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Abstract

Standard economic policy evaluation allows the realisation of projects if the aggregated economic
benefit overweights their costs. In democratically organized societies, the implementation of
measures that have negative impacts on some part of the population tends to be complicated due
to low public acceptance, even when only a minority is worse off. The microscopic multi-agent
simulation approach presented in this paper is capable to help designing better solutions in
such situations. In particular, it is shown that income can and needs to be included in utility
calculations for a better understanding of problems linked to acceptability. This paper shows
how multi-agent approaches can be used in policy evaluation when including income in the user
preferences. Therefore, an income-dependent utility function is estimated based on survey data.
Subsequently, using the MATSim framework, the implementation is tested in a test scenario.
Furthermore, and going beyond Franklin (2006), it is shown that the approach works in a
large-scale real world example. Based on a hypothetical speed increase of public transit, effects
on the welfare distribution of the population are discussed. It is shown that the identification of
winners and loosers seems to be quite robust when using individual utility functions. However,
results indicate that a conversion or aggregation of individual utility changes for welfare analysis
is highly dependent on the functional form of the utility functions as well as on the choice of the
aggregation process.
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Policy measures in transportation planning aim at improving the system as a whole. In demo-
cratically organized societies, however, it is quite difficult to realize projects when they have a
negative impact on some part of the population even if this is a minority – presumably, this has
something to do with the fact that losses are weighted more than gains (Kahneman and Tversky,
1979). In addition, changes to the system that result in an unequal distribution of the overall
welfare gain are, however, hard to implement in democratically organized societies. Studies
indicate that, e.g., tolls tend to be regressive if no redistribution scheme is considered at the same
time, and may so increase the inequality in welfare distribution (e.g. Franklin, 2006). An option
to reach broader public acceptance for such policies may be to include the redistribution of total
gains into the scheme. Hence, methods and tools are needed that simulate welfare changes due
to policies on a highly granulated level, e.g. considering each individual of the society. With such
tools, policy makers are able to consider impacts of different proposed measures on the welfare
distribution. In addition, it is possible to estimate the support level within the society and, if
necessary, to evaluate alternatives for further discussion.

Traditional transport planning tools using the four-step process combined with standard economic
appraisal methods (e.g. Pearce and Nash, 1981) are not able to provide such analysis. In order
to bridge this gap, multi-agent microsimulations can be used. Large-scale multi-agent traffic
simulations are capable of simulating the complete daily plans of several millions of individuals
(agents) (Meister et al., 2008). In contrast to traditional models, all attributes that are attached
to the synthetic travelers are kept during the simulation process, thus enabling highly granulated
analysis (Nagel et al., 2008). Being aware of all attributes enables the possibility to attach to every
traveler an individual utility function that is used to maximize the individual return of travel
choices during the simulation process. Another advantage of the multi-agent simulation technique
is the connection of travelers’ choices along the time axis when simulating time dependent policies
(Grether et al., 2008).

In the context of policy evaluation, simulation results can immediately be used to identify winners
and losers, since the utility of the individual agents are kept and can be compared between
scenarios agent-by-agent. They can also be aggregated in arbitrary ways, based on available
demographic attributes including spatial information of high resolution. Welfare computations,
if desired, can be done on top of that, without having to resort to indirect measures such as link
travel times or inter-zonal impedances. The usual problems when aggregating or monetizing the
individual utility still apply (Bates, 2006).

This paper shows how multi-agent approaches can be used in policy evaluation. It studies
why income should be included in utility calculations when considering issues linked with
public acceptance. Then, it describes implications on the simulation model and focuses on the
measurement of welfare effects resulting from a policy measure. Note that this paper is an
extension of Grether et al. (2009b), who considered three policy measures: a public transit (pt)
price increase, a pt speed increase, and a combination of the two. The results of the combined
measure are also reported in Grether et al. (2010). In contrast to the latter, the present paper
concentrates on the pt speed increase only. In contrast to both papers, the present paper provides
more profound insights, particularily in the discussion.

3



2 Simulation Structure

2 Simulation Structure

The following describes the structure of the simulation that is used. It is the standard structure
of MATSim1, as described at many places (Raney and Nagel, 2006; Balmer et al., 2005). Readers
familiar with the MATSim approach can skip this section.

2.1 Overview

In MATSim, each traveler of the real system is modeled as an individual agent. The overall
approach consists of three important parts:

• Each agent independently generates a so-called plan, which encodes its preferences during
a certain time period, typically a day.

• All agents’ plans are simultaneously executed in the simulation of the physical system.
This is also called the traffic flow simulation or mobility simulation.

• There is a mechanism that allows agents to learn. In the implementation, the system
iterates between plans generation and traffic flow simulation. The system remembers several
plans per agent, and scores the performance of each plan. Agents normally choose the plan
with the highest score, sometimes re-evaluate plans with bad scores, and sometimes obtain
new plans by modifying copies of existing plans.

A plan contains the itinerary of activities that the agent wants to perform during the day, plus
the intervening trip legs the agent must take to travel between activities. An agent’s plan details
the order, type, location, duration and other time constraints of each activity, and the mode,
route and expected departure and travel times of each leg.

