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A model of risk-sensitive route-choice behaviour
and the potential benefit of route guidance

J. Illenberger, G. Flötteröd, K. Nagel

Abstract—In this paper, we present simulation studies where
we investigate the potential benefit of route guidance information
in the context of risk-sensitive travellers. We set up a simple
two-routes scenario where travellers are repeatedly faced with
risky route-choice decisions. The risk-averseness is implicitly
controlled through a generic utility function which evaluates the
performance of travellers. We vary both the travellers sensitivity
towards risk and the equipment fraction of route guidance
devices and show that the benefits of guided travellers increase
with their sensitivity towards risk.

I. INTRODUCTION

In the field of transport planning, engineers agree that the
problems of transportation are no longer a matter of extending
the infrastructure with concrete and steel. The limited funds
for road investment and the growing ecological consequences
redirected attention to policies that account for an efficient
use of existing transport networks [1]. Advanced traveller in-
formation systems (ATIS) and advanced traveller management
systems (ATMS) are intended to fill in here by providing
accurate information through a variety of devices.

An important aspect is the response of drivers to provided
information. Although a lot of research has been conducted
on this, there is still little knowledge of drivers’ reaction to
information provision. Since the deployment of ATIS tech-
nologies is still in an early state, practical experiences are
limited. To gain more insights into travellers’ decision making,
in-laboratory experiments (for instance [2], [3], [4]) have been
proposed. Behavioural models derived from the results of these
laboratory experiments can be used in simulations to evaluate
ATIS technologies. Travel time savings have been observed in
several studies [5], [6], [7], varying from three to 30 percent
depending on market penetration and network topology. These
studies also indicate that the potential benefit of ATIS is little
for regularly occurring congestion patterns, e.g., morning and
evening peak-hours, which are in the literature referred to as
recurrent congestion. If congestion occurs regularly, travellers
start to adapt their travel behaviour. If congestion is caused by
external shocks such as accidents or bad weather, the benefit
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of ATIS is assumed to be much greater. Congestion of this
type is referred to as non-recurrent congestion.

The main reason why the benefit of ATIS is greater in case
of non-recurrent congestion is that in such a situation the travel
time is hard to predict for travellers. The key aspect is that
the decision-maker is now faced with uncertainty [8]. There
are several sources that can cause uncertainty: (i) variations
on the supply-side caused by accidents, road maintenance
or failures of transportation systems, (ii) variations on the
demand-side, for instance caused by a sporting event, or
travellers’ misperception of travel times. However, there is
little knowledge how travellers perceive uncertainty in travel
time. Policies to improve the reliability of travel time can be
of different type. For example, quick-response teams to clear
up accidents or better organisation of road maintenance may
improve reliability on the supply side, while on the demand
side ATIS may help travellers to improve trip planning.

Unreliability of travel times results in added costs to the
travel costs. Noland et al. [9] distinguish between two types
of costs caused by travel time variations. The first, called
expected scheduling costs, describes the costs caused by the
attempt to lower the probability of arriving at an inconvenient
time. Travellers may choose to depart earlier in order to be sure
to arrive in time or they may choose a longer route with less
uncertainty. The second, called planning costs, is the “pure
nuisance of not being able to plan one’s activities precisely
because of uncertainty about when a trip will be completed”.
However, Noland himself shows that the planning costs are
negligible.

In this paper, we present simulation studies, where we in-
vestigate the potential benefit of route guidance information in
a system with risk-averse travellers. We set up a scenario with
two routes, where one route has a reliable travel time and the
other route an unreliable travel time. Travellers are repeatedly
faced with risky route-choice decisions. The fraction of guided
drivers and the risk-averseness is varied to investigate the
effect of the guidance on risk-neutral and risk-averse systems.

Section II discusses related work on decision-making under
uncertainty and travel time reliability. In Sec. III, the concepts
of risk-aversion from psychology and economy are introduced
and translated to applications in transport. The simulation
framework used for the simulation studies is presented in Sec.
IV, and in Sec. V the scenario setup is explained. Details of
the behavioural model are discussed in Sec. VI, and the results
of the simulation studies are presented in Sec. VII. We close
the paper with a discussion in Sec. VIII and a summary of the
results in Sec. IX.
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II. RELATED WORK

Existing behavioural models that account for travel time
variability, in terms of departure time choice as well as route
choice, can be roughly grouped into three approaches: (i) the
“safety-margin” approach, (ii) the “mean-variance” approach
and (iii) models that make explicit use of a concave or
convex utility function to represent risk-averse or risk-loving
behaviour.

Travel time variability can be modelled as an additional cost
term in a utility function. For example, the idea of a travel
time addend is embodied in the concept of a “safety margin”
travellers generate by departing earlier than they would do
without travel time variability [10].

