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Abstract: Evacuation modeling is an important problem that has been intensively studied in the last 40 years. In a general
evacuation situation, there might be more then one safe place. A common approach to reduce this multi-
destination problem to a single destination problem is to connect all safe places via zero cost links to a super
sink. However, this approach works only as long as the safe places have no capacity constraints. In this paper,
we present an approach to solve an evacuation problem where the safe places have limited capacities. This is,
for example, the case if the safe places are shelter buildings for tsunami evacuation. The problem is solved
through an evolutionary learning algorithm for the combined route- and shelter-assignment problem combined
with a heuristic approach for the fair minimization of shelter capacities. Different behavioral assumptions
(”fair” vs. ”globally optimal”) are investigated. The proposed approaches are discussed in the context of a
real-world tsunami evacuation problem.

1 INTRODUCTION

The evacuation of whole cities or even regions is a
problem of substantial practical relevance, which is
demonstrated by recent events such as the evacuation
of Houston because of Hurricane Rita or the evacua-
tion of coastal cities in the case of tsunamis. Impor-
tant tools for the planning of organized reactions to
such events are model-based simulation systems.

The development of evacuation simulations relies
strongly on results obtained in the field of transporta-
tion modeling. Like in transportation, one can dis-
tinguish static approaches, e.g., (Sheffi, 1985), and
dynamic approaches, e.g., (Peeta and Ziliaskopoulos,
2001).

A typical static evacuation simulation is MASS-
VAC (Hobeika and Kim, 1998). The obvious short-
coming of static models is that they do not capture
dynamic effects, which are highly relevant in evacu-
ation situations. Consequently, many dynamic traffic
assignment (DTA) models have been adopted to evac-
uation scenarios, e.g., MITSIM (Jha et al., 2004), DY-
NASMART (Kwon and Pitt, 2005), and PARAMICS
(Chen and Zhan, 2004).

Another aspect according to which transportation
models may be classified is their granularity: Mi-
croscopic models represent every trip-maker individ-
ually, whereas macroscopic models aggregate traffic
into continuous streams.

All of the above DTA packages rely on mi-
croscopic traffic models. Further microscopic ap-
proaches that have been applied to the simulation of
evacuation dynamics are cellular automata (Klüpfel
et al., 2003) and the social force model (Helbing
et al., 2002). Examples of software packages based
on macroscopic models are ASERI (Schneider and
Könnecke, 2002) and Simulex (www.iesve.com).

Random utility models are also applicable to the
microscopic modeling of pedestrian dynamics, how-
ever, they are yet to be applied in evacuation scenarios
(Bierlaire et al., 2003).

The general evacuation problem is to minimize the
egress time of an endangered region or building by as-
signing a feasible escape route and destination to ev-
ery evacuee. This problem is complex because of con-
gestion effects that inevitably occur when many evac-
uees enter the transportation facilities (roads, hall-
ways, stairways) at once.



In some evacuation scenarios there secure areas
with with limited capacity available within the evac-
uation zone, such as shelter buildings in tsunami
prone areas. An evacuation that accounts for shel-
ters bears similarities with the capacitated warehouse
location problem (CWLP), e.g., (Akinc and Khu-
mawala, 1977). Given a constellation of warehouses,
the CWLP is to satisfy the demand for goods of a
number of customers in a way that minizes the to-
tal transportation costs without exceeding the ware-
houses capacity. A concrete application of mathemat-
ical programming techniques to the evacuee–shelter–
allocation problem is (Sherali et al., 1991).

This paper deploys a detailed microsimulation
for the representation, analysis, and optimization of
pedestrian evacuation dynamics for a tsunami situa-
tion in a large coastal metropolitan area. Building
on existing routing strategies (Removed, XXXX), it
provides new solutions to (i) the combined route and
shelter assignment problem and (ii) the shelter capac-
ity optimization problem, considering both ”fair” and
”optimal” assignment rules.

The added value of the agent-based approach is its
natural representation of individual travelers as soft-
ware agents that interact in a simulated version of
the real world (a virtual environment). This is an ad-
vantage over macroscopic models in that it allows (at
least technically) for a much higher model resolution.
However, it comes at the price of greater difficulties
in the mathematical treatment of the problem. The so-
lution presented in this article are therefore only of an
approximate nature.

