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Abstract

Much research has been conducted to obtain insights
into the basic laws governing human travel behaviour.
While the traditional travel survey has been for a
long time the main source of travel data, recent ap-
proaches to use GPS data, mobile phone data or the
circulation of bank notes as a proxy for human travel
behaviour are promising. The present study proposes
a further source of such proxy-data: the social net-
work. We collect data using an innovative snowball
sampling technique to obtain details on the structure
of a leisure-contacts network. We analyse the net-
work with respect to its topology, the individuals’
characteristics, and its spatial structure. We further
show that a multiplication of the functions describ-
ing the spatial distribution of leisure contacts and the
frequency of physical contacts results in a trip distri-
bution that is consistent with data from the Swiss
travel survey.

1 Introduction

Understanding human travel behaviour is a major re-
search field in the community of transport science.
The emerging research on complex networks reveals
that the understanding of human mobility is not only
required for urban planning and traffic forecasting
but also to gain insights on the dynamics of the
spreading of diseases, information, or social values
and norms. Several tools to monitor human travel
behaviour have been proposed, reaching from the tra-
ditional travel survey, such as the German MiD [1] or

the Swiss micro-census [2], and travel diaries [3], to
automated processing of GPS data [4], mobile phone
data [5] or tracking of dollar bills [6]. The latter
two approaches are promising as they usually pro-
vide much greater sample sizes compared to the tra-
ditional travel survey with relatively less effort. How-
ever, they do not directly monitor the travel patterns,
but use other data as a proxy of travel behaviour.
The circulation of bank notes describes rather a diffu-
sion process than repeated movement patterns. Such
data may by quite useful for the modelling of, say,
virus spreading, yet the inference of individual travel
behaviour is limited since the link between the cir-
culating bill and the travelling individual is missing.
For instance, it is unclear if the displacement of bank
notes is congruent with the movement of individu-
als or if the displacement is caused by the transfer
of bank notes between institutions. GPS data al-
lows to obtain individual trajectories, yet characteris-
tics of travellers and their motives remain unrevealed.
While the traditional travel survey usually provides
information about the individuals’ motives and socio-
demographic attributes, all of these monitoring tools
have in common that they lack any information about
the social connectivity of individuals. Table 1 pro-
vides an overview of the strengths and weaknesses of
selected monitoring tools.

Both communication and face-to-face encounters
are crucial for the maintenance of social networks [8].
In consequence, there is a reciprocal interaction be-
tween travel and communication on the one hand,
and social networks on the other hand. Social net-
works cause travel and communication, yet travel and
communication enable the spatial spread of the social
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Table 1: Overview of selected monitoring tools (adopted from [7]).

aspect paper & pen-
cil [1, 2]

mobile
phone data
[5]

person-
based GPS
[4]

dollar bills
[6]

present
study

delimitation of jour-
neys

easy impossible difficult no only leisure

coverage of journeys with bias
(depending
on
respondent)

incomplete complete no with bias
(depending
on respon-
dent)

duration of journeys rounded
(usually
5 mins)

no exact no possible
(with data
from travel
diary)

identification of
locations

precise zones exact no precise (de-
pending on
respondent)

trip purpose yes no imputed no yes (leisure)
social content in part no no no rich

network.

With the increasing availability of large data sets,
such as co-authorship networks [9], movie actor net-
works [10], or email networks [11], social network
analysis has made great advances in understanding
the dynamics of complex networks. Yet, the link to
travel behaviour is missing as those networks provide
no information about their spatial structure. In so-
ciology, it has been already pointed out by Latané
[12] that distance is a significant explanatory vari-
able for the structure of social networks, but only
recently research in sociology has focused on this as-
pect [13, 14, 15, 16].

To shed more light on the link between network
structures and travel behaviour, some initial stud-
ies use the methods of social network analysis. By
focusing on actors and their relations simultane-
ously, these methods prove productive, producing
new empirical insights and results (for examples see
[8, 17, 18, 19, 20, 21]). A common characteristic of
these studies is their limitation to first degree rela-
tions. This means that the obtained network data is

limited to isolated star-like network structures.

The present study widens the scope of network
studies in transport planning by collecting data on
iteratively connected personal leisure networks in
Switzerland with a so-called “snowball sampling” [22]
approach. This approach allows to make statements
about the network structure beyond first degree re-
lations, such as transitivity and average path length
between individuals. We choose the context of leisure
contacts, as this allows for the inference of leisure re-
lated travel patterns from the spatial distribution of
leisure contacts and information about the frequen-
cies of face-to-face meetings. We further show that
the resulting travel patterns are consistent with other
empirical studies.

The remainder of this article is organised as fol-
lows. Section 2 describes the survey instrument, the
construction of the leisure network from the raw sur-
vey data and presents a technique to correct the in-
herent “degree bias” of the snowball approach. Sec-
tion 3 presents an analysis of the network with re-
spect to its topology, spatial structure and socio-

2



2.1 Survey instrument 2 DATA COLLECTION AND PARAMETER ESTIMATION

demographic attributes of the individuals. Further-
more, travel patterns are inferred from the spatial
structure of the network. The article is closed with a
discussion in Sec. 4 and a summary in Sec. 5.

2 Data collection and parame-
ter estimation

2.1 Survey instrument

Collecting data on contacts is possible with a per-
sonal network approach. Here respondents, called
egos, are asked to report their social contacts, the
alters. Usually, two different kinds of survey instru-
ments are employed:

• Diaries aim to record all contacts an ego meets
in a given time frame.

