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Abstract27

This work describes the methodology to get a more realistic transit route choice estimation, eval-28

uated with occupancy counts comparison at bus stops in a real world scenario. First, a search of29

travel priorities for passengers was carried out with the selection of travel behavioral parameters30

whose values correction would help for the manual calibration. Moreover, the dynamic transport31

calibrator Cadyts was integrated on the transit simulation to help to estimate the trip generation32

and route choice. A bus line of the city of Berlin with real data of daily usage was taken as test33

scenario. The calibration experiments reduced the occupancy counts comparison error by 35%34

from about 50% to about 15%.35
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INTRODUCTION36

The importance of transit systems is marked by transport science and other disciplines. It is a37

relevant topic on energy consumption reduction discussions, an alternative for urban environmen-38

tal issues, and a point in question for urban planners. Besides, public vehicles availability is an39

indispensable option for low-income households(1).40

The implementation of a microscopic approach for the simulation of passengers’ travel be-41

havior represents a valuable tool for route choice analysis. In this way, transit assignments models42

recognize more constituent elements than route choice approaches for private cars. When people43

make use of the public transport infrastructure to fulfill their daily activities in different locations,44

the individual route choice considers the adaptation to actual timetables with the minimization of45

some travel properties like time, distance, number of vehicle changes. Thus, a realistic microsim-46

ulation must recognize passengers’ travel preferences. In order to model them, they are to be47

parameterized, measured and validated with real transit usage data.48

MATSim (2) is an agent based transport simulation framework that is able to handle scenar-49

ios with millions of agents. An innovative methodology is the use of a calibration tool to estimate50

the travel demand. Cadyts (Calibration of Dynamic Traffic Simulations)(3) is an open-source cal-51

ibrator originally developed for the estimation of vehicular travel demand. This work reports the52

integration of both tools to use passenger counts at stop facilities for a microscopic public transport53

demand estimation. The study started from a population sample and actual data of transit usage of54

bus line M44 in Neukölln district in Berlin, Germany.55
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RELATED WORKS56

Traffic demand calibration is a prevailing topic in transport research. Chu et al.(4) proposed a traffic57

network-level calibration procedure for PARAMICS. Route choice diversification was achieved by58

costs modifications on link decreasing speed limit values, link cost factors and link tolls. Vaze(5)59

used a mesosopic simulation to prove the calibration improvement with automatic vehicle identi-60

fication techniques using simultaneous perturbation stochastic approximation, genetic and particle61

filter algorithms. Zhang et al. (6) described an implementation of genetic algorithm-based calibra-62

tion tools for local, global and departure-route choice parameters.63

However, few works are found that deal directly with the estimation of passenger travel64

demand in transit simulation. A Fuzzy-Neuro approach is proposed by Yaldi et al.(7) to improve65

accuracy in travel demand modeling. Tamin and Sulistyorini (8) used Non-Linear-Least Squares66

to calibrate parameters to estimate O-D matrix. Li et al. (9) estimated also OD matrix based route67

choice through passenger counts. Parveen et al. (10) presented the calibration of the aggregate68

transit-assignment model used in EMME/2, which is based on the minimization of travel time69

with five parameters: boarding time, wait-time factor, wait-time weight, auxiliary time weight and70

boarding-time weight. In order to match on-board counts, it uses a genetic algorithm where each71

chromosome represents a set of parameter values generated randomly. A more recent work by72

Wahba and Shalaby (11) presented the calibration of the transit scenario of Toronto with MILA-73

TRAS. The learning model is based on mental models for every passenger where travel experiences74

are updated and evaluated in order to adjust waiting and in-vehicle time. The calibration defines75

nine parameters related to trip purpose and transit vehicle type. It is done with the integration of76

the genetic algorithm GenoTrans engine.77
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BACKGROUND78

This section describes the two main elements that were combined for this article: (1) the public79

transit router (and simulation) for MATSim, and (2) the demand calibration tool Cadyts.80

Transit simulation81

The key processes of MATSim for the transit simulation(12, 13) are briefly described in the fol-82

lowing.83

Required input data are: transportation demand data, description of street network, and84

timetable information of the considered scenario, including description of vehicles and stops.85

