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Abstract

Multi Agent Simulation has increasingly been used for transportation sim-
ulation in recent years. With current techniques, it is possible to simulate
systems consisting of several million agents. Such Multi Agent Simulations
have been applied to whole cities and even large regions. In this paper it is
demonstrated how to adapt an existing multi agent transportation simulation
framework to large-scale pedestrian evacuation simulation. The underlying
flow model simulates the traffic based on a simple queue model where only
free speed, bottleneck capacities, and space constraints are taken into ac-
count. The queue simulation, albeit simple, captures the most important
aspects of evacuations such as the congestion effects of bottlenecks and the
time needed to evacuate the endangered area. In the case of an evacua-
tion simulation the network has time dependent attributes. For instance,
large-scale inundations or conflagrations do not cover all the endangered area
at once. These time dependent attributes are modeled as network change
events. Network change events are modifying link parameters at predefined
points in time. The simulation framework is demonstrated through a case
study for the Indonesian city of Padang, which faces a high risk of being
inundated by a tsunami.
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1. Introduction

Disaster and evacuation planning has become an important topic in sci-
ence and politics. In principle there are two different situations: evacuation
of whole cities or even regions on the one hand, and evacuation of buildings,
ships and airplanes or the like on the other hand. The former involves nor-
mally the by car, while the latter is rather associated with the evacuation of
pedestrians. Corresponding to the two different types of problems, there are
two different basic approaches for simulating the traffic flow:

• Methods of dynamic traffic assignment (DTA) have been applied to
evacuation simulation on the city or regional scale. Some examples
are MITSIM [20], DYNASMART [25] or VISSIM [14]. The DYNAS-
MART approach is based on the analogy between traffic and hydro-
dynamic characteristics of fluids. On state of the art hardware it is
possible to handle even large-scale scenarios with this approach. MIT-
SIM and VISSIM are microscopic, meaning that every vehicle is in-
dividually resolved. They allow a more realistic representation of the
traffic dynamics, but their computational performance is currently too
slow for large-scale simulations. All current implementations of DTA
approaches have in common that, they take traffic streams rather than
individual travelers or vehicles as input: Their typical input are time-
dependent origin-destination matrices, which, in turn, are based on
zones. For computational reasons, it is normally not possible to have
more than approximately 5 000 zones, meaning that it is not possible
to resolve the starting points of the evacuation to a higher level than
those 5 000 zones.

• In the area of pedestrian evacuation simulation, there has been con-
siderable research in the last 20 years. A good overview about models
and software for pedestrian evacuation simulation can be found in the
proceedings of the conference “Pedestrian and Evacuation Dynamics”
[33, 6, 7]. Pedestrian evacuation simulations are usually microscopic,
using a Cellular Automata (CA) technique [23], discretized differential
equations (“molecular dynamics (MD) technique”) [16, 15], or move-
ment rules based on random utility modelling [1]. In these models each
evacuee is designed as an individual; therefore it is possible to simulate
population structures where people have different speeds or ranges, or
more complex behavior. Neither of these approaches is applicable for
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large-scale scenarios: For a large city with hundreds of thousands in-
habitants and an area of several hundred square kilometers a CA-based
model would consist of more then 109 cells, leading to rather long com-
puting times. For the MD approach, the problem are the sub-second
time resolutions that are typically used [5].

One way to deal with large-scale scenarios but to retain persons as individual
agents is to use a model with deliberately large time steps and to computa-
tionally concentrate on those areas (links) where the pedestrian movement
actually takes place [10]. Another, even faster approach is based up on a
modified queuing model [8, 34]. The queuing model simplifies streets to
edges and crossings to nodes; the difference to standard queuing theory is
that agents (particles) are not dropped but spill back, causing congestion.
This graph-oriented model is defined by lengths/widths, free speed and flow
capacity of the edges. This simplification leads to a major speedup of the
simulation while keeping results realistic, and it is the approach used in this
paper.