• Name generators use questions and stimuli to
focus egos on their contacts.

Although, there are name generators aiming for the
entire social network of a person [23] they are usually
designed to collect data on a specific part of egos’ net-
works. Being interested in leisure contacts makes a
name generator questionnaire the appropriate design
for the present study.

The questionnaire aims to collect data on egos’
characteristics, ego-alter relations, alters’ characteris-
tics and alter-alter relations. The range of topics and
the level of confidentiallity implied in the questions
result in a high amount of response burden. Respon-
dents are offered a 20 CHF incentive to compensate
their efforts. The questionnaire is divided into four
sections: (i) an introductory questionnaire, (ii) the
name generator, (iii) the name interpreter and (iv) a
sociogram. Details are given in the following sections.

A subset of respondents participate in a 8-days
travel diary. The diary records daily activities to-
gether with the information with whom these ac-
tivities are conducted, how frequently they are con-
ducted and who initiated the activity. The travel
diary is still in an early state and just little data has
been collected. For that reason, its analysis is not
included in this article. However, it is expected that
the diary enriches the current data set.

2.1.1 The introductory questionnaire

A first set of questions asks for egos’ socio-
demographics. In addition, it asks for respondents’
mobility biography by collecting postal addresses of
former home locations, work and education places.

2.1.2 The name generator

The second part of the survey instrument is the name
generator. It employs several stimuli in two ques-
tions:

1. “Please list the people with whom you make
plans to spend free time (Examples: sports, club
or organised activities, cultural events, cooking
together or going out to eat, taking holidays or
excursions together).”

2. “If there are other people with whom you discuss
important problems, please list them here.”

Both kinds of contacts can be considered as crucial in
terms of leisure travel as the ego meets those persons
frequently. Because both categories are overlapping
and respondents are, to reduce response burden, not
asked to mention alters who fit into both categories
twice, multi-relational analyses are not possible. The
questionnaire limits the number of contacts that can
be named to 40. However, respondents are allowed
to additionally name (note them on the back) fur-
ther contacts if they feel so. Since this opportunity
is only rarely used, the current analysis neglects the
additional contacts.

2.1.3 The name interpreter

The third part of the questionnaire is a name inter-
preter asking egos to report characteristics of each
alter mentioned in the name generator. Basically,
the questions ask for

• alters’ socio-demographics

• the relationship between ego and alter

• contact modes used and

• the contact frequency.
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2.1.4 The sociogram

Finally, the last part of the questionnaire, a so-
ciogram, asks egos to report groups of alters that
make plans to spend free time together. This part
of the survey instrument is influenced by the work of
Carrasco et al. [18] in Toronto (see also [24]). Activ-
ity groups can be reported by mentioning the context
of the activity, for example “hiking group”, and iden-
tifying all alters from the name generator that join in
this activity. Egos are allowed to mention up to 20
groups.

2.2 Snowball sampling

2.2.1 Sampling technique

To draw a picture of connected personal leisure net-
works the survey population is sampled by employing
a chain methodology called snowball sampling. It
belongs to the family of ascending sampling strate-
gies and uses an initial set of first respondents, called
”seeds“ to ask them about their social contacts. In-
stead of only collecting information on the alters,
snowball sampling aims to also recruit them and
again ask them to report their social network. This
process is repeated for a number of predetermined
iterations (for a more detailed discussions on this
methodology see [22, 25, 26]). The methodology has
the advantage that it requires only few seeds to find
other members of a given population with similar
characteristics [27]. Therefore snowball sampling or
similar kinds of link tracing methodologies are of-
ten used to collect information on hidden or hard-
to-reach populations like drug users [28, 29], persons
with sexually transmitted diseases [30], or other spe-
cial populations like migrants [31]. However, snow-
ball sampling can also be used to survey informa-
tion on more general networks and investigate their
global structures in terms of connectedness [32, 33].
Schweizer et al. [34] uses snowball sampling to get an
impression of social support in a multi-ethnic com-
munity and Jones [35] investigates regional economic
exchange relations between villages in Ecuador.

2.2.2 Snowball induced biases

Several issues have to be considered because snow-
ball sampling is well known for several sources of bias
[36, 26]. First of all, snowball samples do not fit the
criterion of randomness because the probability for
becoming part of the sample is influenced by the egos
as egos mention their alters selectively, whether un-
intentionally or intentionally (for a study with such
problems see [19]). This selectivity limits the number
of possible paths the chain can take to be continued.
To survey the network of interest as completely as
possible and reduce ”selection bias“ the survey em-
ploys several arrangements to establish trust between
respondents and the research team, such as a multi-
contact strategy, a greeting postcard which egos are
asked to send to their alters and a web page provid-
ing detailed information about the survey and each
researcher involved (for details see [37]). Apart from
these arrangements selection bias is a problem and
nothing can be done if a person decides to hide cer-
tain alters.

The second source of bias results from the snowball
chain as it provides a higher chance for persons with
many social contacts to be included in the sample.
We address this source of bias, also called “degree
bias”, in Sec. 2.4.