A plan can be modified by various modules. In the test scenario, the Time Adaptation module is
used, while the large-scale application additionally uses a Router module. The Time Adaptation
module changes the timing of an agent’s plan. A very simple approach is used which just applies
a random “mutation” to the duration attributes of the agent’s activities (Balmer et al., 2005).
The Router is a time-dependent best path algorithm (Lefebvre and Balmer, 2007), normally
using the link travel times of the previous iteration as the link’s generalised costs. Mode choice
will not be simulated by a module per se, but instead by making sure that every agent has at
least one “car” and at least one “public transit” plan (Grether et al., 2009a; Rieser et al., 2009).

One plan of every agent is marked as “selected”. The traffic flow simulation executes all agents’
selected plans simultaneously on the network and provides output describing what happened
to each individual agent during the execution of its plan. The car traffic flow simulation is
implemented as a queue simulation, where each street (link) is represented as a first-in first-out
queue with two restrictions (Gawron, 1998; Cetin et al., 2003): First, each agent has to remain
for a certain time on the link, corresponding to the free speed travel time. Second, a link storage
capacity is defined which limits the number of agents on the link; if it is filled up, no more agents
can enter this link. The public transit simulation simply assumes that travel by public transit
takes twice as long as travel by car on the fastest route in an empty network (Grether et al.,
2009a; Rieser et al., 2009), and that the travel distance is 1.5 times the beeline distance. Public
transit is assumed to run continuously and without capacity restrictions.

The modules base their decisions on the output of the traffic flow simulation (e.g. knowledge of
congestion) using feedback from the multi-agent simulation structure (Kaufman et al., 1991;
Bottom, 2000). This sets up an iteration cycle which runs the traffic flow simulation with specific
plans for the agents, then uses the planning modules to update the plans; these changed plans are

1 Multi-Agent Transport Simulation, see www.matsim.org
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again fed into the traffic flow simulation, etc, until consistency between modules is reached. The
feedback cycle is controlled by the agent database, which also keeps track of multiple plans
generated by each agent.

In every iteration, 10 % of the agents generate new plans by taking an existing plan, making a
copy of it, and then modifying the copy with the Time Adaptation or the Router module. The
other agents reuse one of their existing plans. The probability to change the selected plan is
calculated according to

pchange = min(1, α · eβ·(Vrandom−Vcurrent)/2) , (1)

where α is the probability to change if both plans have the same score, set to 1%; β is a
sensitivity parameter, set to 20 for the tests and to 2 for the large-scale Zurich simulations; and
V{random,current} is the score2 of the current/random plan (see later). In the steady state, this
model is equivalent to the standard multinomial logit model

pj =
eβ·Vj∑
i e
β·Vi

,

where pj is the probability for plan j to be selected. In consequence, V corresponds to the
systematic component of utility in Random Utility Models (RUM) (e.g. Ben-Akiva and Lerman,
1985; Train, 2003), where utility is defined as U = V + ε. In RUM, the ε is called random
component of utility. In the steady state and assuming a Gumbel distribution for ε, the choice
model used in this paper is thus equivalent to the standard multinomial logit model.

The repetition of the iteration cycle coupled with the agent database enables the agents to
improve their plans over many iterations. As the number of plans is limited for every agent by
memory constraints, the plan with the worst performance is deleted when a new plan is added to
a person which already has the maximum number of plans permitted. If agents have several plan
types in their memory, e.g. one plan using car and another using public transit mode only, at
least one plan of each type is kept. The iteration cycle continues until the system has reached a
relaxed state. At this point, there is no quantitative measure of when the system is “relaxed”; we
just allow the cycle to continue until the outcome is stable.

2.2 Scoring Plans

In order to compare plans, it is necessary to assign a quantitative score to the performance of
each plan. In this work, in order to be consistent with economic appraisal, a simple utility-based
approach is used. The elements of our approach are as follows:

• The total utility of a plan is computed as the sum of individual contributions:

Vtotal =
n∑
i=1

(
Vperf ,i + Vlate,i + Vtr ,i

)
, (2)

where Vtotal is the total utility for a given plan; n is the number of activities; Vperf ,i is the
(positive) utility earned for performing activity i; Vlate,i is the (negative) utility earned for
arriving late to activity i; and Vtr ,i is the (usually negative) utility earned for traveling
during trip i. Activities are assumed to wrap around the 24-hours-period, that is, the first
and the last activity are stitched together. In consequence, there are as many trips between
activities as there are activities.

2 The terms “score” and “utility” refer to the same absolute value. “Utility” is the common expression in economic
evaluation and is therefore used in this paper.
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• A logarithmic form is used for the positive utility earned by performing an activity:

Vperf ,i(tperf ,i) = βperf · t∗,i · ln
(
tperf ,i
t0,i

)
(3)

where tperf is the actual performed duration of the activity, t∗ is the “typical” duration of
an activity, and βperf is the marginal utility of an activity at its typical duration. βperf is
the same for all activities, since in equilibrium all activities at their typical duration need
to have the same marginal utility.

t0,i is a scaling parameter that is related both to the minimum duration and to the
importance of an activity. As long as dropping activities from the plan is not allowed, t0,i
has essentially no effect.

• The (dis)utility of being late is uniformly assumed as:

Vlate,i(tlate,i) = βlate · tlate,i , (4)

where βlate is the marginal utility (in 1/h) for being late, and tlate,i is the number of hours
late to activity i. βlate is usually negative.

• The (dis)utility of traveling used in this paper is estimated from survey data. It will be
explained in an extra section.