Once the pedestrian movement model is selected, it is necessary to define
the evacuation directions. For more complex geometries, this is no longer a
single movement towards one or two exits, but may involve rather complex
movments in a building or in a street network. The arguably simplest solution
is a grid-based potential function where the “uphill direction” leads to the
nearest exit [31]. The same can be done using essentially continous spatial
variables, at the expense of much larger computing times [18]. Alternatively,
routing can be done along graphs [13, 11], which is a much faster technique
when the abstraction to a graph is possible.

In the case of an evacuation simulation the network has time dependent
attributes. For instance, large-scale inundations or conflagrations do not
cover all the endangered area at once. One solution is to model this as
a time dependent network. Time dependent networks have been applied to
evacuation planning [28] and are often modeled as time expanded graphs [21,
32, 24]. In a time expanded graph every node/edge is replicated for every time
step t = 0, 1, . . . , T , and additional links are connecting nodes at every time
step. So-called time-aggregated graphs [9] omit the explicit time expansion,
and rather use a time-dependent look-up of the link cost. Their notation
implies T time intervals which apply uniformly to all links; their O(log T )
time complexity of the link cost lookup implies that this time intervals need
not to be equally spaced. Yet, in the case of a tsunami inundation, the
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structure of the link cost changes is quite different: There is, at least in an
abstract interpretation, only a switch from “passable” to “non-passable”, but
that switch can happen at arbitrary times. With the above techniques, one
would either need as many time intervals T as there are such switches, or
several switches would need to be combined into one time bin. This paper
introduces the following approach:

• The interface, containing the calls to the network attributes, in par-
ticular link speeds, link capacities, and link widths, is made time-
dependent, allowing the implementation of arbitrary time-dependent
functions behind the interface. This corresponds to the time-aggregated
graph technique.

• The implementation presented here uses so-called network change events.
The change events are applied to the edges, modifying their attributes
(free speed, flow capacity) at arbitrary points in time. A change event
is valid until the next change event will be applied.

In this paper we give a description of the simulation framework with
a focus of the time dependent aspects. The performing of the simulation
framework is demonstrated through a case study on the Indonesian city of
Padang that faces a high risk of being inundated by an earthquake-triggered
tsunami. This work is part of the numerical last-mile tsunami early warning
and evacuation information system project (“Last-Mile–Evacuation”) [2, 27].

The remainder of the paper is organized as follows. Section 2 gives an
overview of the simulation framework with a detailed description of the time
dependent aspects. In Section 3, we describe the evacuation scenario that
was chosen to demonstrate the simulation framework. Section 4 presents the
results of the simulation with respect of the computing performance and the
evacuation results. After a short discussion in Section 5, we conclude our
work and give some information about future work.

2. Simulation framework

The simulation framework is based on the MATSim framework for trans-
port simulation [29]. MATSim is implemented in Java. Since its current
implementation is focused on simulation of daily motorized traffic, several
adaptations were necessary. The key elements are:

• The agent database, where every agent represents one evacuee.
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• The simulation network, based on links and nodes.

• The traffic flow simulator, where all the agents’ plans are executed.

• The plans generator, which generates an escape plan for every agent.

• There is a mechanism that allows improving the performance of the
agents’ plans by repeatedly trying to find faster evacuation routes.

2.1. Synthetic population, plans, agent database

MATSim always starts with a synthetic population. A synthetic popu-
lation is a randomly generated population of individuals which is based as
much as possible on existing data such as census data. For evacuation, the
synthetic population is the collection of all synthetic individuals that are
involved in the evacuation.

Every synthetic individual possesses one or several plans. These plans
are “intentions” of the synthetic individuals, to be tested in the traffic flow
simulation (described later), and scored afterwards. For evacuation, the plans
are evacuation strategies. For example, such a strategy may be to leave the
building 5 minutes after a second warning, and follow a predetermined route
to safety. The collection of agents together with their plans is sometimes
called an agent database.

People can have different positions within the city when a warning oc-
curs. For example, they can be at home or at work. Therefore, also in the
evacuation context it makes sense to consider MATSim plans in their more
conventional meaning, as a description on what a synthetic traveller intends
to do during a normal day. One can then run a regular traffic flow simulation
with these plans, stop it at the time of an evacuation warning, and use the
positions of all agents at the time of that warning as the initial condition to
the evacuation. This will be the subject of future work.