The remainder of this article is organized as fol-
lows. Section 2 gives a detailed description of the
considered evacuation problem. After revisiting the
pure evacuation route assignment problem in Sec-
tions 3, the combined route and shelter assignment
problem is presented in Section 4, followed by the
shelter capacity optimization problem in Section 5.
Detailed simulation results are given next in Sec-
tion 6. A final discussion of the results is given to-
gether with a summary of the findings in Section 7.

2 PROBLEM STATEMENT

We investigate different strategies to assign routes and
destinations (shelters) to evacuees. In a second step,
we identify optimal dimensions of the shelters. Over-
all, we consider two different objectives:

Fairness
No evacuee will agree to take an obvious detour
when heading for a shelter or to select an ob-
viously faraway shelter instead of a nearby one.

This requires to identify route and shelter assign-
ments that are fair in that no evacuee can obvi-
ously gain by switching to a different route or
shelter. This calls for a route and shelter assign-
ment that results in a Nash equilibrium of all evac-
uation strategies in the population.

Efficiency
It is desirable to evacuate the system as quickly
as possible, which is equivalent to minimizing the
total evacuation time of the whole population (see
below). While a Nash strategy has the obvious
and important advantage of general acceptance, it
may be suboptimal in this regard because some
evacuees may do great damage to others by block-
ing their ways/shelters. In this research, we iden-
tify approximations of optimal evacuation strate-
gies as benchmarks to which fair solutions can be
compared.

An important topic for future research is to com-
bine efficient and fair solution strategies into evacua-
tion plans that are more efficient than pure Nash equi-
libria but without introducing obvious levels of un-
fairness.

2.1 Simulation framework

We model the urban evacuation region and the pop-
ulation of evacuees with a multi-agent simulation,
where every single person is individually represented.
For this purpose, the MATSim (MATSim, 2010) sim-
ulation framework is adopted. MATSim is designed
for the computation of transport equilibria, and hence
it can be immediately deployed for the computation
of Nash evacuation strategies. For approximately op-
timal strategies, however, some adjustments are nec-
essary.

MATSim allows for adjustments in the different
choice dimensions of a simulated traveler through
modules, where, typically, one module is responsible
for one particular choice dimension. In our applica-
tion, this requires to specify four modules: (1) Nash
route choice, (2) Nash destination (shelter) choice, (3)
optimal route choice, (4) optimal shelter choice.

MATSim computes approximate Nash equilibria
by iterating best-response behavior: in every itera-
tion, a fraction of the travelers re-calculates a route
or a destination based on what would have been best
in the previous iteration, assuming that the behavior
of all other agents stays unchanged. After this replan-
ning, the resulting plans of all travelers are simulta-
neously executed in the mobility simulation and new
performance measures are computed. This process is
repeated many times. If it stabilizes, then a route or



destination re-planning does not result in a substan-
tial improvement any more, and an approximate Nash
equilibrium is obtained.

An alternative assignment logic is to not compute
best responses in every iteration but cooperative be-
haviors that improve the situation of the population
as a whole. The concrete realization of such behav-
ioral patterns within the MATSim framework is more
involved and is hence postponed to later parts of this
article.

2.2 Network modeling

We model the evacuation network as a directed graph
consisting of a node set N , a link set L ⊂N ×N , a
set of source (origin) nodes S ⊂ N and a set of sink
(destination, shelter) nodes D ⊂N .

Every destination d ∈D has a capacity cd that rep-
resents the maximum number of evacuees that can be
sheltered at this destination. Destination nodes may
also be located at the boundary of the endangered
area, in which case they to not provide a limited shel-
ter but access to a safe region, which is modeled by
assigning them an unlimited shelter capacity.

We consider a pedestrian simulation scenario on
a road network, where the crossings are modeled as
nodes and the street segments connecting the cross-
ings are modeled as links. The physics of pedestrian
traffic flow dynamics are modeled through parame-
ters of the link. The most important parameter is the
flow capacity, which describes how many flow units
can travel along a link per time unit. Another impor-
tant parameter is the time-dependent link travel time,
which describes the expected travel time when enter-
ing a link at a certain point of time. Note that this
formalism can be immediately transferred to vehicu-
lar evacuation problems.

