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A model of risk-sensitive route-choice behaviour
and the potential benefit of route guidance

J. Illenberger, G. Flötteröd, K. Nagel

Abstract—In this paper, we present a simulation-based inves-
tigation of the potential benefit of route guidance information in
the context of risk-sensitive travellers. We set up a simple two-
routes scenario where travellers are repeatedly faced with risky
route-choice decisions. The risk-averseness of the travellers is
implicitly controlled through a generic utility function. We vary
both the travellers’ sensitivity towards risk and the equipment
fraction with route guidance devices and show that the benefits
of guided travellers increase with their sensitivity towards risk.

I. INTRODUCTION

In recent years, much research has been conducted in the
field of advanced traveller information systems (ATIS) [1].
Empirical insights have been gained from emerging appli-
cations of ATIS as well as from in-laboratory experiments
[2], where the later have proven to be useful approaches
to derive detailed behavioural models. Studies agree that
the benefit of ATIS is the greatest in the case of non-
recurrent congestion [3]. In such situations, congestion is
usually caused by unpredictable external shocks (accidents,
extreme weather conditions, large events). The literature also
agrees that uncertainty in travel time is a crucial aspect of the
users’ decision making processes [4] and that the accuracy of
information provision has an impact on the users’ acceptance
[5]. Moreover, it has been shown that as a system becomes
less reliable the application of ATIS becomes more beneficial
[6].

Simulation-based frameworks have been developed to eval-
uate the use of ATIS and to support local authorities in the
implementation of such technologies. However, those studies
usually evaluate the benefit of ATIS in terms of average
travel times [7]. Only few simulation studies address the
evaluation of uncertainty (for instance [8]) and none address
the specific question on how ATIS can support users’ decisions
by reducing the costs of uncertainty only.

In this article, we present simulation studies where we
investigate the potential benefit of route guidance in a system
with risk-averse travellers. The benefit of route guidance
is measured in terms of the individual utility of simulated
travellers, and we show that as the system is made more risk-
averse the users’ utility increases.

The remainder of this article is organised as follows.
Section II discusses related work on decision-making under
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uncertainty and different levels of travel time reliability. In
Sec. III, the concepts of risk-aversion from psychology and
economy are introduced and translated into transport terms.
The simulation model used for the experimental studies is
described in Sec. IV, and the results of the simulation studies
are presented in Sec. V. The paper is closed with a discussion
in Sec. VI and a summary of the results in Sec. VII.

II. RELATED WORK

Abdel-Aty et al. [9] show through stated preference sur-
veys that travel time variability plays a significant role in
explaining route-choice behaviour. They also show that ATIS
has the potential to help travellers even if routes that differ
from habitual ones are recommended. In driving-simulation
experiments, Katsikopoulos et al. [10], [11] face participants
with the decision whether to stay on a route with a certain
travel time or to divert to an alternative route that could take
a range of travel times. The experimental setup is similar to
the simulation scenario presented in this work. Katsikopoulos
et al. observe that the participants are risk-averse even when
the average travel time on the alternative route is shorter than
the certain travel time of the initial route. Furthermore, they
show that the degree of travel time variability has an effect on
the travellers’ behaviour, and they also discuss the potential
of ATIS to support driver decisions by reducing uncertainty.

Lam and Small [12] use loop detector data to estimate the
value-of-time (VOT) and value-of-reliability (VOR), where
the latter is quantified by the difference between the 90th
percentile and the median of the travel time distribution. They
show that unreliability is perceived as significant additional
cost. The same loop detector data is used by Liu et al. [13] to
estimate a mixed-logit route choice model. Apart from VOT
and VOR, they also estimate a “degree of risk aversion” of 1.73
which means that the disutility of a certain amount of travel
time unreliability is perceived 1.73 times more intensively than
the disutility caused by travel time of the same amount.

Existing behavioural models that account for travel time
variability, both in terms of departure time choice as well as
route choice, can be roughly grouped into three approaches:
(i) the “safety-margin” approach, (ii) the “mean-variance”
approach and (iii) models that make explicit use of a concave
or convex utility function to represent risk-averse or risk-
loving behaviour.

