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Abstract

We present an operational framework for the calibration ehdnd models for
dynamic traffic simulations. Our focus is on disaggregateusators that repre-
sent every traveler individually. We calibrate, at a likegvindividual level, arbi-

trary choice dimensions within a Bayesian framework, whbeeanalyst’s prior

knowledge is represented by the dynamic traffic simulasaifiand the measure-
ments are comprised of time-dependent traffic counts. Theoaph is equally

applicable to an equilibrium-based planning model and telematics model of

spontaneous and imperfectly informed drivers. It is basedansistent mathe-
matical arguments, yet applicable in a purely simulatiasddl environment, and,
as our experimental results show, capable of handling szgearios.

1 Introduction

There is a broad consensus about the adequacy of microsarauta the mod-

eling of urban transportation systems, and a wide scopeadf sumulation sys-

tems has been put forward, e.qg., (Ben-Akiva etlal., 2001ahrvissani, 2001;
Raney and Nagel, 2006; Waddell et al., 2007). The arguabkt pr@ominent ad-

vantage of microsimulators is their superior expressigsr®cause of their ar-
bitrarily fine-grained model structure. However, incregsthe resolution of a
model also increases its degrees of freedom, which callsiéwe interactions to
be modeled and more parameters to be identified. That isateafmally greater

expressiveness of a microsimulator is faced with a likevnseeased need for
modeling, data, and calibration. Typically, the calibvatof a (nontrivial) model

is cast in a statistical framework and is carried out by sooraerical procedure.
The mathematical convenience of the model under considerat.g., in terms

of continuity, differentiability, normality or ergodigit defines the computational
feasibility of this approach. A microsimulator easily reas a level of detail at
which most of these features are lost.

In this article, we present a mathematically consistent@mrdputationally effi-
cient framework for the calibration of microsimulationdea travel demand mod-
els in the context of dynamic traffic assignment (DTA). Sfeaily, we show how
to calibrate a microscopic motorist demand simulator frometdependent traf-
fic counts that are obtained at a limited set of network |aceti The problem is
solved in a Bayesian setting, where the a priori assumptutaevery individ-
ual’s choice distribution is combined with the availableasgrements’ likelihood
into an estimated posterior choice distribution. The metl@ntirely simulation-
based in that it only requires a simulation system to reprtetbe behavioral prior
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distribution and only generates realizations from the bighal posterior distri-
bution. The approach is applicable both in stochastic éaiuim conditions and
in non-equilibrium conditions. We present experimentalies that demonstrate
the method’s applicability to systems with ten thousandsedfvork links and
hundred thousands of travelers.

The calibration of both DTA simulators and disaggregate alemrmodels has re-
ceived much attention in the literature, which is detailedhe following. How-
ever, we are not aware of any work that estimates indivitad} travel behavior
within a DTA simulation system from aggregate sensor data practically rele-
vant scale. All of the subsequently reviewed approachesideneither simplified
or partial versions of this problem.

The most frequently adopted method for demand calibratimm traffic counts is
origin-destination (OD) matrix estimation. An OD matrix oels the demand of
a given time interval in terms of flows from every origin to gveestination of a
traffic system. The originally static problem was to estiensuich a matrix given
a linear assignment mapping of demand on link flows. Varioethods such as
entropy maximization and information minimization (vanyfan and Willumsen,
1980), Bayesian estimation (Maher, 1983), generalizest kguares (Bell, 1991;
Bierlaire and Toint; Cascetlta, 1984), and maximum likedthestimation (Spiess,
1987) were proposed to solve this task. Nonlinear assighmeppings were
incorporated by a bilevel-approach that iterates betwieemonlinear assignment
and a linearized estimation problem (Maher et al., 2001gYad895; Yang et al.,
1992) until a fixed point of this mutual mapping is reachede(Biire and Crittin,
2006;| Cascetta and Posterino, 2001). The combined estimatiOD matrices
in subsequent time slices was demonstrated in (Cascetta #883), and many
originally static methods were applied to dynamic problamshis vein, e.g.,
(Ashok, 1996; Bierlaire, 2002; Sherali and Park, 2001; Z[2004).

Since a time-dependent OD matrix maps (origin, destinatieparture time) tu-
ples on demand levels, it represents destination and depditne choice on an
aggregate level. Route choice, however, constitutes nitiewial degree of free-
dom but is a function of demand that is defined through the DyS&esn’s model-
ing assumptions. Path flow estimators (PFES) overcome ohisnement.

The seminal PFE is a macroscopic one-step network obséategdtimates static
path flows from link volume measurements based on a multiadogit stochas-
tic user equilibrium (SUE) modeling assumption in a congestetwork |(Bell,

1995; Bell et al., 1997). The estimation problem is transied into one of smooth
optimization, which is iteratively solved. The model wasienced by multiple
user classes and a simple analytical queuing model to eprésffic flow dy-

namics |(Bell et al., 1996) and was successfully implememtedrious research



and development projects (Bell and Grosso, 1999). The Riefisstochastic user
equilibrium counterpart had been proposed in (Sherali.e1884| 2003) and was
further advanced in (Nie and Lee, 2002; Nie etlal., 2005). $P&lEo serve as OD
matrix estimators since an OD flow is the sum of the path flovwa/éen its OD
pair.

All PFEs and OD matrix estimators are confined to their urydleglmodeling as-
sumptions. PFEs only consider static demand per time shideely on particular
assumptions about route choice behavior. Time-dependemh@trix estimators
represent demand correlations across subsequent tines sli@ simplified and
aggregate way, e.g., by auto-regressive processes orgmightrends ! (Ashok,
1996; Zhol, 2004). These approaches disregard many aspeesstravel behav-
ior, which results from highly individual activity pattesrand likewise complex
constraints/(Bowman and Ben-Akiva, 1998; Kitamura, 1988¢t/ \Vovsha et al.,
2004). That is, even if a PFE or an OD matrix estimator is &oplo a fully mi-
croscopic DTA simulator, the aggregate estimator is unabbkccount for those
facets that amount to the microscopic modeling approach.

Random utility models (RUMS) capture travel behavior at itindividual level,
and sophisticated calibration procedures for this clasmoflels are available
(Ben-Akiva and Lerman, 1935; Bierlaire, 2003; Train, 2003jowever, in or-
der to maintain tractability, their calibration procedsirequire a mathematically
well-behaved link between observations and model paramdttere, this link is
given through a DTA microsimulator. We are not aware of anylutbat calibrates
a RUM in such conditions.

A calibration of the UrbanSim microsimulator in a Bayesiattisg is reported
in (Sevcikova et al., 2007), where a sampling importancamgsing (SIR) type
algorithm is applied to the estimation of almost 300 modehpeeters. However,
concerns regarding the computation times for larger problare mentioned.

The remainder of this article is organized as follows. Theadgregate demand
calibration is incrementally developed in Sectidons 2 tigtod: First, Sectioh]2
derives a macroscopic and static version of the calibra@tond, Sectidn 3 car-
ries this result over to a fully disaggregate DTA microsiatign. Finally, Section
[ discusses the operational aspects of the calibrationwancharizes the concep-
tual developments with a specification of the interactiogisvieen the calibration
and a DTA microsimulator. A large real-world case study issented in Section
B. Sectiorib concludes the article and gives an overview gbmg and future
research topics.



2 Aggregate path flow estimation

This section develops a new solution to the familiar probt#nestimating ag-
gregate path flows between a set of OD pairs from traffic couras simplicity,
the time dimension is omitted and homogeneous travelerassumed. The next
section generalizes this result for a broad class of DTA osionulations, which
naturally account for both dynamics and heterogeneity enpbpulation. How-
ever, since these properties can also be incorporated iméoeoscopic frame-
work considered here, the result of this section is a nov& iRkts own right.

