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Abstract

We present an operational framework for the calibration of demand models for
dynamic traffic simulations. Our focus is on disaggregate simulators that repre-
sent every traveler individually. We calibrate, at a likewise individual level, arbi-
trary choice dimensions within a Bayesian framework, wherethe analyst’s prior
knowledge is represented by the dynamic traffic simulator itself and the measure-
ments are comprised of time-dependent traffic counts. The approach is equally
applicable to an equilibrium-based planning model and to a telematics model of
spontaneous and imperfectly informed drivers. It is based on consistent mathe-
matical arguments, yet applicable in a purely simulation-based environment, and,
as our experimental results show, capable of handling largescenarios.

1 Introduction

There is a broad consensus about the adequacy of microsimulators to the mod-
eling of urban transportation systems, and a wide scope of such simulation sys-
tems has been put forward, e.g., (Ben-Akiva et al., 2001a; Mahmassani, 2001;
Raney and Nagel, 2006; Waddell et al., 2007). The arguably most prominent ad-
vantage of microsimulators is their superior expressiveness because of their ar-
bitrarily fine-grained model structure. However, increasing the resolution of a
model also increases its degrees of freedom, which calls formore interactions to
be modeled and more parameters to be identified. That is, the potentially greater
expressiveness of a microsimulator is faced with a likewiseincreased need for
modeling, data, and calibration. Typically, the calibration of a (nontrivial) model
is cast in a statistical framework and is carried out by some numerical procedure.
The mathematical convenience of the model under consideration, e.g., in terms
of continuity, differentiability, normality or ergodicity, defines the computational
feasibility of this approach. A microsimulator easily reaches a level of detail at
which most of these features are lost.

In this article, we present a mathematically consistent andcomputationally effi-
cient framework for the calibration of microsimulation-based travel demand mod-
els in the context of dynamic traffic assignment (DTA). Specifically, we show how
to calibrate a microscopic motorist demand simulator from time-dependent traf-
fic counts that are obtained at a limited set of network locations. The problem is
solved in a Bayesian setting, where the a priori assumption about every individ-
ual’s choice distribution is combined with the available measurements’ likelihood
into an estimated posterior choice distribution. The method is entirely simulation-
based in that it only requires a simulation system to represent the behavioral prior
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distribution and only generates realizations from the behavioral posterior distri-
bution. The approach is applicable both in stochastic equilibrium conditions and
in non-equilibrium conditions. We present experimental results that demonstrate
the method’s applicability to systems with ten thousands ofnetwork links and
hundred thousands of travelers.

The calibration of both DTA simulators and disaggregate demand models has re-
ceived much attention in the literature, which is detailed in the following. How-
ever, we are not aware of any work that estimates individual-level travel behavior
within a DTA simulation system from aggregate sensor data ona practically rele-
vant scale. All of the subsequently reviewed approaches consider either simplified
or partial versions of this problem.

The most frequently adopted method for demand calibration from traffic counts is
origin-destination (OD) matrix estimation. An OD matrix models the demand of
a given time interval in terms of flows from every origin to every destination of a
traffic system. The originally static problem was to estimate such a matrix given
a linear assignment mapping of demand on link flows. Various methods such as
entropy maximization and information minimization (van Zuylen and Willumsen,
1980), Bayesian estimation (Maher, 1983), generalized least squares (Bell, 1991;
Bierlaire and Toint; Cascetta, 1984), and maximum likelihood estimation (Spiess,
1987) were proposed to solve this task. Nonlinear assignment mappings were
incorporated by a bilevel-approach that iterates between the nonlinear assignment
and a linearized estimation problem (Maher et al., 2001; Yang, 1995; Yang et al.,
1992) until a fixed point of this mutual mapping is reached (Bierlaire and Crittin,
2006; Cascetta and Posterino, 2001). The combined estimation of OD matrices
in subsequent time slices was demonstrated in (Cascetta et al., 1993), and many
originally static methods were applied to dynamic problemsin this vein, e.g.,
(Ashok, 1996; Bierlaire, 2002; Sherali and Park, 2001; Zhou, 2004).

Since a time-dependent OD matrix maps (origin, destination, departure time) tu-
ples on demand levels, it represents destination and departure time choice on an
aggregate level. Route choice, however, constitutes no additional degree of free-
dom but is a function of demand that is defined through the DTA system’s model-
ing assumptions. Path flow estimators (PFEs) overcome this confinement.

The seminal PFE is a macroscopic one-step network observer that estimates static
path flows from link volume measurements based on a multinomial logit stochas-
tic user equilibrium (SUE) modeling assumption in a congested network (Bell,
1995; Bell et al., 1997). The estimation problem is transformed into one of smooth
optimization, which is iteratively solved. The model was enhanced by multiple
user classes and a simple analytical queuing model to represent traffic flow dy-
namics (Bell et al., 1996) and was successfully implementedin various research
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and development projects (Bell and Grosso, 1999). The PFE’snon-stochastic user
equilibrium counterpart had been proposed in (Sherali et al., 1994, 2003) and was
further advanced in (Nie and Lee, 2002; Nie et al., 2005). PFEs also serve as OD
matrix estimators since an OD flow is the sum of the path flows between its OD
pair.

All PFEs and OD matrix estimators are confined to their underlying modeling as-
sumptions. PFEs only consider static demand per time slice and rely on particular
assumptions about route choice behavior. Time-dependent OD matrix estimators
represent demand correlations across subsequent time slices in a simplified and
aggregate way, e.g., by auto-regressive processes or polynomial trends (Ashok,
1996; Zhou, 2004). These approaches disregard many aspectsof real travel behav-
ior, which results from highly individual activity patterns and likewise complex
constraints (Bowman and Ben-Akiva, 1998; Kitamura, 1988, 1996; Vovsha et al.,
2004). That is, even if a PFE or an OD matrix estimator is applied to a fully mi-
croscopic DTA simulator, the aggregate estimator is unableto account for those
facets that amount to the microscopic modeling approach.

Random utility models (RUMs) capture travel behavior at theindividual level,
and sophisticated calibration procedures for this class ofmodels are available
(Ben-Akiva and Lerman, 1985; Bierlaire, 2003; Train, 2003). However, in or-
der to maintain tractability, their calibration procedures require a mathematically
well-behaved link between observations and model parameters. Here, this link is
given through a DTA microsimulator. We are not aware of any work that calibrates
a RUM in such conditions.

A calibration of the UrbanSim microsimulator in a Bayesian setting is reported
in (Sevcikova et al., 2007), where a sampling importance resampling (SIR) type
algorithm is applied to the estimation of almost 300 model parameters. However,
concerns regarding the computation times for larger problems are mentioned.

The remainder of this article is organized as follows. The disaggregate demand
calibration is incrementally developed in Sections 2 through 4: First, Section 2
derives a macroscopic and static version of the calibration. Second, Section 3 car-
ries this result over to a fully disaggregate DTA microsimulation. Finally, Section
4 discusses the operational aspects of the calibration and summarizes the concep-
tual developments with a specification of the interactions between the calibration
and a DTA microsimulator. A large real-world case study is presented in Section
5. Section 6 concludes the article and gives an overview of ongoing and future
research topics.
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2 Aggregate path flow estimation

This section develops a new solution to the familiar problemof estimating ag-
gregate path flows between a set of OD pairs from traffic counts. For simplicity,
the time dimension is omitted and homogeneous travelers areassumed. The next
section generalizes this result for a broad class of DTA microsimulations, which
naturally account for both dynamics and heterogeneity in the population. How-
ever, since these properties can also be incorporated in themacroscopic frame-
work considered here, the result of this section is a novel PFE in its own right.