2.2. Time-varying network

The simulation network represents the area that is accessible by the evac-
uees. In the case of a vehicular evacuation this network consists of all acces-
sible streets. Each street segment defines a link. The parameters of the links
are the length, capacity and the free flow speed. For a pedestrian evacuation
the links in the simulation network also consist of squares and sidewalks. The
flow capacity is given by the width of a link as described in the next section.
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A good way of creating the simulation network is by extracting the needed
information from satellite imagery [36].

For evacuation simulations the network has two kinds of time-varying
aspects. First there are the disaster related aspects (i.e. time dependent
blocking of links). And second there is the information about (experienced)
link travel times, caused by congestion. The time dependent congestion
effects are important for the agent replanning (discussed in Sec. 2.5), while
the disaster related aspects are also important for the initial plans generation
(see Sec. 2.4) and the traffic flow simulator (see Sec. 2.3). Since the object
of this work is to develop an evacuation simulation framework for large-scale
scenarios, the time-varying aspects should be handled in an efficient way.

2.2.1. Network change events

The disaster related time-varying aspects are modeled as network change
events. A network change event modifies parameters of a link in the network
(e.g. free speed or flow capacity). As soon as a link is no longer passable its
free speed will be set to zero.

Listing 1 Sample network change event: valid from 03:06 AM, applied to
links with id 12487, 12489 and 12491. The change event sets the free speed
of the corresponding links to zero.

<networkChangeEvent startTime="03:06:00">

<link refId="12487"/>

<link refId="12489"/>

<link refId="12491"/>

<freespeed type="absolute" value="0.0"/>

</networkChangeEvent>

The network change events are stored independent from the network in
a separate XML file. Listing 1 shows a sample network change event. The
event manipulates the links 12487, 12489 and 12491 at 03:06 AM by setting
the free speed to 0 m/s. The change values are in SI based units.

The network change events file will be loaded at simulation start up and
the network change events will be applied to the corresponding links. The at-
tributes of the links that can be influenced by the change events are accessed
by time dependent getter methods (e.g. getFreespeed(double time)). These
getter methods retrieve the value that is valid for the query time. If there
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exists a network change event for the given query time, then the value of
this network change event will be returned. But, as discussed in Sec. 1, it
is not expected that a network change event exists for every link and every
time step. If for a given query time no network change event exists, then
the value of network change event with the next smaller event time will be
returned. The time dependent getter methods give the flexibility to query
the attributes in arbitrary chronology.

As a consequence of this flexibility, the retrieval mechanism is not straight
forward. Two different approaches have been tested. The first approach that
has been tested is to store the network change events in a Java TreeMap. The
Java TreeMap implements a red-black tree with a complexity of O(log n) for
get operations. The second approach that has been tested is to store the net-
work change events in an array in chronological order and use a binary search
to find the corresponding entry. The complexity for a binary search is also a
O(log n). However, the Java TreeMap cannot operate on primitives (double,
int) but the primitives have to be converted into objects (Double, Integer).
Since Java 5 this conversion is done automatically (autoboxing). The auto-
boxing mechanism gives the software developer more flexibility, but produces
an overhead that increases the run time. A small benchmark scenario illus-
trates this issue. For both approaches the retrieval time for network change
events was measured. The number of network change events was successively
increased. To get a robust result, the time was taken over 10 000 000 queries.
The test was performed on a 2.33 GHz CPU. Fig. 1 shows that the TreeMap
implementation is about 20% slower than the implementation using arrays
and binary search. Even if the share of the overall runtime for the simulation
framework is negligible, the array approach was chosen to implement the
time dependent network.1

2.2.2. Link travel times

MATSim was originally developed for the simulation of vehicular traffic
for large cities or even regions. For this kind of simulation a temporal res-
olution of 15 min for the link travel times is used: The link travel times
are aggregated in 15 min time bins and the travel time values are stored in
arrays (one array for each link). For a network consisting of 100 000 links,

1In fact, we and others consistently find that in situations with few or no insertions or
removals after initialization, the array-based approach is faster.
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Figure 1: Comparison of the runtime performance for two different implementation of the
network change event retrieval. The array based approach using binary search is about
20% faster then the approach using a Java TreeMap. Even if the complexity of both
approaches is O(log n).
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this means a memory consumption of about 75 MB2 for the link travel time
values.

