine at 2.67 GHz using at most 10 GB

of RAM. Not even 9 % of the computing time (approx.1 3
4

h) are calibration overhead.

Since the system starts already in an equilibrated state, all systematic changes of MWSE in Figure 8
can be attributed to the calibration. The MWSE is quickly reduced from more than 100 in iteration 500 to
around 45 in iteration 600. After this, the curve flattens. Itis plausible to assume that in the first iterations
the calibration “fills up” the measurement locations by arbitrary plans and that in the following iterations
the simulation rearranges the plans such that behaviorallymore reasonable plans take the place of other
plans that have been used by the calibration before.

The choice set generation stage finishes at iteration 800, which generates a jump in the system behavior:
Since the immediate execution of newly generated plans is omitted, the calibration can affect the whole
plan choice distribution, which results in another improvement of MWSE from around 35 to little more than
20. The variability of MWSE is reduced to almost zero after iteration 800, which is a consequence of the
reduced variability in the executed plans once the choice set generation is turned off.

Figure 9 shows scatter plots that are obtained from the last iteration of the calibrated simulation, i.e.,
iteration 1000. A comparison with the uncalibrated scatterplots of Figure 7 shows that the data points are
clearly more centered around the main diagonal. A quantitative evaluation of this effect is possible in terms
of the MWSE of Figure 8: The MWSE at iteration 500 correspondsto the scatter plots of Figure 7, and the
MWSE at iteration 1000 corresponds to those of Figure 9.
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Figure 8 Mean weighted square error (MWSE) using all countin g stations

Overall, the calibration generates a clear improvement in measurement fit at an extremely low compu-
tational cost. However, this alone does not prove that the calibrated agent behavior becomes more realistic
because there are many plausible and not-so-plausible combinations of plan choices that reproduce the mea-
surements equally well. The next section provides cross-validation results that indicate that the calibrated
demand is indeed more realistic.

5.4. Cross-validation results

While the previous section clearly demonstrates that the calibration improves the measurement reproduc-
tion, this section demonstrates that it does so in a way that also improves the realism of the global traffic
situation. This is an important issue that applies to demandcalibration from traffic counts in general because
this problem is highly under-determined, which implies that there is a large number of demand config-
urations that reproduce the traffic counts equally well. Recall that the proposed calibration resolves this
under-determination by taking the choice logic that is implemented in the simulation system itself as the
prior information about the demand. The traffic counts are then added to this information in order to obtain
an improved posterior choice distribution.

For cross-validation, the 161 sensor locations are randomly assigned to ten disjointvalidation data sets
of roughly equal size. For each validation data set, there isa correspondingmeasurement data setthat
contains the traffic counts from all sensors that are not represented by the respective validation data set. For
every measurement/validation data set pair, one calibration is conducted, where only the measurement data
is made available to the calibration and the corresponding validation data is used to evaluate how well the
calibrated demand generates a spatiotemporal extrapolation of the traffic counts.

Figure 10 shows the MWSE trajectories of the measurement data for all ten experiments over the itera-
tions, where all trajectories are normalized to their values at iteration zero for better comparability. Figure
11 shows the same type of curves for the validation data. The similar dynamics of the measurement MWSE
values indicate that the calibrated simulation exhibits well-behaved dynamics and generates reproducible
results. Overall, the measurement reproduction error is reduced by around 80 % in all cases.

The validation MWSE curves exhibit a greater variability, which can be explained by the lower number
of measurements that enter the averaging in (31). Again, thevariability is substantially decreased once the
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Figure 9 Scatter plots after calibration

choice set generation is turned off. The different experiments attain different MWSE values because disjoint
sets of sensor data are evaluated. Overall, an improvement of 15 % to 45 % is attained. This clearly indicates
that the local information that is contained in the measurement data is used by the calibration in a way that
affects the network-wide agent behavior such that more realistic global network conditions result. One also
should keep in mind that the relative positioning of the sensors affects the validation results in that the ex-
trapolation power of the calibration is limited by the spatiotemporal correlations in the network conditions:
If the validation sensors are too far away, they simply are not affected any more by the calibration, no matter
how well it performs.

The estimated items are the travel plans in the population, whereas the network conditions evaluated here
constitute only low-dimensional projections of those. A realistic network-wide extrapolation of the mea-
sured flows can hence be seen as a necessary validation condition but not as a sufficient indication of valid
improvements in the travel plans. We still consider these results to be a strong indication of the method’s
proper functioning because the calibration even functionsin the complete absence of measurements, where
it falls back to a plain simulation (consider (19) with zeroΛ coefficients and recall that theΓcoefficients
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Figure 10 Validation results – measurement reproduction
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Figure 11 Validation results – measurement extrapolation

vanish in an SUE, cf. Section 2.1). In consequence, there never is an under-specification problem, and the
inclusion of traffic counts only enriches already well-defined behavior.