In principle, arriving early could also be punished. There is, however, no immediate need to
punish early arrival, since waiting times are already indirectly punished by foregoing the reward
that could be accumulated by doing an activity instead (opportunity cost). In consequence, the
effective (dis)utility of waiting is already −βperf t∗,i/tperf ,i ≈ −βperf . Similarly, that opportunity
cost has to be added to the time spent traveling.

No opportunity cost needs to be added to late arrivals, because the late arrival time is spent
somewhere else. In consequence, the effective (dis)utility of arriving late remains at βlate .

3 Estimation of the Income-Contingent Utility Function

3.1 Estimation Data

Data for estimation of the travel related part of the utility function presented in this paper is
taken from stated preference surveys run by the Institute for Transport Planning and System at
ETH Zurich (Vrtic et al., 2008). Estimation of the late arrival penalty is retrieved from a time
and route choice survey. All other estimations use data from a mode and route choice survey.

3.2 Functional Form

There is some agreement in literature that income should be considered in transport policy
analysis, see, e.g., Small (1983); Herriges and Kling (1999); Kockelman (2001); Mackie et al.
(2001); Bates (2006, 1987); Franklin (2006). The argument essentially is that monetary price
changes affect people with different income differently. Conversely, if different income groups need
to be compensated for losses or should be taxed for gains from non-monetary policy measures,
the valuation of these offsetting payments is income-contingent. This paper demonstrates how
these insights can be used constructively in an agent-based approach.
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The starting point for the travel related part of the (dis)utility functions used in this paper is
loosely based on Franklin (2006) and Franklin (2007) and is similar to Kickhöfer (2009).3 In
that paper, two transport modes are available: car and public transit , resulting in the following
utility functions:

Vcar,i,j = βcost · ln(yj − ci,car) + βttcar · ti,car
Vpt,i,j = βcost · ln(yj − ci,pt) + βttpt · ti,pt ,

(5)

where yj is the daily income of person j, ci is monetary cost for the trip to activity i, and ti the
corresponding travel time. Monetary cost and travel time are mode dependent, indicated by the
indices. Utilities are computed in “utils”; a possible conversion into units of money or “hours of
leisure time” (Jara-D́ıaz et al., 2008) needs to be done separately. Daily income yj is obtained by
the following calculation:

yj =
yyear,HH
nHH · 240

,

where yyear,HH depicts the income of the household per year, nHH the number of persons in the
household and 240 the number of working days per year.

It was, however, not possible to use this form directly, since the survey data contains relatively
long trips, meaning that yj− ci can become negative, in which case the logarithm does not work.4

To circumvent this problem, Taylor’s theorem is used to approximate the logarithm,

ln(yj − ci) ≈ ln(yj)− ci · [ln(yj)]′ = ln(yj)−
ci
yj

, (6)

which results into the quite normal 1/y dependency of the cost term and thus seems quite
plausible. Applying (6) to (5) and setting the estimated parameters

βcost = 4.58 , βttcar = −2.83/h , and βttpt = −1.86/h ,

leads to the functional form:

Vcar,i,j = + 4.58 ln(yj/CHF ) − 4.58
ci,car
yj

− 2.83
h

ti,car

Vpt,i,j = + 4.58 ln(yj/CHF ) − 4.58
ci,pt
yj

− 1.86
h

ti,pt

(7)

It might be a bit surprising that the disutility of travel time comes out higher for car than for
public transit. It is, however, consistent with the higher costs of cpt = 0.28 CHF/km5 assumed
for public transit than for car (ccar = 0.12 CHF/km), which were used in the survey (Vrtic et al.,
2008) and will be used in the simulations. Clearly and somewhat unusual, for Switzerland, public
transit is the higher value mode compared to car.

Due to this specification, Values of Time (VoT) are obviously income and mode dependent.
The VoT for the median income of the sample (ymedian = 155 CHF per person and day) turn
out to be 96 CHF/h for car and 63 CHF/h for public transit , respectively. These values are
two to three times higher as those in Vrtic et al. (2008). Thus, the inclusion of income in the
utility function seems to have unintended impacts on the VoT. This effect should be addressed in
future research. However, note that e.g. the VoT for public transit varies from 7 to 330 CHF/h

3 Two different forms for the alternative specific constants were also estimated. Both, the income-contingent
bias term (Franklin, 2006) and the general alternative specific constant (Train, 2003), were estimated not
significantly different from zero and are therefore not considered in the functional form of the utility functions.
This essentially means that neither an income-contingent nor a general a-priori preference is found for one of
the transport modes.

4 One may argue that in such cases the model should reject the journey completely, at least if it is a regular
journey (M. Wegener, personal communication).

5 1 CHF = 0.92453057 US$, exchange rate at 28.09.2008.
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along the income range, which naturally includes the values from the linear model in Vrtic et al.
(2008).