Travel time variability can be modelled as an additional
cost term in a utility function. This idea, which corresponds to
approach (i), is embodied in the concept of a “safety margin”
travellers generate by departing earlier than they would do
without travel time variability [14].
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Another approach (corresponding to (ii)) is to capture the
disutility of variability by cost terms for early or late arrival
which is the approach of Small [15]. His model already
captures risk-averse behaviour in that travellers would depart
earlier or travel longer in order to avoid the risk of being late.

The model has been extended by Noland and Small [16],
[17] and later by Ettema and Timmermans [18] to a model
based on expected travel times, rather than travel times as-
sumed to be known to the user as it is the case in [15]. Ettema
and Timmermans conclude that the provision of information
leads to a significant reduction of scheduling costs, amounting
up to one Euro per trip, whereas the quality of information and
the misperception of the quality have only a minor effect.

De Palma and Picard [19] make use of an utility function to
model route-choice under uncertainty. Their approach would
correspond to (iii). More recently, Marchal and de Palma
[8] implemented those models into a microscopic simula-
tion framework to evaluate the costs of uncertainty. To the
knowledge of the authors, this has been the only study which
followed such an simulation-based approach until now.

The simulation study presented here continues the research
by Marchal and de Palma in that it explicitly addresses the
evaluation of ATIS in an environment with uncertainty.

III. CONCEPTS OF RISK-AVERSION

A. Risk-Aversion in Psychology and Economy

Consider z being a random variable which can take the
two discrete values z1 and z2. Let p be the probability that
z1 occurs and (1− p) the probability that z2 occurs. The
expected outcome is 〈z〉 = pz1 + (1− p) z2. Let U (z) be
a non-decreasing and strictly concave utility function, which
means that the marginal utility of the utility is diminishing as
z increases. The expected utility is 〈U(z)〉 = pU (z1) + (1−
p)U (z2).

U

zz1 z2〈z〉z(C)

U(z1)

U(z2)

〈U(z)〉
U(     )

πU

〈z〉

Figure 1. Expected utility theory with log utility function.

For a concave utility function, Jensen’s inequality [20]
implies that the expected utility is not larger than the utility
of the expected outcome:

〈U(z)〉 = pU (z1) + (1− p)U (z2)

≤ U (pz1 + (1− p) z2) = U (〈z〉) . (1)

This represents the utility-decreasing aspect of risk-bearing.
One can think of a player facing two lotteries. The risky
lottery pays z1 or z2 with probabilities p and 1−p respectively,
while the safe lottery pays 〈z〉 for sure. Although the expected
outcome in both lotteries is the same, a risk-averse player
would prefer 〈z〉 with certainty over an uncertain outcome z,

even if the expectation is the same. This is what is captured
in the inequality 〈U(z)〉 ≤ U (〈z〉).

Consider now a third lottery which yields in the outcome
z(C) with certainty. As depicted in Fig. 1, the utility of this
allocation is equal to the expected utility of the random lottery,
i.e., U

(
z(C)

)
= 〈U(z)〉. z(C)

U is known as the outcome of the
certainty equivalent lottery, i.e., the sure-thing lottery which
yields in the same utility as the random lottery, where the
subscript U indicates that the certainty equivalent is dependent
on the utility function U (z). Although the certain outcome
z

(C)
U is less than the expected outcome 〈z〉 of the random

lottery, a player would be indifferent between the random and
the certainty equivalent lottery. The difference πU = 〈z〉 −
z

(C)
U is known as the risk-premium, i.e., the maximum amount

of outcome a player is willing to forgo in order to avoid an
allocation with risk.

More generally, let U (z) be a utility function, z a random
variable, 〈z〉 the expectation of z, and z

(C)
U the certainty

equivalent. We define
• Risk-Aversion if z(C)

U < 〈z〉, i.e., U (z) is concave,
• Risk-Neutrality if z(C)

U = 〈z〉 , i.e., U (z) is linear, and
• Risk-Proclivity if z(C)

U > 〈z〉, i.e., U (z) is convex.
The above concept dates back to the 18th century and has
been mainly promoted by Daniel Bernoulli [21]. The ideas of
Bernoulli have been intensively seized by psychologists and
economists since the 20th century and led to the expected
utility hypothesis [22] and later in prospect theory [23].