These results show clearly that the calibration conducts demand modifications that are structurally mean-
ingful in that they do not only fit the sensor data well but alsolead to a global improvement in the system’s
realism. At this point, the difficulty of the calibration problem that is solved here needs to be stressed. The
calibration adjusts simultaneously the route choice, modechoice, and departure time choice of hundreds
of thousands of individual travelers in a purely simulation-based environment on a network with many ten
thousand links. The number of iterations required to obtainstable and realistic results is in the order of a
plain simulation, and the computational overhead introduced by the calibration is almost negligible. The
authors are not aware of any other calibration technique that comes close to such results.
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6. Summary and outlook

We present a new demand calibration framework that overcomes many of the simplifying assumptions
typically adopted in the calibration of dynamic traffic simulators. Our approach allows for the estimation of
arbitrary demand dimensions at the individual level in a Bayesian setting where traffic counts are combined
with a simulation-based representation of the analyst’s prior knowledge. The approach is compatible with
both an equilibrium-based modeling assumption and a telematics model where drivers are spontaneous and
imperfectly informed. Experimental results for a large real-world test case are presented that demonstrate
the effectiveness and adequacy of the proposed method. A software implementation of the approach is freely
available on the Internet (Flötteröd accessed 2010).

Our current work focuses on the calibration of behavioral modelparameters(such as the coefficients of a
utility function) from traffic counts. Since this is likely to reach the limits of what can be inferred from this
type of measurements, the incorporation of additional sensor data is another important research topic. The
free software implementation of the calibration is continuously applied to different DTA microsimulations,
which yields important insights on how to improve the system’s conceptual and technical flexibility.

Finally, the joint calibration of demand and supply is a challenge that eventually needs to be tackled. The
current demand calibration assumes the supply simulator tobe modeled without error (an assumption it
shares with all PFEs and OD matrix estimators that treat the network loading as a deterministic mapping),
which should be relaxed in future research.
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Appendix A: Maximization of prior entropy

Denote bydn the total demand of OD pairn and bydni the demand for pathi ∈ Cn, whereCn is the path set of OD
pairn. If the demand was integral then the path flowsd = (dni) would be distributed according to

P (d) =

N
∏

n=1

dn!

∏

i∈Cn
(Pn(i|x(d)))dni

∏

i∈Cn
dni!

, (33)

where, differently from a standard multinomial distribution, the event probabilities are not fixed but themselves random
variables because they depend on the path flows through the network conditionsx. Taking the logarithm and applying
Stirling’s approximation (lnZ!→Z lnZ −Z for largeZ), one obtains theprior entropy function

W (d) = lnP (d) =

N
∑

n=1

[

dn lndn +
∑

i∈Cn

dni lnPn(i|x(d))−
∑

i∈Cn

dni lndni

]

. (34)

In order to show the equivalence of the global maxima ofW (d) (with respect tod and subject to the flow conservation
constraints

∑

i∈Cn
dni = dn ∀n) with the SUE flows, the following observations are made.

1. A maximization ofW (d) with respect tod subject to the flow conservation constraints yields at most an objective
function value of zero: Forfixed path choice fractionsPn(i)∀n, i, W (d) is strictly concave and its maximization
subject to the flow conservation constraints yields the pathflowsdni = Pn(i)dn ∀n, i and an objective function value
of zero. Now consider any candidate combination ofvariable path choice fractions and path flows. Fixing the path
choice fractions at their given values, a maximization withrespect to the path flows again yields a unique maximum
with a zero value ofW (d).
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2. Every SUE flow is a global maximizer ofW (d) with respect tod subject to the flow conservation constraints: A
substitution of the SUE flowsdni = Pn(i|x(d))dn ∀n, i yieldsW (d) = 0, which is the global maximum value.

3. Every global maximizer ofW (d) with respect tod subject to the flow conservation constraints is an SUE flow:
Assume that there was a global maximizerd = (dni) where at least twodni 6= Pn(i|x(d))dn. (There cannot be a single
suchdni because of the flow conservation constraints.) Fixing the path choice fractions atPn(i) = Pn(i|x(d))∀n, i,
W (d) is maximized if and only ifdni = Pn(i)dn∀n, i, which contradicts the assumption.

Items 2 and 3 establish the equivalence of SUE flows and globalmaxima ofW (d) with respect tod subject to the
flow conservation constraints. The possible existence of multiple global maxima can only result from non-unique SUE
flows, which would indicate a modeling problem rather than a flaw in the equivalent maximization problem.

Appendix B: Maximization of posterior entropy

Before maximizing the posterior entropy function

W (d|y) = lnp(y|d)+ W (d) (35)

with respect tod, the additional requirement of constant demand levelsdn per OD pairn is introduced in the La-
grangian

L(d|y) = W (d|y)+

N
∑

n=1

un

(

∑

i∈Cn

dni − dn

)

(36)

where theun are the Lagrangian multipliers. Using (34), the derivativeof L(d|y) with respect todmj (wherem is an
OD pair andj ∈Cm) becomes

∂L(d|y)

∂dmj

=
∂ lnp(y|x(d))

∂dmj

+ ln
Pm(j|x(d))

dmj

+

N
∑

n=1

∑

i∈Cn

dni

Pn(i|x(d))

∂Pn(i|x(d))

∂dmj

− 1 + um. (37)

Setting this to zero and solving fordmj yields

dmj = exp(um − 1) exp(Λmj + Γmj)Pm(j|x(d)) (38)

whereΛmj andΓmj are as defined in (5) and (6). Theexp(um − 1) terms result from a substitution of (38) indm =
∑

i∈Cm
dmi:

exp(um − 1) =
dm

∑

i∈Cm
exp(Λmi + Γmi)Pm(i|x(d))

. (39)

Inserting this in (38) finally results in the posterior choice probabilities (4), which hence prevail at every maximum of
the posterior entropy function with respect tod and subject to the flow conservation constrainsdn =

∑

i∈Cn
dni ∀n, i.

