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ABSTRACT

This article reports on the application and calibration feflly disaggregate (agent-based) transport
simulation for the metropolitan area of Zurich. The apglma of a novel calibration technique
yields cross-validation results that are competitive waitly state-of-the-art four-step model. The
added value of the proposed modeling/calibration appraatiat the transport simulation equi-
librates not only route choice but all-day travel behawahjch is in its entirety calibrated from
traffic counts.
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1. INTRODUCTION

The well-known four-step process, consisting of trip gatien, trip distribution (= destination

choice), mode choice, and route assignment, has thessmodeling tool in urban transportation
planning for many decades (1). However, the four-step m®c# least in its traditional form, has
many problems with modern issues, such as time-dependentsfmore complicated decisions
that depend on the individual, or spatial effects at the enjoeighborhood) scale (2).

An alternative is to use a microscopic approach, where avavgler is modeled individu-
ally. One way to achieve this is to start with the synthetipydation and then work the way “down”
towards the network assignment. This typically resultschivay-based demand models (ABDM),
e.g, (3, 4, 5, 6), which sometimes do and sometimes do natdedhe mode choice, but typically
end with time-dependent origin-destination (OD) matrjeelsich are then fed to a separate route
assignment package. The assignment package computescal(yydynamic) route equilibrium
and feeds the result back as time-dependent zone-to-zawved timpedances. When feedback is
implemented, then the activity-based demand model recteamome or all of its choices based
on those travel impedances (7).

This type of coupling between the ABDM and the traffic assignirieaves room for im-
provement (8, 9). In particular, it can be argued that robtsce is also a behavioral aspect, and
in consequence the decision to include route choice intagsgnment model rather than into the
demand model is arbitrary. Problems immediately show upé attempts to base a route choice
model in a toll situation on demographic characteristicee-demographic characteristics, albeit
present in the ABDM, are no longer available at the level efadesignment. Similarly, in all types
of intelligent transport system (ITS) simulations, any rficdtion of the individuals’ decisions
beyond route choice becomes awkward or impossible to imgrem

An alternative is to split the assignment into a route chonozlel and a network loading
model and to add the route choice to the ABDM, which leavesnétevork loading as the sole
non-behavioral model component. If it is implemented as#i¢rflow microsimulation, then the
integrity of the simulated travelers can be maintainedughmut the entire modeling process. This
has the following advantages:

» Both the route choice and the network loading can be relatdtie characteristics of
the synthetic person. For example, toll avoidance can bedoas income, or emission
calculations can be based on the type of vehicle (computad upstream car-ownership
model).

» Additional choice dimensions besides route choice cambleided in the iterative pro-
cedure of assignment (also see (10, 11)).

This implies that, at least in principle, all choice dimams of the ABDM can react to the network
conditions, but it also requires to build models of this tesck for all affected choice dimensions.
While, for example, route choice only looks at the geneealizost of the trip, departure time
choice also includes schedule delay cost, mode choice aqeplae generalized costs between
different modes, location choice includes the attracegsnof the possible destination, etc. This
brings along a vast increase in modeling opportunitiesitlagso requires substantially more mod-
eling efforts.

In this article, we report on how such an approach can be mgited, using the metropoli-
tan area of Zurich as an example (as a sub-region of an “évwofzerland” scenario (12)). The
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results are compared to 161 counting stations in the Zuretnopolitan area. Despite of the vastly
increased scope of the model when compared to a four-stapagp we are able to reproduce
traffic counts with an error of 10% to 15 % throughout the enéinalysis period. Qualitatively,

these results are competitive with any state-of-the ant-$vep model, but they come along with
entirely new modeling perspectives.

The quality of the presented results is to a large extent@lnew methodological advances
on the calibration side: Until recently, the 4-step-pr@oeas ahead of our approach in this regard
because its simple mathematical structure allowed for ¢veldpment of a broad variety of (more
or less automated) demand calibration procedures. Intictea however, we present the first real-
world application of a novel methodology for the calibratiof demand microsimulations from
network conditions such as traffic counts. The theory fag thas developed over the last couple
of years (13, 14). The article presents cross-validatisualte that confirm that the calibration does
not simply “drag” the demand towards a good measurement fitngeed realizes meaningful
structural demand adjustments.

The remainder of this article is organized as follows. S&i2 describes the used mi-
crosimulation, and Section 3 drafts the principles of thploeed demand calibration tool. The
field study is described in length in Section 4. Section Sitsetiae mechanisms through which the
calibration takes effect, and Section 6 discusses the apprd-inally, Section 7 summarizes the
article.

