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Abstract This article addresses the role of spatial interaction in social networks.
We analyse empirical data describing a network of leisure contacts and show that
the probability to accept a person as a contact scales in distance with ~ d~ 4.
Moreover, the analysis reveals that the number of contacts an individual possesses
is independent from its spatial location and the spatial distribution of opportuni-
ties. This means that individuals living in areas with a low accessibility to other
persons (rural areas) exhibit at average the same number of contacts compared
to individuals living in areas with high accessibility (urban areas). Low accessi-
bility is thus compensated with a higher background probability to accept other
candidates as social contacts.

In addition, we propose a model for large-scale social networks involving a spa-
tial and social interaction between individuals. Simulation studies are conducted
using a synthetic population based on census data as input. The results show that
the model is capable of reproducing the spatial structure, but, however, fails to
reproduce other topological characteristics.

Both, the analysis of empirical data and the simulation results provide a further
evidence that spatial interaction is a crucial aspect of social networks. Yet, it
appears that spatial proximity does only explain the spatial structure of a network
but has no significant impact on its topology.

Keywords social networks - spatial interaction - accessibility

Johannes Illenberger

Group of Transport System Planning and Transport Telematics
Berlin Institute of Technology, Germany

E-mail: illenberger@vsp.tu-berlin.de

Kai Nagel

Group of Transport System Planning and Transport Telematics
Berlin Institute of Technology, Germany

E-mail: nagel@vsp.tu-berlin.de

Gunnar Flotterod

Division for Traffic and Logistics

KTH — Royal Institute of Technology, Stockholm, Sweden
E-mail: gunnar.floetteroed@epfl.ch



2 Johannes Illenberger et al.

1 Introduction

Research on social networks has made great advances in understanding the struc-
ture and dynamics of networks in the last decade. An increasing availability of
proxy-data sets from which social networks can be inferred (for instance movie
actors [1] and co-authors [2]) allow for the insight into large-scale networks. While
extensive research is conducted on the organisational and social structures of net-
works the focus has just recently shifted to another dimension: the spatial struc-
ture. Among sociologists the relationship between physical space and social struc-
ture has already been identified in the middle of the 20th century [3]. However,
detailed analysis on the spatial structure of social networks has just begun with
the spatial analysis of networks in general such as transport and communication
networks [4]. The lack of research in this area might have just pragmatic reasons:
The above mentioned proxy-data sets usually do not involve any spatial infor-
mation. And even if they provide spatial information, it often comes only with a
coarse resolution at the level of municipality or cities.

The literature agrees that distance plays an important role in social networks
[ELI6LIT,8]. This is rather unsurprising because face-to-face meetings, which are re-
quired to maintain a social contact, involve travel for at least one actor. The costs
of travel usually scale in distance making the maintenance of long distance con-
tacts more expensive. The literature also agrees that electronic information and
communication technologies do not fully replace the need for physical contacts,
but rather act as a complement [9L[7}[I0]. Thus, understanding the role of the spa-
tial dimension in social networks is also of importance for the forecasting of travel
and communication demands.

Realising that spatial proximity influences the occurrence of social contacts
rises the question how much does it contribute to the explanation of general net-
work structures? Moreover, does the spatial distribution of individuals, which can
be quite inhomogeneous in real-world (rural versus urban areas), have any im-
pact? Considering the first question, results of theoretical studies appear to diverge
from the observations of empirical studies. Models involving a spatial interaction
between individuals can, under certain configurations, explain the emergence of
network structures [IIJ[12[13]. However, results of empirical studies suggest that
a geographical process is not the only process that governs the organisational lay-
out of a network [8[14]. This may indicate that the configurations considered in
theory are rarely observed in reality. Considering the second question, the theo-
retical studies are usually based on random distributions or lattice-like layouts.
Real-world distributions have gained just little attention (see for instance [15] and
[16]).

This paper contributes to both questions. The results of studies presented in
this article provide a further evidence that distance is a crucial factor concerning
tie formation but is not the dominating variable explaining the topology of a net-
work. We analyse empirical data describing a network of leisure contacts and show
that local network structures, specifically the degree distribution and transitivity,
are not determined by the spatial layout of the network. A model for large-scale
social networks involving a spatial and social interaction between individuals is
proposed. Simulation studies are conducted using a real-world synthetic popula-
tion as input. The results show that the model is capable of reproducing the spatial
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structure of the observed network but, however, fails to reproduce the topological
characteristics.

The remaining article is organised as follows: Section [2| provides an overview of
empirical studies on social networks and models for spatially embedded networks.
In Sec. [3] a detailed analyses of the empirical data is presented. We turn to the
description of the simulation model in Sec. [d]and present the simulation studies in
Sec. [5l The paper is closed with a discussion of the results of the empirical analysis
as well as the simulation studies in Sec. [6l and a conclusion in Sec. [

2 Related work

The influence of geographical distance on the presence and strength of social ties
has been already identified in the middle of the 20th century (for instance [3]).
From a personal perspective it is intuitive that the probability of a social contact
decreases with increasing distance. Several empirical studies, however, have shown
that this rather common assumption is well described by the so-called gravity
model [I7]. The gravity model can be used to explain to distinct observations:
(i) the strength of a social contact (which may be quantified by the frequency
of physical meetings) in dependency of distance or (ii) the occurrence of a social
contact in a specific distance. The later is naturally dependent on the underlying
spatial distribution of individuals and can be normalised accordingly.

