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Abstract

Agent-based Transport Simulations look at individual travelers and sim-
ulate their movements through a transportation network. Currently, such
simulations are either limited to a small region, or only support a sin-
gle mode (usually private car traffic) for computational reasons. MAT-
Sim (Multi-Agent Transport Simulation) is such a tool that can handle
large scenarios (e.g. up to whole Switzerland), but currently only simu-
lates cars. This work describes how MATSim was extended to handle other
transportation modes besides private car traffic, with a strong emphasis on
transit. This includes not only the simulation of such traffic, but also the
agents’ mode choice decisions. The agents make use of a utility function
to score their experiences with different transportation modes, which in-
fluences which mode they choose in following iterations of the simulation.
This basically means that we no longer rely on existing mode choice mod-
els, e.g. known from the 4-step process. Instead, mode choice is iteratively
adapted during the simulation (“traffic assignment” in the 4-step process).
The combination of mode choice and traffic assignment leads to better re-
sults compared to a pre-calculated mode choice, as the results will show.

1 Introduction

It has been shown in the past (1, 2) that the traditional four-step process
(3) has some shortcomings, especially when it comes to modeling mode
choice problems or time-dependent measures to influence traffic. Agent-
based Transport Simulations look at individual travelers and simulate their
movements through a transportation network. Such simulations are fully
time-dynamic, making it possible to research proposed measures in more
detail than traditional tools are usually able to. But currently, such simula-
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tions are either limited to a small region, or only support a single mode (usu-
ally private car traffic) for computational reasons. VISSIM (4) allows the
very detailed simulation of different vehicles, but is mostly limited to small
scenarios covering a few roads and intersections only. MATSim (Multi-
Agent Transport Simulation, (5)) is an agent-based simulation tool that can
handle large scenarios (e.g. up to whole Switzerland), but currently only
simulates cars.

But the need for tools that support large scenarios as well as multiple
transportation modes is rising. Not only are the metropolitan areas growing,
but also the dimensions in which measures must be handled. The introduc-
tion of road pricing or new public transit offerings usually cannot be limited
to a small area, but has to take larger regional effects into consideration as
well. Similarly, looking only at a single transportation mode is useless as
most measures also target a shift in the modal split.

While there exist a few agent-based public transit simulation tools (e.g
6, 7, 8), they are either limited to transit only or are again only applied
to smaller scenarios. In other cases, additional modes like transit were
artificially added to simulations only supporting cars, e.g. by adding traffic
lights that only influence transit vehicles in order to simulate transit stops
(9, 10, 11). While this may give visually a good impression, the model
behind the simulation is again very limited to react to advanced measures.

This work describes how MATSim was extended to handle other trans-
portation modes besides private car traffic, with a strong emphasis on pub-
lic transit. This includes not only the simulation of such traffic, but also
the agents’ mode choice decisions. Starting with a simple extension to sup-
port different transportation modes, the agent-based simulation is extended
to model public transit in high detail along regular car traffic, creating a
multimodal agent-based simulation.

2 Simulation Structure

2.1 Overview

Each traveler of the real system is modeled as an individual agent in our
simulation. The overall approach consists of three important pieces:

• Each agent independently generates a so-called plan, which encodes
its intentions during a certain time period, typically a day.

• All agents’ plans are simultaneously executed in the simulation of
the physical system. This is also called the traffic flow simulation or
mobility simulation.

• There is a mechanism that allows agents to learn. In our imple-
mentation, the system iterates between plans generation and traffic
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flow simulation. The system remembers several plans per agent, and
scores the performance of each plan. Agents normally choose the
plan with the highest score, sometimes re-evaluate plans with bad
scores, and sometimes obtain new plans by modifying copies of ex-
isting plans.

