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Abstract

Much research has been conducted to obtain insights
into the basic laws governing human travel behaviour.
While the traditional travel survey has been for a
long time the main source of travel data, recent ap-
proaches to use GPS data, mobile phone data or the
circulation of bank notes as a proxy for human travel
behaviour are promising. The present study proposes
a further source of such proxy-data: the social net-
work. We collect data using an innovative snowball
sampling technique to obtain details on the structure
of a leisure-contacts network. We analyse the net-
work with respect to its topology, the individuals’
characteristics, and its spatial structure. We further
show that a multiplication of the functions describ-
ing the spatial distribution of leisure contacts and the
frequency of physical contacts results in a trip distri-
bution that is consistent with data from the Swiss
travel survey.

1 Introduction

Understanding human travel behaviour is a major re-
search field in the community of transport science.
The understanding of human mobility is not only
required for urban planning and traffic forecasting,
but also to gain insights into the dynamics of the
spreading of diseases, information, or social values
and norms. Tools to monitor human travel behaviour

range from the traditional travel survey, such as the
German “MiD” [1] or the Swiss micro-census [2], via
long-term travel diaries [3], to automated process-
ing of GPS data [4], mobile phone data [5] or track-
ing of dollar bills [6]. The latter two approaches
provide much greater sample sizes compared to the
traditional travel survey, with relatively less effort.
However, they do not directly monitor the travel be-
haviour, but use other data as a proxy. The circula-
tion of bank notes describes a diffusion process rather
than repeated movement patterns. Such data may by
quite useful for the modelling of, say, virus spreading,
yet the inference of individual travel behaviour is lim-
ited since the link between the circulating bill and the
travelling individual is missing. For instance, it is un-
clear when a bank note was passed from one person
to another, or even if the displacement is caused by
the transfer of bank notes between institutions. Mo-
bile phone data, in contrast, allows to obtain individ-
ual trajectories. Still, characteristics of travellers and
their motives remain unrevealed. All of these mon-
itoring tools, including the traditional ones, have in
common that they lack any information about the so-
cial connectivity of individuals. Table 1 provides an
overview of the strengths and weaknesses of selected
monitoring tools.

With the increasing availability of large data sets,
such as co-authorship networks [8], movie actor net-
works [9], or email networks [10], social network anal-
ysis has made great advances. Yet, the link from so-
cial networks to travel behaviour is missing as those
networks provide no information about their spatial
structure. In sociology, it has been pointed out by
Latané [11] that distance is a significant explanatory
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Table 1: Overview of selected monitoring tools (adopted from [7]).

aspect paper & pen-
cil [1, 2]

mobile
phone data
[5]

person-
based GPS
[4]

dollar bills
[6]

present
study

delimitation of jour-
neys

easy impossible difficult no only leisure

coverage of journeys depending
on
respondent

incomplete complete no depending
on respon-
dent

duration of journeys rounded
(usually
5 mins)

no exact no possible
(with data
from travel
diary)

identification of
locations

precise zones exact no precise (de-
pending on
respondent)

trip purpose yes no imputed no yes (leisure)
social content in part no no no rich

variable for the structure of social networks, but only
recently research in sociology has focused on this as-
pect [12, 13, 14, 15].

In fact, both communication and face-to-face en-
counters are crucial for the maintenance of social net-
works [16]. In consequence, there is a reciprocal inter-
action between travel and communication on the one
hand, and social networks on the other hand. Social
networks cause travel and communication, yet travel
and communication enable the spatial spread of the
social network.

To shed more light on the link between network
structures and travel behaviour, research in trans-
port planning makes increasing use of the methods
of social network analysis. By focusing on actors and
their relations simultaneously, these methods prove
productive, producing new empirical insights and re-
sults (for examples see [16, 17, 18, 19, 20, 21]). A
common characteristic of those studies is their limi-
tation to first degree relations. This means that the
obtained network data is limited to isolated star-like
network structures.

The present study widens the scope of network

studies in transport planning by collecting data on
iteratively connected personal leisure networks in
Switzerland with a so-called snowball sampling ap-
proach. This approach allows to make statements
about the network structure beyond first degree re-
lations, such as transitivity and average path length
between individuals. At the same time, travel-related
attributes are collected, most importantly the geo-
graphical locations of the persons’ home locations,
but also the frequencies of face-to-face meetings or
demographic attributes. We choose the context of
leisure contacts, as leisure traffic is an increasing
share of the travel patterns. For example in Ger-
many, “leisure” is now the main trip purpose (31 %
of all trips) [1], followed by “shopping” (19 % of all
trips). “Work” follows third, with 15 % of all trips.
Similar behaviour is observed in Switzerland [2], in
the U.K. [22], and in the U.S. [23]. Yet, compared
to commuting traffic which is routinely surveyed in
most countries, there is comparatively little data for
leisure traffic. The present study is not only meant
to generate data for that travel segment, but also to
enhance our understanding.
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The remainder of this article is organised as fol-
lows. Section 2 presents a brief overview of re-
lated work, describes the survey instrument, the con-
struction of the leisure network from the raw survey
data and presents a technique to correct the inherent
“degree bias” of the snowball approach. Section 3
presents an analysis of the network with respect to its
topology, spatial structure and socio-demographic at-
tributes of the individuals. Furthermore, travel pat-
terns are inferred from the spatial structure of the
network. The article is closed with a discussion in
Sec. 4 and a summary in Sec. 5.