For illustration, an evacuation network with
bounded-capacity shelters is given in figure 1.

3 ROUTE ASSIGNMENT

Given that every evacuee n = 1 . . .N is assigned to a
shelter d(n), the route assignment problem is to find a
feasible and in some sense best route from that evac-
uee’s origin s(n) to her shelter.

3.1 Shortest path solution

The most straightforward approach to an evacua-
tion problem is to compute shortest paths based on
some pre-defined criterion such as distance or aver-
age travel time. While this approach is computation-
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Figure 1: Example evacuation network with shelter nodes

ally efficient (Dijkstra, 1959) and straightforward to
implement in a microscopic evacuation simulation, it
is of limited practical use.

The main problem is that the shortest path solu-
tion does not take congestion into account. The time
it takes to travel through a link (the link travel time)
depends on the congestion level on that link: the flow
capacity of a link defines how many flow units can
leave it per time interval. If there are too many evac-
uees on the link, they queue up and have to wait.

Since the shortest path solution computes evacu-
ation routes a priori, it does not account for time-
dependent congestion effects, which renders it a poor
evacuation strategy. The following two subsections
present improved routing solutions.

3.2 Nash equilibrium approach

In the given context, a Nash equilibrium describes a
situation where no evacuee can gain by unilaterally
deviating from her current (routing) strategy (Nash,
1951). In most evacuation situations, the Nash equi-
librium leads to a shorter overall evacuation time than
the naive shortest path solution. Furthermore, since a
Nash equilibrium means that nobody has an incentive
to deviate, it can be considered as a socially accept-
able and hence implementable evacuation strategy.

In a multi-agent evacuation simulation the so-
lution can be moved towards a Nash equilibrium
through iterative learning (Gawron, 1998; Removed,
XXXX). As described above, an iterative learning al-
gorithm starts with a given (routing) strategy pattern
and then adjusts it through trial and error efforts of
the simulated agents. In the given evacuation con-
text, strategies are only evaluated based on their travel
time.

Formally, the real-valued time is discretized into



Algorithm 1 Nash equilibrium routing
1. initialize τa(k) with the free-flow travel time for

all links a and time steps k

2. repeat for many iterations:

(a) recalculate routes based on link costs Ca(k) =
τa(k)

(b) simulate agent movements, obtain new τa(k)
for all a and k

K segments (“bins”) of length T , which are indexed
by k = 0...K − 1. The time-dependent link travel
time when entering link a in time step k is denoted
by τa(k). Alg. 1 drafts the Nash-equilibrium routing
logic.

3.3 Approximately system optimal
assignment

A system optimal routing solution minimizes the to-
tal travel time in the system. Classical solutions to
this problem apply mathematical programming tech-
niques, which are based on the theory of dynamic
network flows. The foundations of these techniques
have been laid in (Ford and Fulkerson, 1962), and dy-
namic flow models have been applied to evacuation
problems from the early 1980s on (see, e.g., (Chalmet
et al., 1982)).

The mathematical theory that underlies the above
methodology provides an important result regarding
the notion of ”optimality”, which puts the following
problems into perspective:

• Minimization of the egress time.

• Minimization of the average (or total) travel time.

• Maximization of the amount of flow that has al-
ready reached the sink at each time step.

The triple optimization theorem proved by Jarvis and
Ratliff (Jarvis and Ratliff, 1982) states that the solu-
tion which minimizes average evacuation time also
maximizes the amount of flow that has reached the
sink at each time step and therefore also minimizes
the egress time.

In the multi-agent domain, an approximate sys-
tem optimum can be found through an iterative learn-
ing approach that is closely related to the simulation
of a Nash equilibrium as described above (Removed,
XXXX). The procedure is called Approximate Sys-
tem Optimal Assignment (SO).

