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ABSTRACT1

This article reports on the application and calibration of afully disaggregate (agent-based) transport2

simulation for the metropolitan area of Zurich. The application of a novel calibration technique3

yields cross-validation results that are competitive withany state-of-the-art four-step model. The4

added value of the proposed modeling/calibration approachis that the transport simulation equi-5

librates not only route choice but all-day travel behavior,which is in its entirety calibrated from6

traffic counts.7
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1. INTRODUCTION8

The well-known four-step process, consisting of trip generation, trip distribution (= destination9

choice), mode choice, and route assignment, has beenthe modeling tool in urban transportation10

planning for many decades (1). However, the four-step process, at least in its traditional form, has11

many problems with modern issues, such as time-dependent effects, more complicated decisions12

that depend on the individual, or spatial effects at the micro (neighborhood) scale (2).13

An alternative is to use a microscopic approach, where everytraveler is modeled individu-14

ally. One way to achieve this is to start with the synthetic population and then work the way “down”15

towards the network assignment. This typically results in activity-based demand models (ABDM),16

e.g, (3, 4, 5, 6), which sometimes do and sometimes do not include the mode choice, but typically17

end with time-dependent origin-destination (OD) matrices, which are then fed to a separate route18

assignment package. The assignment package computes a (typically dynamic) route equilibrium19

and feeds the result back as time-dependent zone-to-zone travel impedances. When feedback is20

implemented, then the activity-based demand model recomputes some or all of its choices based21

on those travel impedances (7).22

This type of coupling between the ABDM and the traffic assignment leaves room for im-23

provement (8, 9). In particular, it can be argued that route choice is also a behavioral aspect, and24

in consequence the decision to include route choice into theassignment model rather than into the25

demand model is arbitrary. Problems immediately show up if one attempts to base a route choice26

model in a toll situation on demographic characteristics – the demographic characteristics, albeit27

present in the ABDM, are no longer available at the level of the assignment. Similarly, in all types28

of intelligent transport system (ITS) simulations, any modification of the individuals’ decisions29

beyond route choice becomes awkward or impossible to implement.30

An alternative is to split the assignment into a route choicemodel and a network loading31

model and to add the route choice to the ABDM, which leaves thenetwork loading as the sole32

non-behavioral model component. If it is implemented as a traffic flow microsimulation, then the33

integrity of the simulated travelers can be maintained throughout the entire modeling process. This34

has the following advantages:35

• Both the route choice and the network loading can be relatedto the characteristics of36

the synthetic person. For example, toll avoidance can be based on income, or emission37

calculations can be based on the type of vehicle (computed inan upstream car-ownership38

model).39

• Additional choice dimensions besides route choice can be included in the iterative pro-40

cedure of assignment (also see (10, 11)).41

This implies that, at least in principle, all choice dimensions of the ABDM can react to the network42

conditions, but it also requires to build models of this feedback for all affected choice dimensions.43

While, for example, route choice only looks at the generalized cost of the trip, departure time44

choice also includes schedule delay cost, mode choice compares the generalized costs between45

different modes, location choice includes the attractiveness of the possible destination, etc. This46

brings along a vast increase in modeling opportunities, butit also requires substantially more mod-47

eling efforts.48

In this article, we report on how such an approach can be implemented, using the metropoli-49

tan area of Zurich as an example (as a sub-region of an “all-of-Switzerland” scenario (12)). The50
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results are compared to 161 counting stations in the Zurich metropolitan area. Despite of the vastly51

increased scope of the model when compared to a four-step approach, we are able to reproduce52

traffic counts with an error of 10 % to 15 % throughout the entire analysis period. Qualitatively,53

these results are competitive with any state-of-the art four-step model, but they come along with54

entirely new modeling perspectives.55

The quality of the presented results is to a large extent due to new methodological advances56

on the calibration side: Until recently, the 4-step-process was ahead of our approach in this regard57