2.1 Specification

A network of nodes and links is considered, where some oraalkes constitute
demand origins and/or destinations. Thereldr®D pairs. The largest possible
number of trips between OD pair is denoted bw,,, the symbolC,, represents
the set of available paths that connect OD pgiandd,,; is the number of trips
on pathi € C,,, whered,, = Ziecn d.i. Variations in the total OD flows can be
enabled by adding one fictitious path to every OD pair thatlsgps the physical
network (Sheffi, 1985).

The share of travelers in OD relationthat choose pathis denoted by, (i]x(d))
whered = (d,;) is the vector of all path flows anxlis the vector of network
conditions, which depend on the path choice in the entireljadion. An SUE in
this system is defined as a path flow pattern that solves

dni = Pu(ijx(d))d, Yn=1...N,i e Cy, (1)

which states that the path flows, when loaded on the netwesktrin path choice
fractions that reproduce these path flows (Daganzo and |Sh@#V). Appendix
[Alshows that this model can be reformulated as the problenm@iing path flows
d that maximize therior entropy function

N
W(d) =) Y [dniInPp(ix(d)) — dniIn il
n=1ieCn (2)
st.) du=d,Vn=1...N,

1eCn

which represents for a large population the logarithm ofgrabability that, for
givenprior route choice fractions P, (i|x(d)) at the microscopic level, the path
flows d occur at the macroscopic level.



Given the traffic county that are observed on some or all links of the network,
the calibration should adjust the path flows in a way suchttiese counts are re-
produced to a reasonable degree. For this purpose, the patudfthat maximize
theposterior entropy function

wi(dly) = Inp(ylx(d)) + W(d)
st du=d,Vn=1...N (3)

ieCn

are identified, where the likelihogaly|x(d)) is the probability of observing the
measurementg given the network conditionsthat result from the path flons.
The posterior entropy models, again for a large populatiom logarithm of the
probability that a certain aggregate path flow patteatcurs given both the prior
route choice moder,,(ijx(d)) and the measurements

AppendiXB shows that a maximization @f(d|y) yields the followingposterior
route choice fractions

v S A T Pui(d))
Pl Y) = o expl Ay + Ty PoX(G) @
where
_ 2inplix()
_ w PmliX(@)
rni - n;]; ]’X] adm . (6)

This result follows from the first order necessary optinyatibnditions. Without
further assumptions about the functiohgi/x(d)) andp(y|x(d)), it is not guar-
anteed to be a global maximizer of the posterior entropytfanc However, for
a concave likelihood function and fixed path choice fradi@which result in a
concave prior entropy), the posterior entropy is concavevels and the above
solution is the unique maximizer.

The specification[{4) 1{6) is at the heart of the disaggredateand calibration
procedure presented in the next sections. It requires te Huachoice fractions
of every pathi of every OD paim by exgdA.; + ') and to re-normalizeA,;
captures the effect of the path flaly; on the log-likelihood, i.e., on the measure-
ment reproductionl’,; essentially describes how a changelin affects all path
flows d through the network conditions

The presented approach constitutes a generic PFE in thakegsnapart from dif-
ferentiability, no assumptions about the deployed routeéaghand network load-
ing model, and it functions with arbitrarily few measurensgrihe precision of
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which can be accounted for through an arbitrary likelihoadction. This is an

important advantage over all PFEs reviewed in Sedflon 1¢ckvhequire special

route choice and network loading models and do not deal witbmplete and

inconsistent measurements in the integrated and statlgtaonsistent manner a
generic likelihood function provides. However, the argyahost important ad-

vantage of the proposed PFE is its transferability to a bobass DTA microsim-

ulations, which constitutes the main objective of thisceti Further applications
to formal mathematical models are therefore left as a subjdature research.

The following subsection illustrates the workings of thevrieFE in terms of an
academic example, which is revisited in a microsimulatiettiisg in Section 414.

2.2 Example: two-route network

A simple network that consists of two unidirectional, ideal, and parallel links
(1 and 2) that connect a single OD pair is considered. Forlgiitypthe OD index
Is omitted in this example. The demand amountsite- 1000 travelers in the
considered analysis period. Either link constitutes ailid@asouting alternative.
The travel times on either path result from identical linkfpemance functions

2
t(daz(di) L =12 7)

750

that depend on the flow; (in vehicle units) on the respective path. Keeping with
the full notation of the previous subsection, a three-disi@mal vector of relevant
network conditions is specified:

x1(d) t(dy)
X(d)= [ x2(d) | = t(d2) (8)
x3(d) d;

where the first two components, the route travel times, aeelex for feedback
into the route choice model and the third component is usspéoify a likelihood
function further below.

Route choice is captured by the logit model

exp(—t(d))

P(ilx(d)) = exp(—t(d;)) + exp(—t(d>))’

=1,2. (9)

The symmetry of this setting implies prior route flows of 5@hicle units on ei-
ther path in SUE conditions. The concrete values in this @tamare chosen in



Table 1: System responses to different path flows

\ path rowsH d; =500, d, = 500 \ d; = 250,d, =750 \
t1, t2 according tol[(J7) 0.44,0.44 0.11,1.0
P(1), P(2) according to[() 0.5,0.5 0.71,0.29

order to obtain clear system responses that facilitate iswusision. For illustra-
tion, some numbers are given in Table 1.

A single flow sensor is located on link 1, which coupgsvehicle units during the
analysis period. Writing = (y1), the likelihood function is specified as

(dy —y1)?

(10)
20%

p(yx(d)) oc exp

whereo; (in vehicle units) is the standard deviation of the sensta.da

The posterior entropy of this simple scenario is strictipc@ve and has a unique
maximum. Observing thad, = d — d;, the posterior route choice fraction
P(1x(d),y) can be expressed as a single nonlinear equation by sulostitdt(7)

— (10) into [4) —[(6), which in this setting guarantees glatyaimality. However,
the resulting expression is fairly unwieldy and thereforeeg only in graphical
terms.

Figure[1l shows the estimated flows on path 1 over measuremeatsl variances

o4 that are varied between 0 addThe results are consistent with what one would
intuitively expect: The smalles,, the more belief is put on the measurement and
the betteritis reproduced. For largevalues, the estimator becomes independent
of the sensor data and falls back to the prior path flows. Betvieese extremes,
there is a smooth transition that reflects the PFE’s abititinterpolate between
the prior information contained in the model and the measarsgs.

In the full PFE, thel" coefficients require to calculate the derivatives of alhpat
choice fractions with respect to all path flows, where theptiog of these quanti-
ties is given through the network loading in that the inteaas of all path flows
generate network conditions that in turn are evaluatederrdlite choice model.
These derivatives are available in simple settings, but thay be hard to ob-
tain for generic demand and supply models. This difficultgas specific to this
PFE but applies more generally to all instances of the ODirastimation prob-
lem in congested conditions, where the most widespreadigolis to assume
a “proportional assignment” that essentially assumes figatk choice fractions
(Cascetta and Nguyen, 1988) and to account for their ace@mtlency on the
network conditions in a heuristic, iterative fashion, g(bundgren and Peterson,
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Figure 1: Calibration results for two routes example

2008). This coincides with the statement of zero derivativeroute shares with

respect to path flows and hence implies that Zéowmefficients may be an oper-
ationally attractive simplification. Even for zefocoefficients, congestion is ac-
counted for in[(#) and {5) through the dependency of bothahiéerchoice model

and the likelihood function on the network conditions.