The only difference to the Nash routing logic is
that the travel time based on which agents evaluate
their routes is replaced by the marginal travel time

Algorithm 2 System optimum approach
1. initialize Cs

a(k) = 0 and τa(k) with the free-flow
travel time for all links a and time steps k

2. repeat for many iterations:

(a) recalculate routes based on link costs Ca(k) =
τa(k)+Cs

a(k)
(b) load vehicles on network, obtain new τa(k) and

Cs
a(k) for all a and k

(Peeta and Mahmassani, 1995). The marginal travel
time of a link is the amount by which the total system
travel time changes if one additional vehicle drives
along that link. It is the sum of the cost experienced
by the added vehicle (τa(k)) and the cost imposed on
other vehicles. The latter is denoted here as the time-
dependent “social cost” Cs

a(k).
Letting each agent individually minimize its

marginal travel time implicitly enforces a cooperative
behavior that also minimizes the total system travel
time. It therefore also maximizes the amount of evac-
uees that have already reached the sink at each time
step, which also minimizes the egress time.

Alg. 2 outlines the arguably most straightforward
implementation of this approach in a time-discrete
multi-agent simulation.

4 SHELTER ASSIGNMENT

The shelter assignment problem is to identify, for each
evacuee, if this evacuee should access a shelter or not
and, given that a shelter is accessed, to decide which
shelter. Again, both a Nash and an SO approach are
possible.

In either case, the (re-)allocation of an agent to
a shelter requires also to re-compute its route. We
maintain consistency here in that the Nash-shelter as-
signment is combined with a Nash-route assignment
and the SO-shelter assignment is combined with an
SO-route assignment

4.1 Nash shelter assignment

Due to the given capacity constraints of all shelters,
a naive best-response simulation of a Nash shelter as-
signment is infeasible: assuming that all shelter ca-
pacity is utilized in an evacuation situation, the best
response of an agent having managed to get into a
shelter is to stick to this strategy forever.

We therefore extend the best-response simulation
logic to a pair-wise best response, where for every



Algorithm 3 Heuristic Nash shelter allocation
1. initialize routes and destinations for all agents

2. repeat many times

(a) load all agents on the network
(b) extract link travel times and social costs
(c) for every agent n = 1 . . .N, do with Preplan:
• with Preroute, compute a new route from s(n)

to d(n).
• with Pmove,
i. randomly select a non-full shelter d′

ii. compute the benefit of a move: δ =
cs(n)d(n)− cs(n)d′

iii. if δ > 0, assign d′ as the new destination to n
and re-route n

• with Pswitch,
i. randomly select n′ from {1, . . . ,N}

ii. compute the minimum benefit of a switch:
δ = min(cs(n)d(n) − cs(n)d(n′),cs(n′)d(n′) −
cs(n′)d(n))

iii. if δ > 0, then switch the destinations of n and
n′ and re-route both agents

agent n that re-plans its shelter assignment a ”switch-
ing partner” n′ in another shelter is randomly se-
lected, and both agents switch their shelters if and
only if both benefit from this switch. This decision
is made based on the expected travel time of a best-
response re-routing to the new destination, which also
is adopted in the case of an accomplished switch.

The iterative simulation conducts a shelter switch
with a certain probability Pswitch, and it also maintains
the option of a plain route recomputation with Preroute.
Algorithm 3 defines the details of this logic.

Step 1., 2.(a), 2.(b) and the first step of 2.(c) are
symmetric to the routing logic of Algorithm 1. In
the shelter allocation part of the algorithm, an agent
moves with probability Preplan ∗ Pmove to a non-full
shelter if she would benefit from that move. With
probability Preplan ∗ Pswitch, two agents switch their
shelters if both of them would benefit. The origin of
agent n is denoted by s(n) and the destination by d(n).
The cost cs(n)d(n) for agent n corresponds to the travel
time for agent n from s(n) to d(n).

4.2 SO shelter assignment

Technically, the SO shelter assignment does not func-
tion differently from the Nash shelter assignment,
only that two agents now ”agree” to switch their shel-
ters if this reduces the total travel time in the system.

To decide this, the expected change in marginal

Algorithm 4 Heuristic SO shelter allocation
1. initialize routes and destinations for all agents

2. repeat many times

(a) load all agents on the network
(b) extract link travel times and social costs
(c) for every agent n = 1 . . .N, do with Preplan:
• with Preroute, compute a new route from s(n)

to d(n).
• with Pmove,
i. randomly select a non-full shelter d′

ii. compute the benefit of a move: δ =
cs(n)d(n)− cs(n)d′

iii. if δ > 0, assign d′ as the new destination to n
and re-route n

• with Pswitch,
i. randomly select n′ from {1, . . . ,N}

ii. compute the cost change of a switch: δ =
cs(n)d(n) + cs(n′)d(n′)− cs(n)d(n′)− cs(n′)d(n)

iii. if delta > 0, then switch the destinations of
n and n′ and re-route both agents

travel times is evaluated before and after the switch.
Recall that marginal cost is defined as the sum of indi-
vidual cost and social cost. The change in individual
cost (travel time) captures the (dis)benefits only of the
two agents negotiating the switch, whereas the addi-
tional change in social cost (travel time) captures the
effect of this switch on all other evacuees.