2 Data collection and parameter esti-
mation

2.1 Related work

In transport research a number of studies using the
methods of social network analysis have been recently
conducted. To provide a brief overview, the studies
that are closely related to the present study are pre-
sented.

Carrasco [18] collected data of 350 participants in
the East York area of Toronto with a so-called egocen-
tric sampling design. This means that respondents,
denoted as egos, are asked about their social con-
tacts, denoted as alters. The research question of his
project was to investigate the explanatory power of
data describing personal interaction on the genera-
tion of joint activities.

The egocentric network approach has also been
used by Frei and Axhausen [20] to sample personal
networks of more than 300 respondents. The study
focused on the individual mobility biographies and
the geographical distribution of emotionally impor-
tant contacts.

Silvis et al. [19] used a different approach to col-
lect data on trips and social interactions. In a three-
day interaction diary respondents were asked to re-
port trips and social interactions together with in-
formation about their purpose, mode, and partici-
pants. Furthermore, respondents were requested to
pass postcards to people with whom they met face-
to-face inviting them to participate in the survey as

well. This sampling design is related to the present
design in that respondents invite other people to par-
ticipate the survey. Within a two-month timeframe
24 participants were recruited reporting 505 trips and
972 social interactions.

The interaction diary approach has also been re-
cently used by van den Berg et al. [21] but without
the recruitment mechanism of Silvis et al. Respon-
dents were requested to report up to three partici-
pants of joint activities conducted on two consecutive
days. The sample size counts nearly 750 diaries.

The present study differs from the above studies in
three major aspects:

– The sampling technique collects data on con-
nected personal networks. This allows us to
make statements about network characteristics
that go beyond vertex-local properties.

– The study explicitly focuses on leisure contacts.
Emotionally important contacts, the main inter-
est of the above studies, are only subordinated.

– The targeted sample size (800 egos reporting
12’000 alters) considerably exceeds the sample
size of the above studies.

2.2 Survey instrument

The data used for this article describes a social net-
work of leisure contacts in Switzerland. It is obtained
with a snowball sampling design. In a snowball sam-
ple, respondents (egos) are asked to report their so-
cial contacts (alters), which are then invited to par-
ticipate in the survey as well. The new respondents
are asked to report their social contacts which in turn
are invited as well. This iterative process is continued
until a predefined number of iterations is conducted
or the desired number of respondents are sampled.
The name of the approach stems from the image of a
snowball accumulating more and more material when
it is rolled through the snow. Each respondent is re-
quested to fill out a questionnaire which is divided
into four sections. The following paragraphs sum-
marise the survey instrument, details can be found
in [24, 25].
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An introductory questionnaire asks for the ego’s
socio-demographics and its mobility biography by
collecting postal addresses of former residential lo-
cations as well as workplaces and schools.

The second part asks the ego to report its alters.
It implements the so-called name generator, i.e. the
definition of the criteria conforming to which alters
should be reported or not. The name generator com-
prises two questions:

1. “Please list the people with whom you make
plans to spend free time (Examples: sports, club
or organised activities, cultural events, cooking
together or going out to eat, taking holidays or
excursions together).”

2. “If there are other people with whom you discuss
important problems, please list them here.”

Naturally, it is up to the respondent to decide if a
social contact meets the above criteria. Both kinds
of contacts can be considered as crucial in terms
of leisure travel as the ego meets those persons fre-
quently. The questionnaire has space for 40 contacts.
Respondents are allowed to additionally name (note
them on the back) further contacts if they feel so.
Since this opportunity is only rarely used, the cur-
rent analysis neglects the additional contacts.

The so-called name interpreter represents the third
section of the questionnaire. While the name gen-
erator asks only for the alters’ “names”, the name
interpreter requests the respondents to provide fur-
ther information. Of interest are (i) the alters’ socio-
demographics, (ii) the type of relationship between
ego and alter, (iii) contact modes used, and (iv) the
contact frequency.

Finally, the last part of the questionnaire, a so-
called sociogram, asks egos to report groups of alters
that make plans to spend free time together. This
part of the survey instrument is influenced by the
work of Carrasco et al. [18] in Toronto (see also [26]).
Activity groups can be reported by mentioning the
context of the activity, for example “hiking group”,
and identifying all alters from the name generator
that join in this activity. The sociogram does not
allow to mention further contacts that have not been

reported in the name generator. Egos are allowed to
mention up to 20 groups.

The range of topics and the level of confidentiality
implied in the questions result in a high amount of
response burden. Respondents are offered a 20 CHF
incentive.

A subset of respondents in addition participate in
a 8-day travel diary. The diary records daily activi-
ties together with the information with whom these
activities are conducted, how frequently they are con-
ducted and who initiated the activity. The travel
diary is still in an early state. For that reason, its
analysis is not included in this article. However, it
is expected that the diary enriches the current data
set.

2.3 Application and issues of snowball sam-
pling

A part of the snowball survey is still under way. The
survey was started with 40 ego-seeds. Two seeds did
not disclose their contacts and are excluded in fur-
ther analysis For 20 seeds the snowball is expanded
up to the second iteration. The remaining 18 seeds
are expanded up to the fourth iteration. At the time
of the writing of this article the survey is in the pro-
cess of expanding the third iteration (date of data:
September 2010).