MATSim considers the normal daily itinerary of every person, represented by a plan data structure.86

In it, the sequence of daily activities like being home, at work, education, shopping or leisure is87

described with their start and end times and geographic locations. The trips that the persons ac-88

complish between the planned activities are represented by legs described with travel time, route89

and transport mode.90

The transit schedule is a data structure containing the public transport system information.91

A transit line is understood here as an organized public transport supply normally labeled with an92

alphanumeric or color identifier that covers a defined area with a set of transit routes. A transit93

route denotes a distinctive fixed trip between an initial stop and a final stop. As a rule, two transit94

routes of the same transit line travel the same path but in opposite directions, but also more transit95

routes with slightly different paths may be included in a transit line. A stop facility or just “stop”96

is a defined location where transit vehicles make a time-planned pause to pick up or drop off97

passengers.98

A transit network for the router is created, with nodes representing the stops, and directed99

transit links between them, according to each transit route information. Transfer links are added to100

allow transfers between stops that are next to each other. The transit network represents a logical101

layer used for routing passengers. It is merged with another directed graph of the street physical102

layer to create a multimodal network that is used for the complete transit and traffic flow simulation.103

The transit user route calculation is described in Sec. 4.3 of (12) and (very similarly)104

in Sec. 7.4 of (13). The transit router uses an adaptation of Dijkstra’s algorithm (14) which105

allows multiple starting and ending nodes. The compound least cost path considers walk time,106

in-vehicle travel time, travel distance and vehicle transfers. Unfortunately, the default values of107

the parameters are not given in those texts, but they can be extracted from the MATSim software108

repository (matsim.svn.sf.net). They are:109

• Marginal Utility of Travel Time Transit (MUTTT): −6/3600s.110

• Marginal Utility of Travel Time Walk (MUTTW): −6/3600s.111

• Marginal Utility of Travel Distance Transit (MUTDT): 0/m.112

It is the product of Marginal Utility of Money default value 1.0 and Monetary Distance113

Cost Rate default value 0.0.114

• Utility of Line Switch (ULS): 60s ∗MUTTT. Note that this typically is negative, since115

MUTTT typically is negative.116

Utilities are taken as dimensionless quantities; −6/3600s, say, means “minus six utils per hour”.117

In the approach, time spent waiting at stations is included into the travel time transit and thus118
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weighted with the same factor as travelling; this is a property of the underlying routing algorithm119

that may need revision in the future. For the present study, it is to be expected that the marginal120

cost of waiting is absorbed into the work costs for access and transfer.121

Other route search configurable options are:122

• Initial search distance: radius length in meters for stop facilities search, having starting123

or destination points as center. Its default value is 1,000 (1,093.61 yd).124

• Extended search radius: an extra distance in meters to be added in case that an insufficient125

number of stops are found only with the initial distance. Its default value is 200 (218.72126

yd).127

• transfer connection distance: radius distance in meters to search potential transferring128

stops in a circle around a change point. Its default value is 100 (109.36 yd).129

The transit router finds a transit connection at a given time between two locations including130

the necessary walks to, between and from stops, and description of transit legs between starting131

and final stops. Once the routing process is done, the details of the found connection are described132

there: new transit activities and legs are added to the original plan to depict actions like walking to133

stop facilities, boarding, transferring and alighting.134

The traffic flow simulation executes all plans simultaneously by moving agents in the135

physical network. Streets are represented in the queue model by links with free speed travel time,136

flow capacity and storage capacity as constraints. Vehicles are differentiated as private or public, so137

that bus driver agents are incorporated in the simulation to execute their own plans that consist in138

driving public vehicles according to route schedules. Public vehicles stop at the fixed stop facilities139

located at the end of the links where passengers wait for them in a waiting queue. Passengers can140

get on the arriving vehicle, if it is the one selected by their route choice, and if it has not reached141

its maximum capacity. The microsimulation approach handles every agent that can be tracked and142

thus, the flow of private and transit agents can be measured.143

Plans are executed through many iterations, so that re-planning strategies can be subse-144