Latané et al. [5] study three data sets describing the social interaction of college
students, citizens of Florida and social psychologists. In all three data sets they
observe that the interaction frequency is well approximated by a power law d~ !,
where d denotes the distance between two individuals.

The analysis of a social network of bloggers by Liben-Nowell et al. [I5] revealed
that the relationship between friendship probability and distance can be described
by p ~ d~1. They determine the friendship probability by dividing the observed
number of friendships with distance d by the number of possible pairs of individuals
with same distance.

The same approach to calculate the probability that two individuals are con-
nected is used by Lambiotte et al. [14], however, using a communication network
constructed from mobile phone data. Lambiotte et al. find that the probability fol-
lows the same fundamental scaling law as in [15] but with a considerably smaller
exponent: p ~ d~2. Moreover, Lambiotte et al. observe that transitive connections
(person i is connected to j, j is connected to k and k is connected to i) are not
only composed of spatially adjacent persons, as one may expect considering that
the density of social contacts is greater in the direct proximity, but that they can
stretch out over large distances.

Frei and Axhausen [I8] surveyed personal networks of respondents located in
the conurbation of Zurich, Switzerland. The respondents were requested to report
emotional important social contacts together with their residential location. To
account for the inhomogeneous population distribution they divide the share of
observed contacts by the population share, where both quantities are aggregated
into concentric rings centred at the centre of mass of all respondents’ residential
locations. The calculated ratio of contact and population share exhibits a strong
decay in distance, however, Frei and Axhausen do not make statements about the
parametric form of the distribution.
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In a recent study Daraganova et al. [8] consider various types of exponential and
power-laws to describe the distance distribution of social contacts. The analysis of
a data set of 551 individuals shows that the family of power-laws result in better
fits of the distribution compared to exponential decay functions. For all considered
power-laws the presence of edges decays in distance with an exponent of ~ —1.

While there are a couple of models dealing with the generation of networks
embedded in space, only few of them specifically address the generation of social
networks. A quite intuitive approach to generate a spatially embedded network is
to extend the model of preferential attachment by Barabdsi and Albert [19]: In the
so-called modulated BA [20] the preference to attach to high degrees competes with
the preference for short edges. The probability of a vertex introduced at time ¢ to
connect to an existing vertex 7 is adapted according to p; (t) ~ k; (t) d%, where k; (t)
denotes the degree of i at time ¢, d denotes the euclidian distance between both
vertices, and « is a (usually negative) parameter. A further extended version of
this model is used by Barrat et al. [TI1] to create weighted networks. In their model
the preferential attachment mechanism relies not only on the vertex’s degree but
on the sum of the weights of the edges connected to a vertex.

In the geographical threshold graph model of Masuda et al. [21] two vertices ¢ and
j are connected according to the threshold mechanism (w; + w;) h (d;;) > 0, where
w; and w; are a priori defined weights, h (d;;) represents a decreasing function of
distance d;; and 6 is a constant threshold.

Other models consider vertices placed on a lattice that connect to their nearest
neighbours [22] or graphs where regions are iteratively partitioned (e.g. by trian-
gulation [23]) into subregions by introducing new vertices and edges. Details on
the above four models can also be found in a review of geographical scale-free
networks by Hayashi [24].

Models that explicitly address the construction of social networks are, for in-
stance, the models of Boguiié et al. [25], Wong et al. [26], Liben-Nowell et al. [15],
Lambiotte et al. [I4] and Daraganova et al. [§]. Bogufid et al. introduce the con-
cept of social distance attachment in which vertices are connected with probability
pij = 1/ (1 + (dij/b)a)7 where d;; denotes the distance between both vertices in
the social space, b and o > 1 are parameters. If one considers the social space as
a two-dimensional euclidean space, then this model connects vertices with prob-
ability just depending on their distance; probably the most simple model for a
spatially embedded network.

Wong et al. [26] propose an exponential random graph model in which they
describe the probability of an edge as a simple step function differentiating between
edges within and beyond a so-called neighbourhood radius H. More precisely, the
probability to connect vertices i and j is given by p;; = p+ py if djj < H or
pij = p— A if d;; > H, where p denotes the average edge density, p, represents
the prozimity bias controlling the users sensitivity towards distance and A is a
correction term to maintain the average edge density.

The model of Liben-Nowell et al. [I5] explicitly accounts for the spatial popu-
lation distribution. More precisely, the population distribution is the only variable
in their model: The probability that persons ¢ and j are connected is described by
the reciprocal of the number of persons living closer to ¢ than ;7 does.

Lambiotte et al. [I4] developed a model with moving agents which allows to
explain why triangles are approximately equally distributed over space. Agents
which are placed on a periodic one-dimensional lattice are either allowed to move
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and thus to stretch triangles or to adapt to their neighbourhood by replacing long-
distance connections with short-distance connections forming new local triangles.

An exponential random graph model involving geographical proximity is pro-
posed by Daraganova et al. [8]. The model combines spatial processes described
by a power-law equivalent to the function used by Bogun4 et al. and network pro-
cesses describing the emergence of star-like and triangular configurations. While
some of the above theoretical models can be configured so that spatial processes
can explain other network structures such as transitivity and degree correlation
[25L26L[11], Daraganova et al. conclude with a contrary statement. The discrep-
ancy may be explained with the fact that the model of Daraganova et al. is fitted
against real-world data. In fact, a common characteristic of most of the above
presented studies is that they either use (i) random distributed vertices in a one
or two-dimensional euclidean space, (ii) vertices positioned on a lattice, or (iii)
vertex locations that are a result of the generating algorithm itself. Literature
dealing with inhomogeneous vertex distributions is sparse (see for instance [I5]
and [16]). The present study addresses this knowledge gap. The proposed network
model uses real-world population data as input and thus allows to gain insights
into the effects of the population distribution on network structures.