2. OUTLINE OF TRANSPORT MICROSIMULATION

The MATSim (“Multi-agent transport simulation toolkit” 16, 16)) transport microsimulation is
used for the purposes of this study. This simulation is coged around the notion algentsthat
make independent decisions about their actions. Eachéraskthe real system is modeled as an
individual agent in our simulation. The simulation consist two major building blocks, which
are mutually coupled:

» Onthe demand side, each agent independently generatesestplan, which encodes
its intentions during a certain time period, typically a daghe plan is an output of
an activity-based model that comprises but is not constchio route choice, and its
generation depends on the network conditions expectedeoggéant.

* On the supply side, the plans of all agents are simultarigexscuted in a simulation of
the physical system. This is also called theffic flow simulation or mobility simula-
tion.

The mutual coupling of demand and supply is iteratively he=ah which can be seen as a mech-
anism that allows agents tearn. The simulation iterates between plan generation anddraffi
flow simulation. It remembers several plans per agent and&tes the performance of each plan.
Agents normally choose the plan with the best performangethey sometimes re-evaluate infe-
rior plans, and they sometimes obtain new plans by modifgopges of existing plans.

The following subsections explains these items in greattaild

2.1. Choice set generation
A plan contains the itinerary of activities the agent wamtérform during the day, plus the
intervening trip legs the agent must take to travel betwexriaes. An agent’s plan details the
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order, type, location, duration and other time constrasftsach activity, and the mode, route and
expected departure and travel time of each leg.

A specification of the plan choice set for every agent befoedterations is computational
intractable because of the sheer number of possible alie¥aa Such an approach also is con-
ceptually questionable because the accessibility measiaé affect the inclusion of a plan in the
choice set are an outcome of the iterations, and hence teey prori unknown. Therefore, the
choice set is continuously updated during the iteratiopgaging in the technical terms of MAT-
Sim, a plan can be modified by varioomdules This paper makes use of the following modules.

» Theactivity times generator randomly changes the timing of an agent’s plan. In every
iteration, there is a 10 % chance that this module is usedriergée a new plan.

» Therouter is implemented as a time-dependent Dijkstra algorithm thas based on
link travel times obtained from the mobility simulation. é&very iteration, there is a
10 % chance that this module is used to generate a new plan.

* Mode choiceis enabled by ensuring that the choice set of every agenaitenat least
one “car” and one “non-car” plan.

The choice set generation is turned off after a pre-specifiadber of iterations such that the
agents select from a stable choice set using the utilitgdbaboice model described next. Note
that this choice model is also applied during the choice eeéeration in order to drive the system
towards a plausible state from the very beginning.

2.2. Choice

In order to compare plans, it is useful to assign a quantéaitoreto the performance of each
plan. In principle, arbitrary scoring schemes can be used, grospect theory (17). In this work,
a simple utility-based approach is used. The elements dppeoach are as follows:

» The total score of a plan is computed as the sum of individoafributions consisting of
positive contributions for performing an activity and nggacontributions for traveling.

* A logarithmic form is used for the positive utility earneg performing an activity,
which essentially has the following form:

Vperf(a) = Bpers -ty - M tpersa 1)

wheret,., , is the actually performed duration of the activityjs the “typical” duration
of the activity, and3,., is the marginal utility of an activity at its typical duratiog,.,s

is the same for all activities since in equilibrium all adi®s at their typical duration
need to have the same marginal utility. As long as activipp@ing or activity insertion
are not allowed, a minimal duration, sometimes used in gihblications, has no effect.

» The (dis)utility V},...; (1) of traveling along a led is assumed to be linear in the travel
time with different valuations of the time for different frgport modes.
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The total utility of a plan can thus be written as

V(i) = Voers(@) + Y Viraver (1) 2
aci lel

It is important to note that the score thus takes into acctencomplete daily plan. More
details can be found in (16, 18).

The plan choice is modeled with a multinomial logit model {@¥hcalls for enhancements
in the future) (19). The choice model has one additionaltteising the choice set generation
phase: If it happens that an agent receives a newly gengyltiedrom one of the aforementioned
plan generation modules, then this plan is chosen for eixerwithout further evaluation. This is
necessary because the utility of a plan is determined fregxiécution, and hence it is not available
for newly generated plans.

