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Abstract. The paper presents the idea and the initial outcomes of in-
tegrating MATSim, a multi-agent transport simulation system, with the
DVRP Optimizer, an application for solving the Dynamic Vehicle Rout-
ing Problem. First, the justification for the research is given and the
state-of-art is outlined. Then, MATSim is presented with a short de-
scription of the recent results in areas related to the one proposed in
the paper, followed up by the discussion of the DVRP Optimizer func-
tionality, architecture and implemented algorithms. Next, the process of
integrating MATSim and the DVRP Optimizer is presented, with the
distinction of two phases, the off-line and on-line optimization. Then,
a description of the off-line optimization is given along with the results
obtained for courier and taxi services in urban areas. The paper ends
with conclusions and future plans.

Keywords: dynamic, on-line, vehicle routing, optimization, DVRP,
multi-agent, traffic flow, simulation, MATSim

1 Introduction

The Vehicle Routing Problem (VRP) [1, 2] is among the most complex and
fundamental components of modern fleet management. From the very beginning,
research on the VRP was focused on providing solutions aimed at cost efficiency
while skipping other aspects of routing. However, nowadays companies must
be not only cost effective, but also more open for the customer. Consequently,
they offer more sophisticated and flexible services concerning also the timeliness
and responsiveness to changing customers’ needs. This leads ultimately to the
Dynamic Vehicle Routing Problem (DVRP) [3], where the time dimension is one
of the main concerns.

Due to advances in communication and information technologies in recent
years, there is potential for creating a dynamic vehicle routing system, that is
each time a system is notified of any new event, route plans are re-optimized tak-
ing into account the current situation. However, the dynamism of vehicle routing
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leads to a significant increase in the problem complexity. As a result, despite the
huge technical potential for running dynamic optimization, the existing rout-
ing software concerns mainly static routes, and transportation management is
mainly performed by human planners and dispatchers, even in large companies
[3]. The main problem is that throughout the decades of research on the VRP,
the great emphasis was put on heuristics accuracy and speed, whereas simplicity
and flexibility were out of focus [4]. As a consequence, the best state-of-art al-
gorithms give very good results for many theoretical test instances of the static
VRP, but they are hard to adapt to the dynamic real-world problems.

Therefore, it is necessary to focus the future research on realistic VRPs. But
this requires the development of a system that will be able to simulate various
real-world vehicle routing problems thus allowing for both testing optimization
algorithms and planning transport services. Such a realistic simulation has to
incorporate realistically modelled dynamism of customer demand, traffic flow
phenomena and fleet management operations. Especially the optimization of
transport services in urban areas is extremely challenging due to high dynamics
of traffic flow, which results in continuously changing travel times, and often, de-
pending on the type of services, high volatility of demand (e.g., taxi). Moreover,
when considering city-logistics policies, many additional and often mutually con-
flicting objectives appear as, for example, the reduction of the negative influence
on the environment and on the local society, or the positive influence on city
development.

In the recent years several approaches that combine vehicle routing and traffic
simulation have been proposed and implemented. In one of the first works in this
field Regan et al. [5] have proposed a simplified simulation framework for evalu-
ation of dynamic fleet management systems for the truckload carrier operations.
Taniguchi et al. [6] have analysed integration of vehicle routing optimization
and traffic simulation for optimization of city-logistics oriented problems. An-
other attempt is an application of the AIMSUN simulator for optimization of
the VRP in cities by Barcelo et al. [7]. Liao et al. [8] have developed a sys-
tem for evaluation DVRP strategies using real-time information. Unfortunately,
all these approaches are only partial solutions, as they do not include realistic
demand modelling and simulation. This limits their application mainly to prob-
lems with static and known a priori demand. As a consequence, it is impossible,
for instance, to model the impact of traffic or transportation service availability
on customer demand. Moreover, they were used only for small-scale problems,
where a road network was of limited size and the number of customers was small.