For a pedestrian evacuation simulation with an expected evacuation time
of one or two hours, a resolution of 15 min is too coarse. However, a finer
resolution increases the amount of memory that is needed. To overcome this
problem, the array based implementation was replaced by an implementation
using Java HashMap. There is a HashMap for each link that stores the link
travel times. But only for those travel time bins where at least one agent has
entered the link, a travel time value will be stored. This means that if for
a given travel time bin no agent enters the corresponding link, then nothing
will be stored (and the free speed travel time will be used). Depending on
the scenario this can save a lot of memory.

An analytic appraisal of the memory usage or the needed excution time
in Java is difficult and depends, besides others, on the virtual machine and
its garbage collection mechanism, and on the specific scenario. Therefore it
was decided to compare the HashMap based approach with the array based
approach through a benchmark scenario. In the benchmark scenario, all link
travel times of the simulation described in Sec. 3 have been recorded and
aggregated for different travel time bin sizes. Beginning with a travel time
bin size of 15 min and ending with a travel time bin size of 1 min, the
memory consumption, the time for storing and aggregating and the time for
the retrieval of the link travel times have been measured.

The results of this benchmark test are shown in Fig. 2. At the top there
is a diagram comparing the memory usage of both approaches. It is clearly
shown that the HashMap based approach consumes considerable less memory
than the array based implementation. In particular, at 1-min time resolution
the array-based implementation consumes about 650 MB of memory, which,
together with the memory requirements of the remainder of the package,
would make simulations on today’s ordinary desktop computers impossible.
The diagram at the bottom compares the runtime for storage and aggregation
(write) and for retrieval of the link travel times (read). The time needed for
write operations is almost equal for both approaches. For read operations the
array approach is faster. Nevertheless, the execution time for a read operation
is much smaller than for a write operation. The underlying simulation run

2For 24 h day there are 4 ∗ 24 time bins, each time bin holds one double value (64 bit)
and there are 100 000 links (4 ∗ 24 ∗ 100 000 ∗ 64 bit ≈ 75 MB).

9



Figure 2: Comparison of two different implementations of the storage and retrieval mech-
anism for the time dependent link travel times. Top: comparison of the memory con-
sumption. The Java HashMap based approach consumes considerable less memory than
an array based implementation. Bottom: comparison of the runtime performance. For
write operations both approaches have almost equal execution times. The array based
approach is faster for read operations.
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simulates the evacuation of about 320 000 agents. On average each agent had
to traverse 23.5 links before she reached the safe area. This means there were
approximately 75 000 000 different link travel times that had to be aggregated
and stored. For the benchmark scenario there were approximately 250 000 000
synthetic read operations3. For a real scenario it is expected that the number
of write operations is much lower than the number of read operations. That
is why the small disadvantage regarding the runtime can be tolerated for the
sake of much lower memory consumption.

2.3. Traffic flow simulator

The traffic flow simulation is implemented as a queue simulation, where
each street (link) is represented as a FIFO (first-in first-out) queue with three
restrictions [8]. First, each agent has to remain for a certain time on the link,
corresponding to the free speed travel time. Second, a link flow capacity is
defined which limits the outflow from the link. If, in any given time step,
that capacity is used up, no more agents can leave the link. Finally, a link
storage capacity is defined which limits the number of agents on the link. If
it is filled up, no more agents can enter this link. The difference to standard
queueing theory is that agents (particles) are not dropped but spill back,
causing congestion. An illustration of the queue model is shown in Fig. 3 a).
The parameters of the model are:

• Link minimum width w

• Link area A

• Link length l

• Flow capacity FC = w ∗ Cmax = w ∗ 1.3 p
m∗s

• Free flow speed vmax = 1.66m
s

• Storage capacity SC = A ∗Dmax = A ∗ 5.4 p
m2

where Cmax is the maximum flow capacity per unit width, and Dmax is the
maximum density per unit area. The parameters have been chosen to ap-
proximate Weidmann’s fundamental diagram [37]. For more details, see [26].

