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Abstract

This article addresses the estimation of topological network parameters from data ob-
tained with a snowball sampling design. An approximate expression for the probability
of a vertex to be included in the sample is derived. Based on this sampling distribution,
estimators for the mean degree, the degree-degree correlation, and the mean vertex clus-
tering coefficient are derived. The performance of these estimators and their sensitivity
with respect to the response rate are validated through Monte-Carlo simulations on sev-
eral networks. The results indicate a good estimation quality of the mean degree and the
mean vertex clustering coefficient, and they show reasonable results for the degree-degree
correlation.

1 Introduction
The increasing availability of large data sets has enabled great advances in the empirical
research on social networks. Electronic databases, such as the Internet Movie Database
(www.imdb.com) or the scientific paper database arxiv.org, are available as proxy-data
sources. The inferred networks, which can be in the order of up to 105 vertices, are usu-
ally embedded in an institutional setting or in a specific community, with regard to the above
examples: movie actors [1] and authors of scientific papers [2]. Large social networks out-
side of such settings are rather hard to obtain since appropriate proxy-data is rare and even if
existing, privacy regulations make its access nearly impossible. The researcher then needs to
turn to the traditional ”paper and pencil“ survey to directly sample a social network.

A straightforward approach would be to draw random respondents, denoted as egos, and
ask them about their social contacts, denoted as alters. This so-called ”ego-centric“ net-
work sampling approach [3] produces star-like networks, which provide insights into the
relations between egos and alters. Higher topological networks properties, however, remain
unrevealed. In principle, it would be possible to draw a sufficiently large sample such that
the ego-centric networks become connected. Practically, such an approach would be pro-
hibitively expensive.

The snowball sampling approach, also called chain-referral or link-tracing, addresses this
issue. In snowball sampling, an initial set of respondents, denoted as seeds, is enquired to
report their alters. These alters are then invited to participate in the survey and to report their
alters in turn. This procedure is repeated for a given number of iterations (also denoted as
waves or stages [4]) or until the desired number of vertices is sampled. Clearly, snowball
sampling reveals more complex network structures than the ego-centric approach because it
is not constrained to first degree relations.

A drawback of snowball sampling is that it bears several possible sources of bias [5].
Since the recruiting of new respondents is done, or at least influenced, by the respondents
themselves, the researcher has only limited control over which individuals are included in the
sample. Furthermore, if strong homophily exists between individuals, there is a danger that
the snowball is caught in a homogeneous cluster.

Another source of bias is the underlying network topology, which governs the progress
of the snowball. Well-connected individuals, i.e., vertices with a large degree, have a higher
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probability to be revealed in a snowball sample than less strongly connected individuals.
Since well-connected vertices are overrepresented in the sample, any inference of statistical
network properties needs to correct for this bias.

Several methods to account for the bias in snowball sampling have been proposed in
the past [4, 6, 7, 8, 9, 10]. However, since snowball sampling can be implemented in quite
different variants, each specification requires its own estimation method. This article treats a
snowball sampling design that is targeted at revealing structural properties of social networks.
A correction for the approximately unbiased estimation of the network’s mean degree, its
degree-degree correlation, and its transitivity is presented and validated with Monte Carlo
simulations on several networks. The interested reader is referred to [11] for a real-world
application of the proposed sampling and estimation techniques.

The remainder of this article is organised as follows. Section 2 defines the considered
snowball sampling design and gives an overview of related work. Section 3 derives an ap-
proximation of the inclusion probability of a vertex in the sample and presents the resulting
sampling corrections. Section 4 evaluates the proposed estimators in a large number of set-
tings and on several networks. Finally, Section 5 concludes the article.

2 Definitions and related work
This section defines the considered snowball sampling design and relates it to the existing
literature.

2.1 Snowball sampling design
Consider an undirected and unweighted graph without self-loops. Let V be the set of vertices,
and let N be its size. Further consider the graph to consist of one giant component, i.e, each
vertex in the graph is reachable by each other vertex. The considered snowball sampling
algorithm proceeds as follows:

1. Initialise an empty set S of sampled ego-vertices.

2. Set iteration counter i to 0.

3. Initialise an empty setR(i) of recruited alter-vertices.

4. Draw n(i) vertices (seeds) uniformly and without replacement from V . Add those
vertices toR(i).

5. Repeat until S contains at least the desired number of vertices or i has reached some
maximum value:

(a) Initialise an empty setR(i+1) of recruited alter-vertices.

(b) Ask each vertex inR(i) to report its neighbours (alters). Add those neighbours to
R(i+1).