Third, bias can result from similarities between
egos and their alters. These characteristic similar-
ities, also addressed as status homophily, are well
documented in network studies [38, 39]. On the one
hand, the present study aims to observe the spread of
homophily in connected personal networks as persons
with similar characteristics have a higher probability
of establishing a relationship then dissimilar pairs of
persons [40]. On the other hand, there is the dan-
ger of being captured in homogeneous clusters. If,
for instance, a male seed reports male contacts ex-
clusively and the reported contacts report only male
contacts again, the sample would ultimately not be
representative for any general target population. The
study employs arrangements to react to “homophily
bias” and conserve the sample’s heterogeneity. The
seeds are recruited with the help of a stratified ran-
dom sample in terms of sex, age and home location,
whether urban or rural, of Canton Zurich’s popula-
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tion. Switzerland is chosen as the Swiss data protec-
tion law allows for snowball sampling and many ad-
ditional data on the population are available to the
study, from, for example the Swiss micro-census [2],
a nationally representative sample conducted every
fifth year. Canton Zurich is chosen because it in-
cludes the largest Swiss City as well as smaller towns
and rural areas.

The advantage of starting the snowball with a ran-
dom sample is that seeds effect the populations’ het-
erogeneity which helps to counteract homophily bias.
In addition, seeds were asked to fill out the question-
naire with the help of an interviewer to increase data
quality and to ensure a as complete as possible cov-
erage of the network of interest.

2.2.3 Application

A part of the survey is still in the field. Snowball
chains are started with 40 ego-seeds, however, two
seeds rejected to report their contacts and are ex-
cluded in further analysis. For 20 seeds the snowball
is expanded up to the second iteration. The remain-
ing seeds are expanded up to the fourth iteration. At
the time of the writing of this article the snowball is
expanding the third iteration (date of data: Septem-
ber 2010).

So far, a response rate of 27 % is achieved (cal-
culated conforming to the guidelines of the AAPOR
[41], see also discussion in Sec. 2.3) This is satis-
fying considering the amount of response burden of
this study. Filling out the questionnaire requires, de-
pending on egos’ network size, between one and four
hours. It is also satisfying considering that the survey
asks for very confidential information such as names
and postal addresses of friends and family members
(for arrangements to increase the response rate see
[37]). Assessing the instrument’s response burden
a tool from commercial survey research estimated a
lower response rate [42].

To our knowledge, this is the first time a snowball
sample approach is used to sample a survey popu-
lation of this size (targeted are 800 egos reporting
about 12’000 alters) with so few restrictions on the
persons included. Of course, language or national
frontiers are likely to affect the spread of the snow-

ball. However, the survey instrument makes no limi-
tations regarding institutional settings (such as work-
place, school or clubs), personal characteristics, or
communication modes.

2.3 Constructing the snowball graph

For the following analysis the raw survey data is
transformed into a graph data structure. Vertices
represent egos and alters and edges represent the re-
ported leisure contact. Even if, strictly speaking, the
survey data represents directed edges (from ego to
alter) the graph is assumed to be undirected.1

The raw survey data comes in the form of an edge
list, i.e., a listing of all reported leisure contacts. All
vertices are assigned an id and are checked for equal-
ity. This means that, if multiple egos report the same
alter, the identity of an alter is first tried to be veri-
fied on a name and address basis. However, the resi-
dential locations of approximately 25 % of alters are
missing since the reporting egos did not disclose their
addresses. In such situations, further attributes such
as age, civil status and citizenship are used to iden-
tify an alter. In critical cases the respondents are
contacted for clarification. Although, much effort is
invested into the validation of alters, the number of
unique alters remains error-prone. The data of the
sociogram (Sec. 2.1.4) is for the present ignored. An
inclusion of the data is discussed in Sec. 3.1.3.

In the remainder of this article the following no-
tations will be used. The index of an iteration is
denoted with i, where the 0-th iteration represents
the initial random draw of the seed vertices. Vertices
that represent an ego are called ego-vertices. Ver-
tices representing an alter are called alter-vertices.
Ego-vertices are those who participated in the sur-
vey, i.e., vertices that have filled out a questionnaire.
For the statistical analysis, this distinction is crucial
since the true degree of an alter is unknown. In most
cases the observed degree of an alter is one since it

1Consider the situation where the alter participated the sur-
vey in the preceding iteration but did not report the back-link
to the ego. It is now unknown if the missing back-link is in-
tentionally in the sense of “this in not my friend”, unintended
in the sense of “i know that our friendship has already been
reported, so i do not report it again” or just forgotten.
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has been reported only by one ego. Moreover, in the
case of an ego, vertex related attributes (such as age
or income) are reported by the ego itself, whereas
alter attributes are reported by the ego and thus rep-
resents a potential source of uncertainty. The relia-
bility of the information of an alter reported by an
ego is tested by comparing such information with the
details the alter reports herself once she participated
in the survey in the subsequent iteration. The com-
parison shows that the information matches in more
than 90 % of all cases, which is consistent with the
findings of other studies [43].

Quantities that are calculated based on different
iterations are denoted with the iteration index in
parentheses in the superscript. For instance, the
number of ego-vertices sampled in iteration i is de-
noted with n(i), the number of vertices that have been
sampled up to and including iteration i is denoted by
n(≤i). Symbols without an iteration index refer to
the complete sample obtained in iteration 3, i.e., n
corresponds to n(≤3).