B. Risk-Aversion in Transport

The concept of risk-aversion also has applications in trans-
port. Specifically, consider the random variable to be the
uncertain travel time of a route. For the purpose of our studies,
we model risk-aversion as shown in Fig. 2. The utility for
travel is linear in time. The traveller has a desired arrival
time or, equivalently, a maximum travel time budget. If she
arrives late (exceeds her travel time budget), she incurs an
extra penalty.

-U

tt+
arr 〈tarr〉 tarr

U(t+
arr)

U(t –arr)

〈U(tarr)〉

πU

tdep

U(       )〈tarr〉

t –arrt*
arr

(C)

Figure 2. Utility function of a risk-averse traveller.

The following example clarifies the workings of this spec-
ification. Consider a driver travelling along a route with
uncertain travel time. The driver always departs at tdep and
arrives on good days at t+arr and on bad days at t−arr, where
t+arr < t∗arr < t−arr, where t∗arr is the desired arrival time. We
assume that the expected arrival time is 〈tarr〉 < t∗arr, thus on
average the driver can expect to arrive in time. However, since
arriving late on bad days causes an extra penalty, the expected
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utility 〈U(tarr)〉 is smaller than the utility of the expected
arrival time U(〈tarr〉). The driver will select an alternative
route as long as the alternative route has a guaranteed travel
time taltarr ≤ t

(C)
arr,U , where t

(C)
arr,U (certainty equivalent) is

the guaranteed travel time on the original route that induces
〈U(tarr)〉. The absolute difference πU = 〈tarr〉− t(C)

arr,U is the
additional amount of travel time that a risk-averse traveller is
willing to “pay” in order to eliminate the risk. If the certain
route is at t(C)

arr,U , the traveller is indifferent between the two
routes.

In the context of ATIS, the certainty equivalent t(C)
arr,U allows

to capture the users’ willingness-to-pay for such services.
Consider a traffic management centre (TMC) that provides
real-time traffic information to drivers, and the situation as
described above together with a second route that always
operates at t(C)

arr,U . If the TMC can guarantee a certain travel
time for the uncertain route, then it can charge a monetary
equivalent of the difference between the users’ certainty equiv-
alent and the guaranteed travel time.

IV. SIMULATION MODEL

A. The MATSim framework

For the studies in this paper, we use the MATSim framework
[24], [25], a fully agent-based transport simulation. The key
aspects of MATSim can be summarised as follows: MATSim
distinguishes between a physical and a mental layer. The
physical layer comprises the simulation of the traffic flow,
implemented as a queueing model with physical queues and
spillback [26]. The mental layer handles the reasoning and de-
cision making process, such as the choice of a route to travel.
Decisions made in the mental layer are based on the feedback
of the physical layer, usually travel times. MATSim iterates
between both layers until the system reaches a stationary state
in the sense of Cascetta [27], which is similar to a stochastic
user equilibrium [28]; more details are given below. In the
following sections, we first describe the simulation scenario
and then discuss the details of the the behavioural model.

B. Simulation Scenario

Consider a simple road network with one origin and one
destination connected by two different routes. One route is
denoted as the “safe” route and the other as the “risky” route:

• The safe route has a fixed capacity of 7200 vehicles per
hour and a free-flow travel time of 435 seconds.

• The risky route has a default capacity of 7200 vehicles
per hour, however, an incident is simulated in each
iteration (i.e., in each execution of the physical layer)
with probability 0.5 that reduces the capacity by a factor
of 0.3. The free-flow travel time of the risky route is 327
seconds, which is less than the travel time of the safe
route.

In the following, iterations where an incident occurs are re-
ferred as “bad days” or “bad states of nature”, while iterations
without incidents are referred as “good days” or “good states
of nature”. At the beginning of each iteration, the state of
nature is unknown to the agents.

The population consists of 1000 agents. Each agent has
two options: travelling along the safe or the risky route. Both
options are a priori known to the agent. In the following, the
two options will be refereed as the “safe” and “risky” plan.
Departure times are prescribed such that every second two
agents enter the system, starting at 05:50. This means that
without the capacity reduction of the risky route no congestion
occurs even if all users take the same route.

C. Behavioural Model

The simulation of the mental layer comprises two steps: (i)
updating the evaluation of the plan executed in the previous run
of the physical layer and (ii) selection of a plan to be executed
in the next run of the physical layer. We describe here only
those aspects of the behavioural model that are relevant for
the understanding of the presented study, more details can be
found in [28], [29].