Apart from the different cost evaluations, the sim-
ulation logic stays unchanged. Algorithm 4 gives the
details.

Step 1., 2.(a), 2.(b) and the first step of 2.(c) are
symmetric to the routing logic of Algorithm 2. In
the shelter allocation part of the algorithm, an agent
moves with probability Preplan ∗ Pmove to a non-full
shelter if she would benefit from that move. With
probability Preplan ∗ Pswitch, two agents switch their
shelters if this would decrease the total system travel
time. The origin of agent n is denoted by s(n) and
the destination by d(n). The cost cs(n)d(n) for agent n
corresponds to agent n’s marginal travel time as ex-
plained in Section 3.3.

5 SHELTER CAPACITY
ASSIGNMENT

The shelter capacity assignment problem is to min-
imize the total shelter capacity over the entire evac-
uation area subject to the constraint that no evacuee



takes damage from being neither able to reach the safe
area nor to enter a shelter because of lacking capacity.

That is, a shelter capacity configuration is required
where only those evacuees are assigned to shelters
who would not make it to the safe region otherwise
and where the shelter capacities are tailored towards
these evacuees only. The main difficulty of this prob-
lem is owed to the simulation-based representation of
”needing a shelter”.

The previous section demonstrates how a com-
bined route choice and shelter allocation Nash equi-
librium and SO assignment can be simulated. In this
section, we enhance this assignment by a shelter ca-
pacity adjustment logic. The main difficulty to be
dealt with here is that two coupled assignment prob-
lems need to be simulated at once: one for the evac-
uees who need the shelters, including the choice di-
mension of accessing a shelter; and one for those
evacuees who do not need the shelters, excluding
them from the option of accessing a shelter.

5.1 Shelter capacity assignment subject
to double Nash constraints

The iterative simulation logic that allows for both re-
routing and shelter switching is maintained. In or-
der to obtain a Nash route choice pattern, the best-
response re-routing logic is adopted.

If there is more shelter capacity than strictly
needed, there will also be agents in the shelters that
do not need the shelter (because it can be assumed
that for many such agents the shelter still is closer
than the safe area). It is not feasible to ex post re-
move these agents from the shelters and to constrain
the shelter capacities accordingly because this would
change the travel times and hence the survival chances
of the needy agents. The shelter capacities therefore
need to be gradually changed during the iterations.

This effect is achieved by evaluating, in every it-
eration, the space occupied in every single shelter by
agents that would also have made it to the safe re-
gion. If this surplus is vanishing, the shelter is ur-
gently needed and its capacity is increased by a rela-
tive amount (say, 5 percent). If, on the other hand, this
surplus is substantial, the shelter is too large, and it is
shrunk by a relative amount (say, again, 5 percent) of
its surplus capacity.

This mechanism, in combination with the strict
preference for needy agents in the shelter allocation,
eventually leads to a configuration where all available
shelter capacity is allocated to needy agents, given
otherwise fair Nash equilibrium conditions. Algo-
rithm 5 gives an overview.

The term xnd indicates the allocation of agent n to

Algorithm 5 Heuristic Nash shelter allocation and ca-
pacity
1. initialize routes and destinations for all agents

2. repeat many times

(a) load all agents on the network
(b) extract link travel times and social costs
(c) for every agent n = 1 . . .N, do with Preplan Nash

re-planning
(d) for every shelter d = 1 . . .D, do:
• o(d) = c(d)−∑

N
n=1 xnd

• δd = 0
• for every agent n = 1 . . .N with xnd = 1, do:
i. calculate δs(n)dsuper the surplus of time that n

has to reach dsuper just in time
ii. δd = δd +δs(n)dsuper

iii. if δs(n)dsuper > 0, then increase o(d) by one
• if o(d) > 0, then:
• decrease c(d) by min(o(d),Pcapacity ∗ c(d));

re-route agents with δs(n)dsuper > 0 to dsuper if
needed

• else: increase c(d) by Pcapacity ∗ c(d))

shelter d, i.e., xnd = 1⇔ d(n) = d. Pcapacity denotes
the relative amount by which the capacity of a shelter
can change at most. The super shelter dsuper is a shel-
ter with unbounded capacity that represents the entire
safe area as depicted in Figure 1.