because its simple mathematical structure allowed for the development of a broad variety of (more58

or less automated) demand calibration procedures. In this article, however, we present the first real-59

world application of a novel methodology for the calibration of demand microsimulations from60

network conditions such as traffic counts. The theory for this was developed over the last couple61

of years (13, 14). The article presents cross-validation results that confirm that the calibration does62

not simply “drag” the demand towards a good measurement fit but indeed realizes meaningful63

structural demand adjustments.64

The remainder of this article is organized as follows. Sections 2 describes the used mi-65

crosimulation, and Section 3 drafts the principles of the deployed demand calibration tool. The66

field study is described in length in Section 4. Section 5 details the mechanisms through which the67

calibration takes effect, and Section 6 discusses the approach. Finally, Section 7 summarizes the68

article.69

2. OUTLINE OF TRANSPORT MICROSIMULATION70

The MATSim (“Multi-agent transport simulation toolkit”, (15, 16)) transport microsimulation is71

used for the purposes of this study. This simulation is constructed around the notion ofagentsthat72

make independent decisions about their actions. Each traveler of the real system is modeled as an73

individual agent in our simulation. The simulation consists of two major building blocks, which74

are mutually coupled:75

• On the demand side, each agent independently generates a so-calledplan, which encodes76

its intentions during a certain time period, typically a day. The plan is an output of77

an activity-based model that comprises but is not constrained to route choice, and its78

generation depends on the network conditions expected by the agent.79

• On the supply side, the plans of all agents are simultaneously executed in a simulation of80

the physical system. This is also called thetraffic flow simulation or mobility simula-81

tion.82

The mutual coupling of demand and supply is iteratively resolved, which can be seen as a mech-83

anism that allows agents tolearn. The simulation iterates between plan generation and traffic84

flow simulation. It remembers several plans per agent and evaluates the performance of each plan.85

Agents normally choose the plan with the best performance, but they sometimes re-evaluate infe-86

rior plans, and they sometimes obtain new plans by modifyingcopies of existing plans.87

The following subsections explains these items in greater detail.88

2.1. Choice set generation89

A plan contains the itinerary of activities the agent wants to perform during the day, plus the90

intervening trip legs the agent must take to travel between activities. An agent’s plan details the91
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order, type, location, duration and other time constraintsof each activity, and the mode, route and92

expected departure and travel time of each leg.93

A specification of the plan choice set for every agent before the iterations is computational94

intractable because of the sheer number of possible alternatives. Such an approach also is con-95

ceptually questionable because the accessibility measures that affect the inclusion of a plan in the96

choice set are an outcome of the iterations, and hence they are a priori unknown. Therefore, the97

choice set is continuously updated during the iterations. Speaking in the technical terms of MAT-98

Sim, a plan can be modified by variousmodules. This paper makes use of the following modules.99

• Theactivity times generator randomly changes the timing of an agent’s plan. In every100

iteration, there is a 10 % chance that this module is used to generate a new plan.101

• The router is implemented as a time-dependent Dijkstra algorithm thatruns based on102

link travel times obtained from the mobility simulation. Inevery iteration, there is a103

10 % chance that this module is used to generate a new plan.104

• Mode choiceis enabled by ensuring that the choice set of every agent contains at least105

one “car” and one “non-car” plan.106

The choice set generation is turned off after a pre-specifiednumber of iterations such that the107

agents select from a stable choice set using the utility-based choice model described next. Note108

that this choice model is also applied during the choice set generation in order to drive the system109

towards a plausible state from the very beginning.110

2.2. Choice111

In order to compare plans, it is useful to assign a quantitative score to the performance of each112

plan. In principle, arbitrary scoring schemes can be used, e.g., prospect theory (17). In this work,113

a simple utility-based approach is used. The elements of theapproach are as follows:114

• The total score of a plan is computed as the sum of individualcontributions consisting of115

positive contributions for performing an activity and negative contributions for traveling.116