2.1 Specification

A network of nodes and links is considered, where some or all nodes constitute
demand origins and/or destinations. There areN OD pairs. The largest possible
number of trips between OD pairn is denoted bydn, the symbolCn represents
the set of available paths that connect OD pairn, anddni is the number of trips
on pathi ∈ Cn, wheredn =

∑
i∈Cn

dni. Variations in the total OD flows can be
enabled by adding one fictitious path to every OD pair that bypasses the physical
network (Sheffi, 1985).

The share of travelers in OD relationn that choose pathi is denoted byPn(i|x(d))

whered = (dni) is the vector of all path flows andx is the vector of network
conditions, which depend on the path choice in the entire population. An SUE in
this system is defined as a path flow pattern that solves

dni = Pn(i|x(d))dn ∀n = 1 . . .N, i ∈ Cn, (1)

which states that the path flows, when loaded on the network, result in path choice
fractions that reproduce these path flows (Daganzo and Sheffi, 1977). Appendix
A shows that this model can be reformulated as the problem of finding path flows
d that maximize theprior entropy function

W(d) =

N∑

n=1

∑

i∈Cn

[dni ln Pn(i|x(d)) − dni ln dni]

s.t.
∑

i∈Cn

dni = dn ∀n = 1 . . .N,

(2)

which represents for a large population the logarithm of theprobability that, for
givenprior route choice fractions Pn(i|x(d)) at the microscopic level, the path
flows d occur at the macroscopic level.
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Given the traffic countsy that are observed on some or all links of the network,
the calibration should adjust the path flows in a way such thatthese counts are re-
produced to a reasonable degree. For this purpose, the path flowsd that maximize
theposterior entropy function

W(d|y) = ln p(y|x(d)) + W(d)

s.t.
∑

i∈Cn

dni = dn ∀n = 1 . . .N (3)

are identified, where the likelihoodp(y|x(d)) is the probability of observing the
measurementsy given the network conditionsx that result from the path flowsd.
The posterior entropy models, again for a large population,the logarithm of the
probability that a certain aggregate path flow patternd occurs given both the prior
route choice modelPn(i|x(d)) and the measurementsy.

Appendix B shows that a maximization ofW(d|y) yields the followingposterior
route choice fractions:

Pn(i|x(d), y) =
exp(Λni + Γni)Pn(i|x(d))

∑
j∈Cn

exp(Λnj + Γnj)Pn(j|x(d))
(4)

where

Λni =
∂ ln p(y|x(d))

∂dni

(5)

Γni =

N∑

m=1

∑

j∈Cm

dmj

Pm(j|x(d))

∂Pm(j|x(d))

∂dni

. (6)

This result follows from the first order necessary optimality conditions. Without
further assumptions about the functionsPn(i|x(d)) andp(y|x(d)), it is not guar-
anteed to be a global maximizer of the posterior entropy function. However, for
a concave likelihood function and fixed path choice fractions (which result in a
concave prior entropy), the posterior entropy is concave aswell and the above
solution is the unique maximizer.

The specification (4) – (6) is at the heart of the disaggregatedemand calibration
procedure presented in the next sections. It requires to scale the choice fractions
of every pathi of every OD pairn by exp(Λni + Γni) and to re-normalize.Λni

captures the effect of the path flowdni on the log-likelihood, i.e., on the measure-
ment reproduction.Γni essentially describes how a change indni affects all path
flows d through the network conditionsx.

The presented approach constitutes a generic PFE in that it makes, apart from dif-
ferentiability, no assumptions about the deployed route choice and network load-
ing model, and it functions with arbitrarily few measurements, the precision of
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which can be accounted for through an arbitrary likelihood function. This is an
important advantage over all PFEs reviewed in Section 1, which require special
route choice and network loading models and do not deal with incomplete and
inconsistent measurements in the integrated and statistically consistent manner a
generic likelihood function provides. However, the arguably most important ad-
vantage of the proposed PFE is its transferability to a broadclass DTA microsim-
ulations, which constitutes the main objective of this article. Further applications
to formal mathematical models are therefore left as a subject of future research.

The following subsection illustrates the workings of the new PFE in terms of an
academic example, which is revisited in a microsimulation setting in Section 4.4.

2.2 Example: two-route network

A simple network that consists of two unidirectional, identical, and parallel links
(1 and 2) that connect a single OD pair is considered. For simplicity, the OD index
is omitted in this example. The demand amounts tod = 1000 travelers in the
considered analysis period. Either link constitutes a feasible routing alternative.
The travel times on either path result from identical link performance functions

t(di) =

(

di

750

)2

, i = 1, 2 (7)

that depend on the flowdi (in vehicle units) on the respective path. Keeping with
the full notation of the previous subsection, a three-dimensional vector of relevant
network conditions is specified:

x(d) =





x1(d)

x2(d)

x3(d)



 =





t(d1)

t(d2)

d1



 (8)

where the first two components, the route travel times, are needed for feedback
into the route choice model and the third component is used tospecify a likelihood
function further below.

Route choice is captured by the logit model

P(i|x(d)) =
exp(−t(di))

exp(−t(d1)) + exp(−t(d2))
, i = 1, 2. (9)

The symmetry of this setting implies prior route flows of 500 vehicle units on ei-
ther path in SUE conditions. The concrete values in this example are chosen in
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Table 1: System responses to different path flows

path flows d1 = 500, d2 = 500 d1 = 250, d2 = 750

t1, t2 according to (7) 0.44, 0.44 0.11, 1.0
P(1), P(2) according to (9) 0.5, 0.5 0.71, 0.29

order to obtain clear system responses that facilitate the discussion. For illustra-
tion, some numbers are given in Table 1.

A single flow sensor is located on link 1, which countsy1 vehicle units during the
analysis period. Writingy = (y1), the likelihood function is specified as

p(y|x(d)) ∝ exp
(d1 − y1)

2

2σ2
1

(10)

whereσ1 (in vehicle units) is the standard deviation of the sensor data.

The posterior entropy of this simple scenario is strictly concave and has a unique
maximum. Observing thatd2 = d − d1, the posterior route choice fraction
P(1|x(d), y) can be expressed as a single nonlinear equation by substitution of (7)
– (10) into (4) – (6), which in this setting guarantees globaloptimality. However,
the resulting expression is fairly unwieldy and therefore given only in graphical
terms.

Figure 1 shows the estimated flows on path 1 over measurementsy1 and variances
σ2

1 that are varied between 0 andd. The results are consistent with what one would
intuitively expect: The smallerσ1, the more belief is put on the measurement and
the better it is reproduced. For largeσ1 values, the estimator becomes independent
of the sensor data and falls back to the prior path flows. Between these extremes,
there is a smooth transition that reflects the PFE’s ability to interpolate between
the prior information contained in the model and the measurements.

In the full PFE, theΓ coefficients require to calculate the derivatives of all path
choice fractions with respect to all path flows, where the coupling of these quanti-
ties is given through the network loading in that the interactions of all path flows
generate network conditions that in turn are evaluated in the route choice model.
These derivatives are available in simple settings, but they may be hard to ob-
tain for generic demand and supply models. This difficulty isnot specific to this
PFE but applies more generally to all instances of the OD matrix estimation prob-
lem in congested conditions, where the most widespread solution is to assume
a “proportional assignment” that essentially assumes fixedroute choice fractions
(Cascetta and Nguyen, 1988) and to account for their actual dependency on the
network conditions in a heuristic, iterative fashion, e.g., (Lundgren and Peterson,
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Figure 1: Calibration results for two routes example

2008). This coincides with the statement of zero derivatives of route shares with
respect to path flows and hence implies that zeroΓ coefficients may be an oper-
ationally attractive simplification. Even for zeroΓ coefficients, congestion is ac-
counted for in (4) and (5) through the dependency of both the route choice model
and the likelihood function on the network conditions.