Appendix C: Linearization of congested network loading

We formally represent the mobility behavior represented bya plani through a (large) vector oflink entry indicators
1(ak ∈ i) that are defined through

1(ak ∈ i) =

{

1 if plan i requires to enter linka in time stepk
0 otherwise.

(40)

Based on this,

da(k) =

N
∑

n=1

∑

i∈Cn

1(ak ∈ i)Πn(i|y) (41)

denotes the expected number of agents that plan to enter linka in time stepk in stationary posterior conditions.
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The sensitivity analysis of Subsection 4.1 requires to compute
∂x̄a(k)|y
∂Πn(i|y)

in (23), which is the derivative of linka’s
expected posterior entry flow in time stepk with respect to the stationary posterior probability of agent n selecting
plani. Using (41), this can be written as

∂x̄a(k)|y
∂Πn(i|y)

=
∑

a′

∑

k′≤k

∂x̄a(k)|y
da′(k′)

∂da′(k′)

∂Πn(i|y)
=
∑

a′

∑

k′≤k

∂x̄a(k)|y
da′(k′)

1(a′k′ ∈ i). (42)

In other work, we present various approximations of these derivatives (Flötteröd and Bierlaire 2009). The experiments
given in Section 5 of this article are obtained by neglectinganything but the effect a vehicle entering a road has on this
very road such that (42) simplifies into

∂x̄a(k)|y
∂Πn(i|y)

≈
∂x̄a(k)|y

da(k)
1(ak ∈ i). (43)

In order to approximate
∂x̄a(k)|y

da(k)
, a recursive regression is set up on every sensor-equipped link. These regressions

observe in every iteration of the calibrated simulation one(da(k), xa(k)|y) input/output tuple with E{xa(k)|y} =
x̄a(k)|y. From these tuples, the coefficients of the following regression model are updated:

xa(k)|y = αa(k)da(k)+ βa(k)+ εa(k) (44)

whereαa(k) is used as an approximation of
∂x̄a(k)|y

da(k)
in (43), βa(k) is the model’s offset, andεa(k) captures the

regression error. In perfectly uncongested conditions,αa(k) becomes one andβa(k) becomes zero such that (44)
essentially coincides with (25). Complete spillback results in a zeroαa(k), which means that the regression excludes
sensor-equipped links from the calibration when they suffer from spillback.

Appendix D: Derivation of accept/reject estimator

Given the acceptance probabilitiesPaccept,n(i) defined in (29), the overall probability of a single rejection for agentn
is

Preject,n = 1−
∑

i∈Cn

Paccept,n(i)Pn(i|·). (45)

Consequently, the probability thati is the first accepted draw can be expressed as

∞
∑

z=0

(Preject,n)zPaccept,n(i)Pn(i|·)

=
Paccept,n(i)Pn(i|·)

1−Preject,n

=
Paccept,n(i)Pn(i|·)

∑

j∈Cn
Paccept,n(j)Pn(j|·)

,

(46)

which coincides with the definition in (19) (for zeroΓ coefficients).

Appendix E: Derivation of utility-modification estimator

The individual-level posterior choice distribution (19) constitutes the starting point of this development. It is restated
here for ease of reference (with zeroΓ coefficients):

Πn(i|y) =
exp(Λni)Pn(i|x̄|y)

∑

j∈Cn
exp(Λnj)Pn(j|x̄|y)

. (47)

It is assumed that the demand simulator implements an MNL prior choice model (which comprises path-size logit
(Ben-Akiva and Bierlaire 2003) and C-logit (Cascetta et al.1996) specifications):

Pn(i|x̄|y) =
exp[Vn(i|x̄|y)]

∑

j∈Cn
exp[Vn(j|x̄|y)]

(48)
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whereVn(i|x̄|y) denotes the systematic utility of plani as perceived by individualn given the expected posterior
network conditions̄x|y. A substitution of (48) in (47) yields

Πn(i|y) =
exp[Vn(i|x̄|y)+ Λni]

∑

j∈Cn
exp[Vn(j|x̄|y)+ Λnj]

. (49)

This posterior is structurally identical to the prior MNL model. The only difference is thatΛni is added to the system-
atic utility of every considered plani. This utility modification allows to force a demand simulator that implements the
prior (48) to immediately draw from the posterior (49), and it avoids the computational overhead of a possibly large
number of rejections in the accept/reject procedure.
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