3The network for the scenario consists of 16 978 links. For each link the travel time
was queried 20 times for 720 different time steps. (16 978 ∗ 20 ∗ 720 ≈ 250 000 000)
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Figure 3: Functioning of the queue model is shown in (a) and its corresponding funda-
mental diagram in (b).

2.4. Plans generation

Initial plans use the shortest path (according to free speed travel time)
out of the evacuation area for all agents. Within the MATSim framework a
shortest path router based on Dijkstra’s shortest path algorithm [4] has been
implemented. This router finds the shortest path in a weighted graph from
one node to any other, whereby the actual weights for a link are defined by
a time-dependent cost function. Since the city has to be evacuated as fast as
possible, the weights represent the (expected) travel time.

There is, however, no particular node as the target of the shortest path
calculation, as the evacuees have more than one safe place to run to. In-
stead, in the underlying domain every node outside the evacuation area is
a possible destination for an agent that is looking for an escape route. To
resolve this, the standard approach (e.g. [28]) is to extend the network in the
following way: All links which lead out of the evacuation area are connected,
using virtual links with infinite flow capacity and zero length, to a special
evacuation node. Doing so, Dijkstras algorithm will always find the shortest
route from any node inside the evacuation area to this evacuation node.

2.5. Agent learning

During the simulation, each evacuee optimizes his/her personal evacua-
tion route to find the fastest escape route. At this point two different routing
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solutions are considered: (1) An “shortest path” routing solution, where ev-
ery evacuee follows the path that would be fastest in an empty network. (2) A
“Nash equilibrium” approach, where, via iterations every evacuating person
attempts to find a route that is optimal for him-/herself under the given
circumstances including congestion. Both approaches can be considered as
benchmarks: the first as one where congestion effects are not taken into ac-
count in the path choice; the second one as one which might be achieved
by appropriate training or guidance while maintaining acceptability in the
sense that no person could gain by deviating from this solution. This will be
discussed in more detail in Sec. 5.

At the end of every iteration, every agent will score the performed plan.
The score of a plan is the negative of its execution time (i.e. of the needed
time to evacuate). The scored plans remain in the agents’ memory for fur-
ther executions. Two different learning strategies have been applied for the
learning procedure.

• The ReRoute strategy generates new plans with new evacuation routes
based on the information of the experienced travel times from the last
run. This uses the router described in the previous section, but using
time-variant link travel times as link costs. The link travel times are
aggregated into 3 min time bins.

• The other strategy is called ChangeExpBeta. This strategy decides if
the just performed plan should be used again, or if a random plan out of
the memory should be selected for the next iteration. The probability
to change the selected plan is calculated as:

pchange = min(1, α ∗ eβ∗(sother−scurrent)/2) , (1)

with:

– α: The probability to change if both plans have the same score

– β: A sensitivity parameter

– s{other,current}: The score of the other/current plan

In the long run this model is equivalent to the following probabilistic
discrete choice model:

pj =
eβ∗sj∑
i e
β∗si

,
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where pi is the probability for plan i to be selected and si its current
score. Eq. 1 thus describes a process which slowly converges towards
a logit model probability distribution. This makes convergence to a
steady state smoother than when all choices are made in every iteration.

A strategy selector decides for every agent which of the strategies (ReRoute
or ChangeExpBeta) will be used. Each strategy is selected with a certain
probability. These probabilities are assigned before the simulation starts, but
they can be varied during the iterations.