• A logarithmic form is used for the positive utility earned by performing an activitya,117

which essentially has the following form:118

Vperf (a) = βperf · t
∗

a · ln tperf,a (1)

wheretperf ,a is the actually performed duration of the activity,t∗a is the “typical” duration119

of the activity, andβperf is the marginal utility of an activity at its typical duration. βperf120

is the same for all activities since in equilibrium all activities at their typical duration121

need to have the same marginal utility. As long as activity dropping or activity insertion122

are not allowed, a minimal duration, sometimes used in otherpublications, has no effect.123

• The (dis)utilityVtravel(l) of traveling along a legl is assumed to be linear in the travel124

time with different valuations of the time for different transport modes.125
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The total utility of a plani can thus be written as126

V (i) =
∑

a∈i

Vperf(a) +
∑

l∈i

Vtravel(l) (2)

It is important to note that the score thus takes into accountthe complete daily plan. More127

details can be found in (16, 18).128

The plan choice is modeled with a multinomial logit model (which calls for enhancements129

in the future) (19). The choice model has one additional twist during the choice set generation130

phase: If it happens that an agent receives a newly generatedplan from one of the aforementioned131

plan generation modules, then this plan is chosen for execution without further evaluation. This is132

necessary because the utility of a plan is determined from its execution, and hence it is not available133

for newly generated plans.134

Summarizing, the probabilityPn(i) that agentn chooses plani is135

Pn(i)

{

= 1 if i is newly generated

∼ exp(V (i)) otherwise,
(3)

where the normalization of the logit model is omitted for notational simplicity.136

2.3. Traffic flow simulation137

The traffic flow simulation executes the plans of all agents simultaneously on the network and138

provides output describing what happened to each individual agent during the execution of its139

plan. The traffic flow simulation is implemented as a queue simulation, which means that each140

street (link) is represented as a FIFO (first-in first-out) queue with three restrictions (20, 21): First,141

each agent has to remain for a certain time on the link, corresponding to the free speed travel time.142

Second, the outflow rate of a link is constrained by its flow capacity. Third, a link storage capacity143

is defined, which limits the number of agents on the link. If itis filled up, no more agents can enter144

this link.145

3. OUTLINE OF CALIBRATION146

The previous section describes a simulation system that predicts the performance of a transporta-147

tion system through an iterative process that couples complex behavioral and physical models.148

Notably, some aspects of the simulation are what one may call“procedurally modeled” in that149

there is no explicit mathematical specification of the respective sub-model but rather a sequence of150

processing steps that build the model output.151

This lack of a comprehensive mathematical perspective on the simulation and its outputs152

has, until recently, rendered the calibration of the systema task based on intuition and, unfortu-153

nately, the arbitrariness this brings along. This section outlines the Cadyts (“Calibration of dy-154

namic traffic simulations” (14, 22)) calibration tool. Because it allows to calibrate arbitrary choice155

dimensions from traffic counts in a fully disaggregate manner, it lends itself to an application in156

the Zurich case study.157

3.1. Basic functioning158

Cadyts makes no assumptions about the form of the plan choicedistribution (3) or about the choice159

dimensions it represents. It combines the prior choice distributionPn(i) with the available traffic160

countsy into a posterior choice distributionPn(i|y) in a Bayesian sense.161
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Assuming (only for the sake of an intuitive formulation) congestion to be light and the162

traffic counts to be independently normal distributed, the posterior choice distribution can be shown163

to be approximately of the following form (13):164

Pn(i|y) ∼
∏

ak∈i

exp

(

ya(k) − qa(k)

σ2
a(k)

)