An other approach is to capture the disutility of variability
by cost terms for early or late arrival. Small [11] originally
specifies a model of scheduling choice by U = α · T + β ·
SDE + γ · SDL + θ · DL where utility U is a function of
travel time T , either so-called schedule delay-early SDE,
or schedule delay-late SDL, and a fixed penalty for any
late arrival. SDE and SDL are defined as the amount of
time one arrives at a destination earlier or later than desired,
respectively. DL equals 1 if SDL > 0 and 0 otherwise.
Coefficients α, β and γ are the costs per minute for travel time,
early and late arrival, and θ is a discrete lateness penalty. Small
finds that travellers prefer early to late arrival, prefer additional
travel time to late arrival, and prefer early arrival to additional
travel time. Thus the relative values of the coefficients are
β > α > γ, which already captures risk-averse behaviour,
i.e. travellers would depart earlier or travel longer in order to
avoid the risk of being late.

While in the upper model the travel time is assumed to
be known to the decision-maker, Noland and Small [12],
[13] extend the above model to a simple expected utility
model by explicitly including travel time variability such that
〈U〉 = α 〈T 〉+β 〈SDE〉+γ 〈SDL〉+θPL. Here the expected
utility is dependent on expected (or mean) travel time, either
expected schedule delay-early, or expected schedule delay-late
and the probability of late arrival PL. Noland and Small use an
exponential distribution of travel times to evaluate this model.

Ettema and Timmermans [14] extend the expected utility
model of Noland and Small to account for perception errors
with respect to the mean and variance of the travel time
distribution and the confidence level of travel time information.
Beside the misperception of the structural variation in travel
time, they also discuss the potential benefit for travellers if they
are provided with day-specific travel time information. Ettema
and Timmermans conclude that the provision of information
leads to a significant reduction of scheduling costs, amounting
up to one Euro per trip, whereas the quality of information and
the misperception of the quality have only a minor effect.

An essential aspect that determines the benefit of informa-
tion provision is the travellers’ knowledge about regularities in
travel conditions such as weather conditions, day of the week
or big events. Travellers without any prior knowledge of those
traffic conditions benefit the most from information provision
while experienced travellers benefit less.

To describe risk-averse and risk-prone behaviour, Chen et
al. [15] use the exponential functions U (t) = −a1 (ea2t − 1)

for risk-averse travellers and U (t) = −b1
(
1− e−b2t

)
for risk-

loving travellers where a1, a2, b1 and b2 are parameters to be
calibrated.

Like Chen, de Palma and Picard [16] and more recently
de Palma and Marchal [17] focus on route-choice models
dealing with uncertainty. De Palma and Picard [16] collect data
via telephone interviews and estimate risk aversion through
an ordered probit model. Several utility functions are dis-
cussed, such as (i) the “mean-standard formulation” 〈U〉 =
−〈t〉 − θSσ, where t denotes the travel time and σ the travel
time variance; (ii) the “mean-variance formulation” 〈U〉 =
−〈t〉−θV σ2; (iii) the “constant relative risk aversion” (CRRA)
〈U〉 =

〈
−
(
t1+θ

R
) (

1 + θR
)−1
〉

, and (vi) the “constant ab-

solute risk aversion” (CARA) 〈U〉 =
〈(

1− eθAtt
) (
θA
)−1
〉

.
Parameters θS , θV , θR and θA represent the risk aversion for
the corresponding utility function. De Palma and Picard show
that absolute risk aversion θA is close to being constant, i.e.,
independent of the travel time.

The model proposed here uses a generic utility function to
evaluate travel legs. The utility is dependent on travel time
and on the time a traveller arrives later than desired. The risk-
averseness is implicitly controlled by the marginal utility of
arriving late. If the marginal utility for arriving late is negative,
the behaviour becomes risk-averse, a marginal utility of zero
denotes a risk-neutral situation, and a marginal utility greater
than zero represents a risk-loving traveller. However, the latter
case is not considered in this paper.

III. CONCEPTS OF RISK-AVERSION

A. Risk-Aversion in Psychology and Economy

The concept of risk-aversion first arose in the 18th century
in the context of the St. Petersburg Paradox. The St. Petersburg
Paradox describes a lottery game with an infinite expected
payoff. Naïve decision theory taking only the expected value
into account would recommend to pay an infinite stake to enter
the game since the expected outcome is also infinite. A course
of action that appears implausible for a rational person.The
paradox can be resolved by introducing a non-linear utility
function for the payoff. The resolution mainly promoted by
Daniel Bernoulli [18] is based on the idea that individuals do
not estimate money in proportion to its quantity but rather
in proportion to the usage they make of it. His solution
involves a utility function of diminishing marginal utility: the
logarithmic utility U (x) = ln (x). Now, the outcome of the
lottery game becomes finite. The particular case of a concave
utility function translates to the assumption that individuals
are averse to risk in that the individual utility of the lottery
diminishes when the stakes are increased.