Another open question at this point is how much of the estimated disutility from traveling are
opportunity costs of time, and how much is an additional disutility caused by traveling in the
corresponding mode. This approach is consistent with economic approaches where there is an
inherent opportunity cost of time and additional utilities or disutilities depending on how the
time is spent (e.g. Jara-Dı́az et al., 2008). Unfortunately, these values cannot be obtained from
the survey as it was taken. Because of this, it was assumed that traveling in public transit neither
adds nor subtracts from the opportunity cost of time. This implies βperf = 1.86/h in (3), and
modifies the travel related part of the utility functions to:

Vcar,i,j = + 4.58 ln(yj/CHF ) − 4.58
ci,car
yj

− 0.97
h

ti,car

Vpt,i,j = + 4.58 ln(yj/CHF ) − 4.58
ci,pt
yj

(8)

Applying (8), (4) and (3) to (2) results in the two final utility functions used in this paper, which
are selected depending on the mode of the ith trip:

Vcar,i,j = +
1.86
h

t∗,i · ln(
tperf ,i
t0,i

) −1.52
h

tlate,i −4.58
ci,car
yj

−0.97
h

ti,car

Vpt,i,j = +
1.86
h

t∗,i · ln(
tperf ,i
t0,i

) −1.52
h

tlate,i −4.58
ci,pt
yj

(9)

The income-related offset +4.58 ln(yj/CHF ) in (8) can be interpreted as the utility earned from
daily income. It is therefore calculated once for each individual and added to the overall utility
score of daily plans and was removed from the activity related functions in (9). The marginal
utility for being late βlate was computed similar to Kickhöfer (2009): in a time and route choice
survey from ETH Zurich (Vrtic et al., 2008) people stated their willingness to pay in order to
reduce the probability of being late. Based on this data, βlate was estimated and re-scaled with
respect to the cost related behavioral parameter βcost in (7), resulting in βlate = 1.52/h. The
parameter for late arrival will only be used in the following test scenario (Sec. 4), but not for the
real-world scenario of Zurich metropolitan area (Sec. 5).

3.3 Income Generation

Income is generated based on a Lorenz curve. Due to the lack of exact data the functional
form of the Lorenz curve is approximated. Then the income curve, the first derivative of the
Lorenz curve, is calculated (Kämpke, 2008).6 To generate personal incomes for the agents, a
random number between 0 and 1 is drawn from a uniform distribution. For this number, the
corresponding value on the income curve is calculated and multiplied by the median income.
Doing this for all members of the synthetic population, an income distribution is derived, similar
to the distribution in reality.

Adding income at an individual level results in a personalized utility function for each agent. In
the test scenario described in the following section, income is the only varying attribute between
the agents. The real-world scenario in the subsequent section, however, includes varying trip
distances and daily plans so that demographic attributes of each agent are strongly personalized.

6 The Lorenz curve is L(x) ∝
R x

0
y(ξ) dξ. Therefore, L′(x) ∝ y(x). The correct scaling is given by the fact that

y(0.5) is the median income.
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4 Test Scenario

The goal of this section is to verify the correctness and plausibility of the estimated choice model
and the underlying implementation. A simple setup is used in order to test the plausibility of
traveler choice reactions resulting from a policy change.

4.1 Network

The test network (see Fig. 1) consists of a cycle of one-way links with (unrealistically) high
capacities so as to minimize their influence on traffic patterns, essentially making it possible for
most agents to drive with free speed. One link between home and work location has reduced
capacity of 1000 veh/h, building a bottleneck.

Figure 1: The layout of the testnetwork with link attributes. Traffic runs clockwise starting
at the home location. Between home and work location lies a bottleneck link with a capacity
limited to 1000 veh/h.

4.2 Initial Plans

The synthetic population consists of 2000 agents. All agents start at their home activity, which
they initially leave at 6:00 a.m. They initially drive to work with a car, where they initially stay
for 8 hours, after which they drive home again. The home to work trip has a length of 17.5 km
while the way back is 32.5 km long. Speed limit is at 50 km/h so the free speed travel time
from home to work by car is 21 minutes while 39 minutes are needed for the way back home.
Thus, the total free speed travel time driving by car is 60 minutes. As the agents are forced
to remain on that route, the scenario is similar to the well-known Vickrey bottleneck scenario
(Arnott et al., 1990; Vickrey, 1969); also see below for more details.

In addition, each agent possesses an initially non-active plan that uses the public transit mode
for both trips. These trips take twice as long as by car at freespeed, i.e. 42 minutes from home
to work, and 78 minutes for the way back. The total public transit travel time is 120 minutes. In
contrast to the car travel times, these transit travel times are not affected by congestion. Since
public transit is assumed to run continuously and without capacity restrictions, a home departure
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at time t will always result in a work arrival at t+ 42min. Work opens at 7:00 a.m. and closes
at 6:00 p.m. In order to obtain the similarity to the Vickrey bottleneck scenario, an additional
behavioral parameter of βlate = −1.52/h is used, i.e. deducting −1.52/h · tlate for arriving late.
Any arrival time after 7:00 a.m. is directly considered as late.

Estimation of income for the synthetic population, as described in Sec. 3.3, is based on values for
the Kanton Zurich in 2006.7 The median income for that year is 46 300 CHF.

4.3 Behavioral Parameters

The behavioral parameters are set and can be interpreted as follows:

• marginal utility of performing an activity at its typical duration: βperf = 1.86/h

• marginal disutility of arriving late: βlate = −1.52/h

• marginal utility for traveling by car: βtr ,car = −0.97/h

• marginal utility for traveling by public transit : βpt = 0

• factor for the logit choice (eq. 1): β = 20

• “typical” durations of t∗,w = 8 and t∗,h = 12 hours for work and home mean that work and
home times have a tendency to arrange themselves with a ratio of 8:12 (i.e. 2:3).