The simulation approach is the same as in many of our previous papers (e.g.
12):

A plan contains the itinerary of activities that the agent wants to per-
form during the day, plus the intervening trip legs the agent must take to
travel between activities. An agent’s plan details the order, type, location,
duration and other time constraints of each activity, and the mode, route
and expected departure and travel times of each leg.

A plan can be modified by various modules. Typical examples of such
modules are the Time Adaptation module and the Router module. The Time
Adaptation module changes the timing of an agent’s plan. A very simple
approach is used which just applies a random “mutation” to the duration
attributes of the agent’s activities (13). The router is a time-dependent best
path algorithm (14), normally using as link costs the link travel times from
the previous iteration.

One of the plans is marked as “selected”. The traffic flow simula-
tion executes all agents’ selected plans simultaneously on the network, and
provides output describing what happened to each individual agent during
the execution of its plan. The traffic flow simulation is implemented as a
queue simulation, where each street (link) is represented as a first-in first-
out queue with two restrictions (15, 16). First, each agent has to remain for
a certain time on the link, corresponding to the free speed travel time. Sec-
ond, a link storage capacity is defined which limits the number of agents on
the link. If it is filled up, no more agents can enter this link.

The modules base their decisions on the output of the traffic flow simu-
lation (e.g. knowledge of congestion) using feedback from the multi-agent
simulation structure (17, 18). This sets up an iteration cycle which runs
the traffic flow simulation with specific plans for the agents, then uses the
planning modules to update the plans; these changed plans are again fed
into the traffic flow simulation, etc, until consistency between modules is
reached. The feedback cycle is controlled by the agent database, which
also keeps track of multiple plans generated by each agent.

20% of the agents generate new plans by taking an existing plan, mak-
ing a copy of it, and then modifying the copy with either the Time Adap-
tation or the Router module. The other agents reuse one of their existing
plans. The probability to change the selected plan is calculated by a model
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which in the steady state converges to a logit model:

pj =
eβ·sj∑
i e
β·si

(1)

where pj is the probability for plan j to be selected and sj its current score.
β is a sensitivity parameter, set to 2.

The repetition of the iteration cycle coupled with the agent database
enables the agents to learn how to improve their plans over many iterations.
Due to memory constraints, the number of plans that one agent may have is
limited. In that case, the plan with the worst performance is deleted when
adding a new plan to a person that already has the maximum number of
permitted plans. The iteration cycle continues until the system has reached
a relaxed state. At this point, there is no quantitative measure of when the
system is “relaxed”; we just allow the cycle to continue until the outcome
is stable.

2.2 Scoring Plans

In order to compare plans, it is necessary to assign a quantitative score to
the performance of each plan. In this work, in order to be consistent with
economic appraisal, a simple utility-based approach is used. The elements
of our approach are as follows:

• The total score of a plan is computed as the sum of individual contri-
butions:

Utotal =
n∑
i=1

Uperf ,i +
n∑
i=1

Ulate,i +
n∑
i=1

Utr ,i , (2)

where Utotal is the total utility for a given plan; n is the number
of activities, which equals the number of trips (the first and the last
activity—both “home”—are counted as one); Uperf ,i is the (positive)
utility earned for performing activity i; Ulate,i is the (negative) utility
earned for arriving late to activity i; and Utr ,i is the (negative) utility
earned for traveling during trip i. In order to work in plausible real-
world units, utilities are measured in Euro.

• A logarithmic form is used for the positive utility earned by perform-
ing an activity:

Uperf ,i(tperf ,i) = βperf · t∗,i · ln
(
tperf ,i
t0,i

)
(3)

where tperf is the actual performed duration of the activity, t∗ is the
“typical” duration of an activity, and βperf is the marginal utility of
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an activity at its typical duration. βperf is the same for all activities,
since in equilibrium all activities at their typical duration need to have
the same marginal utility.

t0,i is a scaling parameter. As long as dropping activities from the
plan is not allowed, t0,i has essentially no effect.