quently applied. A strategy defines the mechanism whereby some properties of plans are modified145

in an iteration so that they may be later evaluated to assess the plan performance at a day. This146

may include route choice or time departure, for example. In this process, agents may learn having147

the experience of the results of previous iterations and applying modification to the new ones. The148

strategy also includes the plan choice approach.149

For scoring, a utility based approach is followed to evaluate plans’ performance after their
execution with a quantitative score. In it, the utility of a plan V(i) is calculated as the sum of positive
utilities (in a logarithmic form) achieved by carrying out activities, plus the sum of negative utilities
of traveling between activities locations.

V (i) =
∑
act∈i

βperf · t∗act · ln tperf,act +
∑
leg∈i

Vtr,leg (1)

where:150

βperf is the activity marginal utility at its typical duration.151

t∗act is the activity typical duration.152

tperf,act the activity duration in the simulation.153
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Vtr,leg is the utility (typically negative) of a leg (see below).154

Sometimes, there are also penalties for schedule delay, such as arriving late or departing (too) early.155

Agents can have more than one plan. Plan choice is done as follows:156

• If the agent has at least one non-scored (i.e. never executed) plan, a random choice be-157

tween the non-scored plans is performed.158

• If an agent has all plans scored, then a score based selection in a multinomial logit (15)159

form is performed.160

Behavioral calibration of transport simulations161

Cadyts (16) is a transport demand estimation tool that can be integrated to any stochastic and162

iterative assignment microsimulator. It calibrates the behavior in a Bayesian setting from real163

counts data. A previous interaction between MATSim and Cadyts to estimate private car traffic in164

the Zurich scenario is described in (17).165

Cadyts is not a stand-alone framework but a calibration tool for dynamic traffic assignment166

simulators originally developed for the estimation of vehicular travel demand. Detailed theoretical167

description can be found in (18). Only a summary description of the calibration steps is introduced168

here in order to help to illustrate its integration with MATSim transit simulation:169

• Initialization: At the beginning of the run, the calibrator method addMeasurement col-170

lects all available traffic counts.171

addMeasurement(L l, int start_s, int end_s, double value, double stddev,172

Measurement.TYPE type)173

The method is called for each location l with available traffic counts during the time bin174

specified from start_s to end_s, with counts classified in accordance to the data structure175

Measurement.TYPE whose instance type may denote either the average flow rate or the176

total traffic count value during the time interval.177

Thereby, L is a template variable, defined by the object instantiation178

MATSimUtilityModificationCalibrator<L> calibrator = new179

MATSimUtilityModificationCalibrator<L>(...); .180

There are no restrictions to the type of L, which means that measurements can be attached181

to arbitrary objects. They just need to be the same as the objects that are traversed by the182

plans (see next).183

• Plan Choice: A MATSim-Cadyts-adapter would create instances of an interface called184

Plan<L> for Cadyts’ own internal representations of travel demand. The calibration of185

a simulation with utility-based demand works by computing utility adjustments for every186

agent at each iteration. After calculating the utility modification with the method187

calcLinearPlanEffect(Plan<L> plan),188
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the agent selects a plan based on the modified utility of plans. How the choice model189

uses this information is left to the choice model, but in many cases, for every plan the190

utility modification is added to the uncorrected utility, and the resulting modified utilities191

are used for the choice model (also see below).192

The selected plan is presented to the calibration with the method193

registerChoice(Plan<L> plan) .194

Cadyts runs a regression model for every featured location l and time bin, where the num-195

ber of agents that intend to cross that location is the explanatory variable and the actual196

flow across the same location is the dependent variable. The slope of the resulting regres-197

sion line provides sensitivity information to the calibration. The registerChoice(Plan<L>198

plan) method is necessary to identify the explanatory variable.199

• Update: At the end of each iteration, the calibrator reads the output network loading200

situation through a container SimResults which takes in a set of hourly resulting traffic201

volumes of a location <L>.202

afterNetworkLoading(SimResults<L> simResults)203

The Cadyts posterior choice model is outlined in Section 3.1 of (17) and specially at 3.2
where it is presented the formulation of its distribution embedded with the MATSim demand sim-
ulation multinomial logit model, assuming moderate congestion with independently normal dis-
tributed traffic counts. The core equation for the purposes here is