Based on the vertices’ ids the edge list can be
merged into one graph. The resulting graph consists
of 7311 vertices and 7716 edges, where 406 vertices
represent egos. An overview of the graph size per
iteration is given in Tab. 2. The response rate α(i)

is defined as the number of egos n(i) over the total
number alters in the previous iteration i − 1. Note
that this definition is different from the one that is
commonly used in sociology [41] in that the sociolo-
gist would rather use the total number of all enquired
vertices in the denominator. This leads to higher re-
sponse rates since due to missing contact information
not all alters can be enquired. However, for the esti-
mation technique that will be discussed in Sec. 2.4 it
is not relevant for what reason a vertex has not been
sampled and the first definition will be used.

2.4 Estimation

As mentioned in Sec. 2.2.2, there are several sources
of bias in a snowball sample. To properly esti-
mate topological characteristics of the network an ap-
proach to correct the degree bias is presented. Other
approaches already exist [44, 45]. However, they all
refer to different implementations of snowball sam-

Table 2: Graph size per iteration. *By the time of
the writing of this article iteration 3 has not been
fully expanded.

iteration egos alters edges response rate

(i) (n(i)) (n
(i)
alter) (m(i)) (α(i))

0 38 568 - 1.0
1 103 1649 119 0.18
2 238 4586 303 0.14
3* 27 470 32 0.006
total 406 7273 454 0.06

pling and thus apply different estimation techniques.
For instance, in Respondent-Driven Sampling [28]
the number of alters an ego tries to recruit is fixed,
whereas in our implementation it is proportional to
its degree (for simplicity it is assumed that the re-
sponse rate is constant over all degrees). This section
will summarise the ideas of our estimation method.
For details on the characteristics of the estimator the
interested reader is referred to [46].

The progress of a snowball sampling is heavily de-
termined by the topology of the underlying network.
Well connected vertices are covered relatively fast
by the sampling algorithm whereas it takes a cou-
ple of iterations until the less connected vertices are
reached. As a consequence, vertices with high de-
gree are overrepresented in the early iterations. Even
though this effect is undesired for network param-
eter estimation, it interestingly is of advantage for
immunisation strategies: Randomly select a person
to immunise, but also immunise her friends since it
is likely that one reaches persons with higher connec-
tivity [47].

In terms of estimation theory snowball sampling
can be regarded as sampling with unequal inclusion
probabilities. The inclusion probability πv of a vertex
v cannot be calculated directly; however, it can be
estimated by the following considerations.

First, expand the notation of πv to account for the

iteration index. Thus denote by π
(≤i)
v the probability

that vertex v is included in a snowball sample that
has been run up to and including the i-th iteration.
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This probability can be expressed as the probability
that one of the vertex’s neighbours has been sampled
in or before the previous iteration i − 1. More for-
mally, the probability that vertex v is not sampled
in iteration ≤ i is the joint probability that none of
its neighbours w has been sampled in or before the
previous iteration:

π(≤i)
v = 1 −

k∏
w=1

(
1 − π(<i)

w

)
, (1)

where k denotes the degree of vertex v. The prob-

ability π
(<i)
w is, however, just as unknown as π

(≤i)
v .

An assumption that may be arguable at this point
but shows to be sufficient is to ignore the details of
the snowball sampling process and assume that all
neighbours are equally and independently sampled.
Thus, the inclusion probability of a neighbour can be
approximated by

π(<i)
w ≈ n(<i)

N
(2)

where N is the total number of vertices. Replacing

π
(≤i)
v with the estimator π̂

(≤i)
v Eq. (1) becomes

π̂(≤i)
v = 1 −

k∏
w=1

(
1 − n(<i)

N

)
. (3)

Since Eq. (3) holds equally for all vertices of a par-
ticular degree it can be rewritten as

π̂
(≤i)
k = 1 −

(
1 − n(<i)

N

)k
. (4)

Obviously, this estimator is only applicable for i > 0.
In the 0-th iteration samples are drawn randomly,
i.e., π(0) = n(0)/N .

To account for the response rate, one simply multi-
plies π̂k with α. The inclusion probability of an edge
(uv) is defined as

π̂uv = π̂u + π̂v − π̂uπ̂v, (5)

i.e., the probability that either u or v is sampled.
This estimator requires knowledge of the size N

of the network which is strictly speaking unknown.

However, the snowball shows to predominantly re-
main in the German-speaking part of Switzerland.
This means that the language boundary indeed re-
stricts the expansion of the snowball. It is thus plau-
sible to set N to the size of the German-speaking
Swiss population, approximately 5.2 million inhabi-
tants. Moreover, since N is in the denominator of Eq.
2, its influence on π̂v decreases with increasing N . As
long as N is at least in the order of 106, variations of
N are less significant.

Given the estimator for the inclusion probability
we can obtain further statistical quantities. An esti-
mator for a population total is

t̂y =
∑
v

yv
π̂v
, (6)

where y is the quantity of interest and
∑
v denotes

the sum over all ego-vertices. The weighted sample
mean is an estimator for the population mean

ˆ̄y =
1∑

v 1/π̂v

∑
v

yv
π̂v
. (7)

An other estimator is the so-called Horwitz-
Thompson estimator [48] ˆ̄y = t̂y/N which, however,
is often inferior to the weighted sample mean, Eq. 7
[49]. The difference is that Eq. 7 replaces N with the
estimator

N̂ =
1∑

v 1/π̂v
. (8)

An estimator for the covariance is

Ŝyz =
1

N̂ − 1
t̂yz −

1

N̂
(
N̂ − 1

) t̂y t̂z, (9)

where z denotes the second variable of interest and

t̂yz =
∑
v

yvzv
π̂v

. (10)

This equation holds equally if one replaces π̂v with
the inclusion probability of an edge π̂uv, e.g., to ob-
tain an estimator for the degree-degree correlation
(Eq. 13). The estimator for variance Syy and Szz is
analogous [49].