After re-planning every agent has a selected plan that will be executed
in the next iteration. Repeating this iteration cycle of learning, the agents’
behavior will move towards a Nash equilibrium. If the system were deter-
ministic, then a state where every agent uses a fixed plan that is always a
best response to the last iteration would be a fixed point of the iterative dy-
namics, and at the same time a Nash Equilibrium since no agent would have
an incentive to unilaterally deviate. Since, however, the system is stochastic,
this statement does not hold, and instead we look heuristically at projec-
tions of the system, e.g. the average evacuation time. From experience it
is enough to run 100 iterations until the iterative dynamics has reached a
steady state. In most (but not all) evacuation situations, the Nash equilib-
rium leads to a shorter overall evacuation time than when everybody moves
to the geographically nearest evacuation point.

3. Scenario

The aim of this work is to find feasible solutions for the evacuation of the
city of Padang in the case of a tsunami. There are several aspects that have
to be taken into consideration. At first one needs a synthetic population
for the city. In this case study it is assumed that all people are at home.
The information about the distribution of the population was derived from
existing census data [3]. Approximately 320 000 people are living in the
endangered area. This means that 320 000 agents have been created for the
simulation.

As discussed in Sec. 2.3, the traffic flow simulation is performed on a net-
work representing the walkable area of the city. The street map was extracted
from satellite imagery by remote sensing technologies [35] and converted into
a graph [27]. The resulting simulation network consists of 6 289 nodes and
16 978 unidirectional links.
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Another important aspect is the information about safe places. In future
it is planned to identify buildings that are suitable for a vertical evacuation.
For the time being we use a simpler approach: All areas with an elevation of
more the 10 m above sea level are defined as safe. Fig. 4 shows an image of
the city with the safe area. However, based on models of small-scale flooding
and inundation dynamics of the tsunami [12] it is not expected that all the
area below 10 m will be flooded. Based on these simulations, one also learns
that the estimated time between the earthquake and the inundation of the
city is about 28 min. The results are backed by the results of large-scale
tsunami simulations for the west coast of Sumatra Island [30]. Adding this
to the simulation, the agents were made to learn a more risk averse behavior:
they are not only trying to reach the safe area as fast as possible, but they
also try to increase the distance to the endangered areas. In some places
the flooding will reach locations that are more than 2 km away from the
shoreline.

The inundation data was provided by [12] as a time series of flooding
heights for (x, y)-coordinates with a temporal resolution of 1 min and a
spatial resolution of 3 m. The queue model reproduces the inundation as
a time dependent network by varying the free speed parameter of the links.
The free speed, as discussed in Sec. 2.2, for the not inundated link is 1.66 m/s
and the free speed for an inundated link is 0 m/s. This means as soon as
a link is flooded its free speed will be set to 0 m/s. The router will, in
consequence, try avoid the link at these times. And if, nevertheless, an agent
happens to be on this link at such a time, it will remain stuck there forever.

As explained above, we applied two different strategies for learning to
the simulation. The ReRoute strategy finds a new evacuation route for an
agent, based on the experienced travel times of the former iteration. The
ChangeExpBeta strategy implements a discrete-choice model that assigns a
plan from the agent’s memory with a probability depending on the score of
the plan.

In the current setup the probability of being chosen for the ReRoute strat-
egy is 10% and 90% for ChangeExpBeta. This setup gives a fair arrangement
between exploration and exploitation. If the probability for ReRoute (i.e. ex-
ploration) is too low, then it could be that some promising routes will never
be discovered. On the other hand, if the probability for ReRoute is very
high, the system tends to fluctuate and will not convert to a steady state.
The system would change so fast that the agents would not get a chance to
exploit their knowledge about the system.
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Figure 4: Satellite imagery of the city shows the safe area (light green) and some pre-
liminary results of the flooding simulation (blue area). Satellite imagery by the German
Aerospace Center, Oberpaffenhofen (2007)
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4. Results

The simulation run was stopped after 200 iterations of learning. The
overall runtime was about 15 hours on a 3 GHz CPU using up to 2 GB of
RAM. After 200 iterations of learning, the evacuation time is about 75 min.
This is the time that is needed to evacuate all the area with an elevation lower
than 10 m. An interesting aspect is the time that is needed to evacuate all
the area that is expected to be inundated. Fig. 5 compares the evacuation
progress of the proposed routing solutions. The three snapshots on the left
side of the figure show the evacuation progress for the “shortest path” so-
lution and the three snapshots on the right side of the figure for the “Nash
equilibrium” approach. It is clearly shown that the “shortest path” solution
does not leave enough time to evacuate the costal strip. The results from
the “Nash equilibrium” approach seem to be more feasible. But not only the
evacuation of the coastal strip is much faster, but also the overall evacuation
of all the area below 10 m. Fig. 6 shows the evacuation progress for the first
and the last iteration. After 200 iterations of learning, the overall evacuation
time is about 75 min. This is much better compared to the first iteration,
where only 75% of the evacuees manage to escape within 75 min.