• The (dis)utility of being late is uniformly assumed as:

Ulate,i = βlate · tlate,i , (4)

where βlate is the marginal utility (in Euro/h) for being late, and
tlate,i is the number of hours late to activity i. βlate is usually nega-
tive.

• The (dis)utility of traveling is uniformly assumed as:

Utr ,i = βtr · ttr,i , (5)

where βtr is the marginal utility (in Euro/h) for travel, and ttr,i is the
number of hours spent traveling during trip i. βtr is usually negative.

In principle, arriving early or leaving early could also be punished.
There is, however, no immediate need to punish early arrival, since waiting
times are already indirectly punished by foregoing the reward that could
be accumulated by doing an activity instead (opportunity cost). In conse-
quence, the effective (dis)utility of waiting is already −βperf t∗,i/tperf ,i ≈
−βperf . Similarly, that opportunity cost has to be added to the time
spent traveling, arriving at an effective (dis)utility of traveling of −|βtr| −
βperf t∗,i/tperf ,i ≈ −|βtr| − βperf .

No opportunity cost needs to be added to late arrivals, because the
late arrival time is spent somewhere else. In consequence, the effective
(dis)utility of arriving late remains at βlate . – These approximate values
(βperf , βperf + |βtr|, and |βlate |) are the values that would correspond to
the consensus values of the parameters of the Vickrey model (19).

3 Simple Mode Choice and Non-Car Transportation
Mode

This section reports how mode choice and public transit can be integrated in
the agent-based simulation in an approximative way (1, 20). The approach
uses twice the car free speed travel times as door-to-door public transit
travel times. The advantage of this approach is that it works completely
without any specific knowledge of the public transit availability in an area,
and our results indicate that even in such a situation, car traffic results are
closer to reality if such a “pseudo-transit” mode is added. The obvious dis-
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advantage is that it will not be capable of simulating any specific measures,
such as adding/removing/accelerating/decelerating a specific line.

3.1 Mode Choice Model

The basic idea behind our mode choice model is that each agent always
has at least one “car” plan and one “non-car” plan. Apart from that, plans
are treated as described earlier. Since this always keeps both modes in the
choice set, a decision between plans according to Eq. 1 is also a choice
between modes.

This requires changes in many parts of the simulation framework,
namely the transport simulation, the scoring of plans as well as the replan-
ning. These changes are described in the following.

3.2 Generating non-car plans

To generate non-car plans, an initial demand with car plans must exist al-
ready. Starting with that initial demand, the leg modes of all legs in each
plan are set to “car”, and the fastest routes are calculated. Then, each plan
is duplicated, changing all leg modes in the duplicated plans to “non-car”.

The duration of every non-car trip is assumed to take twice as long as
the car mode at free speed, but no exact route is provided. This is based
on the (informally stated) goal of the Berlin public transit company to gen-
erally achieve door-to-door travel times that are no longer than twice as
long as car travel times. This, in turn, is based on the observation that non-
captive travelers can be recruited into public transit when it is faster than
this benchmark (21). For the purposes of this research, it is assumed that
all non-car modes very roughly have the shared characteristics that they
are slower than the (non-congested) car mode. In the same vein, both for
car and for non-car trips there are no separate considerations of access and
egress in this simple model.

3.3 Handling non-car plans

At that time, the simulation only supported a road-network, but no walk-
or rail-network. Thus, only car legs can be truly simulated. Agents on
non-car legs are teleportated from one location to the next. But the telepor-
tation is not instantaneously, but takes some amount of time, which can be
stored in the legs as planned travel duration. While this does not impose
any public transit vehicles’ capacity constraints, it would still allow us to
have individual travel times, depending on agents’ demographics or chosen
non-car mode (e.g. bike, walk, public transit, . . . ). The simulation still gen-
erates departure and arrival events for non-car legs, which can be used for
analyses.
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The scoring of non-car plans is very similar to the scoring of car plans as
described in Sec. “Simulation Structure: Scoring Plans”, only the marginal
disutility of traveling changes. This is expressed by using βtr ,nc for the
marginal utility of traveling, instead of βtr ,car . Note once more that βtr ,car

and βtr ,nc are not values of time by themselves, but they are additional
marginal disutilities caused by traveling, in addition to the opportunity cost
of time. This is consistent with econometric approaches (22).