In the following section Eq. 7 and 9 will be used to
obtain estimators for the mean degree, degree distri-
bution, degree-degree correlation and the mean clus-
tering coefficient.
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3 Analysis

3.1 Topological network properties

3.1.1 Degree

According to Sec. 2.4, an unbiased estimator for the
mean degree is

ˆ̄k =
1∑

v 1/π̂v

∑
v

kv
π̂v
, (11)

where kv is the degree of vertex v. The sum goes
only over all ego-vertices, since the true degree of an
alter is unknown. The estimated degree distribution
is obtained with

p̂ (k) =
1

N̂

∑
vk

1

π̂v
, (12)

where
∑
vk

denotes the sum over all ego-vertices with
degree k.

Calculating the mean degree, without correction,
for each iteration reveals the snowball bias. The
mean degree for the initial random draw is k̄(0) = 15,
for the sample after the first iteration is is k̄(≤1) =
17.6, k̄(≤2) = 20.1 and finally k̄(≤3) = 20.1. Using the
estimator in Eq. 11 one obtains an estimated mean

degree of ˆ̄k
(≤3)

= 13.3, slightly less than the mean
degree k̄(0) of the initial draw.

Figure 1 shows the observed and estimated degree
distribution. Both distributions are right-skewed and
it is clearly visible that the estimator shifts probabil-
ity mass from the high degrees to the low degrees.
Different from other studies [10, 11, 50], the tail of
the estimated distribution rather follows an exponen-
tial than a power law decay. We note that the survey
questionnaire limits the number of contacts that can
be reported to 40. (Egos can have higher degree than
40 if they named 40 contacts and then are addition-
ally named by another ego.) Assuming that among
the respondent with k = 40 there are actually respon-
dents with k > 40, this would shift probability mass
to degrees above 40.

3.1.2 Degree-degree correlation

A further interesting property is the degree-degree
correlation which can be expressed as the Pearson
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Figure 1: Observed (p (k), circles) and estimated
(p̂ (k), triangles) degree distribution. Results are ag-
gregated in bins of width 5. Inset: Log-plot of the
estimated degree distribution. The solid line indi-
cates a fit of the function p (k) ∼ exp (βk), resulting
in β = −0.08.
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correlation coefficient of the degrees of the vertices
on either ends of an edge [51]. Social networks are
known to exhibit a positive degree-degree correlations
indicating that vertices of same degree tend to be
connected [52].

The nature of the snowball sampling technique
also biases the degree-degree correlation, so that the
observed degree-degree correlation is close to zero
(rk = 0.08). Using the estimator for the (co-)variance
(Eq. 9) results in

r̂k =
Ŝkukv√

Ŝkuku

√
Ŝkvkv

(13)

as an estimator for the degree-degree correlation,
where ku and kv denote the degrees on either ends
of an edge. Analogous to the calculation of the esti-
mated mean degree, only edges between ego-vertices
are considered. Applied to the survey data, Eq. 13
results in r̂k = 0.26. This means that the present
sampled network is assortative with respect to de-
gree. Degree-degree correlations of similar magnitude
are observed in networks of movie actors (rk = 0.208
[10]) or company directors (rk = 0.276 [53]).

3.1.3 Transitivity

Social networks are often an example for complex net-
works with high transitivity, i.e., a lot of triangular
configurations [9, 10, 53]. There are two methods to
measure transitivity in a network and one should be
precise about which method is used. Transitivity can
be quantified with the network clustering coefficient

C =
3 · n (triangles)

n (connected triples)
(14)

or by the mean clustering coefficient over all (ego-
)vertices

C̄v =
1

n

∑
v

2mv

k (k − 1)
, (15)

where mv denotes the edges connecting neighbours of
vertex v and n, in this specific case, the number ego-
vertices. The latter definition tends to weight the val-
ues of low-degree vertices more heavily [52]. Both def-
initions exhibit no significant transitivity: C=0.018
and C̄v=0.05.

Considering the estimation technique, it proves to
be better applicable to C̄v than to C: Since Cv is

a vertex-local property, the mean value ˆ̄Cv can be
estimated according to the weighted sample mean:

ˆ̄Cv =
1∑

v 1/π̂v

∑
v

Cv
π̂v
. (16)

Analogous to Eq. 11, the sum goes only over all ego-
vertices. Yet, even after the correction by the esti-

mation technique, the clustering ˆ̄Cv remains at 0.08.
A drawback of the snowball approach is that alter-

alter relations remain undetected unless one alter
participates in the survey in following iterations.
Consequently, it can be assumed that the number
of edges mv connecting alters (Eq. 15) is vastly un-
derestimated. This effect is particularly pronounced
in the final iteration where no alters are surveyed.

An attempt to shed more light on alter-alter rela-
tions is made in capturing information about cliques.
A clique is defined as a fully connected set of ver-
tices and is obtained from the sociogram data. Re-
spondents are asked to define activity-groups (for in-
stance “hiking group” or “soccer club”) and assign
their alters to those groups. Connecting all alters
within an activity-group with each other results in a
clique. One may argue that alters within an activity-
group are not necessarily connected to each other.
Especially for large groups, the probability of being
connected is likely to decrease. However, half of all
reported cliques contain less than 4 persons. This
is consistent with the findings of Dunbar [54] that
groups of core contacts are rarely larger then four
persons. Given the clique information, a meaningful
approximation of mv is obtained, and the estimated

mean clustering coefficient increases to ˆ̄Cv = 0.22.
The network clustering C increases considerably to
0.55.