Figure 2 demonstrates the effect of this simplification on the estimation results. It
plots the difference between the exactly estimated route flows and their approxi-
mations for zeroΓ coefficients. The bias attains a maximum value of ca.±7%
of the total demand aroundσ2

1 = 100 for y1 = 0 andy1 = d. For very small
and very large variances, the bias ceases: In the first case, theΛ coefficients ab-
solutely dominate (4), whereas in the second case the calibration falls back to
the prior model. Since the bias is of moderate magnitude, it appears justified
to choose zeroΓ coefficients in favor of the operational advantages this brings
along. This course of action is chosen in the remaining experiments of this article.
However, accounting more precisely for the SUE feedback effects, which here are
represented by theΓ coefficients, is an important subject of ongoing and future
research (Lundgren and Peterson, 2008). Note that related progress in the field
of OD matrix estimation is likely to be transferable to the methodology proposed
here.

Summarizing, this section introduces a new PFE that makes much milder assump-
tions about the underlying model components and the amount and quality of avail-
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Figure 2: Bias of simplified calibration for two routes example

able sensor data than the PFEs presented so far in the literature. Its functioning is
demonstrated through an academic example, and some intuition about an opera-
tionally advantageous simplification is provided.

3 Disaggregate demand calibration

This section carries the macroscopic PFE over to the calibration of DTA microsim-
ulations. It is organized in two parts. First, the considered type of DTA simulator
is described. Second, the considerations that enable a mathematically consistent
application of the PFE to this type of simulation are discussed.

Throughout this article, probability density functions are denoted by a lowercase
p and discrete probability functions by an uppercaseP. Instead of noting the
probability that random variableX takes valuex by some expression of the form
P(X = x), P(x) is briefly written and ambiguities are avoided by self-explanatory
variables.

3.1 Considered DTA simulator

This specification builds on the seminal model of Cascetta (1989), which it sim-
plifies in some regards and extends in others. The notation ofthe previous section
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is in large parts re-defined here in a microsimulation context. The most important
changes in the new setting are that (i) it is fully disaggregate in that every traveler
is modeled as an individual entity and (ii) it is fully dynamic both on the demand
side and the supply side.

Agents and plans

We assume a microsimulation-based approach where every traveler is modeled
as an individualagent n = 1 . . .N. At every point in simulated time, every
agentn disposes of aplan in that describes the intended travel behavior of that
agent. A typical plan comprises a sequence of trips that connect intermediate
stops during which activities are conducted, including allassociated timing infor-
mation. We subsequently write{i} as a shortcut for the whole population’s plan
set{i1, . . . , iN}.

A plan constitutes a fully dynamic demand specification thatcaptures arbitrary
choice dimensions such as route choice, departure time choice, and mode choice.
An informal example of a plan would be “Leave home by car for work at 7 am
with a planned arrival at 7:30 am, taking the habitual route;work until 5 pm; then
take the highway to get to the local mall for one hour of shopping; finally return
home for the rest of the day, again using the habitual route.”

Supply simulator

Thesupply simulator executes the plans of all agents simultaneously on the net-
work. It models the physical interactions of the agents, including congestion. The
result of such adynamic network loading are thedynamic network conditions
x, which comprise all time-dependent, aggregate network characteristics (such as
flows, densities, velocities) that are relevant to the decision making of the agents.
(No time index is used here for notational simplicity; one may think of x as a
large vector in which time-dependentx(k) vectors are stacked, wherek is the
simulation time step index.)

Formally, the supply simulator draws from a distributionp(x|{i}) of the time de-
pendent network conditionsx that result from the dynamic network loading of a
particular plan set{i} in the population. In its most widespread form, this distri-
bution is implicitly defined through a stochastic supply microsimulator. However,
a deterministic, macroscopic supply simulator wherep(x|{i}) collapses into a sin-
gleton is just as feasible.
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Demand simulator

The demand simulator models the decision making of travelers. It maps, for
every agentn = 1 . . .N individually, the expected network conditionsx̄ on a plan
in the agent chooses in these conditions.Pn(in|x̄) is the probability that planin is
chosen by agentn given the expected network conditionsx̄, andCn denotes agent
n’s choice setof available plan alternatives.

It is assumed that the agents’ plan choice distributions areindependent once the
expected network conditions are given. That is,

P({i}|x̄) =

N∏

n=1

Pn(in|x̄), (11)

which implies that the agents do not interact directly but only through the aggre-
gate network conditions. This is a reasonable assumption for large-scale and/or
time-critical simulations where traffic flow dynamics are typically represented by
aggregate laws of motion (“mesoscopic simulators”) instead of vehicle-by-vehicle
interactions (“car-following models”) (Astarita et al., 2001; Ben-Akiva et al., 2001a;
De Palma and Marchal, 2002; Mahmassani, 2001; Nökel and Schmidt, 2002).

The choice distributionsPn(in|x̄) and the choice setsCn are arbitrary and entirely
transparent to the proposed calibration approach. The demand simulator is only
required to generate realizations of these distributions.

Iterative simulation logic

So far, the DTA simulator is defined in terms of a supply simulator and a de-
mand simulator. A solution to the DTA problem represents a situation in which
demand and supply are consistent with each other. It typically is impossible to
simulate this situation directly, but it is possible to alternately execute the supply
simulator and the demand simulator. After a burn-in period,these draws can be
tested for convergence towards a stationary distribution,and their continuation in
stationary conditions allows to extract the relevant characteristics of mutually con-
sistent demand and supply (Balijepalli et al., 2007; Cascetta and Cantarella, 1991;
Nagel et al., 1998; Watling and Hazelton, 2003).

To clarify the causal structure of this logic, aniteration cycle counter c is in-
troduced. In a given iterationc, the demand simulator first draws plans from
P({i}c|x̄c) conditional on expected network conditionsx̄c that are inferred from
the simulated network conditions of previous iterations, and then the supply sim-
ulator draws network conditions that result from an execution of these plans from
p(xc|{i}c).
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Algorithm 1 Iterative dynamic traffic assignment

1. Initialize cycle counterc = 0.

2. Choose initial network conditionsx0, x−1, . . . (e.g., free-flow conditions).

3. Repeat for as many iterations as necessary to extract relevant characteristics
in stationary conditions:

(a) Increasec by one.

(b) Calculate expected network conditionsx̄c from xc−1, xc−2, . . ..

(c) Replanning. Forn = 1 . . .N, draw planic
n from Pn(ic

n|x̄c).

(d) Network loading. Draw network conditionsxc from p(xc|{i}c).

The loop is closed by a model component that infers the expected network con-
ditions x̄c from the previously simulated network conditionsxc−1, xc−2, . . .. Pos-
sible realizations of this filter are a moving average over a number of previous
iterations, e.g., (Liu, 2005), an autoregressive process,e.g., (Ben-Akiva et al.,
2001b; Raney and Nagel, 2006), or the method of successive averages (MSA),
e.g., (Liu et al., 2007). For the calibration, it only is required that the expected
network conditions attain a low variability asc becomes large. This requirement
is made more precise further below.

Algorithm 1 summarizes the workings of this approach. It constitutes a stochastic
process that eventually stabilizes at a stationary distribution of plan choices and
resulting network conditions that constitute the simulation-based solution of the
DTA problem. It is called theprior solution of the model because it incorporates
no sensor data. (The existence of a unique stationary distribution depends on the
involved model components. It can, for example, be guaranteed if the simulation
process is designed as an ergodic Markov chain (Ross, 2006).)

Denoting byπ a continuous and byΠ a discrete stationary probability distribu-
tion, the prior solution can be formally given in terms of thefollowing system of
equations:

Πn(in) = Pn(in|x̄), n = 1 . . .N (12)

Π({i}) =

N∏

n=1

Πn(in) (13)

π(x) = p(x|{i} ∼ Π({i})) (14)

x̄ ≈ E{x|x ∼ π(x)}. (15)
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Equation (12) specifies the individual-level prior choice distribution of every agent
n. Equation (13) states that the population prior choice distributionΠ({i}) results
from the independent choices of all agents (where the mutualinteractions are fully
captured through the expected network conditionsx̄). The prior distribution of the
network conditions is defined in (14), and the expected priornetwork conditions
are given in (15).