2 Multi-Agent Simulation and the DVRP

One possible solution to overcome the deficiencies of the existing solutions is to
use a system that allows for detailed modelling of complex interdependencies
between the three main components, that is customer demand, traffic flow and
vehicle fleet, and that will be able to run large-scale simulation. The first re-
quirement implies use of a multi-agent simulation approach that will include all
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the actors and components, that is inhabitants that generate traffic in a network
and, as a customers, create demand for services which are provided by companies
which in turn have vehicles that are dispatched to serve the customers’ requests
and thus also participate in traffic generation. The services may be connected
with transport of passengers (e.g. taxi) or goods (e.g. courier).

Since fast and realistic traffic flow simulation is the key issue, before choosing
a concrete simulation system, four popular traffic simulators, namely MATSim,
TRANSIMS, VISSIM and SUMO, had been tested [9, 10]. All the systems ex-
cept for SUMO gave, after calibration, correct results. However, comparing the
systems’ functionality, MATSim (Multi-Agent Transport Simulation) [11] offers
the most comprehensive set of features concerning the research goals. First of
all, it is a multi-agent activity based microsimulation system for daily transport
demand analysis. Secondly, due to a fast and efficient traffic simulation, it is able
to conduct analyses for large scenarios, even concerning the whole country. Last
but not least, MATSim modularity and openness (open-source software) allow
for extending and adjusting its functionality to one’s needs.

In recent years MATSim has been applied in several research works that are
to some extend related with the one proposed. Dobler [12] has looked at so-called
within-day replanning approaches for MATSim. In the resulting implementation,
synthetic travellers are able to change their routes and/or their future activity
locations. Rieser [13] has investigated and implemented a public transit (pt)
module for MATSim, where passengers, beeing able to plan pt routes, can walk
to pt stops, where they wait until they are picked up by a corresponding pt
vehicle; the pt vehicle drops them off at their destination, from where they
continue, either to another pt vehicle or to their next activity. Neumann et al.
[14] have implemented a simple control strategy for bus drivers, which implies
that a bus would delay itself if the bus behind is delayed. Schroeder et al. [15]
have simulated synthetic firms that generate demand for shipments. On the other
hand, concerning passenger transport, Ciari et al. [16] have used MATSim for
the estimation of car sharing demand. That study does, however, not include
an implementation of actual car sharing in MATSim. Overall, despite many
advances there is a considerable gap between the current MATSim capabilities
and what is needed for the DVRP simulation. This paper will look at this gap
in more detail.

3 The DVRP Optimizer

3.1 Properties and Possible Applications

The DVRP Optimizer is a program written in JAVA for solving the DVRP. The
optimizer is intended to be as general as possible and to work on customizable
instances of the DVRP. The program is constantly being developed and currently
supports different versions of the DVRP that can be described as the Dynamic
Multi-Depot Vehicle Routing Problem with Time Windows and Time-Dependent
Travel Times and Costs. As of now it can be used for the one-to-many (many-
to-one) vehicle routing, while the many-to-many problems are only supported if



4 Micha l Maciejewski and Kai Nagel

trips are not shared (like in taxi services). Currently it is only possible to solve
problems with hard time windows while soft time windows are not supported.

Concerning the dynamism of requests, the optimizer supports not only on-line
submissions but also on-line modifications and cancellations by the customers.
A request can also be rejected by the company due to, for instance, a shortage of
resources to serve it. However, operations other than submission of new requests
are not included into benchmark instances as this leads to the open problem of
results non-comparability (discussed by Flatberg et al. [17]). Thus, it is hard to
evaluate the efficiency of the proposed algorithms provided that these operations
are permitted.