3 Analysing empirical data
3.1 Data collection

Empirical data is obtained from a survey that collects data on a social network
of leisure contacts in Switzerland [27]. The sampling design involves a so-called
snowball sampling technique. In a snowball sample respondents are asked to report
their social contacts which are then invited to participate in the survey as well. The
new respondents are asked to report their social contacts which in turn also are
invited. This iterative process is continued until a predefined number of iterations is
conducted or the desired number of samples is collected. The name of the approach
stems from the image of a snowball accumulating more and more material when
it is rolled through the snow.

The drawback of snowball sampling is its inherent bias. Each additional contact
of a person means an additional edge through which the sampling mechanism can
find that person. This means that persons with many contacts are more likely
to be included in the sample, and hence the resulting sample is biased towards
respondents with many social contacts. With appropriate methods that account
for the degree bias it is possible to obtain corrected statistics [28].

Each respondent and each reported person represents a vertex in the network.
An edge between to vertices ¢ and j denotes that either ¢ named j as a contact or
vice versa. The resulting network contains more than 7000 vertices and 7600 edges
sampled within three snowball iterations. 406 vertices represent the respondents,
i.e. persons that filled out a questionnaire. The remaining vertices represent the
contacts that have been named by the respondents. This distinction is crucial
because the degree (number of leisure contacts) is only known for respondents.
For the majority of vertices socio-demographic attributes such as age and gender
are known. Roughly 75 % of all vertices disclosed their residential location.
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3.2 Network topology

The observed network exhibits a corrected mean degree of (k) = 13.2. The cor-
responding degree distribution (Fig. is heavily right-skewed with a maximum
degree of 41. Considering the regression analysis, both, an exponential and a log-
normal distribution fits well into the data points (residual sum-of-squares 0.0021
for an exponential distribution and 0.0020 for log-normal distribution). Other stud-
ies on social networks observe a decrease of the probability towards the very low
end of the degree scale [I8,29]. It is thus plausible to favour the log-normal dis-
tribution. This is also supported by the presumption that missing samples at the
very low end of the degree scale are a result of the sampling design which despite
the correction has difficulties to capture vertices with low degree.

A further commonly observed property of social networks are transitive con-
nections (the probability that the friend of my friend is also my friend). A method
to quantify transitivity is the local clustering coefficient [30]:

1 2m;
(NI Em-T (”

where m; denotes the number of edges that connect neighbours of i and N denotes
the total number of vertices. A draw-back of snowball sampling is that it misses
edges between neighbours (i.e. it underestimates m;) if not at least one neighbour
connected to such an edge participates in the survey. To compensate for this,
the survey additionally collects data on neighbour-neighbour relations using a
sociogram. In a sociogram respondents are asked to define activity-groups (for
instance “hiking group” or “soccer club”) and assign their contacts to those groups.
Connecting all persons within an activity-group with each other reveals the missing
edges between the respondent’s neighbours. Of course, two persons being in the
same activity-group do not necessarily consider each other as a leisure contact.
A discussion of this aspect is, however, out of the scope of this paper. Including
the edges obtained from the sociogram the clustering coefficient is C' = 0.21E A
dependence of the clustering coefficient on the vertex’s geographical location can
not be identified.

3.3 Spatial network properties
3.8.1 Distance distribution of social contacts

Given the residential locations of vertices the (great-circle) length of edges can be
calculated (Fig. . The resulting edge length distribution peggc(d) breaks up
into a short range and a long range domain with the transition at about 20 km
distance. Both domains follow a power law distribution

Pedge (d) ~ dPe (2)

with 81 &= —0.6 for the short range and 82 =~ —1.8 for the long range.

1 Edges obtained from the sociogram are only used for the analysis of transitivity but ignored
for all other analyses.
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Fig. 1 Corrected degree distribution. Samples are stratified into groups of approximately same
size. The solid line shows a fitted log-normal distribution with ¢ = 0.9 and p = 2.6.
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Fig. 2 Edge length distribution of social contacts peqge(d). |(b)| Distribution of opportu-
nities (inhabitants) (M;(d)), averaged over the survey population. Samples are stratified into
groups of approximately same size ((a); n =~ 100, @ n ~ 30'000).

The edge length distribution can be decomposed into the product of a be-
havioural model pgecept,i (d), i.e. the probability of ¢ to accept a person at distance
d as social contact, and the underlying population distribution M; (d), i.e. the
number of persons at distance d from individual i. For realised contacts this leads
to the model

mz(d) = Paccept,i (d) - M; (d) +€ (d) ’ (3)

where m;(d) is the realised number of contacts that person i possesses in distance
d and ¢;(d) denotes an unknown error term. Rearranging Eq. [3| while omitting the
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unknown error term yields

paccept,i(d) ~ XZEZ; . (4)

Applying the population average operator results in

<paccept,i(d)> ~ <E§EZ§> . (5)

The right hand side of Eq. [5| can be practically evaluated. The number of contacts
m;(d) is obtained form the survey data and the population distribution, M;(d),
can be obtained by counting the number of inhabitants at distance d for each
respondent i. For this, a 10 % sample of the Swiss population (ca. 700 k persons)
obtained from the Swiss micro-census [3I] is used, and distance d is discretised
into 300 bins (rings) with the width adjusted so that all bins contain the same
number of inhabitants. Areas outside Switzerland contribute zero opportunities.