The ideas of Bernoulli have been seized by psychologists
and economists in the 20th century and have been formulated
in the expected utility hypothesis [19] and later in the prospect
theory [20] and the cumulative prospect theory [21]. Accord-
ing to the expected utility hypothesis, the utility perception of
an individual facing uncertainty, e.g., a lottery of uncertain
outcome, is calculated by considering the utility in each
possible state and weighting it with the individual’s estimate of
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the occurrence probability [22], [23], [24]. Figure 1 visualises
the problem. Let z be a random variable which can take on
the two discrete values z1 and z2. Let p be the probability that
z1 happens and (1− p) that z2 happens. One can regard this
as a lottery game with two possible outcomes. Consequently,
the expected outcome is 〈z〉 = pz1 + (1− p) z2. Let U (z) be
a strictly concave utility function, which means, the marginal
utility of the outcome is diminishing. The expected utility is
now 〈U〉 = pU (z1) + (1− p)U (z2).

z1 z2〈z〉C(z)

U(z1)

U(z2)

〈U〉

U(     )

π(z)

〈z〉

Figure 1. Expected utility theory with log utility function.

As long as the utility function is concave, Jensen’s inequal-
ity [25] implies that the expected utility is not larger than the
utility of the expected outcome:

〈U〉 = pU (z1) + (1− p)U (z2)
≤ U (pz1 + (1− p) z2) = U (〈z〉) (1)

This represents the utility-decreasing aspect of risk-bearing.
One can think of a player facing two lotteries. The risky lottery
pays z1 or z2 with probabilities p and 1−p respectively, while
the safe lottery pays z∗ = 〈z〉 for sure. Although the expected
outcome in both lotteries is the same, a risk-averse player
would prefer z∗ with certainty than 〈z〉 with uncertainty. This
is what is captured in the inequality 〈U〉 ≤ U (〈z〉).

Consider now a third lottery which yields in the outcome
C (z) with certainty. As depicted in Fig. 1, the utility of
this allocation is equal to the expected utility of the random
prospect, i.e., u (C (z)) = 〈U〉. C (z) is known as the certainty
equivalent lottery, i.e., the sure-thing lottery which yields in
the same utility as the random lottery. Although the outcome
C (z) is less than the expected outcome 〈z〉, a player would
be indifferent between C (z) for sure and 〈z〉 with uncertainty.
The difference π (z) = 〈z〉 − C (z) is known as the risk-
premium, i.e., the maximum amount of outcome a player is
willing to forgo in order to avoid an allocation with risk.

More generally, let U (z) be an elementary utility function,
z a random variable, 〈z〉 the expectation of z and CU (z) the
certainty equivalent, where the subscript U indicates that the
certainty equivalent is dependent on the utility function U (z).
We define

• Risk-Aversion if CU (z) < 〈z〉, i.e., U (z) is concave,
• Risk-Neutrality if CU (z) = 〈z〉 , i.e., U (z) is linear, and
• Risk-Proclivity if CU (z) > 〈z〉, i.e., U (z) is convex.

B. Risk-Aversion in Transport

The concept of risk-aversion can also be applied to trans-
port. The random variable is now the uncertain travel time of
a route. For the purpose of our studies we do not model risk-
aversion explicitly with a continuous concave utility function
but indirectly as depicted in Fig. 2. The disutility for travel is
now linear in time. However, the traveller has a desired arrival
time or a maximum amount of available travel time budget.
If she arrives late or exceeds the maximum amount of travel
times she gains an extra penalty.

-U

tt+arr 〈tarr〉 C(tarr)

U(t+arr)

U(t-arr)

〈U(tarr)〉

U(       ) π(t)

tdep

〈tarr〉

t-arrt*arr

Figure 2. Utility function of a risk-averse traveller.

Consider a driver travelling a route with uncertain travel
time. The driver always departs at tdep and arrives on good
days at t+arr and on bad days at t−arr, while t+arr < t−arr.
The desired arrival time is t∗arr. The expected arrival time is
〈tarr〉 < t∗arr, thus at average the driver can expect to arrive in
time. However, since arriving late on bad days causes an extra
penalty, the driver will choose to travel an alternative route
as long as the alternative route has a guaranteed travel time
such that 〈tarr〉 < tarr ≤ C (tarr). The absolute difference
π (tarr) = 〈tarr〉 − C (tarr) is the additional amount of
travel time a risk-averse traveller needs to “pay” in order to
eliminate risk. At C (tarr) the traveller is indifferent between
the uncertain or alternative safe route.