The requirement (15) that the agents replan based on (an approximation of) the ex-
pected network conditions is motivated as follows. The macroscopic PFE solves
the calibration problem through an adjustment of all choicedistributionsin equi-
librated conditions. The counterpart of these distributions in a microsimulation
are the stationary choice distributions, which are implicitly defined through the
iterative dynamics of the stochastic simulation process. If, however, the expected
network conditions̄x eventually stabilize at constant values, then the transition
distributionsPn(i|x̄) and the stationary choice distributionsΠn(i) coincide and the
calibration problem can be tackled by a modification of the operationally more ac-
cessible transition distributions only. (The subscriptn of a planin is subsequently
omitted when the agent the plan refers to is not of relevance.)

The transition distributions and the stationary choice distributions coincide well
even if some variability in the expected network conditionsx̄ is left in that they
are distributed according to some distributionπ(x̄) in stationary conditions. To
see this, the stationary plan choice distribution (12) is rewritten as

Πn(i) =

∫

Pn(i|x̄)π(x̄)dx̄. (16)

If the expectation ofπ(x̄) equals the expectation E{x|x ∼ π(x)} of the simulated
network conditions and if the distributionπ(x̄) is tight enough to allow for a lin-
earization ofPn(i|x̄) aroundx̄0 = E{x|x ∼ π(x)} then

Πn(i) ≈

∫ [

Pn(i|x̄0) +
∂Pn(i|x̄0)

∂x̄0
(x̄ − x̄0)

]

π(x̄)dx̄ = Pn(i|x̄0), (17)

which implies that the stationary plan choice distributionand the transition dis-
tribution coincide well even if (15) is implemented througha filter that main-
tains some variability in the expected network conditions.Also, the expected
network conditions may differ for individual agents withinthe aforementioned
limits. However, for notational convenience the model willsubsequently be spec-
ified in terms of an approximation of the expected network conditions only, as it
is expressed in (15) by the “≈” symbol.

The iterative assignment logic is equally applicable to simulate an SUE-based
planning model and a telematics model where drivers are spontaneous and imper-
fectly informed. From a simulation point of view, the only difference between
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these two models is that an SUE demand simulator typically utilizes all informa-
tion from the most recent network loadings, whereas a telematics demand simula-
tor generates every elementary decision of a plan only basedon such information
that could have actually been gathered up to the according point in simulated
time. The filtering of the expected network conditions has different meanings in
either approach: In an equilibrium model, it can be seen as a learning mechanism
through which travelers remove random fluctuations from their observations. For
a non-equilibrium model, the same mechanism can be employedto stabilize the
iterative solution procedure, but no behavioral interpretation is available in this
case (Bottom, 2000; Bottom et al., 1999). To keep the terminology simple, the
remaining presentation is given only in terms of an SUE planning model.

3.2 Disaggregate application of the calibration

The macroscopic PFE developed in Section 2 is now carried over to the previously
described DTA microsimulator. Essentially, the OD pairs are replaced by agents
and the routes are replaced by plans. That is,n = 1 . . .N now represents the
agent population instead of the OD pairs,Cn represents the choice set of agent
n instead of the route set connecting OD pairn, and i ∈ Cn indicates a plan
available to agentn instead of a route that connects OD pairn. The transition
from a static specification that only considers paths to a dynamic specification
that accounts for full plans is feasible because a time-dependent network can be
equivalently modeled as a time-expanded static network anda full-day plan con-
stitutes a simple path in the expanded network (Bierlaire, 2002; Flötteröd, 2008;
van der Zijpp and Lindveld, 2001).

The basic assumption of this approach is that the macroscopic SUE model of Sec-
tion 2 captures the average conditions in the microsimulation such that the macro-
scopic PFE can be deployed to adjust the average conditions in the microsimula-
tion as well. This requires to clarify the notions of “average network conditions”
and “average agent behavior” in the considered class of DTA microsimulators.

Average network conditions. The macroscopic PFE assumes that the network
conditions result from a deterministic network loading of the continuous-valued
demand. The microscopic model is based on an expectation of stochastic net-
work conditions. Since the network loading is in general a nonlinear operation,
the expected network conditions differ from the result of a deterministic network
loading of the expected demand levels. This deviation between aggregate SUE as-
signments and stochastic microsimulations has been identified by Cascetta (1989),
who concludes that “in the limiting case of a number of remembered costs tend-
ing to infinity with uniform weights, users tend to base theirchoices on average
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Table 2: Microscopic redefinition of macroscopic PFE entities

symbol macroscopic microscopic

n = 1 . . .N OD pairs agents
Cn routes connecting OD pair

n

plans available to agentn

i ∈ Cn a route connecting OD
pairn

a plan of agentn

dn number of trips in OD pair
n

number of times agentn
chooses a plan per
iteration (= one)

dni number of trips on route
i ∈ Cn

stationary probability that
agentn chooses plani

costs, which are still different from costs computed for average flows in the case
of nonlinear cost functions. Also in this case [the iteratedmicrosimulation] and
SUE expected flows are only approximately equal.” However, he also shows that
“in general, however, they can be considered coincident within the limits of a
first-order approximation”.

Average agent behavior.Every agentn chooses one plan in every iteration of
the microsimulation. This implies thatdn, which previously was the number of
trips in OD relationn, now is one. A natural re-interpretation ofdni, which
previously was the number of trips in OD relationn along pathi, is possible in
terms of acontinuous limit that results when agentn is (only hypothetically)
replaced byZ → ∞ identical agents of size1/Z that all draw independently
from the original agent’s plan choice distribution. In the continuous limit,dni

becomes agentn’s probability Pn(i|·) of choosing plani. This observation is
relevant because the macroscopic PFE maximizes entropy, which assumes a large
population of decision makers. The continuous limit behavior can be evaluated
by the considered class of DTA microsimulations in stationary conditions, where
every agentn replans based on stable expected network conditionsx̄ such that
repeated instantaneous choices of the same agent follow thesame distribution as
a sequence of choices over several iterations. That is, the entropy maximization
approach of the macroscopic PFE can still be applied to a microsimulation in
stationary conditions withdn = 1 anddni being the according stationary choice
probability of plani.

Table 2 gives a summary of these re-definitions. Based on these considerations,
the macroscopic PFE (4) – (6) can be combined with the solution (12) – (15) of
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the simulation-based DTA model into the following specification:

Πn(i|y) =
exp(Λni + Γni)Pn(i|x̄|y)∑

j∈Cn
exp(Λnj + Γnj)Pn(j|x̄|y)

, n = 1 . . .N (18)

Π({i}|y) =

N∏

n=1

Πn(in|y) (19)

π(x|y) = p(x|{i} ∼ Π({i}|y)) (20)

x̄|y ≈ E{x|x ∼ π(x|y)}, (21)

where (18) and (19) now specify the stationary posterior plan choice distributions
in the population symmetrically to (4), and the (expected) posterior network con-
ditions are defined in (20) and (21).Λni andΓni are defined in (5) and (6), only
that they are now evaluated in expected posterior network conditionsx̄|y and with
the path flowsdni being replaced by the stationary posterior choice distributions
Πn(i|y).

Recall that (4) – (6) only specify a stationary point of the posterior entropy func-
tion but not necessarily a global maximum. If there are several stationary points
then additional measures are necessary to ensure a proper maximization, e.g., by
running the above model several times and comparing the results. However, our
present experience with this specification is that it unambiguously converges to-
wards a single, plausible solution.

The model (18) – (21) can be solved by the same iterative simulation approach
that is used to solve (12) – (15), the only difference being that the plan choice
distribution of every replanning agent is now scaled by the exponential of the ac-
cordingΛ andΓ coefficients. This is a computationally very efficient specification
because it only affects the agent behavior at the individuallevel, which turns the
joint demand calibration problem forN agents intoN individual-level calibration
problems, where all interactions are captured through the iterations of the simula-
tion.