During replanning, plans are duplicated and modified (see “iteration
cycle” in Sec. “Simulation Structure, Overview”). This also holds for non-
car plans. The only difference is that the plans deletion module makes sure
that at least one plan of every mode is kept for every agent. This is to make
sure that all agents keep their ability to change mode until the end of the
iterations.

The above steps integrate mode choice into the replanning process that
takes place iteratively with the simulation. Instead of precalculating the
mode choice before the traffic assignment, as it is done in the traditional
four-step process, mode choice is now treated at the same level as route
choice in the traffic assignment.

3.4 Large-scale application

The mode choice model was applied to a large-scale, real-world scenario.
We used the area of Zurich, Switzerland, for this application, which has
about 1 million inhabitants. The following paragraphs only give a simpli-
fied description of the scenario. A full description of the scenario can be
found in (23).

The network used is a Swiss regional planning network that includes
the major European public transit corridors. It consists of 24 180 nodes and
60 492 links.

The simulated demand consists of all travelers within Switzerland that
are inside an imaginary boundary around Zurich at least once during their
day (23, 24). All agents have complete day plans with activities like home,
work, education, shopping, leisure, based on microcensus information (25,
26). The time window during which activities could be performed was
limited to certain hours of the day: work and leisure could be performed
from 06:00 to 20:00, shopping from 08:00 to 20:00, while home and leisure
had no restrictions.

To speed up computations, a random 10% sample was chosen from
the synthetic population for simulation, consisting of 181 725 agents. For
comparison, the same scenario was run with the pre-calculated mode choice
(see 23).

Simulated traffic volumes were compared with the hourly traffic vol-
umes from 159 real-world counting stations. Fig. 1 shows, in red, the mean
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(a) pre-calculated mode choice (b) mode choice during simulation
(βtr,nc = −3)

Figure 1: Comparison of simulated traffic volumes with real-world counts. Note different
scales on y-axis

relative error between hourly flows in reality and hourly flows from the sim-
ulation. The left figure contains the result from the fixed, pre-determined
mode choice, the right figure the result of the new adaptive mode choice.
One notices a quite distinct reduction in the average error, from about 40%
to about 30%. Also the absolute bias, in blue, is reduced.

4 Detailed Public Transit Simulation

Accessibility by public transit often differs from the accessibility by car.
Especially rural areas usually only have sparse public transit reachability,
whereas there are still many roads available for private cars. In addition,
the public transit service quality may change over the time of day much
more than the accessibility for private cars. While the actual accessibility
by car is mostly dependent on the network congestion—assuming a place
is accessible at all—the accessibility by public transit also depends on the
actual schedule. For example, many regions may not be served by public
transit during the night hours.

To accommodate these facts, the queue-based traffic simulation in
MATSim was extended to include public transit traffic as well. This in-
cludes the detailed simulation of public transit vehicles and passengers.
Agents are able to board and exit vehicles in order to get from one place
to another, replacing the teleportation used in the simple model presented
before. This section highlights these changes in more detail.
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4.1 Required Data

The existing agent-based simulation uses a road-network and so-called
plans to describe the demand on the network. Agents could travel on all
links of the network. In the case of integrated public transit traffic, this may
no longer be the case: links could be used to describe bus-lanes or railway
tracks, where private cars are not allowed to—or even cannot—drive. Thus,
each link has to specify which modes of transports it represents, resulting
in a multimodal network. In such a network it would also be possible for
public transit traffic and private car traffic to coexist on the same link, e.g.
buses floating in the regular traffic stream.