In the context of advanced travellers information systems
the certainty equivalent C (tarr) becomes a relevant value to
determine the users’ willingness-to-pay for such services. Con-
sider a traffic management centre (TMC) that provides real-
time traffic information to drivers. If the TMC can guarantee
a certain travel time for the uncertain route, then it can charge
a monetary equivalent of the difference of the users’ certainty
equivalent and the guaranteed travel time. In this particular
case a traveller would be indifferent between “paying” the
difference in the form of additional travel time by travelling
the alternative route or paying the fee for the TMC and having
guaranteed travel times on the uncertain route. However, this
presumes that the TMC knows the user’s aversion to risk
which is dependent on individual preferences or trip purpose
and might not be easy to capture.

IV. SIMULATION FRAMEWORK

A. The MATSim framework

For the studies in this paper we use the MATSim framework
[26]. MATSim stands for “Multi-Agent Transport Simulation”
and falls into the area of activity-based demand generation.
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A complete discussion of the MATSim framework would
go beyond the scope of this paper, hence we focus on the
packages required for this work. The interested reader is
referred to [27] for a detailed description.

In a multi-agent transport simulation each traveller is
modelled individually as a so-called agent. An agent is an
autonomous microscopic element with its own intentions,
preferences, strategies and an explicit model of the decision
making process. The last point is rather important, since it
is not the vehicle that produces traffic, it is the person who
drives it. Furthermore, a person does not only produce traffic,
it tries to manage its day and the travel is just one action of
the whole day. In MATSim an agent’s intention is represented
by a so called plan. A plan can be regarded as the agent’s
intended schedule for a day. It contains activities and travel
legs connecting the activities. For the following sections the
terms “agent”, “traveller”, “driver”, “user”, “individual” and
similar are treated in a unified way and always denote the
microscopic object that represents the traveller.

MATSim generates demand in form of a synthetic popula-
tion. The population is a random realisation of census data, i.e.,
if one in turn takes a census from the synthetic population, it
would approximately return the original census. A population
can contain up to eight million agents with unique attributes
such as age, gender, income or car availability.

The demand generation in MATSim is an iterative process
where agents can successively adapt their plans through a evo-
lutionary algorithm. At the beginning of an iteration each agent
selects one plan form its plan database. The plan database can
hold several plans per agent and represents the memory of a
person. Plans in the database can be either previously executed
plans or new excogitated options that are to be tested. Which
plan will be selected depends on a specific selection rule that
is part of the behavioural model and can vary for different
scenarios. The rule used here will be described in Sec. VI-B.

The second step of an iteration is the so-called “network
loading”. All selected plans are run simultaneously through
the physical simulation, which is in this case the physical
simulation of traffic flow. One can regard this as the interaction
of the agent with its environment and other agents where it
collects sensory input about its experiences. A queueing model
is used for the traffic simulation [28].

A crucial point is the feedback from the physical simulation
to the behavioural model. The evolutionary algorithm requires
a fitness function to evaluate each plan. The fitness function
is realised through a function that calculates the economic
utility of each plan measured in monetary units [C]. After
each execution of the physical simulation the utility of the
selected plans are calculated based on the feedback from the
network loading. The feedback is given in form of departure,
arrival and link travel times. Selected plans that have been
already executed in a previous iteration are re-evaluated and
the new calculated utility is add to the previous utility through
exponential smoothing. The smoothing factor represents the
learning rate with which the agents adapt their plans. Detail
of the utility function will be discussed in Sec. VI-A.

With an utility associated to each plan the agent can now
drop bad plans from its memory or revise its intentions by

creating new mutations from good plans. New mutations
incorporate modifications to routes and activity scheduling.

The physical simulation and the evolutionary algorithm are
run repeatedly in alternate order for several iterations until the
system reaches a desired state. In most cases the behavioural
module is setup in such a way that the system preferably
converges into Nash equilibrium. However, different setups are
possible which do not necessarily show converging behaviour.

To start the entire iterative process an initial set of plans is
required. The initial plans can be either manually constructed
for smaller test scenarios or in a more complex way by disag-
gregation census data for large-scale real-world applications.

physical simulation

plan mutation

initial plans

mental layer

physical layerplans travel times plans

physical simulation

plan evaluation

plan selection plan selection

Figure 3. Iterative demand generation process in MATSim.

V. SIMULATION SCENARIO

To investigate the reaction of agents facing uncertain situa-
tion a system with a random variable is required. In this study
the random variable is realised through a variable capacity
of a single link in the road network. Consequently, the link
travel times and the arrival times which are fed back from
the physical simulation to the behavioural model vary from
iteration to iteration.