Figure m shows <paccept7i(d)>, where the population average (.) is approx-
imated by an average over the survey population. The distribution roughly fits
into the power law (paccept,i(d)) ~ d* with exponent o = —1.4. The fact that
<paccept7i(d)> does not exhibit the breakup in a short and long range domain as the
edge length distribution indicates that this effect is caused by the inhomogeneous
distribution of the underlying population. Figureshows (M;(d)), where (.) de-
notes again the average over the survey population. The population distribution
exhibits the same short and long range breakup as the edge length distribution.
The sign of the slope changes from positive to negative at the transition, i.e. the
number of opportunities first increases and then decreases in d. As a matter of
the survey design, respondents are neither equally distributed over space, nor dis-
tributed proportionally to the population density, but are instead concentrated in
Canton Zurich (because the initial seeds of the snowball are drawn within Canton
Zurich). The change of the slope in (M;(d)), and consequently in pegge(d), can thus
be explained with the border of Switzerland to Germany which is approximately
20 km north of Zurich. Considering that there are no constraints on sampling out-
side of Switzerland, a behavioural interpretation of this would be that individuals
do not consider persons beyond the national boundary as opportunities for social
contacts.

3.3.2 Dependency on accessibility

Assuming that pgecept,i(d) (Eq.4) holds equally for all individuals would mean that
persons located in areas with less access to other persons (rural areas) possess less
contacts compared to individuals located in areas with high access to other persons
(conurban areas). To investigate a possible correlation between the degree of an
individual and its accessibility we define the accessibility of person i as

A= / o(d) - Mi(d) - dd | (6)
d

where ¢(d) is any monotonously decreasing function such that nearby contact
opportunities receive a higher weight than further away contact opportunities. We
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Fig. 3 E Probability to accept an opportunity as social contact (pgccept,i(d)), where the
average goes over the survey population. |[(b)| Degree over accessibility. Samples are stratified
into groups of approximately same size ((a)i n ~ 200, @ n & 20).

choose, arbitrarily but somewhat consistently with the data,
q(d) :==d**. (7)

For the practical evaluation of A; we can rewrite Eq. [f] with the sum over all
opportunities:

A= [a(@) M@ a = 3 atdig) = a5 ®)

d J

The Pearson correlation coefficient between the vertices’ accessibility and de-
gree results in r = 0.03, i.e. there is no correlation between both measures (Fig. .
This indicates that the above hypothesis that people living in rural areas possess
less contacts does not hold. A question at this point is if the acceptance probability
can be further decomposed into a person dependent and person independent com-
ponent. That is, the probability to accept a contact at distance d is the product of
a person independent scaling law ¢(d) = d~1* and a person specific constant ¢;:

2

paccept,i(d) =c- Q(d) ) (9)

where = denotes that this is, at this point, a hypothesis. Using this hypothesis we
obtain an extended form of the model for realised contacts (Eq. :

mi(d) = ¢; - q(d) - My(d) + e;(d) . (10)

Since each individual in the survey population possesses just about 13 contacts an
evaluation of pgecept,i(d) for each individual is not meaningful. Therefore, we split
the survey population into two categories based on the individuals’ accessibility.
The categories are chosen so that there is a group with half of the vertices with
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Fig. 4 M (Paccept,i(d)) for two categories with different accessibility A;, where the average
goes over the population of the category. @ Person specific constant ¢; over accessibility.
Samples are stratified into groups of approximately same size ((a)f n ~ 100, @ n = 20).

lower accessibility and a group with half of the vertices with higher accessibility.
Calculating <paccept7i(d)>, in the same manner as for the entire survey population
(Sec. , for both categories reveals that both exhibit approximately the same
slope (Fig. . This means that the exponent a of (paccept,i(d)) is independent
from accessibility. Referring to Eq. [0} this observation supports the hypothesis that
q(d) = d~1* holds for the entire population and the person-specific pre-factor ¢;
remains as the only degree of freedom. One observes that both distributions have
different offsets in the log-log plot of Fig. The category with high accessibility
exhibits a lower offset. However, at this point one cannot distinguish if this effect
is systematical, i.e. due to different ¢;, or due to an error component in Eq. [I0]
that correlates with accessibility.

It is useful to consider the meaning of ¢;. Based on Eq. and the definition
of accessibility (Eq. |§[), the degree of an individual can be written as

k; = mz(d) dd = ¢; (q(d) . Ml(d) + 6i(d)) dd=c; - A; + ei(d) dd . (11)
i ces /

d d

Isolating ¢; while omitting the unknown residuals yields
i~ oL (12)

This means that the person specific constant ¢; is dependent on the individual’s
home location so that people with lower accessibility exhibit a higher ¢; (Fig.4(b)).
That is, ¢; is not a person specific but a location specific constant.

An interpretation is that the number of social contacts is a strong personal
preference, and it is so strong that it is neither modified by the accessibility of
the home location, nor is there self-selection into locations that correspond to the
preference for social contacts. The scaling law, ~ d* with a ~ —1.4, seems to hold
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across the population. This is both independent from the degree and from the
accessibility of the home location. Thus, persons compensate for reduced accessi-
bility neither by modifying the number of their social contacts not by modifying
the functional form of their distance distribution. Rather, they have, through ¢;,
a larger overall probability to accept an opportunity as a contact.