The public transit service offerings are described as public transit
schedules. A public transit schedule contains information about public
transit lines, their routes, the travel times between stops, and the time of
departure at the start of a route. The route is described as a series of links in
a multimodal network. Stop locations contain a coordinate and are assigned
to one link in the network, specifying on which link public transit vehicles
may approach the stop. In addition, a stop can have additional attributes,
e.g. a name or whether a vehicle halting at a stop is blocking other vehicles
on the same link or not (useful to model bus bays).

Each departure along a public transit route specifies with which vehicle
the route is served. A vehicle, belonging to a specific vehicle type, spec-
ifies the number of seats it offers as well as the total passenger capacity.
This allows to implement boarding failures during the simulation due to
fully occupied vehicles, and also analyze the occupancy of public transit
vehicles.

Currently not implemented, but conceptually not challenging, is the in-
clusion of driver schedules and vehicle schedules. This could be used to
research operational aspects of public transit traffic, especially how delays
due to congestion interfere with driver and vehicle schedules, maybe mak-
ing certain combinations more likely to promote delays than others.

Passengers using public transit must specify which public transit line
and route they want to board, at which stop they want to enter and at which
stop they want to exit the public transit vehicle. This information is stored
as the route of a public transit leg, in contrast to the series of nodes or links
that build the route of a car leg. If an agent must change lines on a trip from
one activity location to another, additional public transit interaction activi-
ties are inserted between the two (or more) public transit legs. Such public
transit interaction activities are also added after the walking leg leading
from an activity location to a public transit stop, and before the final walk-
ing leg leading from a public transit stop to the actual activity location if the
access and egress paths should be included in the simulation. Such route
data for passengers can be generated using a public transit router, which is
described in a later section.
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4.2 Integrated Public Transit Simulation

Given a public transit schedule, the simulation creates a driver-agent for
each departure along a route and assigns the driver to the corresponding
vehicle. The public transit drivers behave like agents with a plan containing
two activities and one leg, the leg being the route of the public transit line.
The public transit driver waits at the location of the first activity until its
departure time has come. Then, the agent drives its public transit vehicle
along the public transit route, until it reaches the end of the route, where
it starts its second activity that effectively ends its plan. As noted before,
it would be possible to adapt the plans of public transit drivers to include
more than one leg, representing a real driver’s schedule.

The simulation itself distinguishes private vehicles (i.e. cars) from pub-
lic transit vehicles. Every time a public transit driver passes a stop along its
route, the simulation advises the driver to handle the stop. As the simula-
tion is based on the queue model (15, 16), interaction of vehicles with other
parts of the simulations is limited to two locations on a link:

• at the very beginning of a link, when an agent is added to a link’s
queue

• at the very end of a link, when an agent is taken out of a link’s queue

Vehicles departing from or arriving at an activity are inserted or removed
from the traffic stream at the end of a link in the current model. To be
consistent with that model, public transit stops located on a link are handled
when the public transit vehicle is at the end of a link.

If agents depart at an activity location, the simulation used to insert
these agents at the end of a link so that they could be moved on through the
network as vehicles. Now, the simulation first checks whether the agent’s
next leg is a car trip or a public transit trip. In the first case, the simulation
proceeds as usual. In the latter case, the agent is added to a waiting queue
at the desired stop location.

To handle a public transit stop, a driver first gives all passengers in its
vehicle the chance to exit the vehicle at the specific stop. After that, the
driver iterates over the waiting queue at the stop to see if any agent wants
to board the driver’s vehicle. This is necessary as one stop could be served
by more than one line, resulting in some agents waiting for another public
transit line. Given there is enough free capacity left in the public transit
vehicle, the agents are removed from the waiting queue at the stop and
added as passengers to the vehicle. If the capacity is not sufficient, only
the front-most passengers can enter the vehicle until the capacity limit is
reached.