(c) Move all vertices ofR(i) that did respond to the enquiry to S .

(d) Remove all vertices fromR(i+1) which are already in S.

(e) Increase iteration counter i by one.

The sampled network consists of the vertices in S , denoted as ego-vertices, and the vertices in
{R(i)}i, denoted as alter-vertices, which are those vertices that either did not respond or were
not asked because the snowball was aborted. The differentiation between ego-vertices and
alter-vertices is crucial since some vertex properties, such as the degree, are only known for
ego-vertices. The above algorithm specifies that sampling is done without replacement, i.e.,
an ego-vertex is never enquired twice, and thus the sampled graph does not contain double
edges. For simplicity, it is assumed that the response probability of a vertex is constant, and
once a vertex is non-responding it maintains this state throughout the remaining sampling
process.
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Table 1: Comparison of different snowball sampling designs. Notation for braching rules: ki
represents degree of vertex i to be expanded; “ki” = all neighbours are reported; “∝ ki” =
number of reported neighbours is propotional to vertex degree; “k∗” = number of reported
neighbours is constant for all vertices.

reference graph sampling de-
sign for seeds

branching rule replacement

Goodman [4] undirected uniform ki; all vertices have same
degree

without

Frank [6] directed " ki; only one iteration "
Johnson et
al.[12]

" " min{k∗, ki} "

Snijders [7] both " ∝ ki "
Lee et al. [13] undirected uniform (n=1) ki "
Volz and
Heckathorn
[10]

" non-uniform k∗ = 1 with

present study " uniform ki; alters can be non-
responding

without

2.2 Related work
This section clarifies the difference between several snowball sampling designs from the lit-
erature and the approach presented in Sec. 2.1. For this, the following characteristic aspects
of a snowball sampling design are identified:

– Does the snowball run on a directed or an undirected graph?

– What is the sampling distribution for the seed-vertices?

– How is the branching rule defined? Are all alters recruited or, for instance, is there a
recruiting probability for each alter.

A selective overview of snowball sampling designs with respect to these criteria is given in
Tab. 1 and discussed in the following.

One of the first authors who uses the term snowball sampling is Goodman [4]. He focuses
on the estimation of undirected edges given a snowball sample that is conducted for a given
number of iterations. Quit differently from later studies, Goodman defines the underlying
graph to be regular such that each vertex has the same predefined degree.

Frank [6] and later also Snijders [7] address the estimation of the inclusion probabilities of
vertices and edges. Knowledge about the inclusion probabilities allows for unbiased estimates
of population totals and means. Both authors show that the inclusion probabilities for a
snowball sampling that is run only to the first iteration can be directly calculated. Snijders
[7] also considers snowball samples with multiple iterations. If a snowball sample is run
for 2i − 1 iterations, then the inclusion probabilities of a vertex can be calculated since the
number of vertices with geodesic distance (number of edges of shortest path) ≤ i is known
and thus each possible recruiting path can be identified. However, this requires to perform
i−1 more iterations just to calculate the shortest paths and further requires that the branching
rule is defined such that all vertices reported by an ego-vertex participate in the survey, i.e.,
each vertex is fully expanded. It is questionable that this requirement can be met in reality.

The problem of estimating the vertex in-degree from a snowball sample is addressed with
Monte Carlo simulations by Johnson et al. [12]. They investigate the effects of the number
of seeds, number of iterations, and maximum number of neighbours each vertex is allowed
to report on the estimated in-degrees. Johnson et al. highlight that the probability of being
included in the sample increases with increasing in-degree and thus results in smaller errors
when estimating this quantity. They state that the number of iterations accounts for most of
the estimation errors, whereas the number of seeds has only a minor effect.

A comparison of snowball sampling with the ego-centric sampling approach and link-
sampling, i.e., a random draw of edges, is presented by Lee et al. [13]. Naturally, the latter
sampling approach is only applicable of edges are observable. They conduct numerical sim-
ulations on real-world networks, including a protein interaction network, the Internet at the
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autonomous systems level, and a co-authorship network. Their results indicate that snowball
sampling underestimates several topological network properties such as the exponents of the
power-law degree, the betweenness distribution, and the degree-degree correlation.

A common application of snowball sampling is to access specific populations that are
difficult or even impossible to reach through direct sampling. Such applications are ad-
dressed by Frank and Snijders [8] and Heckathorn [14, 9]. Heckathorn’s approach, known as
Respondent-Driven Sampling (RDS), is probably the most common real-world application of
snowball sampling. Especially, in medical research RDS is of interest as it allows to access
hidden or hard-to-reach populations such as drug-users or HIV infected people.