3.4 Age and gender homophily

Analogous to spatial distance, decreasing “social distance” between two individuals
increases the probability of being connected, where “social distance” denotes a
measure of how much two individuals differ in their socio-demographic attributes.
In social network analysis this phenomenon is known as homophily [32].

The attribute which induces the strongest degree of homophily is age, followed
by gender. Both types of homophily can be quantified with the Pearson correlation
coefficient of the variables’ values at either ends of all edges. For a given network
the Pearson correlation coefficient can be expressed by (adopted from [33])

2
> miwy — M (Z 5 (z; +$j)>
(i5) (i5)

>3 (m?”?) - M (Z §(x¢+x]—)>

; (13)

(%) (#9)

where z; and x; denote the variable of vertices i and j, and M the number of edges.
A correlation coefficient of rqge = 0.54 indicates a strong correlation with respect
to age. Although, this correlation exists throughout all age groups the absolute
age difference between ego and alter increases with the ego’s age. The correlation
with respect to gender, where the gender of individual ¢ is encoded with x; = 0 if
i is male or z; = 1 otherwise, is less pronounced (rgender = 0.34).

4 Simulation model

Following the empirical observations we propose a simulation model which involves
a spatial and social interaction. Both interaction forces are modelled with a util-
ity function that quantifies the utility a persons gains from its social contacts.
Generally, the dynamics of this model are driven by the ambition of individuals
to connect to persons that are geographically close and similar in their socio-
demographic characteristics. Referring to Sec. the model does not attempt
to describe the process that governs the degree distribution of a network. There-
fore, the model takes an a priori defined degree distribution as input which remains
unmodified during the simulation. The simulation comprises two steps:

1. Creating an initial random graph with an arbitrary but given degree distribu-
tion.

2. Re-organising edges until the utility distribution of individuals reaches a steady
state.
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A further input of the model is a synthetic population of Switzerland, i.e. a random
realisation of census data such that a census on the synthetic population would
approximately reproduce the original census. The information obtained from a
synthetic person are its residential location, its gender, and its age. Persons are
connected with undirected and unweighted edges.

4.1 Utility function

Let U; be the utility individual ¢ gains from its social contacts:

U; = ZyijUij , (14)
J

where y;; denotes the edge indicator variable which is 1 if persons ¢ and j are
connected, or 0 otherwise. U;; is a composition of utility terms:

Uij = Ui(jdiSt) + Ui(j('ZQE) + Ui(jgender) : (15)
Each utility term represent a specific interaction force:

- Ui(]’.ﬁsw denotes the perceived (usually negative) utility of the geographical dis-
tance between i and j. It describes the travel costs involved to physically meet
person j (at its residential location) in order to maintain the social contact.

(age) . . . o .

- U; ) captures homophily with respect to age and usually increases if ¢ and j
differ less in age.

- Ui(j] ender) captures homophily with respect to gender and is either zero if i and

j share the same gender or non-zero (and usually negative) otherwise.

4.1.1 Spatial interaction

The spatial interaction model is based on the assumption that the maintenance of
a social contact requires regular physical contact between individual ¢ and j. This
means that either i visits j at its residential location or vice versa. Of course, the
physical contact does not necessarily have to be located at the actors’ residential
locations. However, as the survey data does not include information about joint
activities we stick to this simplified assumption. Further assume that the probabil-
ity that i is willing to make a trip to j is proportional to the acceptance probability
(Eq. E[)7 whereas we neglect constant c;:

DPirip,ij ~ daccept(dij) = dij . (16)

Since the network model considers undirected edges the missing constant of pro-
portionality in the above equation needs to ensure the symmetry piripi; = Pirip,ji-
To solve this two-sided constrained problem we turn to the production-attraction
constrained gravity model of Wilson [I7]. The gravity model describes the proba-
bility of making a trip from i to j by

Ptrip,ij = Ci Dj ki kj diy (17)



The role of spatial interaction in social networks Working Paper 11-11 13

where the mass terms are replaced by the degrees of 7 and j, and d%— represents the
impedance function. C; and D; are the balancing factors that ensure the symmetry
of pirip,ij. The balancing factors are specified in accordance to the constraints

> prripij = ki and Y prrip.ij = kj (18)
j i

so that 1

Ci= (19)
' Zj Dj k’j d%

and )
Di=—=———F—. 20
The analogy to the analysis of Sec. [3.3.2] can be clarified if Eq. [I7]is re-written as
Prripij = Ci Djd (21)

where .
Ci= ——a— (22)

225 Djdj;

and )

D (23)

o J
i = 2 .
>, Cds
Both above equations equal the definition of the person specific constant (Eq.

A YA

if Dj and C;, respectively, are set to one. This corresponds to the one-sided con-
strained problem where the symmetry of ps.sp,;; is dropped. Regarding the analysis
of Sec. this means that the surveyed graph is considered to be directed.

One will see quickly that the equations for the balancing factors (Eq. and
Eq. can only be solved numerically. However, as it will turn out later the
determination of the balancing factors is not necessary as they cancel out during
the process of re-ordering edges.