A. Supply Side

For our simulation studies we create a simple road network
with one “home” location and one “work” location connected
by two different routes. The layout of the network is visualised
in Fig. 4, link attributes are listed in Tab. I. The lower route
which leads over link 3 and 5 is denoted as the safe route.
The upper route which leads over link 2 and 4 is denoted as
the risky route, since at has a variable capacity.
• The safe route has a fixed capacity of 7200 vehicles per

hour and a free-flow travel time of 435 seconds.
• The risky route has a default capacity of 7200 vehicles

per hour, however, an incident is simulated in iterations
with even indices by reducing the capacity of link 2 by a
factor of 0.3. The free-flow travel time of the risky route
is 327 seconds, i.e., less than the safe route.

In the following, iterations with even indices are also referred
as the bad day or the bad state of the nature, while iterations
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with uneven indices are also referred as the good day or the
good state of the nature. Although, the capacity reduction of
link 2 follows a predefined rule and is by no means random, at
the beginning of an iteration the state of the nature is unknown
to the agents. Thus the capacity of link 2 and likewise the
travel time of the risky route is unpredictable for the travellers.

The storage capacity of link 2 is increased in such a way
that even under high demand no spill-back into link 1 can ever
occur. Link 7 acts as a return-link that allows agents to do
round trips. The return-link is required for consistency but is
not relevant for the effects demonstrated in this scenario. Flow
and storage capacity of link 6 and 7 are chosen such high, so
that agents travelling back to the home location experience
always the free-flow travel time.

1
2

3

4

5
6

7

home work

capacity 
reduction

Figure 4. Road network with two routes connecting a home and a work
location. The upper route has a variable capacity alternating between 7200
and 2160 veh/h.

no. length [m] free-speed [km/h] capacity [veh/h] lanes
1, 3, 5 2000 50 7200 4

2 2000 80 7200 / 2160 unlimited
4 2000 80 7200 4
6 2000 50 unlimited unlimited
7 9656 50 unlimited unlimited

Table I
LINK ATTRIBUTES.

B. Demand Side

The initial plans are created manually. The population
counts 1000 agents, each equipped with two plans. All plans
include one round trip, that means, the plan starts with a
“home” activity at link 1, followed by a “work” activity at link
6 and again a “home” activity. The two plans of each agent
differ in the first travel leg from the “home” to the “work”
activity. One plan contains a leg where the agent intends to
travel the safe route and one plan where the agent intends to
travel the risky route. The travel leg from the “work” activity
back to the “home” activity is again only for consistency.
According to the route of the first travel leg the plans will
be denoted as the risky plan and the safe plan respectively.

Departure times of the first travel leg are chosen in such a
way that in every second two agents depart at the “home” loca-
tion starting around 05:50. Consequently, under unconstrained
conditions, i.e., no capacity reduction on link 2, no congestion
occurs even if all users travel the same route.

VI. BEHAVIOURAL MODEL

The behavioural model focuses on the selection of plans
for execution in the physical simulation and the evaluation

of selected plans based on the feedback from the physical
simulation. This means an agent’s memory consists always
of the safe and risky plan. The agent chooses the safe or
risky plan for execution and then re-evaluates the plan with
the experienced travel times.

A. Evaluation

In order to compare plans a quantitative dimension is
required to be assigned to each plan. A simplified version of
the original MATSim utility function [29] is used here and is
related to the Vickrey bottleneck model [30], [31]. Basically,
the utility function only evaluates travel legs.

After each run of the physical simulation the utility of
a selected plan’s execution is calculated. The total utility is
composed of the sum of each travel leg’s utility. The utility
of a travel leg is again composed of the (negative) utility for
travelling Utrav and an extra penalty for being late Ulate:

U =
∑
i

Ui,trav + Ui,late. (2)

The utility for travelling is assumed to be linear in time

Utrav (ttrav) = βtravttrav (3)

where βtrav denotes the marginal utility for travel [C/h] and
ttrav the time spent travelling [s]. The extra penalty for being
late equals zero as long as the agent arrives before or at the
desired arrival time t∗arr.

Ulate =

{
βlate (tarr − t∗arr) if tarr > t∗arr
0 else

(4)

where βlate is the marginal utility for being late and tarr the
experienced arrival time. Parameter βlate controls the risk-
aversion of agents. Values less than zero make agents averse
to risk, while βlate = 0 represents risk-neutral users. One
could even make agents risk-loving by choosing βlate > 0,
i.e., agents are rewarded if they are late. However, risk-loving
system are not considered here.

The final utility of a plan after iteration i is calculated out
of the utility of the recent execution and the utility of the plan
in the previous iteration through exponential smoothing:

Ui = αUi + (1− α)Ui−1. (5)

The smoothing factor α represents the learning rate of agents.
If α is set close to 1 agents learn fast since the influence of
the current iteration is high. Whereas, if α is set close to 0,
agents slowly adapt the utility of the current iteration.