In RDS, the selection of seeds is typically non-uniform but aims at individuals who are
somehow related to the target population. RDS requires a respondent to recruit only one
neighbour. Hence, the sampling process constitutes a random walk on a graph with the tran-
sition probability from vertex v to vertex w being pvw = 1/kv where kv denotes the degree
of v [10]. With each additional step, i.e., with each additional sample, this process converges
to a known equilibrium distribution from which the selection probability of a vertex can be
derived. Thus the error of the estimates decreases with increasing sample size. However,
this implies that the sampling process is with replacement, i.e., an individual can be recruited
multiple times – an aspect in which RDS differs from the above sampling designs. A com-
prehensive review of the RDS methodology including a detailed discussion of the strengths
and weaknesses is given by Gile and Handcock [15].

The present study focuses on the unbiased identification of structural network properties.
The snowball is initialised with a uniform sample of seeds. Each vertex is assumed to report
all of its neighbours, however, neighbours may be non-responding with a constant probability.
The number of iterations is only constrained by the size of the underlying network.

3 Estimation
Snowball sampling selects vertices with unequal inclusion probabilities. However, in contrast
to other sampling strategies such as importance sampling, the inclusion probabilities are not
deliberately chosen but are, except for the initial and first iteration, unknown. While all
inclusion probabilities are equal in the zero-th iteration, they scale with the vertex degree in
the first iteration because each neighbour is a potentially recruiting vertex. In succeeding
iterations, the inclusion probability of a vertex does not only depend on its degree but also on
the degrees of its neighbours.

Even though this effect is undesired for network parameter estimation, it is of advantage
for immunisation strategies: Randomly selecting a person to immunise and also immunising
her contacts increases the chance of reaching persons with higher connectivity and hence
higher exposure to infectious contacts (see, for instance, [16]).

3.1 Inclusion probability
In the remainder of this article, the following notation is used: Quantities that are calculated
based on different iterations of the snowball sampling are written with the iteration index in
parentheses in the superscript. For instance, the number of ego-vertices sampled in iteration i
is denoted by n(i), and the number of ego-vertices that have been sampled up to and including
iteration i is denoted by n(≤i). Symbols without an iteration index refer to the complete
sample. For example, πv is the inclusion probability of vertex v in the entire sample.

To obtain estimators for the population total, mean, and variance of a quantity of interest,
one requires the π-expanded values yv/πv where yv is the quantity of interest for a sampled
vertex v. The inclusion probabilities πv are unknown a priori, but they can be estimated from
the data.

Denote by π(≤i)
v the probability that vertex v is included in a snowball sample that has

been run up to and including iteration i. Given a 100 percent response rate, this equals the
probability that one of v’s neighbours has been sampled in or before the previous iteration
i − 1. Observing that the probability that a vertex v is not sampled in or before iteration i is
the joint probability that none of its neighbours w has been sampled in or before the previous
iteration i−1, and assuming that the events of being not sampled are independent, one obtains

π(≤i)
v = 1−

∏
w∼v

(
1− π(≤i−1)

w

)
(1)
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where w ∼ v reads as “w is a neighbour of v”. The probability π(≤i−1)
w is, however, just as

unknown as π(≤i)
v . A simple assumption, which will turn out later to yield quite satisfactory

results, is to assume that all neighbours of v are included in the sample up to iteration i − 1
independently and with equal probabilities. This assumptions implies that a candidate vertex
v reveals no information about the sampling probabilities of its neighbours. Since these
probabilities actually depend on the degrees of the neighbours, an implicit assumption is
that there is no degree correlation in the network. In other words, this π-estimator treats the
sample as obtained from a snowball conducted only up to iteration 1 with n(≤i−1) randomly
drawn seeds (see also [6] and [7]). The implications of this simplification are experimentally
investigated in the next section.

Based on the above independence assumption, the inclusion probability of a neighbour is
approximated by

π(≤i−1)
w ≈ n(≤i−1)

N
. (2)

The resulting estimator of π(≤i)
v in Eq. (1) becomes

π̂(≤i)
v := 1−

∏
w∼v

(
1− n(≤i−1)

N

)
. (3)

Since the factors in Eq. (3) are equal for all neighbours, one obtains

π̂(≤i)
v := π̂(≤i)(kv) := 1−

(
1− n(≤i−1)

N

)kv
(4)

where kv is the degree of vertex v and π̂(≤i)(k) is the arguably most simple estimator of the
inclusion probability that only depends on the degree of a considered vertex. This estimator is
applicable for i > 0; in the zero-th iteration, samples are drawn uniformly such that π̂(0)(k) =
π(0)(k) = n(0)/N .