5.2 Shelter capacity assignment subject
to SO constraints

The only change when going from a shelter capacity
assignment subject to Nash constraints to one subject
to SO constraints is that the route choice and shelter
switching behavior of all re-planning agents is con-
ducted according to the SO logic described in Sub-
sections 3.3 and 4.2. For completeness, Algorithm 6
gives an overview.

The conditions for shelter capacity decreases and
increases in the SO case are the same as for the Nash
case given in in Algorithm 5.

6 EXPERIMENTS

The different route and shelter assignment models are
tested in combination with the capacity optimization
logic on a real world scenario for the Indonesian city
of Padang. Padang is located at the West Coast of



Algorithm 6 Heuristic SO shelter allocation and ca-
pacity
1. initialize routes and destinations for all agents

2. repeat many times

(a) load all agents on the network
(b) extract link travel times and social costs
(c) for every agent n = 1 . . .N, do with Preplan SO

re-planning
(d) for every shelter d = 1 . . .D, do:
• o(d) = c(d)−∑

N
n=1 xnd

• δd = 0
• for every agent n = 1 . . .N with xnd = 1, do:
i. calculate δs(n)dsuper the surplus of time that n

has to reach dsuper just in time
ii. δd = δd +δs(n)dsuper

iii. if δs(n)dsuper > 0, then increase o(d) by one
• if o(d) > 0, then: decrease c(d) by

min(o(d),Pcapacity ∗ c(d)); re-route agents
with δs(n)dsuper > 0 to dsuper if needed

• else: increase c(d) by Pcapacity ∗ c(d))

Sumatra Island. It is exposed to earth quake triggered
tsunamis.

The evacuation street network consist of approx.
12 500 unidirectional links and 4 500 nodes. In ongo-
ing surveys, the buildings of the city are investigated
if they could serve as shelters during tsunami evacu-
ations. For this work, 42 hypothetical shelter build-
ings with a total capacity of roughly 31 500 evacuees
are placed in the network. A sketch of the evacua-
tion network including the shelter buildings is given
in Figure 2. The gray-shaded area has to be evacu-
ated. This area corresponds to what is assumed to be
flooded by a tsunami plus an additional spatial buffer
of 500 m. The shelter buildings are colored in green.

There is in total a number of 224 798 evacuees.
This corresponds to the number of person living
within the evacuation area. Since the shelter capac-
ity is only about 31 500, not all evacuees can find a
safe place within the evacuation area. Those evacuees
have to leave the evacuation area in order to be safe.

To compare the performance of the different pro-
posed approaches, we conducted four different simu-
lations.

• Run 1 implements the (approx.) Nash equilibrium
routing logic with Nash shelter allocation.

• Run 2 implements the (approx.) Nash equilib-
rium routing logic with Nash shelter allocation
and shelter capacity assignment.

• Run 3 implements the (approx.) system optimum

0 1000 2000 meter

Figure 2: Map of the evacuation area.

routing logic with SO shelter allocation.

• Run 4 implements the (approx.) system optimum
routing logic with SO shelter allocation and shel-
ter capacity assignment.

These runs are performed with a 10% sample of
the population. The shelter capacities and network
flow parameters are accordingly scaled down to 10%.
This procedure saves computing time while staying
reasonably realistic. With this setup, a simulation
with 2000 learning iterations takes between 05:30 h
(Run 1) and 10:30 h (Run 4) on a 2.66 GHz CPU run-
ning 64 bit Java on Linux. The maximum memory
consumption is less than 3 GB in all experiments.