B. Plan selection

Before the run of the physical simulation each agent selects
one plan to be executed. The selection rule is modelled through
the probability of a plan transition from the currently selected
plan to the alternative plan:

pi
pj

=
κ+ eγ(Ui−Uj)

κ+ eγ(Uj−Ui)
(6)

where pi is the selection probability of the currently selected
plan, pj the selection probability of the alternative plan, κ a
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non-negative parameter representing explorative behaviour, γ
a parameter controlling the rationality of the agent’s decision,
Ui and Uj the utility for the currently selected and alternative
plan respectively. The above formula comprises two aspects:
If κ is set to zero Eq. 6 results in a logit model:

pi
pj

= e2γ(Ui−Uj). (7)

Coefficient γ controls the rationality, i.e, increasing values for
γ represent increasing rationality. Parameter κ introduces an
explorative component to the behavioural model. Increasing κ
leads to less influence of the logit model, i.e., sufficient great
values for κ result in an equal distribution of the selection
probabilities. It is required that agents are forced from time to
time to select the alternative plan and to “renew” the plan’s
utility. Otherwise, the danger exists that an agent will be stuck
in one plan. If, for instance, the risky plans is executed once
on a bad day it is evaluated with a low utility. In the next
iteration the safe plan is executed and will gain a better score.
If the utility difference between the risky and safe plan is
sufficient high, there is a low probability that the logit model
will ever select the risky plan again. If the agent is forced to
select the risky plan again, controlled by κ, there exists the
probability that the plan is executed on a good day and gains a
better utility. Consequently, the probability that the logit model
induces a plan transition increases.

C. Guidance

A certain fraction f of agents can be equipped with an
intelligent in-vehicle device. One can regard this device as
a PDA which is supplied with link travel time information
from a global traffic management centre and generates route
recommendations. If an agent is equipped with such a device
it will request it for the fastest route every time it reaches
the fork of the safe and risky route, i.e., at the end of link 1.
The route recommendations are based on reactive travel times
(also denoted as naïve or instantaneous travel times) and thus
can be regarded as a defensive estimation. The reactive travel
time of every link at any point in time is given by counting
the in- and outgoing vehicles and estimating the travel time
based on the number if vehicles currently on the link and the
current outflow. Travellers equipped with an in-vehicle device
are denoted as “guided” agents and always comply with the
guidance.

VII. SIMULATION RESULTS

A. Parameter Setup

In the following simulation studies the effects of the param-
eters βlate and f are investigated. Parameter βlate, denoting
the penalty for being late, controls the risk-aversion of the
agents. The values are varied form 0 C/h (risk-neutral) to
–100 C/h (risk-averse). Parameter f represents the fraction of
agents equipped with guidance devices and is varied from 0
(no equipped agents) to 1 (all agents equipped). All remaining
parameters are set to fixed values, which are
• Plan evaluation: The marginal utility for travel βtrav is

set to -6 C/h and the desired arrival time t∗arr is uniformly

set to 6:00 for all agents. The learning rate α (smoothing
factor) is set 0.2, i.e., slow learning.

• Plan selection: Parameter γ which controls the agent’s
rationality is set 5 and κ which controlls the explorative
behaviour is set to 2.

Simulation runs are conducted with 1000 iterations, while the
system requires roughly the first 150 iteration to stabilise.
Measurings over a simulation run are averaged over iteration
200 to 1000 so that the transient phase does not influence the
averages.

B. Simulations without guidance

Figure 5a depicts the base-case with βlate = 0 C/h and
f = 0. In the initial plans the risky plan is manually marked
as selected, thus all agents travel the risky route in the 0-
th iteration. After approximately 100 iterations travellers are
distributed almost equally over both routes. For the remaining
iterations the distribution of users fluctuates around the equi-
librium. Averaged over iteration 200 to 1000 the travel time
on the risky route is slightly faster (417 s) compared to the
safe route (435 s). Accordingly, there are two users more on
the risky route (501:499).
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Figure 5. Number of users on the safe route (solid line) and on the risky route
(dotted line) over 1000 iterations. a) risk-neutral system with βlate = 0 C/h,
b) risk-averse system with βlate = −100 C/h.

In Fig. 5b βlate is set to -100 C/h, i.e., agents are now risk-
averse. Agents that arrive after their desired arrival time t∗arr =
6:00 gain an extra penalty. As a consequence the distribution
of users over both routes shifts to the safe route. Figure 6a
shows how the load reacts if the value for βlate is successively
decreased from 0 C/h to -100 C/h. As the system is turned
more risk-averse, more agents switch to the safe route. As
a further consequence, the travel time on the risky route on
bad days decreases, and averaged over good and bad days the
travel time decreases from 417 s to 405 s. On the one hand,
the decreasing βlate pushes the system towards the safe route,
but on the other hand, the decreasing travel time on the risky
route partially counteracts the effect.