P (i|y) ∼ exp

(
V (i) +

∑
ak∈i

ya(k)− qa(k)
σ2
a(k)

)
(2)

where:204

y is the actual traffic count on link a.205

P (i|y) is the posterior plan choice distribution given y.206

Vn(i) is the score of a plan i as formulated in Eq.(1).207

ya(k) is the actual traffic count at link a during time k.208

qa(k) is the simulated traffic count at link a during simulated time k.209

σ2
a(k) is the variance of the traffic count.210

211

If the variance σ2
a(k) is not specified separately, it is assumed to be proportional to the212

measured value in order to be consistent with the assumption of Poisson distributed measure-213

ments. Measured values that are registered without an explicit variance are multiplied by a con-214

figurable positive factor called varianceScale and the product is assumed as variance. The215

varianceScale default value 1.0 was used for this paper. In order to avoid numerical prob-216

lems, Cadyts bounds the effective values of σa(k) from below. The configurable minStddev217

value defines the smallest allowed standard deviation for measurements. After some experimenta-218

tion, it was set to 8 for this paper. This effectively means that relative errors at count values below219

82 = 64 are under-weighted accordingly.220
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When the whole process is converged, calcLinearPlanEffect effectively returns the result of221

the
∑

ak∈i ... computation of Eq. (2). That is, at the choice step Cadyts affects the agent plan choice222

in this way: the plan choice is under normal circumstances a function of the plan performance223

reflected on its score, but in the case of the calibration it is also a function of the real data counts224

reproduction. That is, the utility of a plan gets a higher value with the utility correction if it helps to225

improve the reproduce the real counts. And on the contrary, a plan receives a lower score value if it226

deteriorates the counts reproduction during simulation. In order to make sure that utility corrections227

at more representative count stations have a more significative effect than at unimportant stations,228

the error contributions of every individual counting station are scaled with 1/σ2
a(k).229

The combined effect of the σa also is that it balances between the prior utility V (i) and the230

Cadyts utility correction: larger σa mean less trust in the measurements, and thus a larger weight231

to the prior.232
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SCENARIO233

Supply234

The transport system of the city of Berlin was chosen as scenario for calibration tests. 906 million235

per year, 2.4 million per day is the number of passengers that the local public transport firm BVG236

(Berliner Verkehrsbetriebe) reports in 2011(19). The demand is satisfied by 10 metro (U-Bahn)237

lines, 149 bus lines, 22 tramway lines in the east districts, and 6 ferry lines. Moreover, 15 suburban238

metro lines (S-Bahn, not operated by BVG) cover also the transit demand along the most important239

stop facilities in the city and its surroundings.240

The multimodal network created for the transit simulation consists altogether of 37,591241

links, where 25,704 of them represent the main avenues and 11,887 all transit links created out242

from the BVG timetable information. The number of nodes in the transit network representing any243

kind of stop facility is 4,791.244

The passengers with activities in the area around the bus line M44 have also other alterna-245

tives. Fig. 1 shows the line M44 path with nearby lines: the bus line 181 that overlaps with M44246

in two stations, and the bus line 744(also named 736) that overlaps in 4 stations. The passengers247

located east from line M44 may be also attracted to use subway line U7. This subway runs in a248

parallel path to M44 with transversal distances around 900 meters. Moreover, passengers travel-249

ling from the area around bus stop Britzer Damm/Tempelhofer Weg in direction northwest (for250

example to S-Bahn stations Südkreuz) or Schöneberg might use the line M44 and transfer to line251

S42 at Hermannstraße, or travel directly with line M46.252

Demand253

In order to set the demand, a synthetic population sample of agents having activities inside the bus254

lines M44/344 cover zone was constructed as follows (Neumann,A., unpublished data):255

• The starting point is a BVG household survey from 1998 also used in other studies (20,256

21, 22). After cleaning, this survey contains the trip diaries from 57,688 persons in the257