The next enhancements are connected with the inclusion of time-dependent
travel times and costs which are represented as functions of both the departure
time from an origin vertex tDij(t) and the arrival time at a destination vertex

tAij(t). Although it is common practice to provide travel time data dependent
on the departure time, more elaborated strategies of dispatching vehicles require
the provision of travel times depending on the arrival time. By default, the travel
time data is provided in a form of 3D matrices, tDijk or tAijk respectively, where
i, j denote a pair of origin-destination vertices while k is a time step within
the considered time horizon (the time horizon is divided into time intervals of
equal size, e.g. 15 minutes). The travel times are then approximated by linear
interpolation from the input data. It is possible to supply only the travel times
on the departure time tDijk, in that case, the travel times on the arrival time are
calculated according to the relation

tAij(t+ tDij(t)) = tDij(t) . (1)

In order to obtain correct results of optimization it is necessary that the
input travel time data meets the FIFO property. It means that if two vehicles
start from vertex i and go to vertex j, then the vehicle which starts earlier will
always arrive earlier at the destination. Therefore, the input data is validated
against the following constraints (ε > 0):

tDij(t+ ε) > tDij(t) − ε (2)

tAij(t+ ε) < tAij(t) + ε (3)

Another important feature of the DVRP Optimizer is its flexibility in reas-
signing requests to vehicles. There exist four different pre-defined strategies for
reassignment:

– Never – a request is never reassigned to another vehicle
– Only planned routes – a request may be reassigned to another vehicle only

if the vehicle to which the request is already assigned has not started yet
– Time horizon – a request may be reassigned unless it is planned to be served

within the specified time horizon (e.g. 2 hours)
– Always – a request assignment is subject to change as long as the assigned

vehicle has not started out for serving it
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Selection of the strategy depends on the problem properties. From the drivers’
point of view, for example, the most preferable is the first option (Never) since
they prefer less changeable routes. On the other hand, the more flexible the
strategy is (e.g. Always) the more cost-effective and customer-oriented routes
can be found. To achieve even higher customizability of the strategies, it is
possible to differentiate requests on whether it is a pickup or a delivery and then
to apply a different reassignment strategy to each of these two types of requests.

Due to the considerable flexibility of the model, the current implementation
of the DVRP Optimizer can be applied to a wide spectrum of the real-life DVRP
examples like long-distance courier mail, distribution of heating oil, taxi services,
feeder services for the Demand Responsive Transport systems (e.g. mini-buses)
and others.

3.2 Algorithms

By default, the DVRP Optimizer uses a memetic algorithm, consisting of an
evolutionary algorithm and a local search procedure, for solving the DVRP.
Nonetheless, the current version of the system is open for extending it with
other optimization approaches, such as tabu search or simulated annealing. The
implemented memetic algorithm can be characterized in brief as follows:

– Genotype coding – for each vehicle a list of requests to be served
– Crossing-over – exchanges routes of a randomly drawn vehicle between two

parent individuals; since exchanging routes may lead to invalidity of the both
newly created genotypes, a repair procedure is executed removing doubled
requests and adding missing ones

– Mutation – exchanges requests within/between routes
– Selection for reproduction – roulette wheel or tournament selection; both

with fitness scaling functions
– Succession – with (e.g. elitist succession) or without overlapping populations
– Termination criterion – different possible criteria (that may be combined):

generations count, convergence threshold, total fitness evaluations count etc.
– Local search – steepest ascent hill climbing algorithm with the neighbour-

hood search operator exchanging requests within/between routes

At the beginning, the memetic algorithm is run to get the initial solution
for all advance (i.e. known a priori) requests. Then, each time the optimizer is
notified of any change in the whole system (such as request modifications, travel
times updates or vehicle breakdowns) only the local search procedure needs
to be run. The DVRP Optimizer does not use insertion heuristics since their
applicability is limited to those cases when only new immediate requests may
appear while everything else in the system (e.g. already submitted requests,
travel times/costs) is static. One should note that as long as changes in the
system are not very dynamic, the local search algorithm is sufficient for updating
solutions. However, when the dynamism is high, it may be necessary to re-run
the whole memetic algorithm.
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3.3 General System Architecture