The activity of the home activity is “wrapped around”, i.e. a departure at 6:00 a.m. and a
return at 5:00 p.m. results in a home activity duration of 13 hours.

A work start time at exactly 7:00 a.m. means that (a) no utility can be accumulated from an arrival
earlier than 7:00 a.m., and (b) any late arrival is immediately punished with βlate = −1.52/h.

Because of the argument made earlier regarding the opportunity cost of foregone activity time
when arriving early, the effective marginal disutility of early arrival is βearlyeff

= −βperf t∗,i/tperf ,i ≈
−βperf = −1.86/h which is equal to the effective marginal disutility of traveling with public
transit βtr ,pteff

. The effective marginal disutility of traveling with car is, by the same argument,
βtr ,careff

= −βperf t∗,i/tperf ,i − |βtr ,car | ≈ −βperf − |βtr ,car | ≈ −2.83/h. The return trip has no
influence since there is no congestion. Overall, the effective values of car travel time of our study
would correspond to the values (βearlyeff

, βtr ,careff
, βlateeff

) = (−1.86,−2.83,−1.52) of the Vickrey
bottleneck scenario (Vickrey, 1969; Arnott et al., 1990).

4.4 Simulation Runs

First, a “preparatory run” is performed by running the base case for 4000 iterations. During the
first 2000 iterations, 10% of the agents perform “time adaptation”, i.e. they make a copy of an
existing plan and shift each element of their time structure by a random amount between zero
and 7.5 minutes. The other 90% of the agents switch between their existing plans according to
(1), which means that they potentially also switch the mode. During the second 2000 iterations,
time adaptation is switched off; in consequence, agents only switch between existing options
according to (1). That is, their choice set now remains fixed to what they have found in the first
2000 iterations, and they choose within this set according to a logit model.

After this, the speed increase for public transit is introduced. It now takes only 1.8 (instead of 2.0)
times as long as traveling by car on an empty network. This corresponds to a pt speed increase
of 10%. The policy case is run for another 2000 iterations, starting from the final iteration of

7 http://www.statistik.zh.ch/themenportal/themen/index.php, last access 01.08.2009
http://www.statistik.zh.ch/themenportal/themen/aktuell_detail.php?id=2752&tb=4&mt=0, last access
01.08.2009
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the preparatory run. For the first 1000 iterations, the time adaption module is again switched
on, with the same 10% replanning fraction. The final 1000 iterations are once more with a fixed
choice set. The following policy measure is investigated: For further analysis, iteration 4000 of
the base case is then compared to the final iteration of the policy case.

4.5 Results

Since car is the low value and public transit the high value mode, low income people predominantly
use the car while high income people predominantly use public transit (Fig. 2a). When the pt
speed is increased, the modal split predictably shifts from car to pt, from 54% : 46% to 42% : 58%
(car:pt). Also predictably but importantly, this happens through a shift of the income level that
divides the two regimes – this level, naturally, moves to lower incomes (Fig. 2b).
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(b) Changes due to the public transit speed increase

Figure 2: Modal Split over deciles of the population sorted by income. Absolute values for the
base case, changes in percentage points for the pt speed increase. Red bars depict car drivers,
blue bars public transit users.

Fig. 3 shows, agent-by-agent, the utility differences between the base case and the policy case as a
scatter plot over deciles of the population. Every decile, summed up over all three plots, contains
the same number of agents, sorted by their income. For example, the first decile from 0% to
10% includes the 10% of agents with the lowest incomes. Fig. 3a shows synthetic travelers that
choose the same transport mode before and after the policy change, red for the car mode, green
for the pt mode. One notices a homogeneous utility increase of about 0.35 for all pt users, and a
smaller increase of, in the average, about 0.25 for the car users. This is a plausible consequence
of the fact that the policy measure benefits the pt users directly, while the car users benefit from
congestion relief because of reduced car mode share.

The car users, who, because of stochastic congestion effects, face rather strong fluctuations of
their utilities from iteration to iteration, and therefore also from base case to policy case. These
fluctuations are much less pronounced for pt users, where the transport mode is assumed to be
completely reliable. Figs. 3b and 3c show synthetic travelers that change their transport mode,
Fig. 3b from pt to car, and Fig. 3c from car to pt. With a pt improvement measure, a switch
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(a) Utility changes for synthetic travelers who keep their mode

(b) Utility changes for synthetic travelers who switch from pt to car

(c) Utility changes for synthetic travelers who switch from car to pt

Figure 3: Utility changes, sorted by income. Every synthetic traveler is plotted according to her
relative position on the income scale. The green and red lines in Figs. 3b and 3c denote the
average utility changes from Fig. 3a.

from pt to car (Fig. 3b) is not what should be expected. These synthetic travelers are “logit
switchers”, in the following sense:

• Those that gain more than the average by the switch, towards the lower income scales, are
travelers that would have had a higher score already in the base case when using car.

• Those that gain less than the average by the switch, towards the higher income scales, are
travelers that would have gained even more by staying with pt.

However, in both cases the score computation is done according to the systematic component

12



5 Scenario – Zurich Switzerland

of utility as described in Sec. 2. The switches are therefore caused by changes in the random
components (the “epsilons”).