Several issues have to be considered because snow-
ball sampling is well known for various sources of bias
[27, 28]. First, snowball sampling does not produce
unbiased random samples because the probability of
becoming part of the sample is influenced by the egos,
as egos report their alters selectively, whether un-
intentionally or intentionally (for a study with such
problems see [19]). This selectivity limits the number
of possible paths the chain can take to be continued.

The second source of bias results from the snow-
ball chain itself as it provides a higher chance for
persons with many social contacts to be named by
someone else and thus be included in the sample. We
address this source of bias, also called “degree bias”,
in Sec. 2.5.

Third, bias can result from similarities between
egos and their alters. These characteristic similar-
ities, also addressed as status homophily, are well
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documented in social network studies [29, 30]. The
present study aims to observe homophily in con-
nected personal networks, as persons with similar
characteristics have a higher probability of establish-
ing a relationship than dissimilar pairs of persons [31].

The overall response rate is 27 % (calculated con-
forming to the guidelines of the AAPOR [32]), but
differs between the snowball iterations: Starting with
a low rate around 16 % in the 0-th iteration, it in-
creased to 31 % on iteration 1, 29 % on iteration 2,
and around 23 % at iteration 3 (which is not com-
pleted by the time of the writing of this paper). This
is satisfactory considering the amount of response
burden of this study: Filling out the questionnaire
requires, depending on the egos’ network size, be-
tween one and four hours. It is also satisfactory in
view of the fact that the survey asks for very con-
fidential information such as names and postal ad-
dresses of friends and family members (for arrange-
ments to increase the response rate see [24]). When
using the instrument’s response burden as input, a
tool from commercial survey research estimated a
lower response rate [33].

To our knowledge, this is the first time a snowball
sample approach is used to sample a survey popula-
tion of this size (targeted are 800 egos reporting about
12’000 alters) with so few restrictions on the persons
included. Of course, language or national frontiers af-
fect the spread of the snowball (see below). However,
the survey instrument makes no limitations regard-
ing institutional settings (such as workplace, school
or clubs), personal characteristics, or communication
modes.

2.4 Constructing the snowball graph

For the following analysis, the raw survey data is
transformed into a graph data structure. Vertices
represent egos and alters; edges represent the re-
ported leisure contacts. Even if, strictly speaking,
the survey data represents directed edges (from ego
to alter) the graph is assumed to be undirected.1

1Consider the situation where the alter participates in the
survey but does not report the back-link to the ego. It is now
unknown if the back-link is intentionally missing in the sense
of “this in not my friend”, intentionally missing in the sense

The raw survey data comes in the form of an edge
list, i.e. a listing of all reported leisure contacts. All
vertices are assigned an id and are checked for equal-
ity. This means that if multiple egos report the same
surname, the identity of an alter is first verified based
on name and address. However, the residential lo-
cations of approximately 25 % of alters are missing
because the reporting egos did not disclose their ad-
dresses. In such situations, further attributes such
as age, civil status, and citizenship are used to iden-
tify an alter. In critical cases, the respondents are
contacted for clarification. Still, the determination
of uniqueness remains a critical issue.

The data of the sociogram (Sec. 2.2) is ignored in
the following analysis with the exception of Sec. 3.1.3;
that section addresses the changes in network transi-
tivity if edges from the sociogram are included.

In the remainder of this article, the following no-
tations will be used. The index of an iteration is
denoted by i, where the 0-th iteration represents the
initial random draw of the seed vertices. Vertices
that represent an ego are called ego-vertices. Ver-
tices representing an alter are called alter-vertices.
Ego-vertices are those who participated in the sur-
vey, i.e. vertices that have filled out a questionnaire.
Regarding the statistical analysis, this distinction is
crucial since, for example, the degree of an alter is
unknown.

Some alter attributes are initially reported by the
ego. The reliability of the information of such indirect
alter information is tested, where possible, by com-
paring it with the details that the alter reports herself
in the subsequent iteration. The comparison shows
that the information matches in more than 90 % of
all cases which is consistent with the findings of other
studies [34].

Quantities that are calculated based on different
iterations are denoted with the iteration index in
parentheses in the superscript. For instance, the
number of ego-vertices sampled in iteration i is de-
noted with n(i), the number of vertices that have been
sampled up to and including iteration i is denoted by
n(≤i). Symbols without an iteration index refer to

of “I know that our friendship has already been reported, so I
do not report it again”, or forgotten.
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Table 2: Graph size per iteration. Note that “re-
sponse rate” and “recruitment rate” are not the same
(see text). *By the time of the writing of this article
iteration 3 has not been fully expanded.

iteration egos alters edges recruitment rate
(i) (n(i)) (a(i)) (m(i)) (α(i))
0 38 568 573 –
1 103 1644 1794 0.18
2 238 4464 4812 0.14
3* 27 451 496 0.006
total 406 7127 7675 0.06

the entire sample obtained up to (and including) iter-
ation 3. For instance, n corresponds to n(≤3), where
this includes both, vertices of the components that
emerge from the seeds that are expanded only up to
iteration 2 and vertices of the components that are
expanded up to iteration 4.

Based on the vertices’ ids, the edge list can be
merged into one graph. The resulting graph consists
of 7165 vertices and 7675 edges, with 406 vertices
representing egos. An overview of the graph size per
iteration is given in Tab. 2. The recruitment rate per
iteration α(i) is defined as the number of egos n(i)

over the number of alters a(i−1) in the previous it-
eration. Note that the definition of recruitment rate
is different to what is commonly referred to response
rate in sociology [32]. To calculate the response rate
one would use the total number of all enquired ver-
tices in the denominator. Due to missing contact
information not all alters can be enquired.