Figure2 demonstrates the effect of this simplification anaktimation results. It
plots the difference between the exactly estimated routesfend their approxi-
mations for zerd" coefficients. The bias attains a maximum value of €%
of the total demand arounat = 100 for y; = 0 andy; = d. For very small
and very large variances, the bias ceases: In the first des4, ¢oefficients ab-
solutely dominate[(4), whereas in the second case the attibrfalls back to
the prior model. Since the bias is of moderate magnitudeppears justified
to choose zerd' coefficients in favor of the operational advantages thiadwi
along. This course of action is chosen in the remaining exysstts of this article.
However, accounting more precisely for the SUE feedbadctdf which here are
represented by thE coefficients, is an important subject of ongoing and future
researchl(Lundgren and Peterson, 2008). Note that relatepgss in the field
of OD matrix estimation is likely to be transferable to thethmelology proposed
here.

Summarizing, this section introduces a new PFE that makes mider assump-
tions about the underlying model components and the amodgaality of avail-
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Figure 2: Bias of simplified calibration for two routes exdmp

able sensor data than the PFEs presented so far in thediter#ts functioning is
demonstrated through an academic example, and someontaitout an opera-
tionally advantageous simplification is provided.

3 Disaggregate demand calibration

This section carries the macroscopic PFE over to the célioraf DTA microsim-
ulations. It is organized in two parts. First, the considdyge of DTA simulator
is described. Second, the considerations that enable &matitally consistent
application of the PFE to this type of simulation are disedss

Throughout this article, probability density functiong alenoted by a lowercase
p and discrete probability functions by an upperc&selnstead of noting the
probability that random variabl¥ takes valuec by some expression of the form
P(X = x), P(x) is briefly written and ambiguities are avoided by self-expl@ry
variables.

3.1 Considered DTA simulator

This specification builds on the seminal model of Cascet®89), which it sim-
plifies in some regards and extends in others. The notatitregirevious section

10



is in large parts re-defined here in a microsimulation canfEixe most important
changes in the new setting are that (i) it is fully disaggtegathat every traveler
is modeled as an individual entity and (ii) it is fully dynasboth on the demand
side and the supply side.

Agents and plans

We assume a microsimulation-based approach where evesldras modeled
as an individualagentn = 1...N. At every point in simulated time, every
agentn disposes of glan 1i,, that describes the intended travel behavior of that
agent. A typical plan comprises a sequence of trips that ecnimtermediate
stops during which activities are conducted, includingaaociated timing infor-
mation. We subsequently wrifé} as a shortcut for the whole population’s plan
set{iy,...,in)

A plan constitutes a fully dynamic demand specification ttegitures arbitrary
choice dimensions such as route choice, departure timeehamd mode choice.
An informal example of a plan would be “Leave home by car forkvat 7am
with a planned arrival at 7:30 am, taking the habitual routerk until 5 pm; then
take the highway to get to the local mall for one hour of shogpfinally return
home for the rest of the day, again using the habitual route.”

Supply simulator

Thesupply simulator executes the plans of all agents simultaneously on the net-
work. It models the physical interactions of the agentduiding congestion. The
result of such alynamic network loading are thedynamic network conditions

X, which comprise all time-dependent, aggregate networkaderistics (such as
flows, densities, velocities) that are relevant to the deximaking of the agents.
(No time index is used here for notational simplicity; oneyntlaink of x as a
large vector in which time-dependextk) vectors are stacked, whekeis the
simulation time step index.)

Formally, the supply simulator draws from a distributiefx|{i}) of the time de-
pendent network conditionsthat result from the dynamic network loading of a
particular plan sefi} in the population. In its most widespread form, this distri-
bution is implicitly defined through a stochastic supply rm&mulator. However,

a deterministic, macroscopic supply simulator whepe{i}) collapses into a sin-
gleton is just as feasible.
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Demand simulator

The demand simulator models the decision making of travelers. It maps, for
every agent = 1...N individually, the expected network condition®n a plan

i,, the agent chooses in these conditidhg(i,|X) is the probability that plam, is
chosen by agent given the expected network conditiansandC,, denotes agent
n’s choice sewf available plan alternatives.

It is assumed that the agents’ plan choice distributionsratependent once the
expected network conditions are given. That is,

N
PUX) = [ ] Pulin), (11)

n=1
which implies that the agents do not interact directly buyahrough the aggre-
gate network conditions. This is a reasonable assumptiolafge-scale and/or
time-critical simulations where traffic flow dynamics areitsally represented by
aggregate laws of motion (“mesoscopic simulators”) ingtafavehicle-by-vehicle
interactions (“car-following models”) (Astarita et alQ@1 ; Ben-Akiva et all, 2001a,;
De Palma and Marchal, 2002; Mahmassani, 2001; Nokel and i8ti2002).

The choice distributionB,, (i,/x) and the choice sefs,, are arbitrary and entirely
transparent to the proposed calibration approach. The migsienulator is only
required to generate realizations of these distributions.

Iterative simulation logic

So far, the DTA simulator is defined in terms of a supply sirtarland a de-
mand simulator. A solution to the DTA problem representst@asion in which
demand and supply are consistent with each other. It tygiaimpossible to
simulate this situation directly, but it is possible to ati@tely execute the supply
simulator and the demand simulator. After a burn-in pertbdse draws can be
tested for convergence towards a stationary distribuiod,their continuation in
stationary conditions allows to extract the relevant ctiarastics of mutually con-
sistent demand and supply (Balijepalli et al., 2007; Caaeaeid Cantarella, 1991;
Nagel et al., 1998; Watling and Hazelton, 2003).

To clarify the causal structure of this logic, &eration cycle counter c is in-
troduced. In a given iteration, the demand simulator first draws plans from
P({i}¢|x¢) conditional on expected network conditioxsthat are inferred from
the simulated network conditions of previous iteratioms] then the supply sim-
ulator draws network conditions that result from an exexutf these plans from

p (XL
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Algorithm 1 Iterative dynamic traffic assignment

1. Initialize cycle countee = 0.
2. Choose initial network conditiond,x', ... (e.g., free-flow conditions).

3. Repeat for as many iterations as necessary to extracantleharacteristics
in stationary conditions:

(&) Increase by one.

(b) Calculate expected network conditiotisfrom x<=! x<=2, .. ..
(c) Replanning. Fon =1...N, draw plani¢ from P, (i<x°).
(d) Network loading. Draw network conditiomxs$ from p (x€|{i}€).

The loop is closed by a model component that infers the egdewétwork con-
ditionsx® from the previously simulated network conditioxfs', x~2, . . .. Pos-
sible realizations of this filter are a moving average oveumlper of previous
iterations, e.g.,/(Liu, 2005), an autoregressive process, (Ben-Akiva et al.,
2001b; Raney and Nagel, 2006), or the method of successeragas (MSA),
e.g., (Liuetal.| 2007). For the calibration, it only is réga that the expected
network conditions attain a low variability asbecomes large. This requirement
is made more precise further below.

Algorithm[d summarizes the workings of this approach. Itstintes a stochastic
process that eventually stabilizes at a stationary digioh of plan choices and
resulting network conditions that constitute the simolatbased solution of the
DTA problem. Itis called therior solution of the model because it incorporates
no sensor data. (The existence of a unique stationaryhulistvsn depends on the
involved model components. It can, for example, be guaeshifethe simulation
process is designed as an ergodic Markov chain (Ross, 2006).

Denoting by7t a continuous and byl a discrete stationary probability distribu-
tion, the prior solution can be formally given in terms of fbdowing system of
equations:

Ma(in) = Pa(inX),n=1...N (12)
N

M) = J]mMalin) (13)
n=1

n(x) = pXI{i}~TI({i}) (14)

X =~ E{Xx~m(x)}. (15)
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Equation[(1R) specifies the individual-level prior choidcstidbution of every agent
n. Equation|[(1B) states that the population prior choiceitistionTT({i}) results
from the independent choices of all agents (where the mirtteabctions are fully
captured through the expected network conditiond he prior distribution of the
network conditions is defined ib(114), and the expected pragwork conditions
are given in[(1b).