Summarizing, the probability, (i) that agent. chooses planis

L l=1 if 7 is newly generated
. { yg .

~exp(V(i)) otherwise

where the normalization of the logit model is omitted foratainal simplicity.

2.3. Traffic flow simulation

The traffic flow simulation executes the plans of all agemtsuianeously on the network and

provides output describing what happened to each individgant during the execution of its

plan. The traffic flow simulation is implemented as a queueutation, which means that each
street (link) is represented as a FIFO (first-in first-ouBugiwith three restrictions (20, 21): First,
each agent has to remain for a certain time on the link, cporeding to the free speed travel time.
Second, the outflow rate of a link is constrained by its flowacay. Third, a link storage capacity

is defined, which limits the number of agents on the link. i itilled up, no more agents can enter
this link.

3. OUTLINE OF CALIBRATION

The previous section describes a simulation system thdiqisethe performance of a transporta-
tion system through an iterative process that couples aaxripthavioral and physical models.
Notably, some aspects of the simulation are what one may‘@atedurally modeled” in that
there is no explicit mathematical specification of the resipe sub-model but rather a sequence of
processing steps that build the model output.

This lack of a comprehensive mathematical perspective ersithulation and its outputs
has, until recently, rendered the calibration of the syséet@sk based on intuition and, unfortu-
nately, the arbitrariness this brings along. This sectiotlirees the Cadyts (“Calibration of dy-
namic traffic simulations” (14, 22)) calibration tool. Bes it allows to calibrate arbitrary choice
dimensions from traffic counts in a fully disaggregate maniidends itself to an application in
the Zurich case study.

3.1. Basic functioning

Cadyts makes no assumptions about the form of the plan cttéution (3) or about the choice
dimensions it represents. It combines the prior choiceiligion P, (i) with the available traffic
countsy into a posterior choice distributioR, (i|y) in a Bayesian sense.



162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

Flotterod, Chen, and Nagel 7

Assuming (only for the sake of an intuitive formulation) gastion to be light and the
traffic counts to be independently normal distributed, th&t@rior choice distribution can be shown
to be approximately of the following form (13):

Pu(ily) ~ [ ] exp (—y“(k)Q q“(k)) - Po(i) 4)
akei ad(k)

wherey, (k) is the available traffic count on linkin simulation time steg, ¢, (k) is its simulated

counterpart, and>(k) is the variance of the respective traffic count. The produosrover all

links a and time step$ that (i) are contained in planin that the plan schedules to cross that link

in the given time step and (ii) are equipped with a sensore @&libration functions with arbitrary

sensor configurations.)

Intuitively, this works like a controller that steers thesats towards a reasonable fulfillment
of the measurements: For any sensor-equipped link, thediogaexp(-) factor is larger than one
if the measured flow is higher than the simulated flow suchtti@thoice probabilities of plans
that cross this link are scaled up. Vice versa, if the meakilwer is lower than the simulated flow,
the according factor is smaller than one such that plan<tbas this link are penalized.

3.2. Application to MATSIm

Apart from the immediate execution of newly generated pléms behavioral model of MATSIim
is of the multinomial logit formP, (i) ~ exp(V'(i)). Substituting this into the posterior choice
model (4) yields

Pu(ily) ~ exp (vu) Yy %) — exp (vu) 3 Avauc)) e
akei a akei
That is, an implementation of the posterior choice distrdiurequires nothing but to add link-
and time-additive correction terrdsl/, (k) to the utility of every considered plan. Again, the func-
tioning of the calibration can be interpreted as a contrati¢hat the utility of plans that improve
the measurement reproduction is increased and the utflipfams that impair the measurement
reproduction is decreased.

As described in Section 2, MATSim functions in two phaseserelthe first phase builds
the choice set and the second phase simulates the choias dragixed choice sets. Important
from a calibration perspective, plans that are newly gdedrduring the first phase are immediately
chosen for execution in the mobility simulation in order ss@ss their performance. The utility-
driven estimator (5) is applied in either phase in the follgywvay:

» During the first phase, a newly generated plan is alway<tzle If no new plan is
generated, then an available plan is selected accordir.to (

» During the second phase, no new plans are generated andlith@ied choice distribu-
tion (5) is always employed.