The logit random utility model [34] commonly used in transport planning de-
scribes the functional relation between the impedance function and the (dis)utility
of distance U, i(;iwt):

Prripij = Ci Djdfy ~ exp (Ui(f”t)) : (25)
Isolating U. Z-(jdwt) in the above equation yields

Ui(jdist) =alnd;; +In C;+1n Ej + const. (26)

The parameter a, formerly the exponent in the power-law, represents now the pre-
factor of the spatial interaction force. Constants In C; and In Dj both stem from
the balancing constraints and are thus “extrinsic” utilities, better to be interpreted
in terms of the choice probability: InC; expresses the fact that someone with a
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high degree or a low accessibility needs to have a larger a priori probability to
accept in order to reach her desired number of contacts. In a logit choice model,
this contribution is equal for all alternatives and thus will cancel out. In ]jj ex-
presses the fact that, if the system is to remain balanced, one should have a larger
probability to accept someone with a large degree k; or with a low accessibility
Aj. It can be seen as an expression quantifying that “competition for slots” will
be reduced when alters either accept many contacts or when they are difficult to
reach.

For better readability we change the notation of a for the remaining article to
—a(®s) This emphasises that the pre-factor is usually negative and distinguishes
from parameters a(?9¢) and a(9¢"4°") which are introduced in the next section.
Thus, Eq. [26] finally reads:

Ui(;”s“ = —dist) | dij +1n C;+1n Dj + const . (27)
4.1.2 Social interaction

The utility describing homophily in age is quantified by the product of the relative
error from 7 to j and vice versa:

2
pase) — _(age) (@i — a;) (28)
1] ala] bl
where a; > 0 and a; > 0 denote the age of i and j, and al®9€) is a parameter
controlling the strength of homophily. This specification ensures the symmetry
Ui(]‘.lge) = U;fge). Furthermore, it accounts for the observation that the absolute
age difference becomes less important with increasing age (Sec. [3.4)).
U(gender)
ij

The quantification of is straight forward:

Ui(Jgender) _ _a(gender)gij 7 (29)

where g;; is a binary variable which is 0 if 7 and j are of same gender or 1 otherwise
and a(9¢"%") controls the strength of homophily with respect to gender. The

symmetry of g;; is inherently given.

4.2 Creating an initial random graph

Creating a graph with an arbitrary degree distribution can be easily done with the
following algorithm: First, generate a sequence of degrees {k;} corresponding to
a given degree distribution and then randomly assign each person a target degree
(or edge stubs) out of the degree sequence. Second, pairs of vertices are randomly
chosen and connected if the current degree of both vertices is less than their target
degree. This process is continued until all vertices reached their target degree.
Since the graph is undirected, the sum of all degrees )", k; needs to be even in
order to properly connect all edge stubs. Cases may occur where all edge stubs can
only be connected by inserting multiple edges between the same vertex pair which,
however, is not allowed. If the degree sequence does not satisfy both conditions it is
discarded and a new sequence is generated. The obtained graph exhibits the given
degree distribution but is random with respect to all other network properties.
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4.3 Re-organising edges

Given an initial graph with the desired degree distribution edges are re-organised
using a Markov Chain Monte Carlo simulation. Let Y be the graph at time ¢ and
Y :+1 the graph after a step which is defined as:

1. Randomly draw two connected pairs (ij) and (uv) of vertices satisfying the
conditions i # j, u # v, i #u, i #v, j #u, and j # v.
2. With probability m;41, move edge (i5) to (iu) and edge (uv) to (jv).

The above method does not change the vertices’ degrees. The transition probability
from Y to Y41 is defined as
V(Y1)
Tt+1 = eU(Yt+1) + eU(Yt) )

(30)

where U (Y) = Zi<j U;; denotes the total utility in the graph Y. Re-arranging
Eq. [30] shows that one only needs to evaluate the utility difference AU:

Tegr = Hﬁ , (31)
where
AU =U (YY) = U (Yis1) (32)
=Uijt + Unuv,t +Uiu,t +Ujout
—Uijit+1 — Uuvt+1 — Upni41 — Ujoe41 -
Given the dyad states
— ¥ij = 1, yuv = 1, ¥4, = 0, and y;, = 0 for configuration Y7,
= ¥ij = 0, yuv = 0, ¥4, = 1, and y;, = 1 for configuration Y1
Eq. 32 collapses to
AU = Ujj + Uup — Uy — Ujyy - (33)

The symmetry of U;; and the remaining summands of Eq. implies that C; = D;.
Inserting Eq. in Eq. 33| reveals that all constants, specifically the balancing
factors in U(®*%) cancel out. This means that with an a priori given degree distri-
bution it is not required to solve the balancing factors. This is rather unsurprising
because C; and Dj are only dependent on the vertex’s degree and its geographical
location. Removing the degree distribution as a degree of freedom removes also C;
and ﬁj as a variable in the model.

5 Simulation studies

The results of the simulation runs are analysed with respect to two aspects: First,
we investigate the model’s capabilities to reproduce the structure of the empirical
observed network. Therefore, a simulation run using a random sample of the entire
Swiss population counting more than 360 k individuals is conducted. The spatial
interaction force is set to the observed value a(#st) = 1.4, the social interaction
forces a(?99) and a(9°"%") are varied. To compare the resulting network with the
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survey network we draw a sample of the simulated network using the same snowball
sampling technique as used in the survey. This sample, denoted as the snowball
sampled simulated network, is generated with a stochastic snowball simulation (for
details on the sampling algorithm see [2§]).

Second, we investigate the impacts of the model’s parameters and the popu-
lation size on the emergence of transitivity. Simulation runs are conducted with
varying strength of spatial and social interaction, and varying size of the network.
Considered populations sizes are 500 to 40’000 persons. A comparison with the
survey network is not done. This allows to directly use the simulated network for
analysis without generating a snowball sample.