Fig. 3c also contains those “logit switchers”, this time from car to pt. But in addition, it also
contains “systematic” switchers who change the mode due to a utility gain in the systematic
component. The density of switchers is largest towards middle income groups, since there, the
systematic switchers are located. One could, in principle, also attach the random elements as
random but fixed to every alternative of every traveler; see, e.g., Horni, A. et al for an example.
Karlstrom and Morey (2004) and therefore Franklin (2006) assume such an interpretation in
their welfare computations.

An interpretation of the results according to the well-known “rule-of-a-half” (Jara-Dı́az, 2007),
where the pre-existing users of an improved facility obtain the full utility gains, whereas the users
switching towards the improved facility in average obtain half of those gains. In the present case,
the situation gets more complicated because of substitution effects: Also users not using the
improved facility gain because of congestion relief. Differentiated by user groups, we obtain:

Average utility gain pt2pt: 0.345
Average utility gain car2pt: 0.297

Average utility gain car2car: 0.250

That is, the switchers from car to pt indeed gain, in the population average, the mean value
between the (direct) pt gains and the (indirect) car gains. Nevertheless, the situation is confounded
by the fact that there are also significant gains for the car users, which could not be computed
by considering the pt facility alone.

Overall, the results demonstrate that the approach picks up the distributional effects of transport
policy measures. As is plausible, a quality-of-service change affects the higher income groups
more when assuming higher VoT with increasing income. Thus, the plausibility test can be
regarded as successful. The approach is therefore applied to a real-world scenario of Zurich
metropolitan area in the next section.

5 Scenario – Zurich Switzerland

The income-contingent utility function is now applied to a large-scale, real-world scenario. The
area of Zurich, Switzerland, is used which counts about 1 million inhabitants. The following
paragraphs give a simplified description of the scenario and focus on differences to similar
simulations done by Chen et al. (2008).

5.1 Network and Population

The network is a Swiss regional planning network that includes the major European transit
corridors. It consists of 24 180 nodes and 60 492 links.

The simulated demand consists of all travelers within Switzerland that are inside an imaginary
30 km boundary around Zurich at least once during their day (Chen et al., 2008; Vrtic et al.,
2007). All agents have complete daily plans with activities like home, work, education, shopping,
leisure, based on microcensus information (SFSO, 2000, 2006). The time window during which
activities can be performed is limited to certain hours of the day: work and education can be
performed from 7:00 a.m. to 6:00 p.m., shopping from 8:00 a.m. to 8:00 p.m., while home
and leisure have no restrictions. Each agent initially gets two plans based on the same activity
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5 Scenario – Zurich Switzerland

pattern. The first plan uses only car as transportation mode, while the second plan uses only
public transit.

Unlike the test scenario described above, there is no punishment for being late. This is not
possible because agents can have more than one work activity, e.g. one in the morning and one
in the afternoon. In such a case it is complicated to specify when an agent starts an activity late
or not.

To speed up computations, a random 10% sample is taken from the synthetic population for
simulation, consisting of 181 725 agents. In this large-scale application, the agents can, in addition
to the previously described time adaptation, also perform route adaptation, which is essential for
the car mode. Mode adaptation is implicitly included as described in Sec. 2.1.

5.2 Income Generation

Income for the large-scale scenario is generated as described in Sec. 3.3. Region specific data is
used for the Kanton8 Zurich since here, income medians are available for each municipality. 9

For every person living in the Kanton Zurich, the municipality of the person’s home location is
determined. Then the median income specific for this municipality is used for income calculation
in conjunction with a Lorenz curve for the Kanton Zurich.10 Incomes for persons living outside
the borders of Kanton Zurich are computed with the help of the median income and the Lorenz
curve of the Swiss Confederation.11 The median income used for the Swiss Confederation is
43 665 CHF per household and year.

The resulting distribution with focus on the Kanton Zurich is shown in Fig. 4. While outside the
Kanton’s borders, income is equally distributed, one can see some geospatial differences in the
area where detailed data is available. The structural pattern has similarities to official data of
Zurich.12

5.3 Simulation Runs

In order to maintain consistency with the test scenarios, the total amount of iterations is reduced
but the proportion of the different simulation steps is held constant. This means for the base
case:

• For 1000 iterations, 10% of the agents perform “time adaptation” and 10% adapt routes.
The other 80% of the agents switch between their existing plans, which implicitly includes
mode choice as explained in Sec. 2.1.

• During the second 1000 iterations, time and route adaption are switched off; in consequence,
agents only switch between existing options.

After this, the pt speed improvement is introduced. The policy case is run for another 1000 itera-
tions, starting from the final iteration of the base case. Again, during the first 500 iterations
10% of the agents perform “time adaptation” while another 10% of agents adapt routes. Agents
neither adapting time nor route switch between existing plans and such eventually switch between

8 A Swiss “Kanton” is similar to a federal state.
9 http://www.statistik.zh.ch/themenportal/themen/daten_detail.php?id=759, last access 30.10.2009

10 http://www.statistik.zh.ch/themenportal/themen/aktuell_detail.php?id=2752&tb=4&mt=0, last access
30.10.2009

11 http://www.bfs.admin.ch/bfs/portal/de/index/themen/20/02/blank/dos/01/02.html, last access
30.10.2009

12 http://www.stadt-zuerich.ch/content/dam/stzh/prd/Deutsch/Statistik/Publikationsdatenbank/

Steuerstudie1.pdf, last access 30.10.2009
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5 Scenario – Zurich Switzerland

Figure 4: Computed income distribution for the Zurich scenario. Each cell is colored by the
mean income of inhabitants [CHF/Year & Person]

transport modes. For the final 500 iterations only a fixed choice set is available. Different
paramter combinations were tested, up to an overall 30% public transit speed increase.