The requiremenf (15) that the agents replan based on (aoxapyation of) the ex-
pected network conditions is motivated as follows. The msoopic PFE solves
the calibration problem through an adjustment of all chaiisgributionsin equi-
librated conditions The counterpart of these distributions in a microsimolati
are the stationary choice distributions, which are imgliailefined through the
iterative dynamics of the stochastic simulation procelsfiowever, the expected
network conditions< eventually stabilize at constant values, then the tramsiti
distributionsP,, (i/x) and the stationary choice distributidrig(i) coincide and the
calibration problem can be tackled by a modification of therapionally more ac-
cessible transition distributions only. (The subscnf a plani,, is subsequently
omitted when the agent the plan refers to is not of relevance.

The transition distributions and the stationary choiceritigtions coincide well

even if some variability in the expected network conditianis left in that they

are distributed according to some distributiofx) in stationary conditions. To
see this, the stationary plan choice distribution (12) veritten as

Ma(i) = Jmu%}n(@ ax. (16)

If the expectation oft(x) equals the expectationx ~ 7t(x)} of the simulated
network conditions and if the distribution(x) is tight enough to allow for a lin-
earization ofP,,(i/x) aroundx® = E{x|x ~ 7t(x)} then

P (iX°)
ox°
which implies that the stationary plan choice distributeord the transition dis-

tribution coincide well even if[(15) is implemented througtfilter that main-
tains some variability in the expected network conditiomdso, the expected
network conditions may differ for individual agents withiine aforementioned
limits. However, for notational convenience the model wilbsequently be spec-
ified in terms of an approximation of the expected networkdtons only, as it
is expressed in(15) by thed” symbol.

The iterative assignment logic is equally applicable toudate an SUE-based
planning model and a telematics model where drivers aretapeaus and imper-
fectly informed. From a simulation point of view, the onlyffdrence between

M.(i) ~ J {Pn(ui") + (X — P)} n(x)dx = P.(ix°), (17)
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these two models is that an SUE demand simulator typicailiges all informa-
tion from the most recent network loadings, whereas a teilemdemand simula-
tor generates every elementary decision of a plan only basadch information
that could have actually been gathered up to the according posimulated
time. The filtering of the expected network conditions hdfedent meanings in
either approach: In an equilibrium model, it can be seen aaming mechanism
through which travelers remove random fluctuations fronir thigservations. For
a non-equilibrium model, the same mechanism can be empkoystbilize the
iterative solution procedure, but no behavioral intergiien is available in this
case [(Bottom, 2000; Bottom et/al., 1999). To keep the terlogyosimple, the
remaining presentation is given only in terms of an SUE plagnmodel.

3.2 Disaggregate application of the calibration

The macroscopic PFE developed in Secfibn 2 is now carriedtotle previously
described DTA microsimulator. Essentially, the OD pairs @aplaced by agents
and the routes are replaced by plans. Thathisz 1...N now represents the
agent population instead of the OD pai€s, represents the choice set of agent
n instead of the route set connecting OD pajrandi € C, indicates a plan
available to agent. instead of a route that connects OD pair The transition
from a static specification that only considers paths to aadyo specification
that accounts for full plans is feasible because a time-u#gra network can be
equivalently modeled as a time-expanded static networkaafd-day plan con-
stitutes a simple path in the expanded network (Bierlaig®22 Fl6tteréd, 2008;
van der Zijpp and Lindveld, 2001).

The basic assumption of this approach is that the macros&bypE model of Sec-

tion[2 captures the average conditions in the microsimaauch that the macro-
scopic PFE can be deployed to adjust the average conditichg imicrosimula-

tion as well. This requires to clarify the notions of “aveeagetwork conditions”

and “average agent behavior” in the considered class of Ditdasimulators.

Average network conditions. The macroscopic PFE assumes that the network
conditions result from a deterministic network loading loé¢ ttontinuous-valued
demand. The microscopic model is based on an expectatiotodiastic net-
work conditions. Since the network loading is in general alime@ar operation,
the expected network conditions differ from the result oesedministic network
loading of the expected demand levels. This deviation betvegygregate SUE as-
signments and stochastic microsimulations has been fabehitly Cascetta (1939),
who concludes that “in the limiting case of a number of remeratl costs tend-
ing to infinity with uniform weights, users tend to base ttaipices on average
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Table 2: Microscopic redefinition of macroscopic PFE easiti

| symbol | macroscopic | microscopic |
n=1...N | OD pairs agents
Cn routes connecting OD pair plans available to agemt
n
1eCy a route connecting OD a plan of agent.
pairn
d. number of trips in OD pait number of times agent
n chooses a plan per
iteration (= one)
dni number of trips on route | stationary probability that
1eCy agentn chooses plam

costs, which are still different from costs computed forrage flows in the case
of nonlinear cost functions. Also in this case [the iterat@drosimulation] and
SUE expected flows are only approximately equal.” Howewemlso shows that
“in general, however, they can be considered coincidentiwithe limits of a
first-order approximation”.

Average agent behavior. Every agenth chooses one plan in every iteration of
the microsimulation. This implies thal,, which previously was the number of
trips in OD relationn, now is one. A natural re-interpretation df;, which
previously was the number of trips in OD relatianalong pathi, is possible in
terms of acontinuous limit that results when agent is (only hypothetically)
replaced byZ — oo identical agents of sizé/Z that all draw independently
from the original agent’s plan choice distribution. In thentinuous limit,d,;
becomes agent’s probability P,.(i]-) of choosing plani. This observation is
relevant because the macroscopic PFE maximizes entrojghwksumes a large
population of decision makers. The continuous limit bebaegan be evaluated
by the considered class of DTA microsimulations in statigrenditions, where
every agenth replans based on stable expected network conditosisch that
repeated instantaneous choices of the same agent follogathe distribution as
a sequence of choices over several iterations. That is,ninepy maximization
approach of the macroscopic PFE can still be applied to aasiitiulation in
stationary conditions witll,, = 1 andd,,; being the according stationary choice
probability of plan.

Table[2 gives a summary of these re-definitions. Based om tt@ssiderations,
the macroscopic PFEI(4) E](6) can be combined with the solfig) — [15) of
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the simulation-based DTA model into the following speciiica:

. exq/\ni + r‘ru)Pn(lb?ly)
Im.(i = —— n=1...N 18
) = S X Ay + oy Py (18)

N
m{y) = J]Ma(ialy) (19)
n=1
nxly) = p(xI{i} ~TT({illy) (20)
Xy =~ E{xlx~m(xly)}, (21)

where [(18) and (19) now specify the stationary posterian pteoice distributions
in the population symmetrically t@1(4), and the (expecteshtprior network con-
ditions are defined in_(20) and_(21)\; andT,; are defined in[{(5) and6), only
that they are now evaluated in expected posterior netwarklitionsx, and with
the path flowsd,,; being replaced by the stationary posterior choice digtiobs
T (ily).

Recall that[(#) —[(6) only specify a stationary point of thetaoior entropy func-
tion but not necessarily a global maximum. If there are seh&ationary points
then additional measures are necessary to ensure a propeniggion, e.g., by
running the above model several times and comparing thétsesdowever, our
present experience with this specification is that it ungmbiisly converges to-
wards a single, plausible solution.