Figure 2 shows the size of cliques as well as the
average number of cliques in relation to the degree of
the reporting ego. Both quantities increase nearly lin-
early with the degree. This means that the few high
degree respondents contribute a lot of cliques contain-
ing many persons, and consequently contribute many
triangles increasing network clustering C. Assuming
that it is less likely that all alters in a large activiy-
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Figure 2: Average number of cliques (circles) and size
(triangles) of cliques over the degree of the reporting
respondent.

group are connected, it is arguable that C̄v provides
a more meaningful indicator of tranisitivity since C̄v
assigns the same weight to the few high-degree ver-
tices as to all other vertices.

3.1.4 Components

Starting with 38 seed vertices, the snowball graph of
the 0-th iteration consists of 38 isolated components.
A component denotes a graph where every vertex can
be reached by every other vertex. Already within
the first iteration the snowball detects bridge-persons
that connect components. Three seed-to-seed paths,
i.e., a path connecting a pair of seed vertices, can
be identified, each with a length of four edges (see
bold edges in Fig. 3). A fourth path is an indirect
path, composed of two of the above paths and thus
connecting two seeds through the original component
of a third seed.

Within the second iteration the snowball graph
merges to 30 isolated components. A total of 18 seed-
to-seed paths can be identified, where ten paths are
again indirect paths composed of eight direct paths.
There are two paths with a length of 17 edges, which,

Table 3: Seed-vertex connection matrix.
Row/column names are the ids of the seed-vertices.
The entries represent the path length between both
seed-vertices. Listed are only those seed-vertices
that are reachable by at least one other seed-vertex.
id 31 207 754 89 799 241 845 329 297 559 63 709

31 0 - 17 - 8 - - 9 13 - - 4
207 - 0 - - - - 5 - - - - -
754 17 - 0 - 17 - - 8 4 - - 13
89 - - - 0 - 4 - - - - - -
799 8 - 17 - 0 - - 9 13 - - 4
241 - - - 4 - 0 - - - - - -
845 - 5 - - - - 0 - - - - -
329 9 - 8 - 9 - - 0 4 - - 5
297 13 - 4 - 13 - - 4 0 - - 9
559 - - - - - - - - - 0 6 -
63 - - - - - - - - - 6 0 -
709 4 - 13 - 4 - - 5 9 - - 0

however, overlap for 13 edges (see bold path in the
centre Fig. 3). Both paths connect each five seed
vertices, where four seed vertices are covered in the
overlapping part. Within the third iteration no fur-
ther paths are found. The average path length is 8.4
edges. It may be too early for statements about small
world properties. Assuming that there exists a path
form each seed-vertex to each other seed-vertex only
18 of 703 (≈ 2.5 %) possible paths are detected.

Figure 3 visualises the hitherto sampled network.
A giant component is identified with 3404 vertices.
It is a composition of components that originally
emerged from six seed-vertices. Additionally, three
further components each containing two seed vertices
are identified with a size between 400 and 700 ver-
tices. All remaining components are still the isolated
egocentric networks emerging from the seed-vertex.

3.2 Spatial properties

Given the residential locations of more than 75 %
of all reported egos and alters the edge length dis-
tribution is calculated (Fig. 4(a)). The distribution
appears to break up into a short range domain up
to approximately 20 km and a long range domain
including transcontinental contacts up to 16.000 km

10
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Figure 3: Sampled leisure network. Drawn are only ego-vertices, and alter-vertices if they act as a bridge
vertex (gray squares) connecting two components. Paths connecting seed-vertices are highlighted with bold
edges.
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distance. Both domains follow a power law distri-
bution pm(d) ∼ dβ1/2 with β1 ≈ −0.5 for the short
range domain and β2 ≈ −2.1 for the long range do-
main. Half of all connected individuals are located
within a distance of 11 km to each other.

We assume that the observed edge length distribu-
tion is a multiplication of an individual’s probability
paccept(d) to accept a contact at distance d and the
number of opportunities M(d) at distance d, so that

pm(d) = paccept(d) ·M(d) . (17)

Using land use data to obtain pm(d) it is possible to
extract paccept(d) from the survey data (Fig. 4(b)).
For this, it is necessary to re-weight every occurrence
of an edge connected to ego v by 1/Mv(d). Here,
every Mv(d) is individually computed for every ego as
the sum of opportunities at distance d. Areas outside
Switzerland contribute zero opportunities.

The function paccept(d) ∼ dα with α ≈ −1.6 fits
well to the resulting distribution. This may be an
indicator that the change of the exponent in the edge
length distribution pm(d) is induced by boundary ef-
fects. In fact, the initial seeds of the snowball are
drawn within Canton Zurich, i.e., samples are concen-
trated within the metropolitan area of Zurich, while
the southern border of Germany is approximately
20 km north of Zurich city.