3.2 Population mean
Given the estimated inclusion probabilities π̂v , one obtains

t̂y :=
∑
v∈S

yv
π̂v

(5)

as an estimator for the population total of a quantity of interest y, where S is the set of
sampled vertices. Hence,

ˆ̄y :=
t̂y
N

(6)

constitutes an estimator of the population mean. It is known as the Horwitz-Thompson esti-
mator [17]. Since this estimator requires knowledge of the population size N , this informa-
tion can be further exploited to improve the estimation of the inclusion probabilities. Noting
that

∑
v∈S 1/π̂v is an estimator of the total population size N , the inclusion probabilities

π̂v are uniformly scaled by a factor κ such that an unbiased estimator of the population size
results: ∑

v∈S

1

κπ̂v

!
= N (7)

such that

κ =

∑
v∈S 1/π̂v

N
. (8)

Replacing π̂v by κπ̂v in Eq. 5, substituting Eq. 8, and evaluating Eq. 6 results in:

ˆ̄y′ :=

∑
v∈S yv/π̂v∑
v∈S 1/π̂v

, (9)

which is known as the weighted sample mean [18]. Although it has been derived based on the
additional constraint (7) that makes use of the known population size N , the final estimator
does not require knowledge of this quantity. Intuitively, it can be expected that ˆ̄y′ performs
better than ˆ̄y since it exploits the additional condition Eq. 7. It does so without knowing the
population size by evaluating the unscaled (and possibly biased) inclusion probabilities π̂v
both in the numerator and the denominator, which can be expected to have a compensatory
effect on the overall estimation result. The following experiments shed more light on this
effect.
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4 Simulation

4.1 Simulation setup
To validate the performance of several estimators based on Sec. 3, a series of numerical
experiments implementing the snowball sampling design according to Sec. 2.1 is conducted.
The following networks are considered in order to investigate the estimators’ performance
for different topologies:

1. an Erdős-Rényi [19] random network with 36’458 vertices and a mean degree of 9;

2. a Barabási-Albert [20] network with 36’461 vertices, a power-law degree distribution
and a mean degree of 6;

3. the giant component extracted from a co-authorship network of physicists [2]. The
giant component represents a network with 36’458 vertices, a mean degree of 9.4, and
exhibits a positive degree-degree correlation [21].

Accounting for the stochasticity in the simulations, each experiment is repeated 1000
times. Each simulation run is initialised with ten randomly drawn seed-vertices and is run
until the complete network or all from the seed-vertices reachable vertices are sampled. The
average performance of the different estimators over the number of snowball iterations is
evaluated. For now, it is assumed that all vertices are responding. Experiments with response
rates less than one are presented in Sec. 4.3.

4.2 Experiments with response rate of one
4.2.1 Mean degree

From Eq. 6 and Eq. 9, one obtains two estimators for the mean degree:

ˆ̄k =
1

N

∑
v∈S

kv
π̂v

(10)

and
ˆ̄k′ =

∑
v∈S kv/π̂v∑
v∈S 1/π̂v

. (11)

Note that only the ego-vertices in S are accounted for. Alter-vertices (remaining vertices in
{R(i)}i) are not considered because their degree is unknown.

Figure 1 shows, for all three networks, the estimated mean degree for both estimators
as well as for a naive estimator where the sampling correction is omitted. The naive esti-
mator reveals the bias of the snowball sampling in that its values are permanently above the
true mean degree. The bias is the strongest in early iterations (except, of course, iteration 0)
since in those iterations vertices with high degrees are heavily overrepresented in the sample.
However, the bias of the naive estimator behaves differently for different network topologies.
While for the random network it is only of small magnitude, it is much more pronounced for
the Barabási-Albert and the co-authorship network. Considering the Barabási-Albert network
this can be explained by the much broader degree distribution. Additionally to the broader
degree distribution the positive degree-degree correlation in the co-authorship network intro-
duces a positive feedback in the growth of high-degree vertices in the sample.

Both estimators ˆ̄k and ˆ̄k′ perform well for the random network. The weighted sample
mean ˆ̄k′ performs slightly better than the Horwitz-Thompson estimator ˆ̄k (Fig 1). This dif-
ference becomes much more distinct in the Barabási-Albert and the co-authorship network.
While ˆ̄k′ provides quite precise estimates of the real mean degree, ˆ̄k is in some situations
even worse than the naive estimator, cf. iterations 2 and 3 in Fig. 1(b).