The driver has to wait for a certain amount of time at the stop location,
depending on the number of passengers leaving or entering the vehicle. Af-
ter that time, the driver checks again if additional agents have arrived at the
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stop location, giving them a chance to enter the vehicle as well. Only after
no more passengers enter or leave the vehicle—either because there is no
more demand, or because the vehicle is fully loaded—the driver continues
along its route.

4.3 Schedule-based Public Transit Router

Based on the public transit schedule, a special routing algorithm searches
for the least-cost path from one location to another location using public
transit services and short walk legs only. The implemented public transit
router is based on Dijkstra’s algorithm for finding shortest paths (27) with
some modifications to better accommodate the public transit route search
problem.

The network the public transit router operates on is generated from the
public transit schedule. Each public transit route stop builds a node of the
network, and for each public transit route corresponding links are added
connecting the stops of the route. After this first step, the network consists
of several linear strings of connected nodes, representing the public transit
routes from the schedule, but with no connection in-between them yet. In
a second step, each node is connected with additional links to other nodes
within a configurable distance. These links, that can be seen as transfer
or walking links, represent the interchange facilities; not only within one
physical facility, but also between nearby stop locations of different lines.
Heuristics are applied to reduce the number of transfer links, an important
factor in the computational performance of Dijkstra’s algorithm. Nodes
being the start locations of a public transit route are seen as departure lo-
cations only, thus no transfer links being added to them starting at those
nodes. Nodes representing the last stop of a public transit route are arrival
locations only, and will have no transfer links ending at those nodes. In
addition, no transfer links are added between two nodes that belong to the
same public transit line and the same stop facility. This comes from the
insight that U-turns on public transit lines may never be part of a least-cost
path and such transfer links are thus never needed. Fig. 2 shows the single
steps in the process of generating the public transit router network.

Once the network is available, it could be used for handling stop-to-
stop routing requests by implementing traditional shortest-path calcula-
tions. But in reality, people often have more than one stop location from
where they can depart or where they can arrive, especially in urban regions.
Finding the best route would require to calculate the least-cost route be-
tween any combination of start and end locations, and then selecting the
best solution from that choice set. This would multiply the computational
burden used to find the optimal route. To overcome this problem, Dijkstra’s
algorithm was modified in order to support multiple start and end nodes.
First, the set of nodes to be expanded is not initialized with a single start
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(a) Physical infrastructure. Squares repre-
sent platforms of stop facilities.

(b) Line map with 3 different lines: A cir-
cular line, an express line, and a regular
line.

(c) Public Transit router network without
transfer links. The dotted areas group the
nodes belonging to the same stop facil-
ity.

(d) Complete public transit router network

Figure 2: Generation of the Public Transit Router Network

node only, but with all of the possible start nodes together with their respec-
tive time and cost to reach that start node by walk from the agent’s origi-
nating coordinate. Second, the algorithm does not end when the first (and
originally the only) end node is to be expanded, but when the last possible
end node is to be expanded. Then, to each end node the cost of egressing
from that node to the desired location is added, and only after that the least-
cost path is selected and stored in the routed leg. This adds only a very
small overhead to the computational performance of the original Dijkstra’s
algorithm.

4.4 Improved Mode Choice Model

In previous projects, plans were typified to differentiate between the differ-
ent available transportation modes. That approach proves not to be scalable
to a lot more of different transportation modes. In addition, it prevents the
creation of plans that use different types of modes combined during a day
(e.g. park-and-ride). Besides, the typification required quite some changes
to the underlying code base of MATSim, indicating that it does not match
well with the conceptual structure of the existing simulation framework.

Instead of using pre-determined types to mark plans and ensure that
modes always stay available, the mode choice is now implemented as an
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additional replanning module. This replanning module first selects a ran-
dom transportation mode from a given list, then changes all legs to use
that mode. Afterwards, the routes for all legs need to be re-calculated. By
randomly choosing from a list of given modes, agents can explore new, ad-
ditional transportation modes without having plans of that type in the first
place, foregoing the previously necessary pre-processing of the demand.