2.5 Estimation

As mentioned in Sec. 2.3, there are several sources for
bias in a snowball sample. To properly estimate topo-
logical characteristics of the network, an approach to
correct the degree bias is used. The problem of es-
timating properties of snowball sampled networks is
well known and has been addressed by other articles
[35, 36, 37, 38, 39, 40, 41, 42, 43]. However, since
snowball sampling can be implemented in different
variants, each specification requires its own estima-

tion method. A major aspect in which snowball sam-
pling designs differ is the so-called branching rule.
This rule defines the process of recruiting new alters.
For instance, in Respondent-Driven Sampling [36], a
common real-world application of snowball sampling,
each ego recruits a constant number of alters. In con-
trast, in the present snowball sampling design it is at-
tempted to recruit all reported alters. Both branch-
ing rules lead to quite different estimation techniques.

This section will summarise the ideas of our esti-
mation method. For details see [44].

The progress of a snowball sampling is heavily de-
termined by the topology of the underlying network.
Well connected vertices are covered relatively fast
by the sampling algorithm, whereas it takes more
iterations until the less well connected vertices are
reached. As a consequence, vertices with high de-
gree are overrepresented in the early iterations. Even
though this effect is undesired for network parameter
estimation, it interestingly is of advantage for, say,
immunisation strategies: Randomly select a person
to immunise, but also immunise her friends since it
is likely that one reaches persons with higher connec-
tivity than average [45].

In terms of estimation theory, snowball sampling
can be regarded as sampling with unequal inclusion
probabilities. The inclusion probability πv of a ver-
tex v cannot be calculated directly. Yet, it can be
estimated by the following considerations.

First, expand the notation of πv to account for the

iteration index. Thus, denote by π
(≤i)
v the probabil-

ity that vertex v is included in a snowball sample that
has been run up to and including the i-th iteration.
This probability can be expressed as the probability
that one of the vertex’s neighbours has been sampled
in or before the previous iteration i − 1. More for-
mally, the probability that vertex v is not sampled in
or before iteration i is the joint probability that none
of its neighbours w has been sampled in or before
iteration i− 1:

π(≤i)
v = 1 −

k∏
w=1

(
1 − π(<i)

w

)
, (1)

where k denotes the degree of vertex v. The prob-

ability π
(<i)
w is, however, just as unknown as π

(≤i)
v .
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An approximation that turns out to be useful is to
ignore the details of the snowball sampling process
and assume that all neighbours are equally and inde-
pendently sampled. Then, the inclusion probability
of a neighbour can be approximated by

π(<i)
w ≈ n(<i)

N
(2)

where N is the total number of vertices. Replacing

π
(≤i)
v with the estimator π̂

(≤i)
v Eq. 1 becomes

π̂(≤i)
v = 1 −

k∏
w=1

(
1 − n(<i)

N

)
. (3)

Since now the product does not depend on the run-
ning index any more, it can be rewritten as

π̂
(≤i)
k = 1 −

(
1 − n(<i)

N

)k
. (4)

Obviously, this estimator is only applicable for i > 0.
In the 0-th iteration samples are obtained with an

unbiased random draw, i.e. π
(0)
v = n(0)/N . Eq. 4

implicitly accounts for the recruitment rate as n(<i)

decreases with decreasing recruitment rate.
The estimator requires knowledge of the size N

of the network, which is unknown. However, the
growth of the snowballs shows that both the national
border (e.g. between Switzerland and Germany) as
well as the language boundary (between the German-
speaking part of Switzerland and those with other
languages) restrict the expansion. In consequence,
it is plausible to set N to the size of the German-
speaking Swiss population, approximately 5.2 million
inhabitants.

Given the estimator for the inclusion probability,

π̂
(≤i)
k , one can obtain additional statistical quantities.

An estimator for any population total is

t̂y =
∑
v

yv
π̂v

, (5)

where y is the quantity of interest and
∑
v denotes

the sum over all ego-vertices. An estimator for any
population mean is the weighted sample mean

ˆ̄y =
1∑

v 1/π̂v

∑
v

yv
π̂v

. (6)

In the following section, Eq. 6 will be used to obtain
estimators for the mean degree, degree distribution,
and the mean clustering coefficient.

3 Analysis

3.1 Topological network properties

3.1.1 Degree

According to Eq. 6, an estimator for the mean degree
that corrects the bias of the snowball is

ˆ̄k =
1∑

v 1/π̂v

∑
v

kv
π̂v

, (7)

where kv is the degree of vertex v. The sum goes
over all ego-vertices because no information about
the degree of the alters is available. The estimated
degree distribution is obtained by

p̂ (k) =
1∑

v 1/π̂v

∑
vk

1

π̂vk
, (8)

where
∑
vk

denotes the sum over all ego-vertices with
degree k.

Calculating the mean degree, without correction,
for each iteration reveals the snowball bias. The un-
corrected mean degrees for iterations 0 to 3 are k̄(0) =
15, k̄(≤1) = 17.6, k̄(≤2) = 20.1, and k̄(≤3) = 20.0. Us-
ing the estimator from Eq. 7, one obtains a corrected

mean degree of ˆ̄k
(≤3)

= 13.2. The fact that this is
only slightly less than the mean degree k̄(0) of the
initial draw, which is by definition unbiased, is an
indicator for the validity of the correction method.