Algorithm 2 outlines, as for now only conceptually, how the calibration is applied
to a generic DTA microsimulator. Clearly, the applicability of this calibration
logic is very broad.

In order to make the calibration operational, two more questions need to be an-
swered: how to calculate theΛ andΓ coefficients in Step 2a and how to implement
the scaling of the choice probabilities in Step 2b for a generic microsimulation
that can only be expected to generaterealizationsof the choice distributions and
network conditions. This is discussed in the next section.
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Algorithm 2 Calibration of a generic DTA microsimulator

1. Initialize the calibration and the DTA simulator.

2. Repeat for as many iterations as necessary to extract relevant characteristics
in stationary conditions:

(a) Calculate allΛni andΓni coefficients.

(b) For all agentsn = 1 . . .N, draw a new plan from a choice distribution
that is scaled by exp(Λni + Γni) for all i ∈ Cn.

(c) Load all agents on the network.

4 Making the framework operational

This section details the technical steps that are necessaryto apply the demand cali-
bration to a DTA microsimulation. First, Subsection 4.1 clarifies how to calculate
the Λ coefficients, given an arbitrary supply simulator. Second,Subsection 4.2
explains different methods to enforce the scaled plan choice distribution (18) in
an arbitrary demand simulator. Third, Subsection 4.3 givesa step-by-step specifi-
cation of how to apply the calibration to a generic DTA microsimulation. Finally,
Subsection 4.4 clarifies the developments with a continuation of the two-routes
example of Section 2.2.

As from now, theΓ coefficients in (18) are set to zero because of the operational
reasons given in Section 2.2. If they are to be accounted for,they can be added to
the correspondingΛ coefficients wherever the latter are used in the following to
affect the simulated agent behavior.

4.1 Linearization of the log-likelihood

Stationary posterior conditions are assumed in this subsection, which means that
all agents draw their plans from posterior choice distributionsΠn(i|y). This is jus-
tified by the specification of the calibrated system state that relies on a lineariza-
tion of the log-likelihood in posterior conditions. Since in stationary conditions
the choices of all agents depend on stablex̄|y values and hence are not affected by
the particular realizations ofx in recent network loadings, the iteration counterc

is omitted in this subsection.

According to (5), a calculation of theΛ coefficients requires to differentiate the
log-likelihood function lnp(y|x(d)) with respect todni, which in the microscopic
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case carries over to a differentiation with respect to the according stationary choice
probabilityΠn(i|y) in expected posterior network conditionsx̄|y, cf. Section 3.2:

Λni =
∂ ln p(y|x|y)

∂Πn(i|y)
=

〈

∂ ln p(y|x|y)

∂x|y
,

∂x|y

∂Πn(i|y)

〉

(22)

where〈·, ·〉 denotes the inner product. The first vector,
∂ ln p(y|x|y)

∂x|y
, will turn out to be

relatively easy to compute. The evaluation of the second vector,
∂x|y

∂Πn(i|y)
, however,

requires some additional effort. For this purpose, the notion of a “proportional
network loading” is introduced.

A proportional network loading describes a situation in which the time-dependent
travel times on all links in the network are known and fixed. This implies that
there are no interactions between the flows, which move through an exogenously
specified network environment. The resulting flow on any linkbecomes a linear
superposition of all path flows across that link. For a microsimulator, this implies
that the agents linearly superpose on each link. In order to obtain a mathemati-
cally tractable relation between demand and resulting network conditions, the true
dynamics of the supply simulator are captured by a linear network loading. For-
mally, this implies that the simulated traffic countxa(k) on link a in simulation
time stepk is written as

xa(k) =

N∑

n=1

1(ak ∈ in) (23)

where1(·) is the indicator function andak ∈ in indicates that planin requires
agentn to enter linka in time stepk (where, for simplicity, it is assumed that
the sensors are located at the upstream end of a link). This isan imperfect model
of the actual network loading in that the assumption of constant travel times im-
plies that the inflow of links at the capacity limit increasesbeyond this limit if
the demand is increased. Consequently, (23) is an imperfectrepresentation of
the supply simulator in congested conditions.1 An alternative approximation that
captures congestion with greater precision is described in(Flötteröd and Bierlaire,
2009). However, for clarity only the simple case of a proportional network load-
ing is considered in the following. The results carry over almost identically to the
congested case.

1Note that a proportional assignment, which is widely and successfully assumed in the field
of time-dependent OD matrix estimation, implies the same assumption of constant travel times.
That is, although (23) is consistent only in uncongested conditions, the state of practice suggests
its applicability even in the case of congestion.
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Assuming (23) to be applicable, the vectorx|y of expected posterior network con-
ditions contains the elements

xa(k)|y =

N∑

n=1

∑

i∈Cn

1(ak ∈ i)Πn(i|y), (24)

which yields when inserted into (22)

Λni =
∑

ak∈i

∂ ln p(y|x|y)

∂xa(k)|y
. (25)

This means that theΛ coefficients can be evaluated by summing up the derivatives
of the log-likelihood with respect to the simulated traffic counts along all links that
are contained in the considered plan.

In order to show that this is not a difficult task, univariate normal likelihood func-
tions are considered as an example. Denoting the measured counterpart ofxa(k)

by ya(k) and maintaining the symboly for the vector of all available measure-
ments, one has

ln p(y|x|y) = const−
∑

ak

(xa(k)|y − ya(k))2

2σ2
a(k)

(26)

where the sum runs only over sensor-equipped links andσ2
a(k) is the variance of

the sensor data on linka in time stepk. In this case, an evaluation of (25) yields

Λni =
∑

ak∈i

ya(k) − xa(k)|y

σ2
a(k)

(27)

where the expectation can be obtained by averaging the simulated traffic counts
over many stationary iterations in the DTA simulator.

4.2 Affecting the agent behavior

The disaggregate demand calibration requires to scale the choice distributionPn(i|·)
of every replanning agent individually by exp(Λni) and to re-normalize. Given
that theΛ coefficients are available from (25), a universally applicable method to
realize this scaling is rejection sampling (Ross, 2006). Denote by

Paccept,n(i) = exp(Λni)/Dn (28)
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the acceptance probability for plani from agentn’s choice setCn whereDn must
be such that

Dn ≥ max
i∈Cn

exp(Λni) (29)

for (28) to be a proper probability. If repeated draws taken from Pn(i|·) are ac-
cepted with probabilityPaccept,n(i) and are rejected otherwise, then the first ac-
cepted draw constitutes a draw from the desired scaled choice distribution. The
correctness of this approach is verified in Appendix C.

While the accept/reject estimator is arguably the most general method to affect
agent behavior, it is by no means the only one. For example, ifthe demand
simulator implements a multinomial logit (MNL) model (Ben-Akiva and Lerman,
1985) then a computationally more efficient approach is to affect the agent behav-
ior by modifications of their utility functions. Appendix D shows that an MNL
demand simulator immediately generates draws from the calibrated choice dis-
tributions if the accordingΛni coefficients are added to the systematic utility of
every considered alternative before the MNL model is evaluated. Note that this
result carries over to path-size logit (Ben-Akiva and Bierlaire, 2003) and C-logit
(Cascetta et al., 1996) models. It also is noteworthy that a heuristic application
of this technique is possible even if the demand simulator does not implement
an MNL choice distribution. Such an approach is based on a weaker theoretical
foundation, but it may still produce practically useful results.

4.3 Algorithm

The definition ofΛni in (25) requires to calculate the according derivatives in av-
erageposteriornetwork conditions, which, however, are a priori unknown. This
constitutes a fixed-point problem that can be iteratively solved: Starting from the
behavioral prior, successively improved linearizations are generated from itera-
tion to iteration until a stable state is reached where the estimator draws from the
behavioral posterior based on stableΛ coefficients that in turn are consistent with
this very posterior.