4.5 Large-Scale Application

For the large-scale application, again the region of Zurich in Switzerland is
used. The initial plans and road network is the same as in the aforemen-
tioned scenario. A public transit schedule was taken from the official model
for public transit in Zurich (28), with the data being given in a file for PTV
VISUM (29). The data was then converted into a format that MATSim
could read. Based on that public transit schedule, a network connecting
the stops along the public transit routes was generated. This network rep-
resenting the public transit services was then combined with the existing
road network to create a multimodal network. The network obtained this
way consists of two sub-graphs; future applications should try to merge the
two sub-graphs where possible, e.g. by matching bus routes onto real roads.

The simulation was run with two variants of the public transit schedule:
The first one used the unaltered schedule, while in a second variant the S7,
one line of the suburban train system, was removed. The S7 connects small
towns along the lake of Zurich with an express link to the city center of
Zurich. On the same route, two slower lines (S6, S16) with more frequent
stops still serve the towns and ensure the accessibility of the region. For
the replanning, 10% of the agents adapt departure times, another 10% use
the Router module, and an additional 10% of the agents now switch the
transportation modes, forcing a new mode to be tested in the next iteration.
The remaining 70% still choose one of their existing plans, according to
Eq. 1, effectively also doing mode choice.

Comparing the two simulation runs to each other, one can observe the
effect of the missing train line nicely (see Tab. 1). The two slower lines
are used by a remarkable number of additional passengers in the case of
the missing express line. The total number of travelers along this corridor
is lower in the modified variant, suggesting that some passengers are likely
to change their transportation mode. This assumption can be verified by
analyzing the number of people using public transit in the simulation that
live in some of the affected towns: In most towns, the number of agents
choosing public transit is lower in the modified variant than in the original
variant with all lines available, reflecting the lower attractiveness of the
public transit offerings.

The computational performance of the detailed public transit simulation
was compared to the model presented in the first part, that did not actually
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Table 1: Number of legs using one of the specified public transit lines during a day

Public Transit line with S7 without S7
S6 65194 70510
S16 43182 56324
S7 73681 n/a
sum 182057 126834

simulate public transit passengers but just teleported the passengers from
one location to another based on a simple travel time estimation. The tests
were run on systems having two Dual-Core AMD Opteron Processors 2222
running at 3 GHz. Memory was connected through a front side bus clocked
at 1000 MHz. Tab. 2 lists the findings of the performance comparison. As
can be seen, one iteration of the detailed simulation takes more than twice
the time in average than the simple, teleporting simulation. On a closer
look, one can distinguish between the time needed for replanning (i.e. find-
ing routes) and for the actual traffic flow simulation. There, one can observe
that the actual traffic flow simulation is only around 10% slower if public
transit is simulated in detail. On the other hand, replanning takes up much
more time. This can be related to the following problems:

• The router algorithm used for car legs is heavily optimized ( (see
14)), while the router algorithm used for public transit is a modified
variant of the slower Dijkstra’s shortest path algorithm.

• In the case of the detailed public transit simulation, new routes must
be calculated when an agent changes its leg mode, while the routes
are already available when doing mode choice in the simple model.
This effectively doubles the amount of agents that need to recalculate
their routes in each iteration.

• In the case of the detailed public transit simulation, the router used
for car legs operates on a multimodal network and needs to verify in
each step if a chosen link can actually be used by the agent. This
overhead is not needed in the case of a roads-only network as it is
being used in the simple model.

Luckily, the replanning part can easily be sped up using multiple threads,
given a machine has enough CPU cores available, so this should not be a
problem for future development and larger scenarios.