The spatial distribution of social contacts defines
possible origin-destination relations of leisure related
travel but makes no statement about the actual num-
ber of trips made. Therefore, it is assumed that re-
ported physical contacts, i.e., face-to-face meetings,
are located at either one actor’s residential location.2

Then, given the frequency distribution f(d) of phys-
ical contacts the distribution of trips ptrip(d) is ob-
tained by

ptrip(d) = f(d) pm(d) , (18)

i.e., a multiplication of the functions describing the
frequency distribution and the spatial distribution of
leisure contacts. Figure 5(a) shows the trip distance
distribution ptrip(d). Similar to the edge length dis-
tribution (Fig. 4(a)), ptrip(d) also exhibits a short

2Once the data from the 8-days travel diary (Sec. 2.1)
is available the precise locations of face-to-face meetings are
known.
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Figure 4: (a) Edge length distribution pm(d), (b) ac-
ceptance probability distribution paccept(d). Samples
are aggregated into distance bins each containing 100
samples.
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range and long range domain. Both domains follow
again a power law ptrip(d) ∼ dγ1/2 , however, with
smaller exponents γ1 ≈ −1.1 and γ2 ≈ −3.5. The
qualitative similarities between pm(d) and ptrip(d) in-
dicate that the frequencies of visits given a contact
follow the same basic scaling law, i.e., f(d) ∼ dη,
as the probability of a contact given an opportu-
nity. Moreover, there should exist a relation of the
exponents, so that γ = β + η. Figure 5(b) shows
the frequency distribution f(d) with respect to the
face-to-face contact mode. The distribution does not
(and should not) exhibit the two distance domains as
ptrip(d) and pm(d), but, apart from some outliers at
very long distances, follows roughly f(d) ∼ dη with
η ≈ −0.4.

We further conclude that leisure contacts do not
only occur more frequently with short distances, they
are also activated more frequently at short distances.
Contacts that are met at least once a week have an
average length of less than 10 km, whereas contacts
that are met just once per year are more than 100 km
distant.

3.3 Homophily

Analogous to spatial distance, decreasing “social dis-
tance” between two actors increases the probability
of being connected, where “social distance” denotes
a measure of how much two individuals differ in their
socio-demographic attributes. In social network anal-
ysis this phenomenon is known as homophily [38].

The attribute which induces the strongest degree
of homophily is age. It can be quantified with the
Pearson correlation coefficient of the age values at
either end of an edge (uv):

ra =
Sauav√

Sauau
√
Savav

, (19)

where au and av denote the age [years], Sauav de-
notes the covariance, Sauau and Savav the variance
respectively. A correlation coefficient of ra = 0.55
indicates a strong correlation. Interesting details on
how homophily with respect to age changes during
the course of life can be revealed if one looks at the
alters’ age distribution. For respondents of age be-
low 30 years the distribution is rather narrow (Fig.
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Figure 5: (a) Trip distribution ptrip(d), (b) frequency
distribution of physical contacts f(d). Samples are
aggregated into distance bins each containing 100
samples.
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Figure 6: Box plot (conforming to [55]) of the distri-
bution of alters’ age. Lower and upper box bounds
are first and third quartile respectively.

6). This means that alters are of nearly same age
as the ego. With increasing age the distribution be-
comes broader which is rather intuitive since the ab-
solute age difference becomes less important as one
becomes older. Also remarkable is that at an age
of approximately 40 years more outliers at the lower
and upper end of the scale occur. The outliers at the
lower end represent the young generation that grows
up, the outliers at the upper bound indicate that the
parental generation becomes more relevant consider-
ing leisure contacts.

Apart from age, homophily with respect to gen-
der plays a significant role. Interestingly, the degree
of homophily of this attribute differs between female
and male. The probability that a contact of a fe-
male ego has the same gender is 0.72. For male re-
spondents the probability that the alter has the same
gender decreases to 0.64. As a consequence, the sam-
ple is biased such that 58% of the vertices are female,
whereas in the Swiss micro-census is only 51%. It is
also observed that female respondents do have more
leisure contacts (k̄female = 20.8) compared to male
respondents (k̄male = 19.1), i.e., women name more

contacts than men.
Considering the level of education, a similar ef-

fect is observed. Categorising respondents into “aca-
demics” (university or university of applied science)
and “non-academics” reveals that the survey data
contains surprisingly many academics. However, ho-
mophily within academics is less pronounced com-
pared to non-academics. Regarding academics, al-
ters’ level of education is almost equally distributed
over both categories. In contrast, for a non-academic
respondent the probability that an alter belongs to
the same category is 0.75. Consequently, the above
average share of academics (45 % in survey data,
15 % in Swiss micro-census) can only be explained
by the greater average degree (k̄academic ≈ 23 and
k̄non-academic ≈ 18).

4 Discussion

The present study confirms a couple of findings from
other studies but also reveals some new aspects of
social networks and the link to travel behaviour.
The average number of leisure contacts per individ-

ual is estimated to ˆ̄k = 13.3 and is comparable to,
for instance, the study of Frei and Axhausen [20]
(k̄ = 12.4) or Carrasco [18] (k̄ = 12.1). The tail
of the degree distribution exhibits an exponential de-
cay which is different from the often observed power
law decay.

Unlike other studies, triangular configurations in
the graph appear to be less frequent. Even when
the links from the sociogram data are included, the
mean clustering coefficient of, for instance, networks
of company directors (C̄v = 0.59) [53] or physics co-
authorship (C̄v = 0.43) [9] is two or three times as
large as ours. However, one should recall that the
present study is not embedded into any institutional
setting, such as company directors or co-authors. As
we observe in the sociogram data, alters are organised
into several different communities: each ego reports
at average 4.25 cliques. It is thus not surprising that
leisure contacts show less transitivity.