The model[(IB) -[(21) can be solved by the same iterative sitionl approach
that is used to solve (12) £ (115), the only difference beirag the plan choice
distribution of every replanning agent is now scaled by tgoeential of the ac-
cordingA andl” coefficients. This is a computationally very efficient sfieation
because it only affects the agent behavior at the indivithval, which turns the
joint demand calibration problem fd¢ agents intdN individual-level calibration
problems, where all interactions are captured throughténations of the simula-
tion.

Algorithm[2 outlines, as for now only conceptually, how ttadiloration is applied
to a generic DTA microsimulator. Clearly, the applicalyilaf this calibration
logic is very broad.

In order to make the calibration operational, two more goastneed to be an-
swered: how to calculate theandI" coefficients in Step 2a and how to implement
the scaling of the choice probabilities in Sfeg 2b for a geneicrosimulation
that can only be expected to generegalizationsof the choice distributions and
network conditions. This is discussed in the next section.
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Algorithm 2 Calibration of a generic DTA microsimulator

1. Initialize the calibration and the DTA simulator.

2. Repeat for as many iterations as necessary to extracantleharacteristics
in stationary conditions:

(a) Calculate alA,,; andT,; coefficients.

(b) Forallagentss = 1...N, draw a new plan from a choice distribution
that is scaled by eXp\.; + I'v;) foralli € C,..

(c) Load all agents on the network.

4 Making the framework operational

This section details the technical steps that are necessapply the demand cali-
bration to a DTA microsimulation. First, Subsectionl4.Irifies how to calculate
the A coefficients, given an arbitrary supply simulator. Secdhabsection 412
explains different methods to enforce the scaled plan ehdistribution [(18) in
an arbitrary demand simulator. Third, Subseclion 4.3 givstep-by-step specifi-
cation of how to apply the calibration to a generic DTA micnaglation. Finally,
Subsection 414 clarifies the developments with a continnatf the two-routes
example of Section 2.2.

As from now, thel" coefficients in[(IB) are set to zero because of the operationa
reasons given in Sectign 2.2. If they are to be accountedhfey,can be added to
the corresponding\ coefficients wherever the latter are used in the following to
affect the simulated agent behavior.

4.1 Linearization of the log-likelihood

Stationary posterior conditions are assumed in this stieseevhich means that
all agents draw their plans from posterior choice distidnglT,, (ily). Thisis jus-
tified by the specification of the calibrated system stateritlaes on a lineariza-
tion of the log-likelihood in posterior conditions. Sinae stationary conditions
the choices of all agents depend on stafjlealues and hence are not affected by
the particular realizations of in recent network loadings, the iteration counter
is omitted in this subsection.

According to [5), a calculation of tha coefficients requires to differentiate the
log-likelihood function Inp(y|x(d)) with respect tal,;, which in the microscopic
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case carries over to a differentiation with respect to tloeeing stationary choice
probability IT,,(ily) in expected posterior network conditiong, cf. Sectior 3.P:

L 0 lnp(y’XIy) _ <a |np(y’XIy) ax\y >
T AMa(ily) oxy ' oMa(ily)

(22)

where(-, -) denotes the inner product. The first vectae"l”ggﬂ, will turn out to be
y

i ; Xy
relatively easy to compute. The evaluation of the second)v,em, however,
requires some additional effort. For this purpose, theamotif a “proportional
network loading” is introduced.

A proportional network loading describes a situation in which the time-dependent
travel times on all links in the network are known and fixed.isTimplies that
there are no interactions between the flows, which move tir@am exogenously
specified network environment. The resulting flow on any la@icomes a linear
superposition of all path flows across that link. For a miecmasator, this implies

that the agents linearly superpose on each link. In ordebtaim a mathemati-
cally tractable relation between demand and resulting oxtwonditions, the true
dynamics of the supply simulator are captured by a lineavowt loading. For-
mally, this implies that the simulated traffic count(k) on link a in simulation
time stepk is written as

N

xa(k) =) 1(ak € in) (23)

n=1

wherel(-) is the indicator function andk € i, indicates that plan,, requires
agentn to enter linka in time stepk (where, for simplicity, it is assumed that
the sensors are located at the upstream end of a link). Thisimperfect model
of the actual network loading in that the assumption of camistravel times im-
plies that the inflow of links at the capacity limit increase=yond this limit if
the demand is increased. Consequently] (23) is an impedpcesentation of
the supply simulator in congested conditiinan alternative approximation that
captures congestion with greater precision is describ@édtteréd and Bierlaire,
2009). However, for clarity only the simple case of a projoordl network load-
ing is considered in the following. The results carry ovenast identically to the
congested case.

INote that a proportional assignment, which is widely ancteasfully assumed in the field
of time-dependent OD matrix estimation, implies the sansaimption of constant travel times.
That is, although(23) is consistent only in uncongestediitmms, the state of practice suggests
its applicability even in the case of congestion.
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Assuming(2B) to be applicable, the vecxgrof expected posterior network con-
ditions contains the elements

K)y = Z Z 1(ak € )T (ily), (24)

n=11eCyp

which yields when inserted intb (22)

oln X
6xa
akei
This means that tha coefficients can be evaluated by summing up the derivatives
of the log-likelihood with respect to the simulated traffauots along all links that

are contained in the considered plan.

In order to show that this is not a difficult task, univariatemal likelihood func-
tions are considered as an example. Denoting the measwatecpart ofx (k)
by y.(k) and maintaining the symb@l for the vector of all available measure-
ments, one has

Jy — Yalk))?

o(x
Inp(ylxy) = const— Z i 202 (k)

ak

(26)

where the sum runs only over sensor-equipped linksadi#) is the variance of
the sensor data on link in time stepk. In this case, an evaluation @f (25) yields

. ya(k) - Xa(k)\y
/\ni - Z G(zl(k) (27)

akei

where the expectation can be obtained by averaging the aetutraffic counts
over many stationary iterations in the DTA simulator.

4.2 Affecting the agent behavior

The disaggregate demand calibration requires to scaldtheedistributiorP,, (i)
of every replanning agent individually by ep,;) and to re-normalize. Given
that theA coefficients are available frorn_(25), a universally apgileanethod to
realize this scaling is rejection sampling (Ross, 2006 hdde by

Pacceptn ) - eXp(/\m (28)
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the acceptance probability for plafrom agent'’s choice setC,, whereD,, must
be such that

D, > irggxexp(/\m) (29)
for (28) to be a proper probability. If repeated draws takemfP,(i|-) are ac-
cepted with probabilityP.ccepm (1) and are rejected otherwise, then the first ac-
cepted draw constitutes a draw from the desired scaled eluistribution. The
correctness of this approach is verified in Apperidix C.

While the accept/reject estimator is arguably the most igemeethod to affect
agent behavior, it is by no means the only one. For exampléheifdemand
simulator implements a multinomial logit (MNL) model (Békiva and Lerman,
1985) then a computationally more efficient approach isfecathe agent behav-
ior by modifications of their utility functions. Appendix] Chews that an MNL
demand simulator immediately generates draws from théreadid choice dis-
tributions if the according\,,; coefficients are added to the systematic utility of
every considered alternative before the MNL model is evelliaNote that this
result carries over to path-size logit (Ben-Akiva and Bie, 2003) and C-logit
(Cascetta et al., 1996) models. It also is noteworthy thagwistic application
of this technique is possible even if the demand simulat@sdwmt implement
an MNL choice distribution. Such an approach is based on &eveheoretical
foundation, but it may still produce practically usefuluks.

4.3 Algorithm

The definition ofA,,; in (28) requires to calculate the according derivatives/in a
erageposteriornetwork conditions, which, however, are a priori unknowinisT
constitutes a fixed-point problem that can be iterativelyesdr Starting from the
behavioral prior, successively improved linearizatiors generated from itera-
tion to iteration until a stable state is reached where thienasor draws from the
behavioral posterior based on stalleoefficients that in turn are consistent with
this very posterior.