5 Future Applications of the Public Transit Simulation

The modifications done to simulate public transit open up several possibil-
ities to also simulate other forms of traffic than just private car traffic and
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Table 2: Performance comparison between the simple mode choice model and the detailed
public transit simulation (times in [min:sec])

detailed public
simple model transit simulation

avg. time per iteration 03:35 08:44
avg. time for replanning 00:15 04:51
avg. time for traffic flow simulation 03:10 03:36

urban public transit traffic. Most of these possibilities come from the dif-
ferentiation between vehicles and persons and the extension that vehicles
can now transport more people than just the driver. In the following, a few
of these additional forms of traffic are presented. It will be shown how the
current simulation infrastructure could be used to simulate those kinds of
traffic.

5.1 Route-based Para-transit

Paratransit is usually referred to as a flexible passenger transport mode that
does not follow fixed schedules or even routes. It is often operated by fleets
of small buses or vans, although other vehicles can be used as well. While
paratransit is often the only kind of public transportation available in cities
of developing countries, it may exist as well in rural areas of developed
countries where a fixed-route, fixed-schedule service is not cost-effective.
In the latter case, the offered services are often named as Dial-a-ride or
similar.

One of the biggest differences between paratransit and the currently im-
plemented infrastructure for simulating public transit are the stop locations.
Paratransit vehicles usually stop everywhere where it is suitable when pas-
sengers want to get in or out the vehicle.

For route-based paratransit, a simple approach would be to define a
stop facility on each link that is served by paratransit. More than one stop
per link would not be useful as long as the queue model is used in the
simulation, as the queue model in its current form does not allow for more
than one place of interaction on a link. Passenger agents could then find the
best connection using a router that includes the paratransit route. Instead of
using a time table for routing, an average expected waiting time—maybe
depending on time of day—could be used as time or cost for accessing a
new paratransit vehicle in the routing process. In the simulation, a custom
paratransit driver could decide by her/himself if she/he should stop at a stop
location or not. This decision could be—for example—depending on the
number of passenger already in the vehicle. The same way, a paratransit
driver could decide to wait a bit longer at a stop in the hope for additional
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passengers arriving soon.

5.2 Ride-Sharing

Ride Sharing describes two or more people traveling together in a private
car. This can be a family driving jointly to some leisure location, or co-
workers that live close to each other and share a common trip to/from work.
In some regions, agencies for arranged lifts exist, allowing one to easily find
other people driving the same way in order to share rides.

Given the code infrastructure that differentiates persons and vehicles,
the implementation of ride sharing should be rather simple. Similar to every
public transit departure specifying a vehicle to be used, each car-leg or car-
route should also specify with which car the leg or route is undertaken. An
additional attribute could define which of the persons is the driver. If such
an attribute is missing, a simple algorithm could be used (e.g. a random
person in the car that has a driving license; this would already clearly define
all the cases where parents bring their children to school, as children usually
don’t have a driving license).

One point that needs to be taken care of is that all persons that are
scheduled to drive together indeed travel together. This means mostly that
the driver should not depart before all passengers are in the car. Assuming
that such combined trips need a special replanning module that tries to put
agents into the same car, this could be either solved with activity end times
(passengers must be in the car before the driver) or better with additional
route attributes. Such attributes, like a list of passengers, could delay the
departure of a vehicle until a condition based on the attributes is fulfilled.
This would simplify to model actions like parents picking up their child at
a kindergarten, or one co-worker picking up another one somewhere along
its route.

6 Conclusions

In a first part, a simple extension to include non-car traffic into an existing
agent-based simulation was presented. It was shown how the mode choice
model works, and what improvements it brings when applied to a large-
scale, real-world scenario. In a second part, the simulation was refined to
model public transit traffic in more detail. The conceptual changes were
highlighted, showing how public transit can be integrated into an existing,
agent-based transportation simulation. At least, an outlook was given how
the extended simulation could not only be used for simulating public transit,
but also other kinds of transportation like paratransit.
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