· Pn(i) (4)

whereya(k) is the available traffic count on linka in simulation time stepk, qa(k) is its simulated165

counterpart, andσ2

a(k) is the variance of the respective traffic count. The product runs over all166

links a and time stepsk that (i) are contained in plani in that the plan schedules to cross that link167

in the given time step and (ii) are equipped with a sensor. (The calibration functions with arbitrary168

sensor configurations.)169

Intuitively, this works like a controller that steers the agents towards a reasonable fulfillment170

of the measurements: For any sensor-equipped link, the according exp(·) factor is larger than one171

if the measured flow is higher than the simulated flow such thatthe choice probabilities of plans172

that cross this link are scaled up. Vice versa, if the measured flow is lower than the simulated flow,173

the according factor is smaller than one such that plans thatcross this link are penalized.174

3.2. Application to MATSim175

Apart from the immediate execution of newly generated plans, the behavioral model of MATSim176

is of the multinomial logit formPn(i) ∼ exp(V (i)). Substituting this into the posterior choice177

model (4) yields178

Pn(i|y) ∼ exp

(

V (i) +
∑

ak∈i

ya(k) − qa(k)

σ2
a(k)

)

=: exp

(

V (i) +
∑

ak∈i

∆Va(k)

)

. (5)

That is, an implementation of the posterior choice distribution requires nothing but to add link-179

and time-additive correction terms∆Va(k) to the utility of every considered plan. Again, the func-180

tioning of the calibration can be interpreted as a controller in that the utility of plans that improve181

the measurement reproduction is increased and the utility of plans that impair the measurement182

reproduction is decreased.183

As described in Section 2, MATSim functions in two phases, where the first phase builds184

the choice set and the second phase simulates the choices based on fixed choice sets. Important185

from a calibration perspective, plans that are newly generated during the first phase are immediately186

chosen for execution in the mobility simulation in order to assess their performance. The utility-187

driven estimator (5) is applied in either phase in the following way:188

• During the first phase, a newly generated plan is always selected. If no new plan is189

generated, then an available plan is selected according to (5).190

• During the second phase, no new plans are generated and the calibrated choice distribu-191

tion (5) is always employed.192

4. ZURICH FIELD STUDY193

This section describes results from a real-world case studyfor the city of Zurich. First, the basic194

setting of the test case is presented in Section 4.1. Second,the interactions between simulation and195

calibration are investigated in Section 4.2. Finally, Section 4.3 discusses the validation results for196

the calibrated simulation system.197
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TABLE 1 Simulation parameters.

parameter value matsim key

βperf.act. 12 Eur/h performing
βcar −12 Eur/h traveling
βnon−car −6 Eur/h travelingPt
βscale 1 BrainExpBeta
size of plan choice set 4 maxAgentPlanMemorySize
total number of iterations 500
iterations for choice set generation 300

home opening time 00:00
home closing time 24:00
work opening time 07:00
work closing time 18:00
education opening time 07:00
education closing time 18:00
shop opening time 08:00
shop closing time 20:00
leisure opening time 00:00
leisure closing time 24:00

4.1. Description of test case and uncalibrated simulation results198

An all-of-Switzerland network with 60 492 links and 24 180 nodes is used. It is based on a Swiss199

regional planning network, which has been made ready for simulation purposes based on additional200

OpenStreetMap network data (23). For some intuition regarding the network, see Figure 3.201

A synthetic population of travelers for all of Switzerland is available from a previous study202

(12, 24). All travelers have complete daily activity patterns based on microcensus information203

(25). Such activity patterns can include activities of typehome, work, education, shopping, leisure.204

The typical durations for those activities are derived fromthe microcensus data and are specified205

individually for each member of the synthetic population.206

The initial demand used for the simulations is based on the aforementioned demand of207

whole Switzerland, but consists only of all agents who crossa 30 km (18.6 miles) circle around the208

center of Zurich at least once during their daily travel, including those agents who stay within that209

circle for the whole day. In order to obtain a higher computational speed, a random 10 % sample210

is chosen for simulation, which consists of 187 484 simulated travelers.211

All agents iteratively adapt route choice, departure time choice, and mode choice. Table 1212

shows the parameters used in the scenario. Activity locations are given opening and closing times213

in order to keep the agents within some timely limit. The opening and closing times are classified214

by activity type, i.e., the opening and closing times are distinguished for home, work, education,215

shop and leisure activities. There is not yet any distinction based on the location of an activity.216