To evaluate a plan, the model uses an utility function which
is related to the Vickrey bottleneck model [30]. The utility is
composed of the (negative) utility for travelling Utrav and an
extra penalty for being late Ulate:

U = Utrav + Ulate. (2)

The utility for travelling is assumed to be linear in time:

Utrav (ttrav) = βtravttrav (3)

where βtrav denotes the marginal utility for travel [¤/h] and
ttrav the time spent travelling [s]. The extra penalty for being
late is (see Fig. 2)

Ulate =

{
βlate (tarr − t∗arr) if tarr > t∗arr
0 else

(4)

where t∗arr is the desired arrival time, tarr the experienced
arrival time, and βlate is the marginal utility for being late,
which controls the risk-aversion of agents. Values less than
zero make agents averse to risk, whereas βlate = 0 represents
risk-neutral users. Risk-loving agents could be represented by
choosing βlate > 0, but this is not considered here.

The updating rule for a plan’s utility is

Ūk = αUk + (1− α)Ūk−1, (5)

where k denotes the iteration index, Uk the experienced utility
in iteration k, Ūk its smoothed counterpart, and 0 < α < 1 the
learning rate of the agents. The larger α, the more the agents
update their utility perception in reaction to the most recent
iteration.

Based upon the evaluation, each agent selects one plan to
be executed in the next run of the physical layer. The selection
rule specifies the probability of a plan transition from the
currently selected plan (the one that has been executed in the
previous run of the physical layer) to the alternative plan:

pi
pj

=
κ+ eγ(Ūi−Ūj)

κ+ eγ(Ūj−Ūi)
(6)

where pi is the selection probability of the currently selected
plan, pj the selection probability of the alternative plan, κ a



4

non-negative parameter controlling explorative behaviour, γ a
parameter controlling the rationality of the agent’s decision,
and Ūi and Ūj are the utilities for the currently selected and
the alternative plan respectively.

The above formula comprises two aspects: If κ is set to zero,
Eq. 6 results in a logit model (stochastic user equilibrium,
e.g., [31]) pi/pj = exp (2γ (Ui − Uj)). The non-negative γ
coefficient controls the randomness in the model: the larger
it gets the more likely is the alternative of higher utility
to be chosen. The parameter κ introduces an explorative
component to the behavioural model. Increasing κ leads to less
influence of the logit model, i.e., more explorative behaviour.
Sufficiently high values for κ result in an equal distribution
of the selection probabilities such that the risky and the safe
plan are selected with equal probabilities.

It is required that agents are forced from time to time to
select the alternative plan and to “renew” the plan’s utility.
Otherwise, the danger exists that an agent gets stuck with
one plan only. If, for instance, the risky plans is executed
once on a bad day, it receives a low utility. In the next
iteration the safe plan is executed and gains a better score.
If the utility difference between the risky and safe plan is
sufficiently high, there is a low probability that the logit model
will ever select the risky plan again. If the agent is forced to
select the risky plan again, which is controlled by κ, then
there exists a substantial probability that the risky plan is
eventually executed on a good day and gains a better utility.
Consequently, the probability of a plan transition increases.

D. Guidance

A certain fraction f of agents is equipped with an in-vehicle
device. One can regard this device as a personal digital assis-
tant (PDA), which is supplied with link travel time information
from a TMC and generates route recommendations. If an agent
is equipped with such a device, it will request the fastest
route at departure. The route recommendations are based on
estimated expected travel times. The estimated expected travel
time of a route at any point in time is given by max[t0, tq]
where t0 denotes the free flow travel time and tq the time
it takes to process all vehicles currently on the route. The
value of tq is estimated based on standard queueing theory
for a congested route with tq = n

f where n is the number of
vehicles on the route (determined by counting in- and outgoing
vehicles) and f is the downstream flow capacity. That is, the
travel time of a route is either the free flow travel time as long
as the load is below its capacity or the estimated time required
to process the vehicles already on the route. This travel time
estimate is consistent with workings of the deployed queueing
simulation.

Travellers equipped with an in-vehicle device are denoted
as “guided” agents and always comply with the guidance.
This specification implicitly accounts for guidance compliance
in that f constitutes the fraction of equipped and compliant
travellers.