Berlin-Brandenburg area and represents nearly 2% of the population.258

• All persons are routed according to their selected mode. For transit mode, the aforemen-259

tioned parameter default values were used.260

• Passengers not having an activity in the area served by the M44/344 bus area are removed.261

Since in this analysis, entering/leaving a bus counts as activity, all passengers entering or262

leaving a bus in the M44/344 area are maintained. In contrast, passengers just traveling263

through the area, either by car or by other means of transport (such as longer bus lines)264

are removed. For the purposes of the present study, it is assumed that this is acceptable265

since no mode choice was considered. It is improbable (albeit not impossible) that some266

long-distance passenger might be available for switching to the M44/344 line; such a267

passenger would have been removed by the filter.268

• In order to get a suitable synthetic population base of large demand, the remaining popu-269

lation is expanded to a “5x” sample, which means that each agent representing a passen-270

ger is copied 4 times, and these copies get their activity locations randomly relocated in a271

1-kilometer radius circle around the original sites. After the expansion, the new synthetic272

travelers are routed in the same way according to their mode, and the sample is filtered273

again to discard new agents outside the area surrounding the line M44/344 path.274
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(Source: www.openmap.lt in Oct. 2011)

FIGURE 1 Bus line M44 and other nearby lines

• Finally, during execution of routing processes, all agents with car mode are discarded275

because they do not belong to the scope of this study, which ends up with a final 5x276

(= 10%) population sample of 36,119 agents.277

Counts278

Passenger occupancy counts data for 18 stops covered by the bus line M44 come from a survey by279

BVG in September 2009 and they reflect the usage of the line in a normal weekday.280
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The bus line M44 contains four transit routes. Two transit routes cover, in opposite di-281

rections, the complete set of 18 stops. The other two cover only 13 stops. For simulation and282

calibration, occupancy counts for all 18 stops in all directions and on all routes were considered.283

The results presented next aggregate, at each of the 18 stops, the data into hourly bins.284

The occupancy is always counted after the stop, i.e. when the doors are finally closed for285

departure. Since the last stop of a bus line implies that all passengers must get off, no occupancy286

count are produced there and therefore it is not shown in the figures.287
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FIGURE 2 Per stop counts data-simulation comparison plots and general error graph before
calibration (5x expanded population)

RESULTS288

Adaptations to transit router289

An adjustment was made to the transfer link creation in that transfer links between nodes of the290

same line were completely forbidden. A second modification was the progressive search of near291

stop facilities around the starting and destination points. These changes had overall beneficial292

effects on the number of found connections and the average travel time, and were kept for that293

reason. More information is given in the Appendix of (23).294

Before calibration295

A first test was carried out using the MATSim router travel parameters default values (MUTTW =296

−6/3600s, MUTDT = 0/m, ULS = 60s/MUTTT). The 17 sub-figures of Fig. 2 show the297

comparison of real occupancy values (in yellow) and simulated values (in blue) for the main transit298

route stops in hourly bins. General occupancy analysis indicates the mean relative error (red line in299

last sub-figure) for the whole transit line that fluctuates around 50% and 70% before any calibration300

attempt.301
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FIGURE 3 Per stop counts data-simulation comparison and general error graphs after man-
ual calibration (5x expanded population)

Manual calibration of the utility function302

A first task was to find an acceptable set of parameter values that may produce close to reality303

occupancy simulation values. Weight variations on 3 cost variables were tested as follows:304

• walking time (MUTTW from −1/3600s to −10/3600s in increments of −1/3600s)305

• transit travel distance (MUTDT from −0/1000m to −1.4/1000m in increments of306

−0.1/1000m) and307

• utility of line switch (ULS from 0 ∗ MUTTT to 1200 ∗ MUTTT in increments of 60 ∗308

MUTTT)309

The Marginal Utility of Transit Travel Time (MUTTT) remained constant with its default310

(dis)utility value of −6/3600s.311

An exhaustive search of combination of different parameters values was done according312

to the range of values for each variable. That is, 3,150 parameter combinations were obtained313
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from the number of variations of each parameter (10*15*21 = 3150). Clearly, a strongly negative314