Public transit is simulated as described in Refs. (26, 27), that is, it is assumed that it provides217

door-to-door connectivity at twice the car free speed travel times.218

Hourly traffic counts from 161 inductive loop sensors are available for an entire day. The219
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deviation between measured and simulated traffic counts is both graphically and quantitatively220

evaluated. For visual inspection, scatter plots such as those given in Figure 1 (left) are used.221

Every point represents one pair of measured/simulated traffic counts, where the measured value222

defines the x-coordinate and the simulated value defines the y-coordinate. If all measurements223

were perfectly reproduced by the simulation, all points would lie on the diagonal with slope one.224

Deviations from that diagonal signalize inconsistencies between measurements and simulations.225

Figure 1 (left) shows results after 500 iterations of uncalibrated simulation. Most points226

are within an (admittedly loose) band of a factor of two in both directions, which indicates that the227

simulation captures the overall situation fairly well. However, there clearly is room for improve-228

ment.229

A quantitative analysis of the measurement reproduction quality is conducted in terms of230

the mean relative error231

MRE(k) =

〈

|ya(i) − qa(k)|

ya(k)

〉

a

(6)

where the average〈·〉 over all measurement locationsa is evaluated separately for each hourk of232

the day,ya(k) is the measured volume on linka in hourk, andqa(k) is its simulated counterpart.233

Figure 2 (top) shows these values for the uncalibrated base case. The simulation deviates strongly234

from the reality during the night hours, i.e., from midnightuntil 6 am. However, during daytime the235

hourly MRE is consistently below 30 %. It needs to be stressedthat these results are not intended236

to model the nightly conditions because the according travel demand has been deliberately ignored237

in this study.238

4.2. Inserting the calibration into the simulation239

According to Section 3.2, the calibration affects all utility-based choices in the simulation by mod-240

ifying the utility according to (5). This applies to all choices but the selection of newly generated241

plans, which are always executed. This implies that these parts of the demand remain uncalibrated242

during the first iteration phase that builds the choice sets.Only in the second iteration phase, where243

stable choice sets are used, the calibration takes full effect.244

The first data column of Table 2 ("reproduction MWSE error") compares the measurement245

data fit of a plain simulation without calibration to that of asimulation where the calibration takes246

effect. The used error measure is defined as247

MWSE =

〈

(ya(k) − qa(k))2

2σ2
a(k)

〉

ak

(7)

whereσ2

a(k) is the variance assigned to the sensor data on linka in hourk. It is calculated as248

σ2

a(k) = 0.5 · max{ya(k), (25 veh/h)2}, (8)

which also is the specification used in the application of (5). It reflects two considerations. First,249

there is the assumption that the variance of a measurement isproportional to the measured value.250

Second, the variance is limited to a minimal positive value,which ensures that very small mea-251

surements are not over-weighted and avoids numerical problems in the evaluation of (5) and (7).252

The particular numbers used in this specification have been obtained by trial-and-error. Because of253

the previously discussed underestimation of the nightly demand, only measurements from 6:00 to254

19:59:59 (as from now called the analysis period) are used bythe calibration and evaluated in (7).255
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TABLE 2 Simulation and estimation results.

reproduction validation
MWSE error MWSE error

plain simulation 103.6 103.6
estimated simulation 20.9 75.1

relative difference - 80 % - 28 %

Table 2 shows that the reproduction MWSE error is reduced by 80%, which indicates an256

excellent adjustment to the data. This impression is visually confirmed by the scatterplots of Figure257