A switch from the risky route to the safe route is beneficial if
the travel time on the safe route is less than the the certainty
equivalent travel time C (tarr) (Fig. 2) on the risky route.
However, this situation only arises for agents that arrive early
(tarr < t∗arr) on good days and arrive late (tarr > t∗arr) on
bad days if they travel the risky route. Agents that always
arrive early, independent of the state of the nature, or always
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Figure 6. a) Number of users on the safe route (circles) and on the risky route
(squares) in dependency of βlate, b) Values for π

“
trisky
arr

”
in dependency

of the departure time. The lower curve represents βlate = −5 C/h, the upper
curves represent βlate increased in -5 C/h steps.

arrive late respectively, do not react to a change of βlate. For
the latter agents U (〈tarr〉) equals 〈U (tarr)〉, while for the
former U (〈tarr〉) is greater than 〈U (tarr)〉. On can visualise
this effect, if, for instance, one plots the absolute risk-premium
π
(
triskyarr

)
=
∣∣〈triskyarr

〉
− C

(
triskyarr

)∣∣ in dependence of the
departure time. Figure 6b shows a peak between 5:53:08 and
5:54:34 which height is dependent on βlate. Agents departing
before 5:53:08 are always early and agents departing after
5:54:34 are always late. For both groups π

(
triskyarr

)
is always

0 s. Only the agents departing in between react to variations of
βlate and travel an additional travel time of π

(
triskyarr

)
in order

to avoid risk. – This maybe slightly counter-intuitive behavior
is due to the fact that all the risk-modelling convexity in the
utility function is contained in the bend between early and
late arrival. Once an agent operates entirely on one of the two
branches, no reaction to risk is left.

C. Simulation with guidance

To investigate the effects of the guidance the fraction f
of equipped users is varied from 0 to 1. Figure 7a depicts
the distribution of users over the safe and risky route with
βlate = 0 C/h. As expected, at average the distribution shifts
to the risky route with increased equipment fraction. Details of
a simulation run with f = 0.2 are shown in Fig. 7b. The upper
two curves represent the unguided users, the black line for the
unguided users travelling the risky route and the grey line
for the unguided users travelling the safe route. The unguided
users split up equally over both routes, however, since there
are less unguided users compared to the base-case the focal
point shifts to about 400 users. The lower points represent
the guided users, grey points for those who travel the safe
route and black point for those who travel the risky route. The
guided users oscillate between both routes. On good days all
guided users (approximately 180 users) travel the risky route
and on bad days the majority uses the safe route (150 users)
and some agents (30 users) remain on the risky route.

Figure 8 compares the average utility for the guided and
unguided agents. In case of βlate = 0 C/h the complete
system benefits from the guidance, while the guided users
benefit more compared to the unguided users. The utility for
guided travellers is about -2.03 C and slightly decreases to

a) b)

650

600

550

500

450

400

350

users

1.00.80.60.40.20.0

f

800

600

400

200

0

users

495.00

iteration

1000995990

unguided

guided

Figure 7. a) Number of users on the safe route (circles) and on the risky
route (squares) for βlate = 0 C/h. b) Number of unguided users on the safe
route (black solid line) and on the risky route (grey solid line); number of
guided users on the safe route (black points/squares) and on the risky route
(grey points/black circles). f = 0.2. Note the change of the scaling at iteration
990.

-2.032 C with increasing equipment fraction. For unguided
users the utility increases from -2.11 C at f = 0 and levels
off at about -2.075 C at and equipment fraction of f = 0.6.
On the one hand, guided users benefit form the guidance,
while the individual utility decreases as more agents are
equipped with the guidance. One could say that the value
of the travel time information decreases with the number of
users that have accesses to this information. On the other
hand, unguided users also benefit if other users are guided,
since less travellers on the risky route on a bad day is also
advantageous for unguided users. However, a saturation is
reached at approximately f = 0.6 where the slope of utility
curve for unguided users is close to zero and even tends to be
negative for values f > 0.8 respectively.

The picture for βlate = −100 C/h is somewhat different.
In contrast to Fig. 8b, guided users do also benefit from an
increased equipment fraction, at least for values f < 0.65.
Since greater values for βlate force more (unguided) users to
travel the risky route, the utility gain for unguided users is
also more pronounced, even for values f > 0.6.
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Figure 8. Utility for guided (circles) and unguided (squares) agents. Ratio of
guided users’ utility over unguided users’ utility (triangles). a) βlate = 0 C/h,
b) βlate = −100 C/h.

To compare the utility of guided and unguided agents in
risk-neutral and risk-averse systems one cannot use the abso-
lute difference, since plans are evaluated with different values
for βlate. Therefore the ratio of the guided users’ utility over
the unguided users’ utility is used (Fig. 8). For βlate = 0 C/h
the ratio lays at 0.963 and increases to 0.978 at the saturation
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point f = 0.6, i.e., the guided users’ travel disutility is with
a factor of 0.978 less compared to the unguided users’ travel
disutility. In Fig. 8b the range of the utility ratio is much
greater. For equipment fraction of f < 0.4 the ratio is at
average 0.86 and increases to values around 0.97 for f > 0.8.
Hence, at low equipment fraction guided users benefit more
in a risk-averse system compared to a risk-neutral system.