In order to keep all necessary data up to date and to calculate valid and effi-
cient routes, the DVRP Optimizer has to be coupled in a real-time mode with
external modules (Fig. 1). Each of those modules is responsible for a specific do-
main of the routing process. The customer service module informs the optimizer
about changes in the customer demand, the fleet management module notifies
of changes in the state of the vehicle fleet, while the third one, traffic monitor-
ing, provides the DVRP Optimizer with the current traffic data and calculates
time-dependent shortest paths. Provided that the communication is carried out
in real-time, each time any change in the system occurs, the DVRP Optimizer is
instantly notified of it, which allows for immediate reaction to a new situation by
replanning vehicle routes/schedules. As soon as new plans has been calculated,
they are sent to the external modules.

DVRP Optimizer
Traffic

monitoring
Customer

service

Fleet
management

routesevents

travel timesrequests

schedules travel costs

Fig. 1. Data flow between the system components

The above-presented overall architecture is minimal and may be extended
depending on the system’s purpose and availability of external data. One may,
for instance, add modules for demand or traffic prediction.

4 MATSim and the DVRP Optimizer Integration

4.1 The Idea

Integrating the DVRP Optimizer with MATSim allows for the simulation-based
evaluation of different dynamic vehicle routing algorithms as well as planning of
various DRT services in MATSim. In both cases MATSim is responsible for the
multi-agent simulation of the transport system with a high level of detail. Besides
simulating traffic flow, MATSim serves as a platform for simulating vehicles’
and customers’ demand. Each time a change in demand, traffic conditions or
fleet availability occurs, the DVRP Optimizer is informed about it and re-plans
routes. After the routes are re-planned, the DVRP Optimizer sends new routes
and schedules to MATSim.

The above-presented approach may be implemented in two steps:
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1. Off-line optimization – combines the time-dependent travel times and costs
resulting from simulation in MATSim with external data sources describing
supply and demand (i.e. vehicles, depots, customers and their requests); this
requires sequential execution of simulation in MATSim and then estimation
of the time-dependent travel times/costs prior to the off-line optimization

2. On-line optimization – runs concurrently both the simulation and optimiza-
tion processes that are integrated and interacting with each other.

The data flow between MATSim and the DVRP Optimizer is presented in
Fig. 2. The black flows are used in the off-line optimization, whereas the grey
ones are additionally required for the on-line optimization.

As of now, the first step, the off-line optimization, has been completed and
is described later in this section.

DVRP Optimizer
Data Model

MATSim
Data Model

Network
&

Facilities

VRP Graph
(time-dependent)

DVRP
Optimizer

MATSim Population
& 

Plans

Requests
&

Routes/Schedules

Agents
&

Vehicles
Vehicles

Fig. 2. Data flow between MATSim and the DVRP Optimizer

4.2 Estimation of Time-Dependent Travel Times and Costs

Prior to the off-line optimization, the MATSim simulation results describing the
time-dependent link travel times have to be converted into the time-dependent
travel times/costs for the VRP graph according to the following steps:

1. Map depots and customers (requests) to links within the MATSim network
model. These links form a set of vertices V in the VRP graph G(V,A); a set
of arcs A consists of all ordered pairs of the vertices.

2. For each arc (i, j) in A and for each time step k find the shortest-time (least-
cost) path in the MATSim network for a vehicle departing at time step k
and calculate the corresponding travel cost cDijk. This step is done by means
of one of the shortest path search algorithms available in MATSim [18].

3. Based on Eq. 1 calculate travel times on the arrival time tAijk. Alternatively,
one may use the backward shortest path search, which gives more accurate
results, but at the cost of the computation time.
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4.3 Results for the Off-line Optimization

In order to validate the above-presented approach and to assess the efficiency and
correctness of the proposed algorithms, a set of tests was designed and carried
out (Tab. 1). In the tests, four different networks and two kinds of services
were used. Although all the networks were artificially created, their layouts are
typical for urban areas, and the generated traffic is also characteristic for cities.
Also the requests were designed in such a way that they would imitate real
services within urban areas (e.g. the advance-to-immediate requests ratio, time
windows, pickup-to-delivery ratio). The size of a network influences the speed of
estimating time-dependent travel times/costs since the computation time of the
shortest path search depends on the number of nodes and links; however, in case
of the off-line optimization, it does not affect the the routing algorithm speed
which is dependent (mostly) on the number of submitted requests.