4. ZURICH FIELD STUDY

This section describes results from a real-world case dtdthe city of Zurich. First, the basic
setting of the test case is presented in Section 4.1. Settehteractions between simulation and
calibration are investigated in Section 4.2. Finally, 8et#.3 discusses the validation results for
the calibrated simulation system.
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TABLE 1 Simulation parameters.

| parameter | value | matsim key|
Bper f.act. 12 Eur/h perform ng
Bear —12 Eur/h travel ing
Bron—car —6 Eur/h travel i ngPt
Bscale 1 Br ai nExpBet a
size of plan choice set 4 | maxAgent Pl anMenorySi ze
total number of iterations 500
iterations for choice set generation 300
home opening time 00:00
home closing time 24:00
work opening time 07:00
work closing time 18:00
education opening time 07:00
education closing time 18:00
shop opening time 08:00
shop closing time 20:00
leisure opening time 00:00
leisure closing time 24:00

4.1. Description of test case and uncalibrated simulationasults

An all-of-Switzerland network with 60492 links and 24 18(des is used. It is based on a Swiss
regional planning network, which has been made ready faulsition purposes based on additional
OpenStreetMap network data (23). For some intuition raggrthe network, see Figure 3.

A synthetic population of travelers for all of Switzerlarsdavailable from a previous study
(12, 24). All travelers have complete daily activity patteibased on microcensus information
(25). Such activity patterns can include activities of tjjoene work, educationshoppingleisure
The typical durations for those activities are derived frili@ microcensus data and are specified
individually for each member of the synthetic population.

The initial demand used for the simulations is based on thesafentioned demand of
whole Switzerland, but consists only of all agents who ceo36 km (18.6 miles) circle around the
center of Zurich at least once during their daily travelJuding those agents who stay within that
circle for the whole day. In order to obtain a higher compotad! speed, a random 10 % sample
is chosen for simulation, which consists of 187 484 simualatavelers.

All agents iteratively adapt route choice, departure titmei@e, and mode choice. Table 1
shows the parameters used in the scenario. Activity locat@we given opening and closing times
in order to keep the agents within some timely limit. The apgrand closing times are classified
by activity type, i.e., the opening and closing times ardimgsiished for home, work, education,
shop and leisure activities. There is not yet any distimchased on the location of an activity.
Public transit is simulated as described in Refs. (26, 2t is, it is assumed that it provides
door-to-door connectivity at twice the car free speed tranees.

Hourly traffic counts from 161 inductive loop sensors arelatbée for an entire day. The
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deviation between measured and simulated traffic countstts graphically and quantitatively
evaluated. For visual inspection, scatter plots such asetlgiven in Figure 1 (left) are used.
Every point represents one pair of measured/simulateficti@unts, where the measured value
defines the x-coordinate and the simulated value defines-tlumrdinate. If all measurements
were perfectly reproduced by the simulation, all points lddie on the diagonal with slope one.
Deviations from that diagonal signalize inconsistenciesveen measurements and simulations.

Figure 1 (left) shows results after 500 iterations of uraralied simulation. Most points
are within an (admittedly loose) band of a factor of two infbdirections, which indicates that the
simulation captures the overall situation fairly well. Hever, there clearly is room for improve-
ment.

A quantitative analysis of the measurement reproductialityus conducted in terms of

the mean relative error i) )|
Ya\l) — qa
MRE(k) = ( —————+ (6)
=)

where the averagg) over all measurement locationss evaluated separately for each hausf
the day,y,(k) is the measured volume on linkin hour k, andg, (k) is its simulated counterpart.
Figure 2 (top) shows these values for the uncalibrated bese dhe simulation deviates strongly
from the reality during the night hours, i.e., from midnigintil 6 am. However, during daytime the
hourly MRE is consistently below 30 %. It needs to be stresisatithese results are not intended
to model the nightly conditions because the according bdemand has been deliberately ignored
in this study.

4.2. Inserting the calibration into the simulation
According to Section 3.2, the calibration affects all tyHbased choices in the simulation by mod-
ifying the utility according to (5). This applies to all cleais but the selection of newly generated
plans, which are always executed. This implies that theds pathe demand remain uncalibrated
during the first iteration phase that builds the choice $idy in the second iteration phase, where
stable choice sets are used, the calibration takes fuliteffe