At the beginning of all runs the agents are assigned
randomly to the shelters. Figure 3 shows the aver-
age evacuation time per agent over the iteration num-
ber. The curve of Run 1 clearly shows that the Nash
shelter allocation assignment algorithm leads to con-
siderable better evacuation times compared to a ran-
dom agent shelter assignment. With the addition of
the shelter capacity assignment algorithm the average
evacuation time can further be reduced (Run 2). How-
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Figure 3: Average evacuation time per agent versus iteration
number.

ever, the evacuation time in Run 2 can only be reduced
by means of an increase in shelter capacities, which is
shown in Figure 4. Since the shelter capacity assign-
ment algorithm accepts only those agents to be in a
shelter for whom the super shelter (area outside the
evacuation zone) is not reachable in time, the result-
ing shelter capacities in Run 2 are minimal for a Nash
solution of the evacuation problem.
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Figure 4: Change of the shelters total utilization over the
learning iterations.

The SO in Run 3 and Run 4 is realized by adding
social costs to the travel time on each link. However,
the resulting behavior is not a consequence of an in-
trinsic motivation but would have to be enforced ex-
ternally. Therefore, these runs should be considered
as benchmark solutions.

Comparing the average evacuation time of Run 1,
Run 3 in figure 3 and those of Run 2, Run 4 respec-
tively, it is to notice that the average evacuation time
is not better in the SO case than in the Nash case.
For Run 4 the average evacuation time is even worse
than in Run 2. However, the results are not absolutely
comparable since in Run 3 much more agents survive
compared to Run 1. This is shown in figure 5. In
the Nash case (Run 1), more than 100 agents do not
mange to escape even after 2000 iterations of learn-
ing, whereas in the SO case (Run 3) about 20 agents
do not have enough time. The average evacuation
time in Run 2 (Nash with shelter allocation and ca-
pacity change) is about 1 minute less compared to the
other runs. However, the gain by one minute could
only be achieved by an increase of the shelters capac-
ity by more than 400% (see figure 4).
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Figure 5: Number of agents that would need more time to
evacuation versus iteration number.

At the same time, the shelters capacity in Run 4
declines by achieving a comparable evacuation times
to Run 1 and Run 3. Even in Run 3 where the shel-
ters capacity is not explicitly changed the shelters are
not fully utilized. To sum up, in the Nash equilibrium
more shelter capacity is needed compared to the Sys-
tem optimum. A reason for this phenomenon might
be that the SO routing reduces the congestion in the
network such that less agents are in need of a shelter.
This would also explain why more agents survive in
the SO scenarios.

7 DISCUSSION AND SUMMARY

The best strategy for a tsunami-threatened city like
Padang would arguably be to build a tsunami proof



shelter for every person. However, this would exceed
any funding resources. The relevant question here is
how many shelters with which capacity are needed to
obtain a feasible solution where everyone is safe who
has no chance otherwise.

The proposed algorithm help to determine these
numbers. Furthermore, the algorithm for the shel-
ter capacity assignment can also be adapted to fig-
ure good locations for shelter buildings. For this, one
would have to start with a very high number of ran-
domly distribute shelter buildings and then from time
to time remove underutilized shelters until the number
of shelter buildings is reduced to the desired amount.

The main difference in the simulation results is
that the needed shelter capacity in the Nash equilib-
rium case is much higher than in the SO case. If one
wants to achieve the highest benefits with the least ef-
fort, than one could implement the shelter configura-
tion of Run 4 and distribute some kind of tickets to the
people that are allowed to enter a shelter. To stay fair,
those tickets could for example handed out preferred
to the most vulnerable people like elderly people or
pregnant women.

Summarizing, a learning framework to solve the
shelter allocation and capacity optimization problem
is introduced and tested on a real world scenario. The
learning framework can configured either to get an
approximately Nash equilibrium where the individ-
ual travel times are minimized or an approximately
system optimum where the system travel time is min-
imized. Results for a real world scenario show that
both approaches give feasible results. However, in
the Nash approach more shelter capacity is needed
compared to the system optimum. It seems to be
that the Nash equilibrium produces more congestion
compared to the system optimum and therefore more
agent are in need for shelter since their travel times
would be to long to reach the safe area.

An interesting topic for further research is to in-
vestigate the relative effect of capacity improvements
in the transportation system when compared to invest-
ments in increased shelter capacities.
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