MUTTW value represents a high resistance to walk to, between or from stops. A strongly negative315

ULS value represent a high resistance to change vehicle, a strongly negative MUTDT represents a316

high resistance to choose long distance connections. In every case, initial and end values were set317

such that the plausibility of the routing results was already obviously impaired.318

Passenger routes resulting from high resistance to walk (more strongly negative MUTTW319

value) and also from high resistance to transfer (more strongly negative ULS value) produced320

simulated values closer to actual counts data. In the case of ULS, the best output was achieved with321

values more strongly negative than 240∗MUTTT (which means an equivalent penalty of 4 minutes322

per transfer) and in MUTTW with values lower than −6/3600s. Fig. 3 shows an example of error323

comparison of simulation counts data reached just by this approach. It can be seen that the general324

error percentage without calibration fluctuates around 50% and 30%. The best combination of325

travel parameter values from this manual calibration is:326

• Marginal Utility of Travel Time Walk (MUTTW): −10/3600s (compared to −6/3600s327

in the original router)328

• Marginal Utility of Travel Distance Transit (MUTDT): 0.0/1000m (same as in the orig-329

inal router)330

• Utility of Line Switch (ULS): 240 ∗MUTTT (compared to 60 ∗MITTT in the original331

router)332

Parameter matsim old this section Florida Commuter Toronto San Francisco Santiago
in-vehicle time [min] 0.1 0.1 0.02 0.025 2.0 0.023 0.119

walk [min] 0.1 0.17 0.045 0.047 1.0 0.029 0.240
line switch 0.1 0.4 0.045 ./. ./. ./. 0.449

wait time [min] 0.1 0.4 0.045 0.046 2.733 0.044 0.111
walk/in-veh 1 1.7 2.25 1.88 0.5 1.26 2.02

switch/in-veh 1 4 2.25 ./. ./. ./. 3.77
wait/in-veh 1 1 2.25 1.84 1.37 1.91 0.93

TABLE 1 Coefficient values comparison. The four top rows show the absolute values. The
three bottom rows show the values for walk times, switch occurrences, and wait times divided
by the value for in-vehicle times.

Compared with the original routing parameters, travelers attempted to reduce their amount333

of walking and the number of interchanges. This suggests that in-vehicle times and in-vehicle334

distances should increase. And indeed, with from the original routing parameters (Fig. 2) to the335

calibrated ones, the average in-vehicle travel distance for all M44 users increased from 1,804 to336

2,441 meters.337

As an attempt to validate these tendencies, individual transit connections requests were338

compared with the BVG journey planner (19). It turned out that similar connections were suggested339

also by the BVG site.340

Table 1 compares these values with the ones found by other mode choice and transit assign-341

ment studies in different scenarios: Florida (24), the averages for a number of american cities with342

COMMUTER v.2(25), Toronto (26), San Francisco Bay Area(27) and Santiago(28). The three343
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bottom rows divide the values for walk time, switch occurrences, and wait time by the in-vehicle344

time, resulting in more meaningful numbers. All values seem to be in a similar range. Given the345

importance of the penalty for line switching in Berlin, a comparison with those models that also in-346

clude a penalty for line switching seems most meaningful. Out of those, the Santiago model comes347

out strikingly similar to ours, while the Florida model has relatively more penalty on waiting and348

relatively less penalty on line switches. Overall, our result seems to be in line with others.349

Coupling microsimulation and calibration350

As the next step, an integration code was written in Java to work as bridge between Cadyts and351

MATSim transit simulation.352

The Cadyts generic network link type was originally meant to represent network links with353

traffic count stations. For the estimation of passenger travel behavior, it was adapted to represent354

transit stop facilities with available passenger occupancy counts instead. Thus, variables y and q355

of Eq. (2) acquire these meanings:356

y is the actual occupancy count at transit facilities after unloading and loading, and357

q is the simulated occupancy count after unloading and loading358

V (i) is set to zero for the purposes of this paper, in order to score plans just by their consistency359

with real counts.360

Automatic calibration with Cadyts361

In order to apply Cadyts, the route choice generation was separated from the simulation process.362