Figure 1(a) shows the uncorrected (circles) and the
corrected (triangles) degree distribution. Both distri-
butions are right-skewed, and it is clearly visible that
the estimator shifts probability mass from the high
degrees to the low degrees. Different from other stud-
ies [9, 10, 46], the tail of the (corrected) distribution
seems to follow an exponential (Fig. 1(b)) rather than
a power law decay. Recall that because of the survey
design reported contacts beyond the first 40 are cur-
rently ignored. Egos can still have a higher degree
than 40 if they named 40 contacts and then are ad-
ditionally named by other egos. If some respondents
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with k = 40 had in truth a higher degree k > 40, this
would shift probability mass to degrees above 40.

3.1.2 Degree correlation

Another interesting property is the degree correlation
which can be expressed as the Pearson correlation
coefficient of the degrees of the vertices on either ends
of all edges [47]:

rk =

∑
(vw)

kvkw −M−1

( ∑
(vw)

1
2 (kv + kw)

)2

∑
(vw)

1
2 (k2v + k2w) −M−1

( ∑
(vw)

1
2 (kv + kw)

)2 ,

(9)
where kv and kw denote the degrees of the two adja-
cent vertices v and w of an edge (vw) and M denotes
the total number of edges in the network. To properly
determine the degree correlation for a sampled net-
work we evaluate Eq. 9 only for a sub-network:

∑
(vw)

goes only over all edges connecting ego-vertices and
M is set to their number.

Social networks are known to exhibit a positive
degree correlation indicating that vertices of similar
degrees tend to be connected [48]. The nature of
the snowball sampling technique also biases the de-
gree correlation. The uncorrected degree correlation
is close to zero (rk = 0.07). In contrast to vertex-
oriented properties, such as the degree, the item of
interest is now an edge. The inclusion probability
π(vw) of an edge follows from the observation that
the probability that an edge is sampled before or in
iteration i equals the probability that at least one of
its adjacent vertices v or w is sampled before or in
iteration i− 1. Hence,

π̂
(≤i)
(vw) =

(
π̂(<i)
v + π̂(<i)

w

)
−
(
π̂(<i)
v π̂(<i)

w

)
, (10)

where again independence of the sampling events is
assumed. An estimator of the degree correlation is
obtained by weighting each summand (in analogy to
Eq. 6) in Eq. 9 with the inverse inclusion probability
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Figure 1: (a) Uncorrected (p (k), circles) and cor-
rected (p̂ (k), triangles) degree distribution. Results
are aggregated in bins of width 5. (b) Log-linear plot
of the corrected degree distribution. The solid line
indicates a fit of the function p (k) ∼ exp (βk), re-
sulting in β = −0.08.
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π̂(vw) of an edge:

r̂k =

∑
(vw)

kvkw
π̂(vw)

− M̂−1

( ∑
(vw)

1
2
(kv+kw)
π̂(vw)

)2

∑
(vw)

1
2
(k2v+k

2
w)

π̂(vw)
− M̂−1

( ∑
(vw)

1
2
(kv+kw)
π̂(vw)

)2 , (11)

where M̂ is an estimator for the unknown total num-
ber of edges:

M̂ =
∑
(vw)

1

π̂(vw)
. (12)

The sum
∑

(vw) goes, again, only over edges connect-
ing ego-vertices. Applied to the survey data, Eq. 11
results in r̂k = 0.16. This means that the present
sampled network is slightly assortative with respect
to degree, however, not as pronounced as in, for in-
stance, networks of movie actors (rk = 0.21 [9]) or
company directors (rk = 0.28 [49]).

3.1.3 Transitivity

Social networks are often an example for complex
networks with high transitivity, i.e. a lot of triangu-
lar configurations [8, 9, 49]. There are two common
methods to measure transitivity in a network. Tran-
sitivity can be quantified with the network clustering
coefficient

C(1) =
3 · n (triangles)

n (connected triples)
, (13)

or by the mean clustering coefficient over all (ego-
)vertices

C(2) =
1

n

∑
v

2mv

k (k − 1)
, (14)

where mv denotes the number edges connecting
neighbours of vertex v, and n the number of ego-
vertices. The first equation (Eq. 13) represents a
global definition: It puts the total number of triangles
in relation to the total number of triples. The second
equation (Eq. 14) is an average over a local defini-
tion: It puts the number of triangles connected to a
vertex in relation to the triples centred at the same

vertex and then averages over all vertices. The sam-
pled network exhibits no significant transitivity, nei-
ther quantified by the global definition C(1) = 0.015
nor by the local definition C(2) = 0.02.

Considering the correction technique, it proves to
be better applicable to C(2) than to C(1): Since C(2)

is a vertex-local property, the value Ĉ(2) can be esti-
mated according to the weighted sample mean:

Ĉ(2) =
1∑

v 1/π̂v

∑
v

2mv

k (k − 1)
· 1

π̂v
. (15)

When estimating this quantity, only ego-vertices that
have been sampled strictly before the last iteration
are considered in the sum of Eq. 15 because only then
all information about the connections between their
alters is available from the survey. Yet, even after
the correction by the estimation technique, the mean
clustering coefficient Ĉ(2) remains at 0.06.