For illustrative purposes, the method of successive aesr@dSA) is applied to
this problem in Algorithni.B, which affects the agents’ clebehavior using the
general rejection sampling technique as an example. Tooritdim calibrates
whatever choice dimensions are represented by the demanthsor, is compat-
ible with an arbitrary supply simulator, and is fully cortsist with the execution
logic of a typical DTA microsimulator.
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Algorithm 3 Linearization-based accept/reject estimator

1. Initialize cycle countee = 0.
2. Choose initial network conditiond,x', ... (e.g., free-flow conditions).

3. Repeat for as many iterations as necessary to extracantleharacteristics
in stationary conditions:

(&) Increase by one.
(b) Calculate expected network conditiofsfrom x°~', x*2, . . .
(c) Replanning. Fon =1...N, do:

i. Run the demand simulator and obtain a plan

ii. Calculate/,r according to[(25) usingy,.

iii. With probability 1—Paccepm (1) according tol(28), goto stép 3(c)i.
iv. Retain the first accepted drawf, = i’.

(d) Network loading. Drawx® from p (x€[{i}€).

4.4 Example

This subsection exemplifies the workings of Algorithin 3 inmie of the two-
routes example introduced in Sectionl2.2. The example ism@aroscopically
simulated for a population of 1000 identical agents, eachoth perceives travel
time according to[{[7) and chooses a route according]to (9& eKpected travel
times result from a moving average of the simulated traveés over five itera-
tions.

For illustrative purposes, a measured flowmgf = 250 veh/h with a standard
deviation ofo; = 10veh/h is assumed. The calibration is run for 100 iterations.
Note that in this setting thé\; coefficient can be calculated according [fol (27)
and thatA, is zero because there is no sensor on route 2. Figures 3, 4 and
show, for a single calibration experiment, the flow on route 1, the expected
travel timet; on that route, and th&, coefficient, respectively. For comparison,
the uncalibrated flows and travel times of a single simufaéice added in dashed
lines.

The prior flows fluctuate in a stable manner around 500 vehiiciwis consis-
tent with the symmetry of the scenario. After some oversihgothe posterior
flows stabilize around 360 veh/h, which constitutes the comse the calibra-
tion identifies between the prior flows and the measured w1280 veh/h. Note
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that although the calibration has been derived in terms efeage network condi-
tions, the actually calibrated network conditions ard dtdtributed in a way that
is consistent with the stochasticity of the demand geneeattd (in general but not
in this example) the supply simulator.

The average travel time on route 1 changes from 0.45 in poioditions to 0.23 in
posterior conditions. This constitutes an important aigviorce behind the inter-
polation of prior information and measurements: As thextation removes more
and more vehicles from path 1 in order to fit the measuremieatravel time on
this path decreases, which in turn increases its attramase Upon convergence,
the calibration has compromised in a plausible Bayesiannerabetween these
two effects.

Finally, the evolution of the\; coefficient shows how the calibration takes effect.
After a few iterations of transient oscillations, the caméfnt stabilizes around -
1.1. This value is consistent with the theory: Inserting o; and the average
posterior flow of 360 veh/h in(27), one obtains the same valhe negative sign
of A; indicates that there is too much simulated flow on route 1¢kwvthe calibra-
tion tries to reduce by scaling the choice probability oftitute by expA;) < 1.

This type of detailed analysis is hard to conduct for thedarspl-world test case
presented in the next section, which therefore resorts te raggregate perfor-
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mance measures. However, the conceptual workings of thieraizdn are the
same as described in this example.

5 Zurich case study

This section presents results from an ongoing real-worde saudy for the city of
Zurich (Flotterdd et all, 2009). First, the deployed sintiolasystem is described
in Sectior 5.11. Second, the Zurich scenario is presenteddtid®(5.2. Third, the
interactions between simulation and calibration are itigated in Sectiofn_513.
Finally, Sectiori. 5.4 reports on the validation of the caltbd simulation system.

5.1 Deployed simulation system

The MATSim (“Multi-agent transport simulation toolkit”, MI'Sim,laccessed 2009)
DTA microsimulation is used for the purposes of this stutlywiorkings coincide
well but not perfectly with the specification of Sectlon|3This situation is likely

to be encountered in the calibration of other microsimalagias well. An im-
portant aspect of this study is therefore to show that theredion is robust with
respect to (mild) violations of its underlying assumptions

Consistently with all assumptions of the calibration, MATMRonsists of a micro-
scopic and stochastic demand and supply simulator, whechexatively executed
until stationary conditions are attained. The supply satarlis based on a queue-
ing model that is fully consistent with the assumptions @ thiork (Cetin et all.,
2003). The choice dimensions accounted for in the demandiaiar are route
choice, departure time choice, and mode choice (car vs.ano-@dhe demand
simulator has some unusual features that are discussed fallbwing. It is de-
scribed in detail in.(Raney and Nagel, 2006).

Continuous choice set generation.The choice set generation and the choice
simulation are intertwined in MATSim. The rational behiiistis that the choice
set should be appropriate in equilibrated network conaiijevhich are not known

a priori. The simulation therefore proceeds in two stagethe first stage, as from
now called thehoice set generation stage¢he choice set is continuously updated
in that new plans are generated and other plans are discdwded the iterations.

In the second stage, tlohoice stagethe choice set generation is turned off and
the demand simulator operates based on fixed choice sets.

Implicit choice distribution. Agents make choices both in the choice set gen-
eration stage and the choice stage. In the choice set gemesshge, a newly
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generated plan is selected for execution with probabilitg.oThis is necessary
because MATSim calculates the utility of a plan only aftes gxecuted; this logic
is discussed in the next paragraph. Since the generatioevopians is realized
by random variations of existing ones, the guaranteed ts&heof a newly gen-
erated plan generates draws from the set of all plans thaveaossibly created
by random variations. If no new plan is generated for an ager of its existing
plans is selected according to a multinomial logit modelthie choice stage, no
new plans are generated and the demand simulator only appéemultinomial
logit model.

Simulation-based utility function. MATSim uses an all-day utility function that
consists of positive terms for the execution of activitiesl aegative terms for
travel (Charypar and Nagel, 2005). Utilities are not calted based on aver-
age network conditions but as averages over the experiartitiés of executed
plans, which from a calibration perspective implies the saype of approxima-
tion as discussed in Sectibn 3.2 when comparing the resalteterministic net-
work loading of an average demand with the expected netwamklidons given
the actual demand distribution. MATSIim averages the erpegd utilities by a
recursive first-order filter with an innovation weight of 0.1

Apart from these peculiarities, MATSim constitutes andtafe DTA microsimu-
lator that complies with all assumptions of the proposeibcation.

5.2 Description of test case and uncalibrated simulation

Figure[6 shows the road network of the analysis zone. Anfalvaitzerland
network with 60 492 links and 24 180 nodes is used. It is basedSwiss regional
planning network, which has been made ready for simulatiopgses based on
additional OpenStreetMap network data (Chen et al.,'2008).