The question if the present study supports the no-
tation of “six degrees of separation” [56] is still open.
The current average path length between two seed
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Figure 7: Comparison of ptrip(d) between the present
study (circles) with data from the Swiss micro-census
(triangles). Samples are aggregated into 1 km bins.

vertices is 8.4. However, it is still possible that the
snowball detects shorter paths in the next iterations.
Non-responding vertices can, at first, disrupt the ex-
pansion of the snowball, but can still be reached from
other components and act as bridge-vertices.

Given the spatial structure of the leisure network,
we can show how to infer the leisure related trip
distribution as a multiplication of the functions de-
scribing the spatial distribution of contacts and their
frequency of physical meetings. A comparison with
data from the Swiss micro-census reveals that the
present approach is in fact able to infer reasonable
leisure travel patterns. The micro-census includes a
representative travel survey that also captures trip
purposes. Figure 7 shows both, the trip distribution
of the present study as well as the distribution of
the micro-census with respect to trip purpose “visit”.
Considering that the sample size of the micro-census
is smaller and thus scatters more, both distributions
are roughly congruent.

Furthermore, the scaling laws of human travel iden-
tified in this study can be put into relation with the
observations of Brockmann et al. [6] and González

et al. [5]. Brockmann et al. propose that the cir-
culation of bank notes can be used as a proxy for
human travel. They show that the probability of a
bill traversing a distance d (in a short time period) is
well described with p (d) ∼ dγ and estimate the ex-
ponent to γ = −1.6. The approach of González et al.
in which they use trajectories obtained from mobile
phone data shows that the probability of an individ-
ual to make a displacement of distance d is described
by p (d) = (d+ d0)

γ
exp (−d/κ) with γ = −1.75.

Both studies show significant negatively greater ex-
ponents compared to the present study (γ ≈ −1.1).
Considering that the approaches of Brockmann et al.
and González et al. do not capture trips, but ran-
dom observations along a trajectory, i.e., all types
of travel purposes, the different exponents indicate
that leisure travel behaviour exhibits substantial dif-
ferences. Quantitatively, the trip probability decays
more slowly in distance in leisure travel compared to
the average distances between two random observa-
tions along a trajectory.

The relations between the exponent in ptrip(d) and
the costs of travelling can be interpreted using a logit
random utility model [57]. The logit model describes
the probability of a trip between points u and v as
puv ∼ exp (Uuv), where Uuv denotes the perceived
utility of travelling from u to v. Equating this with
the trip distribution ptrip(d) ∼ dγ , one obtains

Uuv = γ ln duv + const , (20)

i.e., that the (dis)utility scales logarithmically in the
distance. The logarithmic form is quite plausible con-
sidering that, for instance, travelling longer distances
usually involves a faster transportation mode or us-
age of a higher-ranked road network (see for instance
[58]). Parameter γ is then the marginal (dis)utility.
Although a strict comparison goes beyond the scope
of this paper, it is interesting to note that in empir-
ical estimations the marginal disutilities of travel for
leisure are consistently smaller (in absolute terms)
than the marginal disutilities of travel for all other
travel segments (for instance Jong et al. [59] show
that commuter and business travel have greater val-
ues of travel time savings compared to other travel
purposes). Therefore, it is not implausible that the
investigations by Brockmann et al. and González et

15



REFERENCES REFERENCES

al., averaging over all trip purposes, find slopes that
are steeper than ours, for leisure travel only.

5 Summary

This article presents insights into the structure of a
large-scale spatially embedded social network. The
survey instrument accounts for both, revealing the
topology of the network as well as collecting infor-
mation about its spatial structure. While it seems
practically impossible to obtain complete networks of
regular leisure contacts, it is useful to go beyond the
egocentric network by employing the snowball sam-
pling approach. With the large sample size (currently
406 respondents naming more than 7700 contacts)
the density of personal networks is so high that even
paths connecting the initial seed vertices are found.
Clearly, just having connecting components does not
allow to estimate network-global parameters directly.
The data, however, will provide evidence about the
order of magnitude of the “degree-of-separation” dis-
tribution. This is not only useful for a much better
estimate of statistical models for transport and com-
munication modelling, but it particularly provides a
sound basis for the spreading of diseases or rumours
(see for instance chapter 5 of [60]).

Regarding the reciprocal interaction of social net-
works and travel, we focused in this article on one
direction: from the social network to travel. We
show that the trip distribution with respect to leisure
travel is a multiplication of the functions describing
the spatial distribution of leisure contacts and the
frequency distribution of physical meetings. Our re-
sults are consistent with the Swiss micro-census and,
moreover, the results provide further evidence that
the value of travel time savings in leisure travel is sub-
stantially different from other travel segments. The
latter aspect is crucial since leisure travel has become
the dominating travel segment (at least in Switzer-
land [2], Germany [1], U.K. [61] and U.S. [62]) and
detailed models are urgently needed.

The other direction, from travel to the social net-
work, represents an aspect that is open for further
research. Some initial work in this direction, by
generating social networks with agent-based trans-

port micro-simulations, has already been conducted
[63, 64]

Once the snowball survey is completed it represents
a large data set covering both, the topology of the
social network and its spatial structure. The data
from the travel diary will enrich the network data
with details on the individuals’ mobility patterns.

This work was funded by the VolkswagenStiftung
within the project “Travel impacts of social networks
and networking tools”.
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