For evaluating the impact of the pt speed increase, iteration 2000 of the base case is compared to
the final iteration of the policy case.

5.4 Validation

Simulated traffic volumes are compared with the hourly traffic volumes from 159 real-world
counting stations. Fig. 5 shows, in blue, the mean relative error of the reference Zurich scenario
(Chen et al., 2008) between hourly flows in reality and hourly flows from the simulation. That
run was based on βperf = 6/h, βtr,car = −6/h, βpt = −3/h, and no dependence on travel distance
or income was assumed.

The red curve depicts the same for the estimated income-contingent utility function. One notices
a slight improvement of the mean relative error, especicially during day time in comparison with
Chen et al. (2008). This underlines the advantage of using estimated behavioral parameters for
more realistic results. Nevertheless, it is a bit surprising that, at least at the aggregated level,
there is so little difference between the simulations. Presumably, this is due to the fact that
the activity patterns, preferred activity durations, opening times, and transportation network
structure are dominating the results. In particular, given the fact that the traffic counts are
reproduced much better between 8:00 a.m. and 7:00 p.m. than the remainder of the day, one
may speculate that the need to squeeze all activities into the available opening times is, in fact,
the dominating force.

Together with the analysis of other traffic condition indicators, such as peak hours, modal split
or the average trip duration or length, it can be stated that the base case seems to be a good
starting point for investigating different transport policy measures.
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5 Scenario – Zurich Switzerland

Figure 5: Realism of the two simulations. 159 traffic counting stations provide real traffic counts
for the Zurich area. The blue curve shows the mean relative error when comparing the simulation
traffic volumes of the reference Zurich scenario with real values, the red curve the comparison
using the income-contingent utility function of this paper.

5.5 Results

The base case of the Zurich scenario exhihits a modal split of 60.9%:39.1% (car:pt). Fig. 6a
depicts the modal split in the income deciles of the population. In contrast to the base case of
the test scenario shown in Fig. 2a, the distribution here is more homogeneous: Both modes are
used across all deciles.

Fig. 6b presents changes to the modal split in the income decils of the population compared to
the base case. One can observe that with increasing income, more persons switch from car to
pt.

Increasing utility gains of agents with higher income can also be seen in Fig. 7a that depicts
the average utility change of each income decile. Each dot is located in the middle of the decile
and represents the average utility change per decile. For representation purposes the dots are
connected with lines. Obviously, one recognizes rising utility gains with increasing income. In
terms of utils, the slope of the curve is slightly positive. The subsequent section will show,
however, that this increase has even stronger effects when converting utils into money.

Fig. 7b breaks the average utility gains of every income decile from Fig. 7a down to two different
user groups. As expected, synthetic persons using pt both before and after the pt improvement
obtain most of the benefits (in green). Synthetic persons using car both before and after the pt
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(b) Pt Speed Improvement

Figure 6: Modal Split over deciles of the population sorted by income. Absolute values for the
base case, changes in percentage points for the pt speed increase. Red bars depict car drivers,
blue bars public transit users.

(a) Average utility changes

(b) Average utility changes per user group

Figure 7: Average utility changes per income decile

improvements also gain, but considerably less than the pt users (in red). Results for the mode
switchers are not shown because the stochastic fluctuations overwhelm the signal.
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6 Discussion

6 Discussion

This paper starts from a estimates of individual utility functions based on the estimation of
logit models. A possible interpretation of this approach is that the utility function is simply a
device that helps to construct quantitatively descriptive behavioral models of individuals. In this
way, one first constructs and estimates the behavioral model, and then runs a simulation model
populated with entities (synthetic persons) using this behavioral model.

The interpretation of the utility as an indicator of individual gains or losses is essentially an
afterthought, with no meaning to the simulation results except that random utility modeling has
something to do with the individual opimization of utility. Still, the identification of winners and
loosers seems to be inherently quite robust since it results directly from the behavioral model that
is based on surveys or observations. It was also shown that it is possible to quantify individual
gains and losses with respect to an individual utility level. For a possible aggregation of these
quantitative numbers in order to obtain some indicator of welfare change and a discussion of
problems, see below.

General critical issues of this approach enter from different angles, such as:

• Since the logit model is stochastic, our agents are stochastic as well, and some may decrease
the systematic part of their utility function (what was called “logit switchers” above). This
means that the results cannot be interpreted at the single-agent, single-plan level; one
either needs to aggregate over subpopulations or over all the plans of every agent. The
latter is less problematic in terms of the comparability of utility functions between different
persons (see below).

• One may argue that it is invalid to cast human behavior into an optimization problem
at all, and one should rather resort to simple procedural rules (e.g. Moss and Sent, 1999;
Simon, 1997).

• Even if individuals’ behavior can be cast as an individual optimization problem, it is by no
means clear that ex-post happiness is optimized by ex-ante optimization of this descriptive
function.

Still, to re-iterate: If one takes into account that one has some random “logit” winners and losers,
then the conceptual path leading to the identification of individual winners and losers seems
quite straightforward.