A synthetic population of travelers for all of Switzerlarsdavailable from a previ-
ous studyi(Meister et al., 2008). All travelers have congptkztily activity patterns

based on microcensus information (SFSO, 2006). The expatsiwonsider only
those agents who cross a 30 km (18.6 miles) circle aroundahteicof Zurich at

least once during their daily travel, including those agemho stay within that

circle for the whole day. In order to obtain a high computagicspeed, a random
10 % sample is chosen for simulation, which consists of 187si®ulated trav-

elers. All agents iteratively adapt route choice, departume choice, and mode
choice. Public transit is simulated as described in (Greghal.,[2009), that is, it

is assumed that it provides door-to-door connectivity atéwthe free speed travel
time by car.
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Figure 6: Zurich network

Hourly traffic counts from 161 inductive loop sensors ardlatée from 06:00 to
20:00 of one day. The deviation between measured and sieduligtffic counts
is both graphically and quantitatively evaluated. For &lsimspection, scatter
plots such as those given in Figure 7 are used. Every poinésepts one pair
of measured/simulated traffic counts, where the measurke vefines the x-
coordinate and the simulated value defines the y-coorditiaa$i measurements
were perfectly reproduced by the simulation, all points lddie¢ on the diagonal
with slope one. Deviations from that diagonal signalizeoimgistencies between
measurements and simulation.

FigurelT shows scatter plots that are obtained after 50&tibers of uncalibrated
simulation. The line above (below) the main diagonal repmés simulation val-
ues of twice (half) the observed traffic counts (note thatpluts are double-
logarithmic). Most points are within this (admittedly l@sband, which indi-
cates that the simulation captures the overall situatioly faell. However, there
clearly is room for improvement.
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5.3 Inserting the calibration into the simulation

The proposed calibration methodology is implemented irfriibe Cadyts (“Cali-
bration of dynamic traffic simulations”) software packa@adyts, accessed 2009;
Flotterod, 2009). Cadyts is written with conceptual anchtecal flexibility in
mind in that it offers various modes of interaction with déént DTA microsim-
ulations. All experiments reported in this section are Hase an application of
Cadyts to MATSIm.

In this case study, the agent behavior is affected by mauifyhe utility of their

available plans before they make their choices, cf. Se@i@n The only excep-
tions are newly generated plans, which are always execufad implies that
these parts of the demand remain uncalibrated during theelset generation
stage and that the calibration takes full effect only in theice stage.

The evolution of the calibrated simulation over the iteya$ is visualized in Fig-
ure[8, which shows the mean weighted square error (MWSE) ofedsurements
over the iteration number. This error measure is defined as

(ya(k) - Xa(k))2>
202(k) ok

MWSE = < (30)
whereo (k) is the standard deviation assigned to the sensoryldta on link a

in hourk, x4(k) is its simulated counterpart, axd . indicates an average over all
sensor locations and hourly time intervals. This coincigil the log-likelihood
function that is assumed in the calibration, which corresisato the assumption
of independent normally distributed measurement errolng veriance of a mea-
surement is calculated as

o2(k) = 0.5 - maxuyq.(k), (25 veh/H?}, (31)

a

which reflects two considerations. First, there is the agpgiom that the variance
of a measurement error is proportional to the measured v&8eeond, there is a
positive lower bound on the variance, which ensures thgtsmall measurements
are not over-weighted and avoids numerical problems in aéuation of [(30).
The numerical values used in this specification were expariaily obtained.

When applying the calibration, the system starts in an dyremuilibrated state
that has been attained after 500 uncalibrated iteratioms.c@librated simulation
is then run for another 500 iterations, i.e., from totalatezn number 500 to 1000.
Running the calibration jointly with the simulation for aher 500 iterations re-
quires approximatelyo}1 h on a 64 bit Intel Nehalem machine at 2.67 GHz using
at most 10 GB of RAM. Not even 9 % of the computing time (apprbg’;(h) are
calibration overhead.
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Figure 8: Mean weighted square error (MWSE) using all counsitations

Since the system starts already in an equilibrated stateystematic changes of
MWSE in Figure[8 can be attributed to the calibration. The MBMS quickly
reduced from more than 100 in iteration 500 to around 45 naiiten 600. After
this, the curve flattens. It is plausible to assume that infitise iterations the
calibration “fills up” the measurement locations by arbigrplans and that in
the following iterations the simulation rearranges thenplsuch that behaviorally
more reasonable plans take the place of other plans thatdesareused by the
calibration before.

The choice set generation stage finishes at iteration 80i@hvgenerates a jump
in the system behavior: Since the immediate execution ofyngenerated plans
is omitted, the calibration can affect the whole plan chaleribution, which
results in another improvement of MWSE from around 35 t¢elithore than 20.
The variability of MWSE is reduced to almost zero after itema 800, which is a
consequence of the reduced variability in the executedspdaice the choice set
generation is turned off.

Figure[9 shows scatter plots that are obtained from the tixsttion of the cali-
brated simulation, i.e., iteration 1000. A comparison with uncalibrated scat-
terplots of Figuré 7 shows that the data points are clearlyeraentered around
the main diagonal. A quantitative evaluation of this effisgbossible in terms of
the MWSE of Figuré 8: The MWSE at iteration 500 correspondgh&scatter
plots of Figuré ¥, and the MWSE at iteration 1000 correspaadisose of Figure
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9.

Overall, the calibration generates a clear improvementa@éasarement fit at an
extremely low computational cost. However, this alone doasprove that the
calibrated agent behavior becomes more realistic becéese are many plau-
sible and not-so-plausible combinations of plan choices thproduce the mea-
surements equally well. The next section provides crofidatéon results that
indicate that the calibrated demand is indeed more realisti

5.4 Cross-validation results

While the previous section clearly demonstrates that thiresion improves the
measurement reproduction, this section demonstrates thags so in a way that
also improves the realism of the global traffic situation.isTis an important
issue that applies to demand calibration from traffic coumggeneral because this
problem is highly under-determined, which implies thatéhs a large number of
demand configurations that reproduce the traffic countsligquell. Recall that
the proposed calibration resolves this under-determandty taking the choice
logic that is implemented in the simulation system itselfres prior information
about the demand. The traffic counts are then added to tliemation in order
to obtain an improved posterior choice distribution.

For cross-validation, the 161 sensor locations are ranglagsigned to ten disjoint
validation data setsof roughly equal size. For each validation data set, there is
a correspondingneasurement data sethat contains the traffic counts from all
sensors that are not represented by the respective vahdaddita set. For every
measurement/validation data set pair, one calibratioromlected, where only
the measurement data is made available to the calibratidnh@&ncorresponding
validation data is used to evaluate how well the calibratech@hd generates a
spatiotemporal extrapolation of the traffic counts.

Figure[10 shows the MWSE trajectories of the measuremeatfda@ll ten ex-
periments over the iterations, where all trajectories arenalized to their values
at iteration zero for better comparability. Figlreé 11 shdwessame type of curves
for the validation data. The similar dynamics of the measignet MWSE values
indicate that the calibrated simulation exhibits well-aedd dynamics and gener-
ates reproducible results. Overall, the measurementdeption error is reduced
by around 80 % in all cases.

The validation MWSE curves exhibit a greater variabilithish can be explained
by the lower number of measurements that enter the averagi@p). Again,
the variability is substantially decreased once the chsetegeneration is turned
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Figure 9: Scatter plots after calibration
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Figure 10: Validation results — measurement reproduction
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Figure 11: Validation results — measurement extrapolation
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off. The different experiments attain different MWSE vaugecause disjoint
sets of sensor data are evaluated. Overall, an improvendi % to 45 % is

attained. This clearly indicates that the local informatibat is contained in the
measurement data is used by the calibration in a way thattaftee network-

wide agent behavior such that more realistic global netwsankditions result.

One also should keep in mind that the relative positioninthefsensors affects
the validation results in that the extrapolation power @ dtalibration is limited

by the spatiotemporal correlations in the network condgiolf the validation

sensors are too far away, they simply are not affected ang imothe calibration,

no matter how well it performs.