1 (right), which are obtained from the last iteration of the calibrated simulation. A comparison with258

the uncalibrated scatterplots on the left shows a substantial improvement in measurement fit in that259

the data points are substantially more centered around the main diagonal. Figure 2 (bottom) shows260

that the calibration enforces a MRE that is consistently between 10 % and 15 % during the analysis261

period, which is a reduction by half. One can also see that theMRE is increased outside of the262

analysis period when compared to the uncalibrated case. This is likely to result from the omission263

of certain demand segments, which the calibration compensates for by “drawing” agents from264

outside of the analysis period through an adjustment of their departure times. From this, one can265

also conclude that a better all-day base demand outside of the analysis period is likely to improve266

the results within the analysis period as well.267

Overall, the calibration generates a substantial improvement in measurement fit. However,268

this alone does not prove that the calibrated agent behaviorbecomes more realistic because there269

are many plausible and not-so-plausible combinations of plan choice distributions that reproduce270

the measurements equally well. The next section provides cross-validation results that indicate that271

the calibrated demand is indeed more realistic.272

4.3. Cross-validation results273

While the previous section demonstrates that the calibration greatly improves the measurement274

reproduction, this section demonstrates that it does so in away that also improves the realism275

of the global traffic situation. This is an important issue that applies to demand calibration from276

traffic counts in general because this problem is highly under-determined, which implies that there277

is a large number of demand configurations that reproduce thetraffic counts equally well. Cadyts278

resolves this under-determination by taking the choice logic that is implemented in the simulation279

system itself as the prior information about the demand. Thetraffic counts are then added to this280

information in order to obtain an improved posterior choicedistribution.281

For cross-validation, the 161 sensor locations are randomly assigned to ten disjointval-282

idation data setsof roughly equal size. For each validation data set, there isa corresponding283

measurement data setthat contains the traffic counts from all sensors that are notrepresented284

by the respective validation data set. For every measurement/validation data set pair, one cali-285

bration is conducted, where only the measurement data is made available to the calibration and286

the corresponding validation data is used to evaluate how well the calibrated demand generates a287

spatiotemporal extrapolation of the traffic counts.288

The second data column of Table 2 gives the resulting cross-validation MWSE values ("val-289
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uncalibrated calibrated

FIGURE 1 Scatter plots. Left: before the calibration. Right: after the calibration.



Flötteröd, Chen, and Nagel 12

FIGURE 2 Top: Mean relative error (MRE) for uncalibrated bas e case. Bottom: Mean
relative error (MRE) after calibration
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idation MWSE error"), i.e., these numbers are derived from the measurements that werenot in-290

cluded into the calibration. A global improvement of almost30% is obtained. This indicates that291

the local information that is contained in the measurement data is used by the calibration in a way292

that changes the network-wide agent behavior such that morerealistic network conditions result293

even far away from the sensor locations.294

Note that the fact that the validation improvement of 30% is lower than the reproduction im-295

provement of 80% isnot a sign of overfitting: The calibration adjusts directly onlythe behavior of296

those agents that may travel across sensors. The behavior ofall other agents is implicitly changed297

through interactions with the immediately adjusted agentsin the network (congestion feedback).298

Having a lower validation improvement than reproduction improvement indicates that the number299

of sensor locations is insufficient to "reach" the entire agent population in the calibration – some300

agents travel simply too far away from the sensors to be meaningfully adjusted. (The same obser-301

vation holds for OD matrix estimators, which adjust only those OD flows directly that go across302

sensors.)303

These results show that the calibration conducts demand modifications that are structurally304

meaningful in that they do not only fit the sensor data well butalso lead to a global improvement305

in the system’s realism. At this point, the difficulty of the calibration problem that is solved here306

needs to be stressed. The calibration adjusts simultaneously the route choice, mode choice, and307

departure time choice of hundreds of thousands of individual travelers in a purely simulation-based308

environment on a network with many ten thousand links. The number of iterations required to ob-309

tain stable and realistic results (500) is in the order of a plain simulation, and the computational310

overhead introduced by the calibration is below ten percent. All presented experiments were com-311

puted within less than 21 hours on a single computing node. The authors are not aware of any other312

calibration technique that comes close to such results.313

5. SPATIAL STRUCTURE OF THE CORRECTIONS314

One can plot the link- and time-additive correction terms∆Va(k) from (5); results look like in315