For illustrative purposes, the method of successive averages (MSA) is applied to
this problem in Algorithm 3, which affects the agents’ choice behavior using the
general rejection sampling technique as an example. This algorithm calibrates
whatever choice dimensions are represented by the demand simulator, is compat-
ible with an arbitrary supply simulator, and is fully consistent with the execution
logic of a typical DTA microsimulator.
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Algorithm 3 Linearization-based accept/reject estimator

1. Initialize cycle counterc = 0.

2. Choose initial network conditionsx0, x−1, . . . (e.g., free-flow conditions).

3. Repeat for as many iterations as necessary to extract relevant characteristics
in stationary conditions:

(a) Increasec by one.

(b) Calculate expected network conditionsx̄c
|y from xc−1, xc−2, . . ..

(c) Replanning. Forn = 1 . . .N, do:

i. Run the demand simulator and obtain a plani ′.

ii. CalculateΛni′ according to (25) usinḡxc
|y.

iii. With probability 1−Paccept,n(i ′) according to (28), goto step 3(c)i.

iv. Retain the first accepted draw:ic
n = i ′.

(d) Network loading. Drawxc from p(xc|{i}c).

4.4 Example

This subsection exemplifies the workings of Algorithm 3 in terms of the two-
routes example introduced in Section 2.2. The example is nowmicroscopically
simulated for a population of 1000 identical agents, each ofwhich perceives travel
time according to (7) and chooses a route according to (9). The expected travel
times result from a moving average of the simulated travel times over five itera-
tions.

For illustrative purposes, a measured flow ofy1 = 250 veh/h with a standard
deviation ofσ1 = 10 veh/h is assumed. The calibration is run for 100 iterations.
Note that in this setting theΛ1 coefficient can be calculated according to (27)
and thatΛ2 is zero because there is no sensor on route 2. Figures 3, 4, and5
show, for a single calibration experiment, the flowq1 on route 1, the expected
travel timet̄1 on that route, and theΛ1 coefficient, respectively. For comparison,
the uncalibrated flows and travel times of a single simulation are added in dashed
lines.

The prior flows fluctuate in a stable manner around 500 veh/h, which is consis-
tent with the symmetry of the scenario. After some overshooting, the posterior
flows stabilize around 360 veh/h, which constitutes the compromise the calibra-
tion identifies between the prior flows and the measured valueof 250 veh/h. Note
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Figure 3: Evolution ofq1 for two-routes example
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Figure 4: Evolution of̄t1 for two-routes example
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Figure 5: Evolution ofΛ1 for two routes example

that although the calibration has been derived in terms of average network condi-
tions, the actually calibrated network conditions are still distributed in a way that
is consistent with the stochasticity of the demand generator and (in general but not
in this example) the supply simulator.

The average travel time on route 1 changes from 0.45 in prior conditions to 0.23 in
posterior conditions. This constitutes an important driving force behind the inter-
polation of prior information and measurements: As the calibration removes more
and more vehicles from path 1 in order to fit the measurement, the travel time on
this path decreases, which in turn increases its attractiveness. Upon convergence,
the calibration has compromised in a plausible Bayesian manner between these
two effects.

Finally, the evolution of theΛ1 coefficient shows how the calibration takes effect.
After a few iterations of transient oscillations, the coefficient stabilizes around -
1.1. This value is consistent with the theory: Insertingy1, σ1 and the average
posterior flow of 360 veh/h in (27), one obtains the same value. The negative sign
of Λ1 indicates that there is too much simulated flow on route 1, which the calibra-
tion tries to reduce by scaling the choice probability of this route by exp(Λ1) < 1.

This type of detailed analysis is hard to conduct for the large real-world test case
presented in the next section, which therefore resorts to more aggregate perfor-
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mance measures. However, the conceptual workings of the calibration are the
same as described in this example.

5 Zurich case study

This section presents results from an ongoing real-world case study for the city of
Zurich (Flötteröd et al., 2009). First, the deployed simulation system is described
in Section 5.1. Second, the Zurich scenario is presented in Section 5.2. Third, the
interactions between simulation and calibration are investigated in Section 5.3.
Finally, Section 5.4 reports on the validation of the calibrated simulation system.

5.1 Deployed simulation system

The MATSim (“Multi-agent transport simulation toolkit”, MATSim, accessed 2009)
DTA microsimulation is used for the purposes of this study. Its workings coincide
well but not perfectly with the specification of Section 3.1.This situation is likely
to be encountered in the calibration of other microsimulations as well. An im-
portant aspect of this study is therefore to show that the calibration is robust with
respect to (mild) violations of its underlying assumptions.

Consistently with all assumptions of the calibration, MATSim consists of a micro-
scopic and stochastic demand and supply simulator, which are iteratively executed
until stationary conditions are attained. The supply simulator is based on a queue-
ing model that is fully consistent with the assumptions of this work (Cetin et al.,
2003). The choice dimensions accounted for in the demand simulator are route
choice, departure time choice, and mode choice (car vs. no-car). The demand
simulator has some unusual features that are discussed in the following. It is de-
scribed in detail in (Raney and Nagel, 2006).

Continuous choice set generation.The choice set generation and the choice
simulation are intertwined in MATSim. The rational behind this is that the choice
set should be appropriate in equilibrated network conditions, which are not known
a priori. The simulation therefore proceeds in two stages. In the first stage, as from
now called thechoice set generation stage, the choice set is continuously updated
in that new plans are generated and other plans are discardedduring the iterations.
In the second stage, thechoice stage, the choice set generation is turned off and
the demand simulator operates based on fixed choice sets.

Implicit choice distribution. Agents make choices both in the choice set gen-
eration stage and the choice stage. In the choice set generation stage, a newly
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generated plan is selected for execution with probability one. This is necessary
because MATSim calculates the utility of a plan only after itis executed; this logic
is discussed in the next paragraph. Since the generation of new plans is realized
by random variations of existing ones, the guaranteed selection of a newly gen-
erated plan generates draws from the set of all plans that canbe possibly created
by random variations. If no new plan is generated for an agent, one of its existing
plans is selected according to a multinomial logit model. Inthe choice stage, no
new plans are generated and the demand simulator only applies the multinomial
logit model.

Simulation-based utility function. MATSim uses an all-day utility function that
consists of positive terms for the execution of activities and negative terms for
travel (Charypar and Nagel, 2005). Utilities are not calculated based on aver-
age network conditions but as averages over the experiencedutilities of executed
plans, which from a calibration perspective implies the same type of approxima-
tion as discussed in Section 3.2 when comparing the result ofa deterministic net-
work loading of an average demand with the expected network conditions given
the actual demand distribution. MATSim averages the experienced utilities by a
recursive first-order filter with an innovation weight of 0.1.

Apart from these peculiarities, MATSim constitutes an iterative DTA microsimu-
lator that complies with all assumptions of the proposed calibration.

5.2 Description of test case and uncalibrated simulation

Figure 6 shows the road network of the analysis zone. An all-of-Switzerland
network with 60 492 links and 24 180 nodes is used. It is based on a Swiss regional
planning network, which has been made ready for simulation purposes based on
additional OpenStreetMap network data (Chen et al., 2008).

A synthetic population of travelers for all of Switzerland is available from a previ-
ous study (Meister et al., 2008). All travelers have complete daily activity patterns
based on microcensus information (SFSO, 2006). The experiments consider only
those agents who cross a 30 km (18.6 miles) circle around the center of Zurich at
least once during their daily travel, including those agents who stay within that
circle for the whole day. In order to obtain a high computational speed, a random
10 % sample is chosen for simulation, which consists of 187 484 simulated trav-
elers. All agents iteratively adapt route choice, departure time choice, and mode
choice. Public transit is simulated as described in (Grether et al., 2009), that is, it
is assumed that it provides door-to-door connectivity at twice the free speed travel
time by car.
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Figure 6: Zurich network

Hourly traffic counts from 161 inductive loop sensors are available from 06:00 to
20:00 of one day. The deviation between measured and simulated traffic counts
is both graphically and quantitatively evaluated. For visual inspection, scatter
plots such as those given in Figure 7 are used. Every point represents one pair
of measured/simulated traffic counts, where the measured value defines the x-
coordinate and the simulated value defines the y-coordinate. If all measurements
were perfectly reproduced by the simulation, all points would lie on the diagonal
with slope one. Deviations from that diagonal signalize inconsistencies between
measurements and simulation.