These results show clearly that the calibration conductsael modifications that
are structurally meaningful in that they do not only fit thesar data well but also
lead to a global improvement in the system’s realism. At lot, the difficulty
of the calibration problem that is solved here needs to less#d. The calibration
adjusts simultaneously the route choice, mode choice, apdrture time choice
of hundreds of thousands of individual travelers in a pusahyulation-based en-
vironment on a network with many ten thousand links. The nemad iterations
required to obtain stable and realistic results is in theoad a plain simulation,
and the computational overhead introduced by the caldomasialmost negligible.
The authors are not aware of any other calibration techrtigaiecomes close to
such results.

6 Summary and outlook

We present a new calibration framework that overcomes méathecssimplifying
modeling assumptions typically adopted in the calibratibdynamic traffic sim-
ulators. Our approach allows for the estimation of arbyttaghavioral patterns at
the individual level in a Bayesian setting where traffic dguare combined with a
simulation-based representation of the analyst’s priomkadge. The approach is
compatible with both an equilibrium-based modeling assionpand a telemat-
ics model where drivers are spontaneous and imperfectiyritdd. Experimental
results for a large real-world test case are presented #mbdstrate the effec-
tiveness and adequacy of the proposed method. A softwalennentation of the
methodology is freely available on the Internet (Caoytseased 2009).

Our current work focuses on the calibration of behavioratledparametergsuch
as the coefficients of a utility function) from traffic countSince this is likely
to reach the limits of what can be inferred from this type ofasiw@ements, the
incorporation of additional sensor data is another impdntasearch topic. The
free software implementation of the calibration is continsly applied to different
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DTA microsimulations, which yields important insights oawto improve the
system’s conceptual and technical flexibility.

Finally, the joint calibration of demand and supply is a &rae that eventually
needs to be tackled. The current demand calibration assin@espply simulator
to be modeled without bias (an assumption it shares withFllPand OD ma-
trix estimators that treat the network loading as a detesticnmapping), which
should be relaxed in future research.
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A Maximization of prior entropy

Denote byd,, the total demand of OD pait and byd,,; the demand for path
i € C,, whereC,, is the path set of OD pait. If the demand was integral then
the path flowsd = (d,,;) would be distributed according to

N . .
— [Ticc, (Pulilx(d)))d
) E I o dnd (32)

where, differently from a standard multinomial distritmrtj the event probabil-
ities are not fixed but themselves random variables becéesedepend on the
path flows through the network conditiors Taking the logarithm and applying
Stirling’s approximation (IZ! — ZIn Z — Z for large Z), one obtains therior
entropy function

N
W(d) =InP(d) =) |dulndn+ ) dninPu(ix(d)) — > dnilndn| .
n=1 ieCn ieCn

(33)
(Note that this specification aV(d) differs from (2) in the main text by the ad-
dend}_, d.Ind,, which affects only the maximum value ®&(d) but not the
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according path flows.) In order to show the equivalence ofjtbbal maxima of
W(d) (subject to the flow conservation constraipts. . dni = d,, Vn) with the
SUE flows, the following observations are made.

1. The maximum value o#V(d) subject to the flow conservation constraints
is zero: Foffixedpath choice fractionB,, (1) Yn, i, W(d) is strictly concave
and its maximization subject to the flow conservation causts yields the
path flowsd,; = P.(i)d.Vn,i and an objective function value of zero.
Now consider any candidate combinatiorvafiable path choice fractions
and path flows. Fixing the path choice fractions at their givalues, a
maximization with respect to the path flows again yields guaimaximum
with a zero value oW(d).

2. Every SUE flow is a global maximizer ¥ (d) subject to the flow conserva-
tion constraints: A substitution of the SUE flows; = P.(i/x(d))d,, Vn,1i
yieldsW(d) = 0, which is the global maximum value.

3. Every global maximizer oW(d) subject to the flow conservation con-
straints is an SUE flow: Assume that there was a global maringiz=
(dni) where at least ond,; # P.(ilx(d))d,. Fixing the path choice
fractions atP,(i) = P,(ijx(d)) Vn,i, W(d) is maximized if and only if
dni = Pn(i)d,Vn, i, which contradicts the assumption.

Items2 andI3 establish the equivalence of SUE flows and gilobgima ofW(d)
subject to the flow conservation constraints. Note alsottfepossible existence
of multiple global maxima can only result from non-unique EStows, which
would indicate a modeling problem rather than a flaw in thevedent maximiza-
tion problem.

B Maximization of posterior entropy

Before maximizing the posterior entropy function
W(dly) = Inp(yld) + W(d), (34)

the additional requirement of constant demand ledglper OD pairn is intro-
duced in the Lagrangian

N

n=1 ieCn
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where thew,, are the Lagrangian multipliers. Usifg (33), the derivatté (dly)
with respect tad,,; (wherem is an OD pair and € C,,,) becomes

oL(dly)  alnp(ylx(d)) P (jx(d))
odny = LU
dni  OPy(ilx(d))
+ZZ @) oay | tum @9

n=11eCn

Setting this to zero and solving far,,; yields

dmj - exqum - ]) exq/\mj + rm])Pm()|X(d)) (37)
where
~ 0lnp(yix(d))
Amj = 3dnm (38)
= P (ilx(d))
My = ; Z 1]x 0 odw (39)
The exgu,, — 1) terms result from a substitution ¢f (37) &, = 3 ;. dmi:
expun,—1) = dim (40)
" ZieCm exﬁ/\mi + rml)Pm(‘L’X(d)) .
Inserting this in[(37) finally results in the posterior chojarobabilities
. d o exp(Am; + I )P (5% (d
Pouljix(d),y) = S — O A £ T PX(D)) (41)

dm B ZiECm exm/\mi + rml)Pm(1|X(d)) ’

which hence prevail at every maximum of the posterior ertfopction (subject

to the flow conservation constraidg = ) ;. dniVn,i).

C Derivation of accept/reject estimator

Given the acceptance probabilitiBg.cepm (1) defined in[(28), the overall proba-
bility of a single rejection for agent is

Preject.n =1- Z Pacceptn(i)Pn(ﬂ')- (42)

ieCn
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Consequently, the probability thats the first accepted draw can be expressed as

[e¢]

Z (Preject,n) ZPacceptn(i) Pn(ﬂ : )

z=0
_ Pacceptn(i)Pn(iH (43)
1— Preject.n

Pacceptn(i) Pn(i")
ZieCn Pacceptn(j )Pn(j | ) ’

which coincides with the definition i_(18) (for zeFocoefficients).

D Derivation of utility-modification estimator

The individual-level posterior choice distributidn {1&)tstitutes the starting point
of this development. It is restated here for ease of referéwith zerol™ coeffi-
cients): _
explAni) Pn(ilXy)
Zje(jn eXHAnj)Pn(jb?ly) .

It is assumed that the demand simulator implements an MNir phoice model
(which comprises path-size logit (Ben-Akiva and Bierla803) and C-logit (Cascetta et al.,
1996) specifications):

TTa(ily) = (44)

explVa (ifX)]
S ec. EXpVa(iK)]

whereV,,(i|x) denotes the systematic utility of plaras perceived by individual
n given the expected network conditionsA substitution of[(45) in[(44) yields

Pu(ilX) = (45)

explVa(ilXy) + Anil
Zjecn exdvn(ﬂ)?\y) + /\nj] .

This posterior is structurally identical to the prior. Thaydifference is that\ ,;
is added to the systematic utility of every considered plarhis utility modifica-
tion allows to force a demand simulator that implements thar 45) to imme-
diately draw from the posterior (46), and it avoids the cotapjanal overhead of
a possibly large number of rejections in the accept/rejemtgdure.

TTa(ily) = (46)
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