Non-recruited alters reduce the value of the cluster-
ing coefficient, since without recruitment of at least
one alter, an alter-alter link cannot be detected. Gen-
erally, the missing alter-alter relations are a draw-
back of snowball sampling. An attempt to shed more
light on these relations is made in capturing infor-
mation about cliques. A clique is defined as a fully
connected set of vertices and is obtained from the
sociogram data (Sec. 2.2). Respondents are asked to
define activity-groups (for instance “hiking group” or
“soccer club”) and assign their alters to those groups.
Connecting all alters within an activity-group with
each other results in a clique. One may argue that al-
ters within an activity-group are not necessarily con-
nected to each other: Especially for large groups, the
probability of being connected is likely to decrease.
However, half of all reported cliques contain less than
4 persons. This is consistent with the findings of Dun-
bar [50] that groups of core contacts are rarely larger
then four persons. Given the clique information, the
number mv of observed edges between alter-vertices
increases significantly, and the mean clustering coeffi-
cient changes to C(2) = 0.21. The network clustering
increases considerably to C(1) = 0.54.

This discrepancy confirms, once more, that both
definitions of transitivity can lead to quite different
results [48]. Figure 2 shows the size of cliques as well
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Figure 2: Average number of cliques (circles) and size
(triangles) of cliques over the degree of the reporting
respondent.

as the average number of cliques in relation to the
degree of the reporting ego. Both quantities increase
approximately linearly with the degree. This means
that the few high degree respondents contribute a lot
of cliques containing many persons and consequently
contribute many triangles, thus increasing the net-
work clustering C(1). In contrast, the mean vertex
clustering coefficient C(2) assigns the same weight to
the high degree vertices (contributing many triangles)
as well as to the low degree vertices (contributing few
triangles) and thus results in a considerably smaller
value.

3.1.4 Components

Starting with 38 seed-vertices, the snowball graph
starts with 38 isolated components. A component
denotes a graph where every vertex can be reached
by every other vertex. Already within the first it-
eration, the survey detects bridge-persons that con-
nect components. Four seed-to-seed connections, i.e.
pairs of seed vertices connected by a path, can be

identified (see bold edges in Fig. 3). Three of these
paths have a length of four edges. The fourth path is
an indirect path composed of two of the above paths
and thus connecting two seeds through the original
component of a third seed.

Within the second iteration, the survey graph
merges to 27 isolated components. A total of 40 seed-
to-seed connections can be identified, where 16 con-
nections are direct and 24 connections are indirect,
going through other components. The longest seed-
to-seed connecting path consist of 19 edges, where
the connecting path is defined as the path with the
least number of edges which connects the two seed-
vertices. Within the third iteration no additional
bridge-vertices are found. The average length of
paths connecting seed-vertices is 9.9 edges. It may
be too early for statements about small world prop-
erties. Assuming that there should be a path form
each seed-vertex to each other seed-vertex, only 40 of
703 (n · (n − 1)/2 = 38 · 37/2 = 703) possible seed-
to-seed paths are present in the sample and detected
(approximately 7 %).

Figure 3 visualises the sampled network at the time
of the writing of this article. A giant component is
identified with 4096 vertices. It is a composition of
components that originally emerged from nine of the
seed-vertices. A further component of 693 vertices
containing three seed-vertices and a component of
389 vertices containing two seed-vertices are identi-
fied. All remaining components are still the isolated
egocentric networks emerging from the seed-vertex.

3.2 Spatial properties

Given the residential locations of more than 75 %
of all reported egos and alters, the edge length dis-
tribution is calculated (Fig. 4(a)). The distribution
appears to break up into a short range domain up
to approximately 20 km and a long range domain
including transcontinental contacts up to 16.000 km
distance. Both domains follow a power law distribu-
tion pedge(d) ∼ dβ1/2 with β1 ≈ −0.5 for the short
range domain and β2 ≈ −2.1 for the long range do-
main. Half of all connected individuals are located
within a distance of 11 km to each other. Note that
the spatial analysis does not require a correction for

10
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Figure 3: Sampled leisure network. Drawn are only ego-vertices, and alter-vertices if they act as a bridge-
vertex (gray squares) connecting two components. Paths connecting seed-vertices are highlighted with bold
edges.
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Table 3: seed-vertex connection matrix. Row/column names are the ids of the seed-vertices. The entries
represent the path length between both seed-vertices. Listed are only those seed-vertices that are reachable
by at least one other seed-vertex.

id 709 207 63 31 845 89 769 329 799 754 559 790 241 297
709 0 – – 4 – 10 11 5 4 10 – – 14 9
207 – 0 – – 5 – – – – – – 8 – –
63 – – 0 – – – – – – – 6 – – –
31 4 – – 0 – 14 15 9 8 14 – – 18 13
845 – 5 – – 0 – – – – – – 5 – –
89 10 – – 14 – 0 13 15 6 12 – – 4 14
769 11 – – 15 – 13 0 11 7 5 – – 17 7
329 5 – – 9 – 15 11 0 9 8 – – 19 4
799 4 – – 8 – 6 7 9 0 6 – – 10 8
754 10 – – 14 – 12 5 8 6 0 – – 16 4
559 – – 6 – – – – – – – 0 – – –
790 – 8 – – 5 – – – – – – 0 – –
241 14 – – 18 – 4 17 19 10 16 – – 0 18
297 9 – – 13 – 14 7 4 8 4 – – 18 0

the snowball bias: The bias affects only properties
that correlate with the degree, yet the current ob-
servations do not reveal any correlation between the
spatial and topological structure of the network.