That is, routes were pre-calculated in independent routing calls before the MATSim iterations, with363

the calibrator enabled, started. The calibrator would thus select between the pre-computed plans,364

but not add new plans to the choice set.365

The criteria to create the different plans were: variety of routes, and the search of connec-366

tions with minimal number of interchanges and minimal walk distances367

In the end, three different transit plans per synthetic traveler were generated. The parameter368

values used for the three different public transit plans are:369

• Combination 1: MUTTW= -6/3600, MUTDT= -0.0/1000, ULS= 1200*MUTTT, i.e.370

strong transfer penalty.371

• Combination 2: MUTTW= -10/3600, MUTDT= -0.0/1000, ULS= 240*MUTTT, i.e.372

strong walk penalty.373

• Combination 3: MUTTW= -8/3600, MUTDT= -0.5/1000, ULS= 720*MUTTT, i.e. mod-374

erate walk and transfer penalties.375

In addition, in order to obtain an elastic demand, the following was done:376

• All synthetic travelers (of the “5x” sample) were duplicated.377

• All synthetic travelers got an extra plan in which they stayed at home.378

The result is that the calibrator will not only affect the transit routing, but also the overall level of379

demand, which can be increased or decreased by decreasing or increasing the fraction of “stay-380

home” plans.381
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FIGURE 4 Per stop counts data-simulation comparison plots and general error graph after
automatic calibration (5x expanded population)

Now, using the Cadyts utility modification as the basis for plan selection, a calibrations run382

was done loading agents with those 3 different public transit plans plus the “stay-home” plan, and383

calibrating the period from 06:00 to 20:00 hours.384

The comparison of Cadyts-enabled simulation results with real counts data are shown in385

Fig. 4. The general error was reduced by around 20% in comparison with the manual calibra-386

tion. Simulated and actual counts reached a suitable comparison at most stops where morning and387

afternoon peak hours can be identified in both counts types.388

One should note, though, that the manual calibration and the Cadyts calibration attempt389

different things:390

• The manual calibration attempted to find one set of behavioral parameters that would391

lead to realistic occupancies.392

• The automatic calibration picks one out of four different passenger route plans (one of393

them being the stay-home plan) in the attempt to generate realistic occupancies.394

It is clear that the second approach has more degrees of freedom and thus achieves a better fit.395
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Stuthirtenweg Ringslebenstr./Mollnerweg

FIGURE 5 Maximum volumes for the first two bus stops for any given hour during “manual
calibration” (5x expanded population)

Investigation of missing demand segments396

The first two stops of the presented transit route showed a lower consistency with the real data than397

the rest of the stops, even after the calibration runs. It is quite clear that a synthetic population398

that is based on a simple “5x” expansion of a 2% sample may have gaps that cannot be filled399

by the adjustment process. The problem can already be visually taken from “Stop 812020.3” in400

Fig. 4 where one notices that the simulation can provide passengers only in increments of “10”,401

corresponding to the 10% sample where every passenger also stands for 9 others. That is, for402

some hours of the day there may simply be no demand available that can be shifted to match those403

counts.404

To investigate, occupancy counts were reviewed along the complete set of 3,150 parameter405

combinations to find which ones may supply higher volumes or any volumes at all. However, it406

was not found any combination that could be able to provide any volume for hours 2, 5, 6, 13, 17,407

20, 22, 23, 24 neither at the first “Stop 812020.3” not at the second “Stop 812550.1” for hours 2, 3,408

4, 5, 6, 13, 17, 22, 23, 24, as it can be seen in their maximum volumes graph in Fig. 5. It means in409

general that the original population sample is not enough at those stops to reproduce satisfactorily410

the occupancy counts.411

As a way to settle the insufficient demand at the first stops, a second version of the pop-412

ulation with agents allocated at different hours was tested. It was also originated from the same413

2% basis sample and prepared in the same way, but for the expansion, 9 copies instead of 4 were414

created. Moreover, time mutation was applied on the activities of those new agents with a random415

range of 7,200 seconds. To compare its effects, the same procedures of data preparation, routing416

and calibration were done with the new synthetic population version. The results are shown in417