The superiority of the weighted sample mean can be explained by the fact that it is based
on an unbiased estimation of the population size, cf. Sec. 3.2. Figure 2 shows the estimated
population size

∑
v∈S 1/π̂v , i.e., without the scaling coefficient κ that ensures unbiasedness.

The population size is well estimated for the random network, which indicates that the un-
scaled inclusion probabilities π̂i are reasonably well estimated in this case. This is plausible
because the random network exhibits no degree correlation, which is neglected in the estima-
tion of the inclusion probabilities as well.
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Figure 1: Mean degree calculated each time an iteration is completed; numbers are aver-
aged over the simulation ensemble. © = naive estimator, 4 = ˆ̄k estimated with Hortwitz-
Thompson-Estimator Eq. 10, ♦ = ˆ̄k′ estimated with weighted sample mean Eq. 11. The
dotted line indicates the true mean degree. Error bars indicate the root mean square error.
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Figure 2: Share of sampled ego-vertices (circles) and relative error of estimated population
size N̂ (triangles).
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The population size is vastly overestimated in the two networks with broad degree distri-
butions, which indicates that the inclusion probabilities in particular of high degree nodes are
underestimated in this case. This effect has already been explained: the positive degree cor-
relation introduces a feedback in the snowball sampling in that a larger share of high-degree
vertices within one wave reaches even more high-degree vertices in the next wave. Since
the weighted sample mean implicitly corrects for this bias through the estimated population
size in the denominator, cf. Eq. 9, it performs well even for networks with a positive degree
correlation. This indicates that the unscaled version of π̂v does not yield particularly good
estimates, but it captures the relative values of the inclusion probabilities quite well.

4.2.2 Degree-degree correlation

The degree-degree correlation can be quantified by the Pearson correlation coefficient of the
degrees of the vertices on either side of all edges in the network:

r =
Cov (E)√

Var (E , v)
√

Var (E , w)
(12)

where

Cov (E) =

∑
e∈E kv(e)kw(e)

M − 1
−
∑
e∈E kv(e)

∑
e∈E kw(e)

M (M − 1)
(13)

denotes the covariance of the degrees kv and kw of the two adjacent vertices of an edge e (in
arbitrary yet unique order) and E the set of all edges in the network with M = |E| is its size.

Var (E , v) =

∑
e∈E (kv(e))

2

M − 1
−
(∑

e∈E kv(e)
)2

M (M − 1)
(14)

is the variance of the degrees of a vertex v adjacent to an edge e.
To properly determine the degree-degree correlation for a sampled network we evaluate

Eq. 12 only for the set of sampled edges T with size m = |T |, where an edge is denoted as
sample if both vertices are in S:

r̃ =
Cov (T )√

Var (T , v)
√

Var (T , w)
. (15)

In contrast to one-point properties, such as the degree, the sample of interest is now an
edge. The inclusion probability πe of an edge e = (vw) follows from the observation that the
probability that an edge is sampled before or in iteration i equals the probability that at least
one of its adjacent vertices v or w is sampled before or in iteration i− 1. Hence,

π̂
(≤i)
(e) =

(
π̂(<i)
v + π̂(<i)

w

)
−
(
π̂(<i)
v π̂(<i)

w

)
, (16)

where again independence of the sampling events is assumed. An estimator r̂′ of the degree-
degree correlation can now be obtained by (i) estimating M , the total number of edges, by
M̂ =

∑
e∈T 1/πe and (ii) estimating the edge inclusion probabilities according to Eq. 16

from the approximate vertex inclusion probabilities:

r̂′ =
ˆCov (T )√

V̂ar (T , v)
√

V̂ar (T , w)
(17)

where

ˆCov (T ) =

∑
e∈E

kv(e)kw(e)
π̂(e)

M̂ − 1
−

∑
e∈E

kv(e)
π̂(e)

∑
e∈E

kw(e)
π̂(e)

M̂
(
M̂ − 1

) (18)

and

V̂ar (T , v) =

∑
e∈T

(
kv(e)
π̂(e)

)2
M̂ − 1

−

(∑
e∈T

kv(e)
π̂(e)

)2
M̂
(
M̂ − 1

) . (19)

The resulting estimator again does not require knowledge of M , which is typically unknown
(or even the quantity of interest) in real applications.
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Figure 3: Degree-degree correlation of the co-authership network calculated each time an
iteration is completed and averaged over the simulation ensemble. © = naive estimator r̃
of degree-degree correlation,4 = degree-degree correlation estimator r̂′. Error bars indicate
root mean square errors. The dotted line shows the real value of r.