Let us assume that the observed edge length dis-
tribution is a multiplication of an individual’s proba-
bility paccept(d) to accept a contact at distance d and
the number of opportunities M(d) at distance d, so
that

pedge(d) = paccept(d) ·M(d) . (16)

Using land use data to obtain M(d) it is possible to
extract paccept(d) from the survey data (Fig. 4(b)).
For this, it is necessary to re-weight every occurrence
of an edge connected to ego v by 1/Mv(d). Here,
every Mv(d) is individually computed for every ego as
the sum of opportunities at distance d. Areas outside
Switzerland contribute zero opportunities.

The function paccept(d) ∼ dα with α ≈ −1.6 fits
well to the resulting distribution. This may be an
indicator that the change of the exponent in the edge
length distribution pedge(d) is induced by boundary
effects. In fact, the initial seeds of the snowball are
drawn within Canton Zurich, i.e. samples are concen-
trated within the metropolitan area of Zurich. The

southern border of Germany is approximately 20 km
north of Zurich city.

The spatial distribution of social contacts defines
possible origin-destination relations of leisure related
travel but makes no statement about the actual num-
ber of trips. It is assumed that reported physical
contacts, i.e. face-to-face meetings, are located at ei-
ther one actor’s residential location.2 Then, given
the frequency distribution f(d) of physical contacts,
the distribution of trips ptrip(d) is obtained by

ptrip(d) = f(d) pedge(d) , (17)

i.e. by a multiplication of the functions describing the
frequency distribution and the spatial distribution of
leisure contacts. Figure 5(a) shows the trip distance
distribution ptrip(d). Similar to the edge length dis-
tribution (Fig. 4(a)), ptrip(d) also exhibits a short
range and long range domain. Both domains follow
again a power law ptrip(d) ∼ dγ1/2 , however, with
smaller exponents γ1 ≈ −1.1 and γ2 ≈ −3.5. The
qualitative similarities between pedge(d) and ptrip(d)

2Once the data from the 8-days travel diary (Sec. 2.2)
is available the precise locations of face-to-face meetings are
known.
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Figure 4: (a) Edge length distribution pedge(d), (b)
acceptance probability distribution paccept(d). Sam-
ples are aggregated into distance bins each containing
100 samples.

indicate that the frequencies of visits given a con-
tact follow the same basic scaling law, i.e. f(d) ∼ dη,
as the probability of a contact given an opportu-
nity. Figure 5(b) shows the frequency distribution
f(d) with respect to the face-to-face contact mode.
The distribution does not (and should not) exhibit
the two distance domains as ptrip(d) and pedge(d),
but, apart from some outliers at very long distances,
follows roughly f(d) ∼ dη with η ≈ −0.4.

We further conclude that leisure contacts do not
only exist more frequently with short distances, they
are also activated more frequently at short distances.
Contacts that are met at least once a week have an
average length of less than 10 km, whereas contacts
that are met just once per year are more than 100 km
distant.

3.3 Homophily

Analogous to spatial distance, decreasing “social dis-
tance” between two actors increases the probability
of being connected, where “social distance” denotes
a measure of how much two individuals differ in their
socio-demographic attributes. In social network anal-
ysis this phenomenon is known as homophily [29].

The attribute which induces the strongest degree
of homophily is age. It can be quantified with the
Pearson correlation coefficient of the age values at
either ends of all edges:

ra =

∑
(vw)

avaw −M−1

( ∑
(vw)

1
2 (av + aw)

)2

∑
(vw)

1
2 (a2v + a2w) −M−1

( ∑
(vw)

1
2 (av + aw)

)2 ,

(18)
where av and aw denote the age [years] of vertices v
and w, and

∑
(vw) goes over all edges (contrary to

Eq. 9 because both age values are known).

A correlation coefficient of ra = 0.55 indicates
a strong correlation. Interesting details on how
homophily with respect to age changes during the
course of life can be revealed if one looks at the al-
ters’ age distribution. For respondents of age below
30 years the distribution is rather narrow (Fig. 6).
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Figure 5: (a) Trip distribution ptrip(d), (b) frequency
distribution of physical contacts f(d). Samples are
aggregated into distance bins each containing 100
samples.
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Figure 6: Box plot (conforming to [51]) of the distri-
bution of alters’ age. Lower and upper box bounds
are first and third quartile respectively.

This means that alters are of nearly the same age
as the ego. With increasing age the distribution be-
comes broader which is rather intuitive since the ab-
solute age difference becomes less important as one
becomes older. Also remarkable is that at an age
of approximately 40 years more contacts at the lower
and upper end of the scale occur. The contacts at the
lower end include the respondent’s children, the con-
tacts at the upper bound indicate that the parental
generation becomes more relevant considering leisure
contacts.

Apart from age, homophily with respect to gen-
der plays a significant role. Interestingly, the degree
of homophily of this attribute differs between female
and male. The probability that a contact of a female
ego has the same gender is 0.72. For male respon-
dents, the probability that the alter has the same
gender decreases to 0.64. As a consequence of the
resulting snowball recruitment bias, the sample itself
is biased such that 58 % of the vertices are female,
whereas the share in the Swiss micro-census is only
51 %.
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Considering the level of education, a similar ef-
fect is observed. Categorising respondents into “aca-
demics” (university or university of applied science)
and “non-academics” reveals that the survey data
contains surprisingly many academics. However, ho-
mophily within academics is less pronounced com-
pared to non-academics. Regarding academics, al-
ters’ level of education is almost equally distributed
over both categories. In contrast, for a non-academic
respondent the probability that an alter belongs to
the same category is 0.75. Consequently, the above
average share of academics (45 % in survey data, 15 %
in Swiss micro-census) can only be explained by the
greater uncorrected average degree (k̄academic ≈ 23
and k̄non-academic ≈ 18).