The first data column of Table 2 ("reproduction MWSE errodinpares the measurement
data fit of a plain simulation without calibration to that a$imulation where the calibration takes
effect. The used error measure is defined as

e (1%

whereo?(k) is the variance assigned to the sensor data ondlimkhourk. It is calculated as
o2(k) = 0.5 - max{y,(k), (25 veh/n?}, (8)

which also is the specification used in the application of (6)eflects two considerations. First,
there is the assumption that the variance of a measuremprdapsrtional to the measured value.
Second, the variance is limited to a minimal positive valubich ensures that very small mea-
surements are not over-weighted and avoids numerical gmabin the evaluation of (5) and (7).
The particular numbers used in this specification have bbsrred by trial-and-error. Because of
the previously discussed underestimation of the nightiyaled, only measurements from 6:00 to
19:59:59 (as from now called the analysis period) are usetidygalibration and evaluated in (7).
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TABLE 2 Simulation and estimation results.

reproduction| validation
MWSE error| MWSE error

plain simulation 103.6 103.6
estimated simulation 20.9 75.1
relative difference -80% -28%

Table 2 shows that the reproduction MWSE error is reducedd8g,8vhich indicates an
excellent adjustment to the data. This impression is viggahfirmed by the scatterplots of Figure
1 (right), which are obtained from the last iteration of thélarated simulation. A comparison with
the uncalibrated scatterplots on the left shows a subatamiprovement in measurement fit in that
the data points are substantially more centered around diredragonal. Figure 2 (bottom) shows
that the calibration enforces a MRE that is consistentlywken 10 % and 15 % during the analysis
period, which is a reduction by half. One can also see thaMRE& is increased outside of the
analysis period when compared to the uncalibrated cass.iF hkely to result from the omission
of certain demand segments, which the calibration compesdar by “drawing” agents from
outside of the analysis period through an adjustment of thepparture times. From this, one can
also conclude that a better all-day base demand outside @irthlysis period is likely to improve
the results within the analysis period as well.

Overall, the calibration generates a substantial impra@rénm measurement fit. However,
this alone does not prove that the calibrated agent behbemymes more realistic because there
are many plausible and not-so-plausible combinationsari phoice distributions that reproduce
the measurements equally well. The next section providessevalidation results that indicate that
the calibrated demand is indeed more realistic.

4.3. Cross-validation results

While the previous section demonstrates that the caltmmagreatly improves the measurement
reproduction, this section demonstrates that it does sowayathat also improves the realism
of the global traffic situation. This is an important issuattapplies to demand calibration from
traffic counts in general because this problem is highly taé¢éermined, which implies that there
is a large number of demand configurations that reproductdfie counts equally well. Cadyts
resolves this under-determination by taking the choicelttat is implemented in the simulation
system itself as the prior information about the demand. tfdféc counts are then added to this
information in order to obtain an improved posterior chadcgribution.

For cross-validation, the 161 sensor locations are rangl@assigned to ten disjointal-
idation data setsof roughly equal size. For each validation data set, theie ¢srresponding
measurement data sethat contains the traffic counts from all sensors that arereytesented
by the respective validation data set. For every measurévadéidation data set pair, one cali-
bration is conducted, where only the measurement data i€ rmaailable to the calibration and
the corresponding validation data is used to evaluate hollescalibrated demand generates a
spatiotemporal extrapolation of the traffic counts.

The second data column of Table 2 gives the resulting crabdation MWSE values ("val-
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FIGURE 1 Scatter plots. Left: before the calibration. Right: after the calibration.
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FIGURE 2 Top: Mean relative error (MRE) for uncalibrated bas e case. Bottom: Mean
relative error (MRE) after calibration
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idation MWSE error"), i.e., these numbers are derived frommrheasurements that waret in-
cluded into the calibration. A global improvement of alm88¢6 is obtained. This indicates that
the local information that is contained in the measurematd © used by the calibration in a way
that changes the network-wide agent behavior such that reatistic network conditions result
even far away from the sensor locations.

Note that the fact that the validation improvement of 30%vwgdr than the reproduction im-
provement of 80% isot a sign of overfitting: The calibration adjusts directly otthe behavior of
those agents that may travel across sensors. The behawalbotfer agents is implicitly changed
through interactions with the immediately adjusted agentbe network (congestion feedback).
Having a lower validation improvement than reproductiopiovement indicates that the number
of sensor locations is insufficient to "reach"” the entireragmpulation in the calibration — some
agents travel simply too far away from the sensors to be mgéuily adjusted. (The same obser-
vation holds for OD matrix estimators, which adjust onlygaddD flows directly that go across
sensors.)