Random networks have by definition a degree correlation of zero. It has also been shown
that the model of Barabási and Albert exhibit no degree correlation [21]. Hence, the fol-
lowing analysis concentrates on the co-authorship network, which exhibits a positive degree
correlation of r = 0.24.

Fig. 4.2.2 shows the estimation results for the naive estimator r̃ that does not correct
for the sampling and for the proposed estimator r̂′. The naive estimator underestimates the
degree-degree correlation until the majority of vertices is sampled in iteration 5. The sam-
pling correction in the r̂′ estimator removes this undesired effect substantially and performs
better than the naive estimator as from iteration two.

4.2.3 Transitivity

Network transitivity can be quantified with the clustering coefficient, which comes in two
versions. A global definition [22] is

C =
3 · n (triangles)

n (connected triples)
. (20)

where n(·) reads as “number of ·”. The alternative definition by Watts and Strogatz [23] is
the average over a local vertex parameter:

C̄ =
1

N

∑
v∈V

2mv

kv (kv − 1)
, (21)

where mv is number of edges that connect neighbours of v. Both definitions can lead to
quite different results as small-degree vertices have a small denominator in Eq. 21 and thier
contribution is weighted more heavily [22].

In the estimation of this quantity, only ego-vertices all neighbours of which are also ego-
vertices are accounted for because the neighbourhood of alter-vertices is unknown (in partic-
ular edges between alter-vertices are missing). This means that only those ego-vertices that
have been sampled strictly before the last iteration are considered.

The already derived sampling correction based on vertex inclusion probabilities is clearly
better applicable for the estimation of C̄ from a sample than for the estimation of C: Since
C̄ is a vertex-local property, its population mean can be directly estimated according to the
Horwitz-Thompson estimator

ˆ̄C(≤i) =
1

N

∑
v∈S(<i)

2mv

kv (kv − 1)
· 1

π̂
(<i)
v

(22)

or according to the weighted sample mean

ˆ̄C ′(≤i)v =
1∑

v∈S(<i) 1/π̂
(<i)
v

∑
v∈S(<i)

2mv

kv (kv − 1)
· 1

π̂
(<i)
v

. (23)
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Figure 4: Clustering coefficient of the co-authership network.
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Figure 5: (a) Naive estimator of the network clustering coefficient C defined in Eq. 20 and
calculated each time an iteration is completed and averaged over the simulation ensemble.
© = connected triples and triangles counted from ego- and alter-vertices, 4 = connected
triples and triangles counted only from ego-vertices. (b) Mean clustering coefficient as de-
fined in Eq. 21 and estimtated each time an iteration is completed and averaged over the
simulation ensemble. © = naive estimator without sampling correction, 4 = ˆ̄C estimated
with the Horwitz-Thompson estimator according to Eq. 22, ♦ = ˆ̄C ′ estimated with the
weighted sample mean according to Eq. 23. (a) and (b): The dotted line indicates the true
value of C and C̄, respectively. Error bars indicate the root mean square error.

Since the random and Barabási-Albert network exhibit no or insignificant clustering, the
investigation focuses on the co-authorship network, analogously to Sec. 4.2.2.

Figure 5(a) shows the results obtained with a naive estimator of the network clustering
coefficient (Eq. 20). Since the alter-vertices of the current iteration do predominantly con-
tribute to connected triples but only rarely to triangles, the network clustering coefficient is
underestimated. Accounting only for ego-vertices in the calculation does not add much of an
improvement.

The local clustering coefficient (Eq. 21) is underestimated by a naive estimator that does
not correct for the sampling bias up to iteration 4 (Fig. 5(b)). This is so because in the co-
authorship network the values for the local clustering coefficient correlate negatively with the
degree. Thus, vertices with a low local clustering coefficient are overrepresented in the sam-
ples of early iterations. The weighted sample mean performs very well as from iteration one,
which is the first iteration where an estimation of the local clustering coefficient is possible.
The Horwitz-Thompson estimator does perform much worse, most likely due to the same
reasons given for its inferiority when estimating the mean degree.

4.3 Experiments with response rate below one
In the above sections, it has been assumed that the response rate is one, i.e., that all inquired
vertices report all of their neighbours. However, in real applications researchers are faced
with considerably lower response rates. In an application of the presented snowball sample
design, a response rate of approximately 25 % is observed [24].