Figure 3. From such plots, investigated over all hourly timeslices, one obtains the following316

insights:317

• Cadyts compensates for overall bias; i.e. it adjusts the rhythm of daily demand to the318

counts: Figure 4 shows the average hourly bias per sensor before the calibration, the319

average effect of the calibration per sensor link (all otherlinks have offset zero), and the320

hourly bias after the calibration. Clearly, the calibration counteracts the bias, and, within321

the calibrated time period, the resulting bias is moved closer towards zero.322

In contrast to other approaches, demand is not considered asfully elastic, but it will be323

moved to other time slices. This is possible only because in MATSim, travelers possess324

different plans with different time structures,and Cadyts is designed to take advantage325

of that feature.326

• Cadyts compensates for a directional bias; i.e. it reducesregular commuting and increases327

reverse commuting. This is also visible in Figure 3.328

• Cadyts attempts to compensate for a systematic over-prediction in an east-west corridor329

at the lake (orange circle in Figure 3). This feature is visible across all time slots. It is,330
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FIGURE 3 Spatial layout of the induced link-based utility offsets at 8am–9am. Red: Counts
are too high, trying to discourage traffic. Green: Counts aretoo low, trying to encourage
additional traffic. Width corresponds to the strength of the signal.
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FIGURE 4 Counts bias and utility correction as a function of time

presumably, a network error in the sense that the links possess too much capacity in the331

simulation.332

This is likely to bias the demand estimation results in that the demand is adjusted in333

an attempt to correct for a supply error. This type of error can be avoided by jointly334

estimating the demand side and the supply side of the simulation; this is an important335

topic of future research.336

• As a tendency, the corrective signal is the stronger the lower the density of counting337

stations. This is plausible since with a high density of counting station several counting338

stations can collaborate to correct traffic into the desireddirection.339

6. DISCUSSION340

A standard question in conjunction with calibration is in how far the results are useful for predic-341

tion. Based on the results of the last section, one can argue that the results are useful for short-term342

prediction: both in a real-time setting or for a short-term policy measure, the link offsets could be343

frozen and then used in the prediction. As discussed in Flötteröd (13), care needs to be taken that344

the offsets are only used for choice and not for choice set generation, i.e., not for routing.345

Clearly, this approach runs into problems when anything in the system that is presumably346

related to the link offsets changes. A simple example would be the addition of a lane to such a347

link. For such situations, a calibration of “higher level” behavioral parameter would be useful. We348

are currently investigating two approaches:349

• Calibration of the parameters of the utility function, such asβnon−car.350

• Calibration of location choice, in particular “secondary” activity location choice. This351

would directly correspond to OD matrix estimation in the four-step procedure, except352
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that it would calibrate full daily plans.353

7. SUMMARY354

This article demonstrates that a fully disaggregate transport microsimulation that represents travel355

demand at the level of individual persons can be applied to the realistic simulation of large metropoli-356

tan systems. Crucial to the quality of the simulation is a proper calibration of the demand, for which357

traffic counts are shown to be a valuable data source. In particular, traffic counts from 161 sensors358

are used in a novel calibration methodology to adjust the route choice, mode choice, and departure359

time choice of hundreds of thousands of individual travelers on a network with many ten thousand360

links. The calibrated simulation system is successfully evaluated by cross-validation.361

Future work will concentrate on the following items:362

• Ongoing improvements of the Zurich base case with respect to all modeling aspects.363

• Extension of the calibration system to the identification of structural demand parameters.364

Finally, it should be mentioned that the deployed Cadyts calibration tool is not constrained to365

the MATSim microsimulation but is designed to be compatiblewith a wide variety of transport366

simulation systems.367
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