V. SIMULATION RESULTS

A. Parameter Setup

In the following simulation studies, the effects of the
parameters βlate and f are investigated. The parameter βlate,
denoting the penalty for being late, controls the risk-aversion
of the agents. The values are varied form 0 ¤/h (risk-neutral)
to –100 ¤/h (risk-averse). The parameter f represents the
effective fraction of compliant agents equipped with guidance
devices and is varied from 0 (no equipped agents) to 0.7
(70 % of agents equipped and compliant). Simulation results
with f > 0.7 are not shown here because the simulation
exhibits heavy fluctuations with high equipment fractions; a
discussion of these would go beyond the scope of this paper.
All remaining parameters are the following fixed values.

• Plan evaluation: The marginal utility for travel βtrav
is set to –6 ¤/h and the desired arrival time t∗arr is
uniformly set to 6:00 for all agents. The learning rate
α is set to 0.2, i.e., slow learning.

• Plan selection: The parameter γ, which controls the
agent’s objective rationality, is set to 5, and κ, which
controls the explorative behaviour, is set to 2.

Simulation runs are conducted with 1000 iterations, which
ensures that the system reaches a steady state.

B. Results

In the base case with βlate = 0 ¤/h and f = 0, the users
distribute approximately equally over both routes (500:500).
As the users are made more risk-averse, i.e., as βlate is made
increasingly negative, more agents switch to the safe route.
With βlate = −100 ¤/h, roughly 600 travellers use the safe
route. As a consequence, the travel time on the risky route
on bad days as well as the average travel time over good and
bad days decreases. On the one hand, decreasing βlate pushes
the system towards the safe route, but on the other hand, the
decreasing travel time on the risky route partially counteracts
this effect.

To investigate the effects of the guidance, the fraction f of
equipped users is varied from 0 to 0.7. Figure 3a shows the
travel time of both the unguided and guided agents in the risk-
neutral system (βlate = 0 ¤/h). At low equipment fractions,
the travel time savings of the guided over the unguided agents
are about 40 s. With increasing equipment fractions, also the
unguided agents benefit, which reduces the equipment gain to
approximately 25 s at f = 0.7. This effect is due to the fact
that on bad days the guided vehicles avoid the bottleneck, thus
making it faster for the unguided vehicles. The utility (Fig. 3c)
behaves qualitatively similar to Fig. 3a since travel time values
are just multiplied with the marginal utility of travelling and
there is no penalty for being late.

The picture for βlate = −100 ¤/h is similar to the one with
βlate = 0. However, by the increased absolute value of βlate,
the utility reactions are more pronounced. At low equipment
fractions, the travel time savings are comparable with the risk-
neutral system (Fig. 3a). To the contrary, at high equipment
fractions, unguided users benefit even more than in the risk-
neutral system, and the equipment gain is reduced to only 10 s.
The dynamics behind this are quite complicated:
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• Initially, at a low equipment fraction, the risky route is
used just up to capacity on bad days, since any increase
of travel time over the safe route is heavily punished for
the risk-averse users. This also means that the risky route
is under-utilised on good days.

• As the equipment fraction increases, the guided users
have a tendency, on bad days, to equilibrate the risky
route with the safe route. This means that the risky route
becomes more reliable. If the risky route becomes more
reliable, it becomes more attractive for the unguided users
and thus there is a shift back to the risky route. Overall,
the load of unguided users on the risky route decreases
slower with increasing equipment fraction in the risk-
averse system compared to the risk-neutral system, which
in turn exhibits a more pronounced travel time gain for
the unguided users.

The utility gain of guided over unguided travellers, which
corresponds to the willingness-to-pay for guidance, is ini-
tially about 0.08 ¤ and decreases to 0.04 ¤ with increasing
equipment fraction in the risk-neutral system (Fig. 3c). In the
risk-averse system (Fig. 3d), the utility gain is much more
pronounced (note the different scaling in Fig. 3c and 3d).
Starting at 1.2 ¤, the utility gain decreases to approximately
0.3 ¤ per user, although the travel time savings are lower than
in the risk-neutral system. This means that risk-sensitive users
are willing to pay more for route guidance compared to risk-
neutral users even if the effective travel time savings are of
the same magnitude.
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Figure 3. Travel time and utility for guided (black) and unguided (grey)
agents. a) and c) βlate = 0 ¤/h, b) and d) βlate = −100 ¤/h.