Concerning the question whether individual utility changes can somehow be aggregated into
some indicator of welfare, three obvious methods come to mind:

• Just add up all individual utility changes, possible by subpopulation (Fig. ??).

• Convert all individual utility changes to individual willingness-to-pay/willingness-to-accept
values (Fig. 8). In the context here, the most straightforward (albeit not the only) way to
do this seems to convert the utility changes according to the utility of money 4.58/yj in
Eq. (9) into monetary changes:

∆mj = 4.58 · yj ·∆Vj , (10)

where yj is once more the daily income. Given a utility gain by the policy measure, this
would be the amount of money one would need to take away to revert the person back to
her original level of utility. For a discussion of income effects see below.
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6 Discussion

• Convert all individual utility changes to individual equivalent “hours of leisure time”. Given
a utility gain by the policy measure, this would be the amount of leisure time one would
need to take away to revert the person back to her original level of utility. One has

∆Vj ≈
∂Vj

∂tperf ,leisure,j
·∆tperf ,leisure,j (11)

and therefore

∆tperf ,leisure,j ≈
(

∂Vj
∂tperf ,leisure,j

)−1

·∆Vj . (12)

That is, the (linearized) gain/loss of every individual’s equivalent hours of leisure time
would be computed by multiplying every individual’s utility gain/loss by their inverse
marginal utility of leisure time. As a more robust alternative to a leisure activity, the
“home” activity could be used.

Figure 8: Average willingness-to-pay for the pt speed increase; values per income decile

The last item brings to light that maybe more effort needs to be made to build quantitative
models that include time pressure. Clearly, the vastly different values of time by trip purpose
(often up to a factor of four, see Mackie et al., 2003) indicate that this needs to be considered.
Nevertheless, concentrating on time pressure alone means a different focus than values of time:
While (monetary) VoT are also coupled to income, time pressure expressed in equivalent hours
of leisure time may be the same for a single mother or for a busy executive.

At any rate, the comparison of Fig. 7b to Fig. 8 makes clear that the selection of the aggregation
procedure can lead to quite different equity interpretations: While the simple but conceptually
problematic summation of utilities leads to similar gains across all income groups (Fig. 7b),
the willingness-to-pay, sorted by income group, implies that high income groups would have a
disporportionately high willingness-to-pay for the measure considered (here the pt speed increase;
Fig. ??). This is, in fact, quite intuitive: Higher income groups have a disproportionately high
willingness to pay for good schools, a good health system or a good transport system. In this
sense, a progressive tax may not even be redistributive with respect to such types of government
expenses, since it just reflects the willingness-to-pay for improving the corresponding services.
Clearly, this is only true if the higher income groups are not operating in a separate system, such
as private schools, private health insurance, or private transport systems. Let us stress once
more that these different attempts of measuring welfare rely on exactly the same description
of human behavior. This highlights that the model predicting the system’s reaction to a policy
change is independent from the different interpretations of measuring welfare.

Unfortunately, the above observations interact with economic appraisal. The aggregated
willingness-to-pay may seem the most consistent approach, but is quite different from approaches
to-date where time gains of all individuals are valued equally. Conversely, using aggregated
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equivalent hours of leisure time may seem more equitable, but it is a bit unclear how to convert
them into money for cost-benefit analysis.13 Given, however, that at this point one has already
left the ground of individual monetized consumer surplus, it might be more honest to quantify
the benefit no longer in monetary terms, but directly in equivalent hours of leisure time. Projects
could be assessed by the equivalent hours of leisure time they would generate per unit of money
invested.

Eq. (10) assumed that the conversion from utility into willingness-to-pay or willingness-to-accept,
respectively, could be based on the income from before the introduction of the policy measure.
Since the measure discussed in this paper does not change the income, this can be justified. In
situations where the policy measure changes the available income, the issue is not so clear any
more, and income effects (Herriges and Kling, 1999; Jara-Dı́az and Videla, 1989) need to be
taken into account. Since this is not relevant for the present paper, let it suffice to say that one
would need to go back to Eq. (5) or Eq. (6) and trace the effect of the interaction between cost c
and income y and how that affects Eq. (10).

Two other issues should be addressed in the future:

• The survey should be designed in a way that all neecessary parameters can be estimated
independently.

• For the present paper, public transit is assumed to be 100% reliable, and no fluctuations
due to geographic location or line cycles are considered. In principle, multi-agent transport
simulations make it possible to combine multiple demographic attributes of the population
of interest, e.g. by viewing the geospatial distribution of winners and losers of a measure
(see Grether et al., 2008). Neither the measure of this paper nor the public transit
simulation features geospatial diversity. Thus analysis in the geographic dimension is
strongly homogeneous and a spatial pattern is not visible. In case of a policy that is
targeted on some geospatial impact (Rieser and Nagel, 2009), the multi-agent approach
could give interesting insights into geospatial distribution of gains and losses.

7 Conclusion

Standard economic policy evaluation recommends the realisation of projects if the monetized
aggregated economic benefit outweighs their monetary costs. In democratically organized societies,
however, it is quite difficult to realize projects when they have a negative impact on some part of
the population even if this is a minority. The microscopic simulation approach presented in this
paper is capable to help designing better solutions in such situations.

In addition, it is shown that income can and needs to be included in utility calculations for
a better understanding of problems linked to acceptability. Furthermore, and going beyond
Franklin (2006), it is shown that the approach works in a large-scale real world example.
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