In the following, the proposed estimation approach is extended in order to account for
a response rate below one. The sensitivity of the estimator with respect to variations in the
response rate is also investigated. It is assumed that a fraction of α vertices is non responding.
In the snowball simulations, these vertices are selected from a uniform distribution before the
sampling starts. The tagged vertices are not expanded during the snowball iterations. This
approach implies the assumption that the the response rate is equally distributed over all
vertices and does not change throughout the sampling process.

4.3.1 Inclusion probability and population mean

The estimated inclusion probabilities are straightforward to extend in order to account for the
response rate α:

π̂v,α = απ̂v. (24)
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The response rate α can be obtained directly from the survey data through

α(≤i) =
n(≤i)

n(<i) + a(<i)
(25)

where n(≤i) denotes the number of ego-vertices sampled up to and including iteration i, n(<i)

denotes the number of ego-vertices sampled strictly before iteration i, and a(<i) denotes the
number of alter-vertices sampled strictly before iteration i. In words, the numerator corre-
sponds to the number of all vertices that have responded to an inquiry before or in iteration i,
an the denominator corresponds to the number of all vertices that have been inquired strictly
before iteration i.

The previously developed estimators can be applied for response rates below one by re-
placing π̂v with π̂v,α. In particular, the response rate strikes out in the accordingly adopted
weighted sample mean:

ˆ̄y′ =
1∑

v∈S 1/ (απ̂v)

∑
v∈S

yv
απ̂v

, (26)

clearly an additional advantage of ˆ̄y′ over ˆ̄y.

4.3.2 Degree and degree-degree correlation

Figure 6 shows the estimated mean degree for all three types of investigated networks. For
the estimation of the population mean we only consider the weighted sample mean since the
above results clearly showed that it performs superior compared to the Horwitz-Thompson
estimator. The response rate is varied from 0.1 to 0.5 in 0.05 steps. Values of α > 0.5 are
not considered since it is unlikely that such high rates are archived in reality. Different from
the preceding sections the sampled network is not analysed after the completion of an itera-
tion, but after a certain number of ego-vertices are sampled. Different response rates result in
different sample sizes per iteration which makes a comparison based on iterations less mean-
ingful. Moreover, in practical applications the extend of the survey is usually constrained
by the costs it takes to sample a vertex rather than the number of iterations conducted. The
sampled network is analysed each time 100 additional ego-vertices are sampled up to a total
population of 1000 sampled ego-vertices and then each time after 1000 additional vertices
are sampled.

The estimated mean degree ˆ̄k′ for the random network is rather unaffected by the response
rate. The estimator performs quite well and shows only minor sensibility towards the sample
size (Fig. 6(a)). The same behaviour is observed with the Barabási-Albert network: The
estimated mean degree ˆ̄k′ shows only sensibility towards the number of ego-vertices but
not towards α (Fig. 6(b)). This means that for both networks only the sample size affects
the estimation of the mean degree, regardless the response rate and number of iterations
conducted.

A completely different picture is drawn with the co-authorship network (Fig. 6(c). The
values of ˆ̄k′ correlate with the iteration as the “relief” is stretched with increasing α. The
characteristic behind this effect is the positive degree-degree correlation. It appears that the
bias is dependent on the number of iterations rather than on the number of sampled ego-
vertices. Yet, after the bias has been “overcome” ˆ̄k′ provides a good approximation of k̄.
In this regard, it is even beneficial if the response rate is low since then one can conduct
more iterations with the same number of samples and hence faster overcome the bias. The
estimated degree-degree correlation exhibits the same effect (Fig. 6(d)).

4.3.3 Transitivity

Section 4.2.3 already mentions the issue of missing edges mv between alter-vertices. With
low response rates this issue becomes more distinct. If the neighbours of ego-vertex v are
non-responding it is likely that the sample data misses existing edges between the neighbours,
i.e., the value of mv in Eq. 21 is likely to be underestimated. Here, a rather simple approach
is chosen to estimate mv .

Consider nv as the number of neighbours of ego-vertex v that are in S. Denote kv − nv
as the number of neighbours of v that are not in S, i.e., neighbours of v that are either non-
responding or have not yet been enquired. Further denote pe as the probability of an edge
connecting two neighbours of v. The estimated number of missing edges is pe times the
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(a) ˆ̄k′ – random network
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(b) ˆ̄k′ – Barabási-Albert network
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(c) ˆ̄k′ – co-authership network
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(d) r̂′k – co-authership network

Figure 6: (a) – (c): Estimated mean degree ˆ̄k′. (d): Estimated degree-degree correlation r̂′k.
The colors indicate the values of ˆ̄k′ and r̂′k, respectively. Green color inidicates the true value
of k̄ and rk, respectively. Black lines indicate the iteration transitions (averaged over the
simulation ensemble). For better visibility only iteration one to six are drawn.