Depending on the size of the network the Monte Carlo Markov Chain is run
for 5-10% to 2-10'° steps.

5.1 Degree distribution

For each considered population and parameter configuration an initial random
graph is created according to the method described in Sec. The degree sequence
is drawn from a log-normal distribution configured with the parameters roughly
set to the observed values: ¢ = 1, u = 2.5 and a maximum degree of 41. It
is noteworthy that this process is independent from the spatial distribution of
vertices and thus there is no correlation between the vertices’ degree and their
location.

For large networks (> 10’000 vertices) it is no problem to generate a valid
graph. The probability that a graph meets the given degree distribution is in the
order of 1072, With decreasing network size it becomes more difficult to generate
a graph that does not violate the constraints. The probability to generate a valid
graph with 500 vertices lies in the order of 10™%.

Comparing the corrected degree distribution of the snowball sampled simu-
lated network (with the correction method for the snowball bias applied) with the
degree distribution of the survey network shows that both distribution are almost
congruent. Naturally, this is less surprising since the degree distribution for the
simulation model is taken directly from the survey.

5.2 Spatial properties

Figure shows the edge length distribution of a snowball sampled simulated
network with 360 k vertices and model parameters (%) = 1.4, o(?9¢) = 0, and
algender) — 0 The edge length distribution exhibits the same behaviour as the
survey network regarding the break up into the short and long range domain:
Both domains follow a power law with the transition at about 20 km distance and
a smaller exponent for the long range domain.

Calculating the edge length distribution directly on the simulated network
(without generating a snowball sample) results in a distribution that follows the
power law pegge (d) ~ d® with B ~ —0.8 over nearly the entire distance scale,
however, with an exponential cutoff towards the borders of Switzerland (Fig. .
The distribution does not exhibit the split into a short and long range domain as
observed in the empirical data (Fig. . This indicates that the effect introduced
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Fig. 5 Comparison of the degee distribution of the survey network and a snowball sampled
simulated network (with correction for the snowball bias applied) of 360 k vertices and model
parameters a(@st) = 1.4, (29¢) = 0, and a(9ender) = 0. Samples are stratified into groups of
approximately same size.

by the northern border of Switzerland vanishes if one considers a representative
sample of the entire Swiss population.

In analogy to Sec. we extract <paccept7i (d)> and validate if the simulated
network exhibits the correct behavioural model. The resulting distribution fits
well into the empirical observed power law ~ d~4. Furthermore, we test if the
acceptance probability is in leading order independent of individual ¢ and if there is
a person specific constant ¢; that varies with accessibility. The snowball sampled
vertices of the simulated network are likewise as in Sec. categorised into
two groups according to their accessibility. Calculating (paccept,i(d)) for both sub-
populations shows that both categories exhibit the same scaling law ~ d~ 4 but
a different offset (Fig. . Considering the empirical analysis (Sec. , it is
unclear if the different offsets are caused by the error term of Eq. [0} The simulation
model, however, does not specify any error term. In consequence, the different
offsets of both series are caused by a different average person specific constant
(c;). This means that the distribution of the category with higher accessibility
(smaller offset in the plot) exhibits an average smaller person specific constant.
Although C; and Dj, which represented the two-sided constrained counterparts
of ¢; and ¢; in the simulation model, are not explicitly given, they are implicitly
given by the a priori given degree distribution and the geographical location of 4
and j.

Investigating the spatial distribution of edge lengths reveals that there is a clear
spatial separation of edges regarding their lengths. Short edges are concentrated
in areas with high accessibility. This result conforms to observations also made

with the empirical data (Fig. [7(b)).
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Fig. 7 M Probability to accept an opportunity as social contact (Paccept,i(d)) for two cate-
gories with different accessibility A; calculated on a snowball sampled simulated network.
Mean edge length over accessibility. Samples are stratified into groups of approximately same
size.

5.3 Homophily

Using the parameter setup for size and a(?**) as above the effects of social inter-
action are investigated by varying o(%9¢) and o(9¢"9¢") With increasing values of
a(99¢) and a(9¢74¢7) respectively, the correlation coefficients asymptotically ap-
proximate 1, i.e. the perfect assortative network where edges exclusively connect
vertices of same age and gender, respectively. To obtain the empirically observed



The role of spatial interaction in social networks Working Paper 11-11 19

values rqoge = 0.54 and 7gepger = 0.34, the pre-factors need to be set to al®9¢) = 0.9
and a(9"%°7) = 0.8. The edge length distribution shows no measurable change if
the pre-factors of U(%9¢) and U(9°"%") are varied. Moreover, a(%9¢) and a(9¢mder)

show no effect on the other property, rgender and rage, respectively.

5.4 Transitivity

A simulation configuration with the interaction forces set to the values correspond-
ing to the empirical observation (a(4%") = 1.4, o(29¢) = 0.9 and (9" = (.8)
and a network size of 40’000 individuals produces networks that exhibit no tran-
sitivity.

Varying the network size and spatial interaction shows that one either needs
to decrease the population size or increase al¥st) t6 obtain transitivity (Fig. .
Because the mean degree is constant for all configurations, decreasing the pop-
ulation size naturally increases the probability that two vertices have a common
neighbour. A similar effect is obtained if one increases a(%st) (while holding the
size constant): It forces the individuals to connect to vertices in their direct spa-
tial proximity which increases the probability of two vertices to have a common
neighbour as well. Using the empirically observed value of a(%*) = 1.4, significant
transitivity (C = 0.14, still less than the observed C' = 0.21 in the survey data)
is only observable for network sizes of 500 vertices. Generally, the sensitivity of
transitivity towards the network size diminishes for population sizes of more than
approximately 5000 vertices. The sensitivity towards the spatial interaction force
is present throughout all considered networks sizes.