On can calculate the value πg (tarr) =∣∣tguidedarr − C
(
triskyarr

)∣∣ which resembles the risk-premium,
where tguidedarr denotes the average arrival time if an agent
travels the route recommended by the guidance and C

(
triskyarr

)
denotes the average certainty equivalent of the risky route.
The value πg (tarr) represents the expected travel time an
agent saves if it travels the guided route instead of the risky
route. The monetary equivalent of πg (tarr) is the maximum
amount of money an agent is willing to pay for the guidance,
which is ∆U =

∣∣〈Urisky〉− Uguided∣∣, where
〈
Urisky

〉
is the

average utility of the risky route and Uguided the average
utility of the guided route. Figure 9a depicts πg as a surface
plot over βlate and f . For low equipment fraction the expected
travel time savings are about 43 s. In the extrem cases with
low equipment fraction (f < 0.1) and high equipment
fraction (f > 0.8) the expected travel time savings are nearly
independent of the risk-aversion. However, the willingness
to pay (Fig. 9b) for low equipment fraction varies between
0.07 C (βlate = 0 C/h) and 1.2 C (βlate = −100 C/h), i.e.,
even if risk-averse agents gain the same travel time savings
they are willing to pay much more compared to risk-neutral
travellers. If the equipment fraction f is increased travel
time savings and the willingness to pay for the guidance
decreases. At high equipment fractions (f > 0.8) the situation
is similar to the travel time savings, i.e., the willingness to
pay increases only slightly with increasing risk-aversion.
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Figure 9. a) The expected travel time an agent saves if it travels the guided
route instead of the risky route. b) The willingness to pay for the guidance
of a traveller intending to travel the risky route.

VIII. DISCUSSION

In this work only route-choice is addressed. Departure time
choice is completely neglected, albeit one may argue that

changes in departure time choice occur more frequently than
changes in route. A traveller may feel more comfortable to stay
with her habitual route and to depart earlier than travelling
a new and probably unknown route. Extending the model
to account for departure time choice, however, requires also
an extension to the utility function. Beside the evaluation
of travel time, the performing of activities is required to be
monetarised, which introduces a further term to model risk
sensitive behaviour. The utility function for activity performing
can be either concave, linear or convex translating to risk-
averse, risk-neutral or risk-loving behaviour respectively.

It would also be interesting to apply the prospect theory
to such route-choice models, since expected utility theory has
been criticised to violate state-preferences studies [20], [32].
Avineri and Prashker [8] suggest a paradigm shift concerning
the connection between uncertainty in travel time and route-
choice preferences. They found evidence of two violations
of expected utility theory which are known as the certainty
effect and the inflating of small probabilities. The certainty
effect describes a situation where the desirability of a prospect
is reduced if its character changes from a sure gain to an
uncertain gain, even if its expectation is greater. The effect
of inflating small probabilities states that individuals tend to
underestimate medium outcomes with high occurrence prob-
ability and overestimate high outcomes with rare occurrence
probability. If the probabilities of winning are substantial most
people choose the prospect where winning is more probable.
But if the probabilities of winning are miniscule in both
prospects people choose the prospect that offers the larger
gain.

Avineri and Prashker suggest that prospect theory may better
capture the behaviour in route-choice. However, prospect
theory was designed for single-choice situations and may
fail to predict repeated route-choice decisions with feedback.
Furthermore, formalisation and parametrisation needs addi-
tional research before prospect theory and its extension the
cumulative prospect theory are applicable to choice modelling
in transport.

IX. SUMMARY

In this paper we presented simulation studies where trav-
ellers are faced with repeated risky route-choice decisions. The
sensitivity of drivers towards risk and the equipment rate with
route guidance devices is varied to investigate the potential
benefit of such devices in a system with uncertainty. For the
synthetic scenario of the paper, the following conclusions can
be drawn:
• In a risk-neutral system (βlate = 0 C/h) the average

disutility of travel for a guided traveller is about 4 % less
compared to her disutility in a system without guidance.

• In a risk-averse system (βlate = −100 C/h) the average
disutility of travel for a guided traveller is about 19 % less
compared to her disutility in a system without guidance.

The model shows that risk-averse agents are willing to pay
more for a guidance compared to risk-neutral agents even if
the travel time savings are of same magnitude. The framework
could be extended to realistic scenarios and realistic numbers
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for the utility function, and could then be used to perform
willingness-to-pay simulations in real world situations.
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