Table 1. Properties of the test cases

1 grid 62 170 courier 100 49 49
2 custom 129 326 courier 100 52 52
3 spider's web 57 208 taxi 100 95 n/a
4 custom 93 276 taxi 100 96 n/a

Immediate
requests

Pickup
requestsNo Network

layout Nodes Links Service
type Requests

The test procedure was carried out according to the following rules:

– Prior to the off-line optimization, for each test case the MATSim simulation
was carried out, and then the time-dependent travel times and costs matrices
were calculated with a 15-minute resolution. It was assumed that the travel
costs are equal to the travel times.

– Tests instances were run both as the static and dynamic VRP.
– Each test instance was run with time-dependent travel times (TD TT ) and

with constant (a 24-hour average) travel times (averaged TT ). In the latter
case, the obtained results were then re-evaluated using the time-dependent
travel times to show the real costs considering changeable road conditions.

Comparing the results for the courier services tests (Tab. 2), one can see that
the precise knowledge of travel times leads to much better results. By knowing
the time-dependent travel times, it is possible to arrange schedules in a way which
minimises travelling along arcs at the moment they are at their highest-level of
congestion (the largest travel time). Moreover, it is very likely that solutions
calculated with the averaged travel times may not satisfy all the constraints; in
the experiments, almost all solutions violated the time window constraints, and
in extreme cases, the total value of lateness (being after a time window is closed)
was almost equal to 1.5 hours. Comparing dynamic vs. static mode, it is clear
that, in case of courier services, having known all the requests in advance, one
can yield better results.
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Table 2. Best results obtained for the test cases

No Type TD TT
static 13728 17192 (+25,2%)

dynamic 14766 17342 (+17,4%)
static 22435 26351 (+17,5%)

dynamic 23879 28133 (+17,8%)
static 54017 53778 (-0,4%)

dynamic 54307 54327 (+0,0%)
static 95579 96406 (+0,9%)

dynamic 96451 97158 (+0,7%)

 Averaged TT

3

4

1

2

Different results were obtained for the taxi services tests. First of all, the
solutions found for the averaged and the time-dependent travel times are similar
concerning the cost of travelling. This is due to the properties of taxi services –
taxi services work more in a request-response manner with narrow time windows
for serving requests, which makes it impossible to flexibly change the order of
requests and thus to avoid traversing arcs when they are congested. This is also
one of the reasons of smaller differences when comparing dynamic vs. static mode
than it was for the courier services test cases. However, the real difference lies in
constraint satisfaction – the solutions obtained with the averaged travel times
were always violating some of the time windows. This means that when using
averaged travel times, some of the customers were always served too late.

5 Conclusions and Future Work

In this paper, an application of MATSim as a multi-agent simulation platform
for DVRP optimization is presented. The approach takes into account several
factors which are essential for finding optimal routes, like traffic in urban areas,
and which are missing in the classical VRP models. The results show that the
lack of accurate travel-time data may lead not only to higher costs, but also to
numerous violations of time-window constraints, which in the end results in the
deterioration of service quality.

The implemented off-line optimization approach is an important step to-
wards the full integration of MATSim with the DVRP Optimizer. The possible
applications of this on-line optimization are twofold. First, the system may be
used as a simulation framework for carrying out very detailed evaluations of
different dynamic vehicle routing algorithms. Second, the on-line optimization
could be used for planning various Demand Responsive Transport services in
MATSim. Both fields seem very important and appealing and will be explored
by the authors in their future research.
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