Referring to the social interaction force based on age, the sensitivity is of
considerably smaller magnitude (Fig. . Decreasing size and increasing o(?9¢)
while holding the spatial interaction constant at al45t) — 1 4 shows only a minor
increase of transitivity. The increase of transitivity for small networks is predom-
inantly governed by the spatial interaction.

Variations of (97" result in only minor changes of transitivity, regardless
of network size (Fig. . Even in a perfect assortative network (with respect
to gender) the remaining set of candidates is still so large that the probability of
having a common neighbour remains small.

Networks with high transitivity exhibit a negative correlation between acces-
sibility and the local clustering coefficient. This is obvious because if the density
of candidates in the direct proximity increases it is less likely that two vertices
share the same vertex as a contact. Yet, this observation contradicts the observa-
tion from the empirical analysis (Sec. : The survey data shows no correlation
between the local clustering coefficient and the geographical location.

6 Discussion

The analysis of empirical data shows that individuals living in rural areas appear
to compensate for the lower accessibility with a higher background probability to
accept other persons as social contacts. Consequently, the number of contacts a
person posses is independent from its geographical location. The translation of this
finding into a utility function shows that the a priori probability is expressed by a
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constant in the utility model. In terms of travel costs, the constant represents the
costs involved in reaching the next node of the transportation network, for instance
the next highway or transit stop. The usually lower density of the transportation
network in rural areas yields higher travel costs in these areas. The willingness of
individuals to accept higher travel costs in order to maintain the same number
of social contacts explains also the occurrence of longer edges in rural areas. The
above observation suggests that the process that governs the degree distribution
of a network is not, or only to a minor extent, related to the spatial distribution
of individuals.
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Considering social network transitivity, the empirical observations and the sim-
ulation results diverge in two aspects. First, the survey data shows that a vertex’s
clustering coefficient, as well as its degree, does not depend on its geographical
location. Second, after adjusting the spatial interaction force, age and gender ho-
mophily force so that the simulation results match the observed distributions,
the simulated network does not exhibit significant transitivity. Spatial interaction,
age and gender homophily interaction become only relevant for transitivity if one
considers small networks. In such regimes, distance appears to be the dominat-
ing force, followed by age, which, however, has comparable little impact. Gender
appears to have no influence. Naturally, given a degree distribution, the proba-
bility that two vertices have a neighbour in common increases with decreasing
network size. According to this, the assumption that an individual considers the
entire population as candidates for social contacts is debatable. One may expect to
observe sub-structures within the population such that individuals consider only
a limited choice set of persons as candidates. This means that spatial and social
proximity alone do not explain the emergence of triangles. The findings give rise
to the hypothesis that considering choice sets in a social network model could be
a step towards more realistic social networks.

The findings of this work are in line with other work. Daraganova et al. [§]
use exponential random graph models involving various types of spatial interac-
tion functions to reproduce an observed network. Although, the considered net-
works are comparably small (551 and 306 vertices), the authors conclude that
spatial proximity alone does not explain the structure of the networks. From the
analysis of the Live-Journal community, Liben-Nowell et al. [I5] draw a similar
conclusion: They find that two thirds of observed friendships are derived from
geographical processes, whereas the remaining friendships are governed by some
non-geographical process. The fact that the presence of triangles is almost in-
dependent from space is also observed by Lambiotte et al. [I4]. Results of their
simulation model suggest that this effect is caused by the mobility of individuals. If
people move to new residential locations they keep existing ties and thus triangles
are stretched over longer distances.

7 Conclusion

In this article we investigate the spatial structure of a social network and the im-
pacts of spatial interaction on its topology. From the analysis of a leisure-contacts
network we draw the following conclusions:

— The probability of individuals to accept other persons as social contacts scales
in distance with d~*#. This scaling law holds across the population and is both
independent from the degree and the geographical location.

— The number of contacts an individual establishes is independent from its geo-
graphical location and the spatial distribution of opportunities. In consequence,
as the remaining degree of freedom persons with low accessibility, i.e. living in
rural areas, exhibit a higher background probability to accept opportunities as
social contacts.

— As a consequence from the above item, people living in rural areas show to
have contacts that are at average more distant compared to people living in
urban areas.
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— The occurrence of triangles is almost independent from the spatial structure
of the social network.

The above conclusions gives rise to the hypothesis that spatial interaction forces
are not the solely explanatory variable for the emergence of more complex social
network structures. The hypothesis is supported by simulation results of a social
network model. The model involves a spatial and social interaction and uses a
synthetic population based on census data as input. While the model is capable to
reproduce the spatial structure and the characteristics of homophily with respect
to age and gender it contradicts the observations of the empirical social network
in the following aspects:

— The simulated networks show no significant transitivity.

— The occurrence of triangles depends on space in that the local clustering coef-
ficient decreases with increasing accessibility.

— The model requires the degree distribution to be a priori given in order to
avoid a correlation between degree and accessibility.

In summary, the analysis provides a further evidence that spatial interaction
is a crucial aspect of social networks. Yet, it appears that distance only explains
the spatial structure of the social network. An impact on the emergence of other
social network properties is not observed.
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