Figure 7 shows scatter plots that are obtained after 500 iterations of uncalibrated
simulation. The line above (below) the main diagonal represents simulation val-
ues of twice (half) the observed traffic counts (note that theplots are double-
logarithmic). Most points are within this (admittedly loose) band, which indi-
cates that the simulation captures the overall situation fairly well. However, there
clearly is room for improvement.
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Figure 7: Scatter plots for uncalibrated base case
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5.3 Inserting the calibration into the simulation

The proposed calibration methodology is implemented in thefree Cadyts (“Cali-
bration of dynamic traffic simulations”) software package (Cadyts, accessed 2009;
Flötteröd, 2009). Cadyts is written with conceptual and technical flexibility in
mind in that it offers various modes of interaction with different DTA microsim-
ulations. All experiments reported in this section are based on an application of
Cadyts to MATSim.

In this case study, the agent behavior is affected by modifying the utility of their
available plans before they make their choices, cf. Section4.2. The only excep-
tions are newly generated plans, which are always executed.This implies that
these parts of the demand remain uncalibrated during the choice set generation
stage and that the calibration takes full effect only in the choice stage.

The evolution of the calibrated simulation over the iterations is visualized in Fig-
ure 8, which shows the mean weighted square error (MWSE) of all measurements
over the iteration number. This error measure is defined as

MWSE =

〈

(ya(k) − xa(k))2

2σ2
a(k)

〉

ak

(30)

whereσa(k) is the standard deviation assigned to the sensor dataya(k) on link a

in hourk, xa(k) is its simulated counterpart, and〈·〉ak indicates an average over all
sensor locations and hourly time intervals. This coincideswith the log-likelihood
function that is assumed in the calibration, which corresponds to the assumption
of independent normally distributed measurement errors. The variance of a mea-
surement is calculated as

σ2
a(k) = 0.5 · max{ya(k), (25 veh/h)2}, (31)

which reflects two considerations. First, there is the assumption that the variance
of a measurement error is proportional to the measured value. Second, there is a
positive lower bound on the variance, which ensures that very small measurements
are not over-weighted and avoids numerical problems in the evaluation of (30).
The numerical values used in this specification were experimentally obtained.

When applying the calibration, the system starts in an already equilibrated state
that has been attained after 500 uncalibrated iterations. The calibrated simulation
is then run for another 500 iterations, i.e., from total iteration number 500 to 1000.
Running the calibration jointly with the simulation for another 500 iterations re-
quires approximately201

4
h on a 64 bit Intel Nehalem machine at 2.67 GHz using

at most 10 GB of RAM. Not even 9 % of the computing time (approx.13
4

h) are
calibration overhead.
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Figure 8: Mean weighted square error (MWSE) using all counting stations

Since the system starts already in an equilibrated state, all systematic changes of
MWSE in Figure 8 can be attributed to the calibration. The MWSE is quickly
reduced from more than 100 in iteration 500 to around 45 in iteration 600. After
this, the curve flattens. It is plausible to assume that in thefirst iterations the
calibration “fills up” the measurement locations by arbitrary plans and that in
the following iterations the simulation rearranges the plans such that behaviorally
more reasonable plans take the place of other plans that havebeen used by the
calibration before.

The choice set generation stage finishes at iteration 800, which generates a jump
in the system behavior: Since the immediate execution of newly generated plans
is omitted, the calibration can affect the whole plan choicedistribution, which
results in another improvement of MWSE from around 35 to little more than 20.
The variability of MWSE is reduced to almost zero after iteration 800, which is a
consequence of the reduced variability in the executed plans once the choice set
generation is turned off.

Figure 9 shows scatter plots that are obtained from the last iteration of the cali-
brated simulation, i.e., iteration 1000. A comparison withthe uncalibrated scat-
terplots of Figure 7 shows that the data points are clearly more centered around
the main diagonal. A quantitative evaluation of this effectis possible in terms of
the MWSE of Figure 8: The MWSE at iteration 500 corresponds tothe scatter
plots of Figure 7, and the MWSE at iteration 1000 correspondsto those of Figure
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9.

Overall, the calibration generates a clear improvement in measurement fit at an
extremely low computational cost. However, this alone doesnot prove that the
calibrated agent behavior becomes more realistic because there are many plau-
sible and not-so-plausible combinations of plan choices that reproduce the mea-
surements equally well. The next section provides cross-validation results that
indicate that the calibrated demand is indeed more realistic.

5.4 Cross-validation results

While the previous section clearly demonstrates that the calibration improves the
measurement reproduction, this section demonstrates thatit does so in a way that
also improves the realism of the global traffic situation. This is an important
issue that applies to demand calibration from traffic countsin general because this
problem is highly under-determined, which implies that there is a large number of
demand configurations that reproduce the traffic counts equally well. Recall that
the proposed calibration resolves this under-determination by taking the choice
logic that is implemented in the simulation system itself asthe prior information
about the demand. The traffic counts are then added to this information in order
to obtain an improved posterior choice distribution.

For cross-validation, the 161 sensor locations are randomly assigned to ten disjoint
validation data setsof roughly equal size. For each validation data set, there is
a correspondingmeasurement data setthat contains the traffic counts from all
sensors that are not represented by the respective validation data set. For every
measurement/validation data set pair, one calibration is conducted, where only
the measurement data is made available to the calibration and the corresponding
validation data is used to evaluate how well the calibrated demand generates a
spatiotemporal extrapolation of the traffic counts.

Figure 10 shows the MWSE trajectories of the measurement data for all ten ex-
periments over the iterations, where all trajectories are normalized to their values
at iteration zero for better comparability. Figure 11 showsthe same type of curves
for the validation data. The similar dynamics of the measurement MWSE values
indicate that the calibrated simulation exhibits well-behaved dynamics and gener-
ates reproducible results. Overall, the measurement reproduction error is reduced
by around 80 % in all cases.

The validation MWSE curves exhibit a greater variability, which can be explained
by the lower number of measurements that enter the averagingin (30). Again,
the variability is substantially decreased once the choiceset generation is turned
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Figure 9: Scatter plots after calibration
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Figure 10: Validation results – measurement reproduction
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Figure 11: Validation results – measurement extrapolation
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off. The different experiments attain different MWSE values because disjoint
sets of sensor data are evaluated. Overall, an improvement of 15 % to 45 % is
attained. This clearly indicates that the local information that is contained in the
measurement data is used by the calibration in a way that affects the network-
wide agent behavior such that more realistic global networkconditions result.
One also should keep in mind that the relative positioning ofthe sensors affects
the validation results in that the extrapolation power of the calibration is limited
by the spatiotemporal correlations in the network conditions: If the validation
sensors are too far away, they simply are not affected any more by the calibration,
no matter how well it performs.

These results show clearly that the calibration conducts demand modifications that
are structurally meaningful in that they do not only fit the sensor data well but also
lead to a global improvement in the system’s realism. At thispoint, the difficulty
of the calibration problem that is solved here needs to be stressed. The calibration
adjusts simultaneously the route choice, mode choice, and departure time choice
of hundreds of thousands of individual travelers in a purelysimulation-based en-
vironment on a network with many ten thousand links. The number of iterations
required to obtain stable and realistic results is in the order of a plain simulation,
and the computational overhead introduced by the calibration is almost negligible.
The authors are not aware of any other calibration techniquethat comes close to
such results.