number of possible edges between unsampled neighbours kv − nv (kv − nv − 1) /2. The
estimated number of edges m̂v is then the sum of actually observed edges and the estimated
number of missing edges:

m̂v = mv + pe
1

2
(kv − nv) (kv − nv − 1) . (27)

Probability pe can be obtained from the hitherto sampled data. Denote Mv as the possible
number of edges between neighbours of v that can be observed given the response rate α.
Note that Mv is not kv (kv − 1) /2 since edges between non-responding neighbours cannot
be observed. Instead, Mv is the number of possible edges that can occur between responding
neighbours and between responding and non-responding neighbours:

Mv =
1

2
nv (nv − 1) + nv (kv − nv) , (28)

and thus

pe =

∑
v∈S mv∑
v∈SMv

. (29)

Probability pe is an average over all ego-vertices to avoid artefacts if the degree of a v is small
or the response rate is very low.

The alters of the last iteration, i.e., those that are not enquired yet, can be treated as non-
responding vertices. This allows to estimate mv also for the ego-vertices of the last iteration.
The mean clustering coefficient can thus be calculated as the mean over all ego-vertices in
the sample, contrary to Sec. 4.2.3 where ego-vertices of the last iteration are excluded.

Figure 7 shows the estimated local clustering coefficient ˆ̄C ′v which exhibits a surprisingly
low sensibility towards the response rate. Even at low response rates it requires only about
300 ego-vertices to get a very precise estimated of the clustering coefficient. Moreover, the
estimates show to be independent of the number of iterations conducted, such as the estimated
mean degree of the random and Barabási-Albert network.
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Figure 7: Estimated mean clustering coefficient ˆ̄C ′v . The colors indicate the values of ˆ̄C ′v .
Green color indicates the true value of C̄v . Black lines indicate the iteration transitions (aver-
aged over the simulation ensemble). For better visibility only iteration one to six are drawn.

5 Conclusion
This article addresses the estimation of topological network properties from data obtained
with a snowball sampling design. We present an estimator for the probability of a vertex
to be included in the sample which allows for the estimation of the mean degree, degree-
degree correlation and mean clustering coefficient. The estimation methodology treats the
sample as obtained from a snowball that has been run up the first iteration and is thus fairly
easy to calculate. Although, it is arguable that this assumption is to simple we show that the
estimator is rather powerful and robust. From the simulation studies four major conclusion
can be drawn:

• The mean vertex clustering coefficient is estimated fairly precise even with small sam-
ple sizes. Moreover, the performance of the estimator is sensible only towards the
sample size. The influence of the response rate or the number of iterations conducted
is negligible.

• Considering networks without degree-degree-correlations the estimator for the mean
degree performs well. Its sensitivity towards the sample size, response rate and number
of iterations shows the same characteristics as the estimator of the mean clustering
coefficient.

• Considering networks with positive degree-degree-correlation the estimator of the
mean degree as well as the estimator of the degree-degree-correlation show to be sen-
sible towards the number of snowball iterations conducted. Both estimators show that
a low response rate can be of advantage as it allows to conduct more iterations with
same sample size and thus to ”overcome“ the bias.

• The performance of the estimator scales with the width of the degree distribution. The
broader the distribution the worse the performance of the estimator.

Two assumptions that have been made to simplify the simulation studies are arguable:
First, the total number of vertices N is usually unknown but is required for the estimation
of the inclusion probability (Eq. 4). Considering large networks and relative small sample
sizes and educated guess of N is sufficient. Since N is in the denominator variations to this
quantity have negligible effect. Second, the response rate is assumed to be equally distributed
and constant throughout the entire sampling process. In real-world applications it is observed
that the response rate of respondents in later iteration decreases [24]. Adapting the estimator
for a descending response rate is possible. However, difficulties will arise if the response rate
correlates with other vertex properties. For instance if people with large personal networks
are to busy to participate the survey.

An aspect that is still open for further research is the estimation of network global pa-
rameters such as the network diameter, closeness or betweenness. An estimation of such
parameters will be quite challenging. Even the estimation of a two-point property such as
the degree-degree correlation turned out to be by no means trivial. Some work in this direc-
tion has been done by Lee et al. [13] but more insights would in particular provide a sound
basis for the modelling of the spreading of diseases or rumours. Finally, snowball sampling
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is the designated tool for such studies as it provides an effective method to obtain connect
ego-centric networks (see for instance [11]).
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