VI. DISCUSSION

The results of this simulation study show that risk-sensitive
users exhibit a higher willingness-to-pay for route guidance
compared to risk-neutral users. This may appear trivial since
the utility is a function of βlate. However, it demonstrates
that there is a substantial difference if one uses the objective

travel time savings as an evaluation criteria or the individual
utility-gain. Moreover, it shows the potential of the agent-
based approach since it allows to distinguish between certain
user groups, such as guided and unguided users, and allows
to identify the individual utility gain or loss of each group.
Furthermore, the microsimulation-based approach lends itself
to the evaluation of complex real-world scenarios that would
be intractable for a formal mathematical analysis.

The identified willingness-to-pay is hard to compare with
existing empirical studies since they all use different ap-
proaches to monetarise the value-of-reliability or the risk-
aversion of travellers. However, what this study shows is that
there is a significant cost of uncertainty. In the presented
scenario, risk-averse users are willing to pay about 1.2 ¤ for
roughly 40 s travel time saving in the extreme case of
βlate = −100 ¤/h. In the literature, one finds different values
for βlate: Varying from 18 $/h in the Vickrey bottleneck
scenario [30], [32] to 15 ¤/h to 21 ¤/h in studies from
Amelsfort and Bliemer [33], or, as estimated by Small, Noland
and Polak [15], [17], values that are on average about three
times the cost of travel. If one uses βlate = −18 ¤/h
(βlate = 3 · βtrav = 3 · (−6¤/h) = −18 ¤/h), the simulation
results show a willingness-to-pay of approximately 0.30 ¤ for
travel time savings of 45 s, i.e., a willingness-to-pay of 24 ¤/h
(approx. 34 $/h). These values are in the same magnitude as
those estimates for the value-of-reliability by Lam and Small
(from 12 $/h to 29 $/h) [12] and Liu et al. (21 $/h) [13]. We
have found no study that evaluates the value of βlate by trip
purpose, e.g., for a business traveller who wants to catch an
airplane.

There are further aspects that should be addressed for a real-
world scenario, such as heterogeneous risk-taking behaviour,
a more realistic route guidance device, individual preferred
arrival times, larger route choice sets, and also departure time
choice. The last aspect is rather important since one may argue
that changes in departure time choice occur more frequently
than changes in route choice.

VII. SUMMARY

This paper presents simulation studies where travellers
are repeatedly faced with risky route-choice decisions. The
sensitivity of drivers towards risk and the effective equipment
rate with route guidance devices are varied to investigate the
potential benefit of such devices in a system with uncertainty.
For the synthetic scenario of the paper, the following conclu-
sions can be drawn:

• In a system with risk-neutral travellers (βlate = 0 ¤/h),
the average disutility of travel for a guided traveller is
about 4 % less compared to an unguided traveller. This
results in a willingness-to-pay of about 0.08 ¤.

• In a risk-averse system (βlate = −100 ¤/h), the average
disutility of travel for a guided traveller is about 19 %
less compared to an unguided traveller. This results in
a willingness-to-pay of about 1.2 ¤, i.e., a factor of 15
larger.

• Deploying a guidance reduces the variance of travel time
on the risky route, which results in less uncertainty also
for the unguided users.
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The model shows that the inclusion of risk-aversion increases
the willingness to pay for guidance compared to risk-neutral
agents even if the travel time savings are of the same mag-
nitude. This evaluation is crucial for the design of ATIS. It
demonstrates the benefit for the end-user by not only reducing
travel time but also by reducing variability.

In that context, it is important to note that in the simulation-
based approach the willingness-to-pay (economic benefit)
comes directly from the individual agents. This makes it
possible to differentiate the willingness-to-pay by attributes
such as trip purpose or income. For a private-sector ATIS
provider, this will help to test certain market strategies and
to identify potential user groups, such as those people with
tight schedules where ATIS really will make a difference.
For a public-sector ATIS provider, this will help target parts
of the system which yield high overall economic benefits.
Finally, the deployed microsimulation-based approach carries
over quite naturally to more complex scenarios, circumventing
the difficulties of capturing such scenarios with closed-from
mathematical equations.
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