6 Summary and outlook

We present a new calibration framework that overcomes many of the simplifying
modeling assumptions typically adopted in the calibrationof dynamic traffic sim-
ulators. Our approach allows for the estimation of arbitrary behavioral patterns at
the individual level in a Bayesian setting where traffic counts are combined with a
simulation-based representation of the analyst’s prior knowledge. The approach is
compatible with both an equilibrium-based modeling assumption and a telemat-
ics model where drivers are spontaneous and imperfectly informed. Experimental
results for a large real-world test case are presented that demonstrate the effec-
tiveness and adequacy of the proposed method. A software implementation of the
methodology is freely available on the Internet (Cadyts, accessed 2009).

Our current work focuses on the calibration of behavioral modelparameters(such
as the coefficients of a utility function) from traffic counts. Since this is likely
to reach the limits of what can be inferred from this type of measurements, the
incorporation of additional sensor data is another important research topic. The
free software implementation of the calibration is continuously applied to different
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DTA microsimulations, which yields important insights on how to improve the
system’s conceptual and technical flexibility.

Finally, the joint calibration of demand and supply is a challenge that eventually
needs to be tackled. The current demand calibration assumesthe supply simulator
to be modeled without bias (an assumption it shares with all PFEs and OD ma-
trix estimators that treat the network loading as a deterministic mapping), which
should be relaxed in future research.
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A Maximization of prior entropy

Denote bydn the total demand of OD pairn and bydni the demand for path
i ∈ Cn, whereCn is the path set of OD pairn. If the demand was integral then
the path flowsd = (dni) would be distributed according to

P(d) =

N∏

n=1

dn!

∏
i∈Cn

(Pn(i|x(d)))dni

∏
i∈Cn

dni!
, (32)

where, differently from a standard multinomial distribution, the event probabil-
ities are not fixed but themselves random variables because they depend on the
path flows through the network conditionsx. Taking the logarithm and applying
Stirling’s approximation (lnZ! → Z ln Z − Z for largeZ), one obtains theprior
entropy function

W(d) = ln P(d) =

N∑

n=1

[

dn ln dn +
∑

i∈Cn

dni ln Pn(i|x(d)) −
∑

i∈Cn

dni ln dni

]

.

(33)
(Note that this specification ofW(d) differs from (2) in the main text by the ad-
dend

∑
n dn ln dn, which affects only the maximum value ofW(d) but not the
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according path flows.) In order to show the equivalence of theglobal maxima of
W(d) (subject to the flow conservation constraints

∑
i∈Cn

dni = dn∀n) with the
SUE flows, the following observations are made.

1. The maximum value ofW(d) subject to the flow conservation constraints
is zero: Forfixedpath choice fractionsPn(i) ∀n, i, W(d) is strictly concave
and its maximization subject to the flow conservation constraints yields the
path flowsdni = Pn(i)dn∀n, i and an objective function value of zero.
Now consider any candidate combination ofvariablepath choice fractions
and path flows. Fixing the path choice fractions at their given values, a
maximization with respect to the path flows again yields a unique maximum
with a zero value ofW(d).

2. Every SUE flow is a global maximizer ofW(d) subject to the flow conserva-
tion constraints: A substitution of the SUE flowsdni = Pn(i|x(d))dn∀n, i

yieldsW(d) = 0, which is the global maximum value.

3. Every global maximizer ofW(d) subject to the flow conservation con-
straints is an SUE flow: Assume that there was a global maximizer d =

(dni) where at least onedni 6= Pn(i|x(d))dn. Fixing the path choice
fractions atPn(i) = Pn(i|x(d)) ∀n, i, W(d) is maximized if and only if
dni = Pn(i)dn∀n, i, which contradicts the assumption.

Items 2 and 3 establish the equivalence of SUE flows and globalmaxima ofW(d)

subject to the flow conservation constraints. Note also thatthe possible existence
of multiple global maxima can only result from non-unique SUE flows, which
would indicate a modeling problem rather than a flaw in the equivalent maximiza-
tion problem.

B Maximization of posterior entropy

Before maximizing the posterior entropy function

W(d|y) = ln p(y|d) + W(d), (34)

the additional requirement of constant demand levelsdn per OD pairn is intro-
duced in the Lagrangian

L(d|y) = W(d|y) +

N∑

n=1

un

(

∑

i∈Cn

dni − dn

)

(35)
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where theun are the Lagrangian multipliers. Using (33), the derivativeof L(d|y)

with respect todmj (wherem is an OD pair andj ∈ Cm) becomes

∂L(d|y)

∂dmj

=
∂ lnp(y|x(d))

∂dmj

+ ln
Pm(j|x(d))

dmj

+

N∑

n=1

∑

i∈Cn

dni

Pn(i|x(d))

∂Pn(i|x(d))

∂dmj

− 1 + um. (36)

Setting this to zero and solving fordmj yields

dmj = exp(um − 1) exp(Λmj + Γmj)Pm(j|x(d)) (37)

where

Λmj =
∂ lnp(y|x(d))

∂dmj

(38)

Γmj =

N∑

n=1

∑

i∈Cn

dni

Pn(i|x(d))

∂Pn(i|x(d))

∂dmj

. (39)

The exp(um − 1) terms result from a substitution of (37) indm =
∑

i∈Cm
dmi:

exp(um − 1) =
dm∑

i∈Cm
exp(Λmi + Γmi)Pm(i|x(d))

. (40)

Inserting this in (37) finally results in the posterior choice probabilities

Pm(j|x(d), y) =
dmj

dm

=
exp(Λmj + Γmj)Pm(j|x(d))

∑
i∈Cm

exp(Λmi + Γmi)Pm(i|x(d))
, (41)

which hence prevail at every maximum of the posterior entropy function (subject
to the flow conservation constrainsdn =

∑
i∈Cn

dni∀n, i).

C Derivation of accept/reject estimator

Given the acceptance probabilitiesPaccept,n(i) defined in (28), the overall proba-
bility of a single rejection for agentn is

Preject,n = 1 −
∑

i∈Cn

Paccept,n(i)Pn(i|·). (42)
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Consequently, the probability thati is the first accepted draw can be expressed as

∞∑

z=0

(Preject,n)zPaccept,n(i)Pn(i|·)

=
Paccept,n(i)Pn(i|·)

1 − Preject,n

=
Paccept,n(i)Pn(i|·)

∑
j∈Cn

Paccept,n(j)Pn(j|·)
,

(43)

which coincides with the definition in (18) (for zeroΓ coefficients).

D Derivation of utility-modification estimator

The individual-level posterior choice distribution (18) constitutes the starting point
of this development. It is restated here for ease of reference (with zeroΓ coeffi-
cients):

Πn(i|y) =
exp(Λni)Pn(i|x̄|y)∑

j∈Cn
exp(Λnj)Pn(j|x̄|y)

. (44)

It is assumed that the demand simulator implements an MNL prior choice model
(which comprises path-size logit (Ben-Akiva and Bierlaire, 2003) and C-logit (Cascetta et al.,
1996) specifications):

Pn(i|x̄) =
exp[Vn(i|x̄)]

∑
j∈Cn

exp[Vn(j|x̄)]
(45)

whereVn(i|x̄) denotes the systematic utility of plani as perceived by individual
n given the expected network conditionsx̄. A substitution of (45) in (44) yields

Πn(i|y) =
exp[Vn(i|x̄|y) + Λni]

∑
j∈Cn

exp[Vn(j|x̄|y) + Λnj]
. (46)

This posterior is structurally identical to the prior. The only difference is thatΛni

is added to the systematic utility of every considered plani. This utility modifica-
tion allows to force a demand simulator that implements the prior (45) to imme-
diately draw from the posterior (46), and it avoids the computational overhead of
a possibly large number of rejections in the accept/reject procedure.
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