5. Discussion

The simulations concentrate on two types of agent behaviors: One where
every agent follows the shortest path to the safe area; one where a Nash
equilibrium is reached. Both can be considered as benchmarks:

• The first as one where agents are rational about their path choice, but
unaware of congestion effects.

• The second as a solution that could be reached by training, assuming
that agents follow the training solution also in the real situation.

In panic situations, people tend to be irrational and to display herd behavior
[17]. Still, if even the Nash equilibrium solution does not leave enough time,
then this would be a strong indicator that major measures would need to be
taken to rectify the situation.

It should also be stated that Nash equilibrium and system optimum do not
need to coincide – i.e. that solutions even better than the Nash equilibrium
might be possible. Such solutions would, however, be unstable in the sense
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Figure 5: Visualizer snapshots of the evacuation progress. The evacuation starts at
03:00 AM and the snapshots are taken after 1 min, 15 min and 30 min. The three
snapshots at the left side shows the evacuation progress for the “shortest path” solution
and the three snapshots on the right side the “Nash equilibrium” approach. The agents are
colorized with respect to the time they need to evacuate. The evacuation time increases
as the color moves from green to yellow to red. Note in particular some highly endangered
agents in the shortest path solution due to congestion.
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Figure 6: Comparison of the evacuation curves of the first iteration (“shortest path”
solution) and the last iteration (“Nash equilibrium” approach). The curves are truncated
at 75 min.
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that people would have an incentive to deviate. Such solutions seem even
more improbable than Nash equilibrium solutions.

Finally, one should mention that MATSim already contains the first hooks
towards en-route replanning [19]. This would allow to add situation-based
behavior into the simulation.

Another issue concerns the mode choice: The investigation assumes that
all evacuation is done by foot while it might be reasonable to assume that
some people use cars or cycles, and they might even leave vehicles in the
street to continue on foot if progress by vehicle becomes too slow. For the
time being, such issues are not considered. The queue model could, to a
certain extent, be parameterized to deal with mixed traffic, as long as all
modes move with the same speed. Beyond that, one would arguably need
to switch to a true two-dimensional model such as [17] or [22]. Such models
could still operate on networks [11].

In the current base case it is assumed that all people are at home. Cur-
rently we are working on more detailed picture of the population. Based
on census data and the results of a survey with 1 000 households, that took
place in April/Mai 2008 [2], we are developing a synthetic population with
individual daily plans. From this synthetic population it will be possible to
derive a model of the population distribution at any time of day. In future
work it is also planned to integrate tsunami proof shelters into the simulation
framework. Therefore the simulation framework could be extended in a way
to find optimal locations for the tsunami proof shelters.

6. Conclusions

We introduced a microscopic pedestrian simulation framework for large-
scale evacuations. It is implemented as a Multi Agent Simulation, where
every agent tries to optimize its individual evacuation plan in an iterative
way. The flooding information is modeled as network change events in the
simulation framework, which, when such events are comparatively rare, is a
much sparser representation than time-expanded or time-aggregated graphs.
The network change events approach could be easily adapted to other sce-
narios, for example for modeling accidents.

The simulation framework is demonstrated through a case study based
on a tsunami evacuation of the Indonesian city of Padang. Despite the un-
derlying behavioral model being quite simple, the simulation gives plausible
results regarding the predicted evacuation time and process. The runtime

20



performance shows that this approach is well suited for large scale scenar-
ios. With state of the art hardware it is no problem to simulate much larger
scenarios with over one million agents.
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