4 Discussion

The present study confirms a couple of findings from
other studies but also reveals some new aspects of
social networks and the link to travel behaviour.
The average number of leisure contacts per individ-

ual is estimated to ˆ̄k = 13.3 and is comparable to,
for instance, the study of Frei and Axhausen [20]
(k̄ = 12.4). Carrasco [18] observes a mean degree
of k̄ = 12.1 but does not explicitly ask for leisure
contacts. Carrasco’s and the present name generator
partly overlap in that they both also ask for emotion-
ally important contacts. During a comparison one
should, however, bear in mind that the name gener-
ator is a sensitive aspect in such surveys. The tail of
the degree distribution exhibits an exponential decay
which is different from the often observed power law
decay.

Compared to other studies, triangular configura-
tions in the graph appear to be less frequent. Even if
the edges from the sociogram data are included, the
mean clustering coefficient of, for instance, networks
of company directors (C(2) = 0.59) [49] or physics
co-authorship (C(2) = 0.43) [8] is two or three times
as large as ours. However, one should recall that the
present study is not embedded into any institutional
setting, such as company directors or co-authors. As
we observe in the sociogram data, alters are organised
into several different communities: each ego reports

at average 4.25 cliques. It is thus not surprising that
leisure contacts show less transitivity.

The question if the present study supports the no-
tation of “six degrees of separation” [52] is still open.
The current average path length between two seed-
vertices is 9.9. However, it is still possible that the
snowball detects shorter paths in the next iterations.
Non-responding vertices can, at first, disrupt the ex-
pansion of the snowball, but can still be reached from
other components and thus act as bridge-vertices.

With the knowledge about the spatial structure of
the leisure network, we can show how to infer the
leisure related trip distribution as a multiplication
of the functions describing the spatial distribution of
contacts and their frequency of physical meetings. A
comparison with data from the Swiss micro-census
reveals that the present approach is in fact able to
infer reasonable leisure travel patterns. The micro-
census includes a representative travel survey that
also captures trip purposes. Figure 7 shows both,
the trip distribution of the present study as well as
the distribution of 3833 trips with purpose “visit”
from the micro-census. The comparison needs to be
treated with care because the sample of this study is
spatially biased towards Canton Zurich, whereas the
micro-census is representative for all of Switzerland.
Yet, the distribution inferred form the social network
follows quite well the distribution obtained from the
micro-census.

Furthermore, the scaling laws of human travel iden-
tified in this study can be put in relation to the ob-
servations of Brockmann et al. [6] and González et
al. [5]. Brockmann et al. propose that the circula-
tion of bank notes can be used as a proxy for hu-
man travel. They show that the probability of a bill
traversing a distance d (in a short time period) is
well described with p (d) ∼ dγ and estimate the ex-
ponent to γ = −1.6. The approach of González et al.
in which they use trajectories obtained from mobile
phone data shows that the probability of an individ-
ual to make a displacement of distance d is described
by p (d) = (d+ d0)

γ
exp (−d/κ) with γ = −1.75.

Both studies show significant negatively greater ex-
ponents compared to the present study (γ ≈ −1.1).
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Figure 7: Comparison of ptrip(d) between the present
study (circles) with data from the Swiss micro-census
(triangles). Samples are aggregated into 50 bins each
containing (approximately) the same number of sam-
ples.

5 Summary

This article presents insights into the structure of a
large-scale spatially embedded social network. The
survey instrument accounts for both, revealing the
topology of the network as well as its spatial struc-
ture. While it seems practically impossible to obtain
complete networks of regular leisure contacts, it is
useful to go beyond the egocentric network by em-
ploying the snowball sampling approach. With the
large sample size (406 respondents naming more than
7000 contacts) the density of personal networks is so
high that even paths connecting the initial seed ver-
tices are found. Clearly, just having connecting com-
ponents does not allow to estimate network-global
parameters directly. The data, however, will pro-
vide evidence about the order of magnitude of the
“degree-of-separation” distribution. This is not only
useful for a much better estimate of statistical mod-
els for transport and communication modelling, but
it particularly provides a sound basis for the spread-
ing of diseases or rumours (see for instance chapter 5
of [53]).

Regarding the reciprocal interaction of social net-
works and travel, we focused in this article on one
direction: from the social network to travel. We
show that the trip distribution with respect to leisure
travel is a multiplication of the functions describing
the spatial distribution of leisure contacts and the fre-
quency distribution of physical meetings. Our results
are consistent with the Swiss micro-census.

The other direction, from travel to the social net-
work, represents an aspect that is open for further
research. Some initial work in this direction, by
generating social networks with agent-based trans-
port micro-simulations, has already been conducted
[54, 55].

Once the snowball survey is completed it represents
a large data set covering both, the topology of the
social network and its spatial structure. The data
from the travel diary will enrich the network data
with details on the individuals’ mobility patterns.

This work was funded by the VolkswagenStiftung
within the project “Travel impacts of social networks
and networking tools”.
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