These results show that the calibration conducts demandioaitbns that are structurally
meaningful in that they do not only fit the sensor data wellddsb lead to a global improvement
in the system’s realism. At this point, the difficulty of thalibration problem that is solved here
needs to be stressed. The calibration adjusts simultalyeihesroute choice, mode choice, and
departure time choice of hundreds of thousands of indiVidlagelers in a purely simulation-based
environment on a network with many ten thousand links. Thalwer of iterations required to ob-
tain stable and realistic results (500) is in the order ofaanpsimulation, and the computational
overhead introduced by the calibration is below ten pero&thpresented experiments were com-
puted within less than 21 hours on a single computing node.atithors are not aware of any other
calibration technique that comes close to such results.

5. SPATIAL STRUCTURE OF THE CORRECTIONS

One can plot the link- and time-additive correction terfg, (k) from (5); results look like in
Figure 3. From such plots, investigated over all hourly tigliees, one obtains the following
insights:

» Cadyts compensates for overall bias; i.e. it adjusts tgéhrh of daily demand to the
counts: Figure 4 shows the average hourly bias per sensorebgfe calibration, the
average effect of the calibration per sensor link (all othrdss have offset zero), and the
hourly bias after the calibration. Clearly, the calibratmunteracts the bias, and, within
the calibrated time period, the resulting bias is movedearit®vards zero.

In contrast to other approaches, demand is not consideredlyaslastic, but it will be
moved to other time slices. This is possible only becauseAt $m, travelers possess
different plans with different time structuresnd Cadyts is designed to take advantage
of that feature.

» Cadyts compensates for a directional bias; i.e. it redregadar commuting and increases
reverse commuting. This is also visible in Figure 3.

» Cadyts attempts to compensate for a systematic overgti@ain an east-west corridor
at the lake (orange circle in Figure 3). This feature is Vesdrross all time slots. It is,
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FIGURE 3 Spatial layout of the induced link-based utility offsets at 8am—9am. Red: Counts
are too high, trying to discourage traffic. Green: Counts aretoo low, trying to encourage
additional traffic. Width corresponds to the strength of the signal.
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FIGURE 4 Counts bias and utility correction as a function of time

presumably, a network error in the sense that the links gsgs® much capacity in the
simulation.

This is likely to bias the demand estimation results in tihat demand is adjusted in
an attempt to correct for a supply error. This type of errar ba avoided by jointly

estimating the demand side and the supply side of the simonjahis is an important

topic of future research.

* As a tendency, the corrective signal is the stronger thesitalve density of counting
stations. This is plausible since with a high density of amgnstation several counting
stations can collaborate to correct traffic into the desilieection.

6. DISCUSSION

A standard question in conjunction with calibration is imhiar the results are useful for predic-
tion. Based on the results of the last section, one can angaéhte results are useful for short-term
prediction: both in a real-time setting or for a short-teratiqy measure, the link offsets could be
frozen and then used in the prediction. As discussed indtlitdt(13), care needs to be taken that
the offsets are only used for choice and not for choice setmgdion, i.e., not for routing.

Clearly, this approach runs into problems when anythindgnendystem that is presumably
related to the link offsets changes. A simple example woeldhe addition of a lane to such a
link. For such situations, a calibration of “higher leveBhmavioral parameter would be useful. We
are currently investigating two approaches:

 Calibration of the parameters of the utility function, BWSS,.0,,— car-

 Calibration of location choice, in particular “secondaagtivity location choice. This
would directly correspond to OD matrix estimation in therfstep procedure, except
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that it would calibrate full daily plans.

7. SUMMARY
This article demonstrates that a fully disaggregate trartgpicrosimulation that represents travel
demand at the level of individual persons can be appliedtodalistic simulation of large metropoli-
tan systems. Crucial to the quality of the simulation is gpraalibration of the demand, for which
traffic counts are shown to be a valuable data source. Ircpéatj traffic counts from 161 sensors
are used in a novel calibration methodology to adjust théeroboice, mode choice, and departure
time choice of hundreds of thousands of individual tra\getar a network with many ten thousand
links. The calibrated simulation system is successfulpl@ated by cross-validation.

Future work will concentrate on the following items:

» Ongoing improvements of the Zurich base case with respegdt modeling aspects.

» Extension of the calibration system to the identificatibstouctural demand parameters.

Finally, it should be mentioned that the deployed Cadytthaion tool is not constrained to
the MATSIim microsimulation but is designed to be compatiblth a wide variety of transport
simulation systems.
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