Fig. 6.418

It can be seen that with the time mutation of agents’ activities, the calibration is able to419

improve the reproduction of occupancy volumes even at the bus stops with less demand. The420

general error also is placed between 10% and 20% for most of the calibrated hours.421

Investigation of residuals422

Previous figures with counts comparisons help to recognize the individual contribution of each stop423

to the general error. However, it is tangible that some stops are more representative in terms of the424
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FIGURE 6 stop comparison and general error after calibration of 10x expanded synthetic
population (with time mutation)

error reduction than others due to their occupancy volumes magnitude. Specially in the examined425

route, last stops are presented with higher values than those of the first stops.426

On these grounds, another way of analysis was done representing the error proportion for
stop. It is based on the mean weighted square error calculation that indicates the average quadratic
deviation between real and simulated traffic counts presented in Sec. 4 of (17), but in this case
representing all error contributions for stop and hour. Thus, omitting the average calculation, and
taking the same variable meanings as in Eq. 2, the weighted square error WSE of a count location
a at a given time bin k is estimated like this:

WSEa(k) =
(ya(k)− qa(k))2

2σ2
a(k)

(3)

The weighted error graphs of the time-mutated synthetic population calibration is presented in427

Fig. 7. The series of graphs shows the bigger impact that middle and last stops have on the error428

correction in the calibration. That is, it becomes quite comprehensible that Cadyts does not attempt429
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FIGURE 7 Weighted squared error for bus stops for calibration of 10x expanded synthetic
population

harder to correct the remaining errors at the first two stops: Those errors are relevant in relative430

terms, but not in absolute terms.431
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DISCUSSION432

As stated earlier, it is no wonder that the calibrator is able to achieve a better result than the433

manual calibration, since it does the equivalent of modifying each individual traveler’s behavioral434

parameters in order to reproduce the real-world counts. Future work will have to show how this can435

be made behaviorally more plausible, e.g. by including taste variations into the synthetic travelers436

and then calibrating the taste coefficients.437

In the meantime, it should be pointed out that also the current method has its applications.438

For example, it is planned to look at the interaction between schedule stability measures and de-439

mand for a single line in much more detail. For such an investigation, it is useful to have a demand440

that is as close as possible to the actual counts. Clearly, for this is it possible to just use the boarding441

and alighting counts directly as demand (see, e.g., (29)). Yet, for many investigations it is desirable442

to have that demand embedded in the remainder of the system in order to investigate interactions443

such as, say, demand shocks from subway lines. For such investigations, the presented approach444

seems very appropriate.445
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SUMMARY AND FUTURE WORKS446

The integration of MATSim simulation and Cadyts for transit demand estimation was presented447

here. The objective of the experiments on the Berlin scenario was to reproduce the actual counts448

data inside the simulation, first with the search of suitable travel parameter combinations during449

the manual calibration and then, its use for the automatic calibration runs. Route diversity was450

achieved with high walk resistance, high transfer resistance and medium values with special focus451

on stops with problematic counts reproduction. At the end of all calibration experiments, general452

error was reduced by 35% from about 50% to about 15%.453

The calibration effects were tested only on one bus line. A natural following step is the454

inclusion of more transit lines (including subway and tramway). Some studies suggest that passen-455

gers show some preference to rail based vehicles, and it could be included inside the route choice456

and probed with calibration.457

A more appropriate method of calibration should include the scoring function working458

together with Cadyts as replanning strategy. Modifying also its parameters to find best count459

matches might help to reach a more complete description of passengers travel behavior. Up to now460

the route choice has been separated as an initial and independent step from simulation, a future461

task is its integration in the same replanning process with a route diversity dynamic creation.462
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APPENDIX556

TRANSIT ROUTER ADAPTATION557

Two modifications were implemented with the goal of increasing the number of found connections558

and add other realistic elements to the route search.559

Simplified transfer link creation560

In the search of a transit connection for an agent, a change of transit vehicle is possible thanks to561

the virtual transfer links created in the transit network as described earlier.562

In the first network creation step, nodes stand for the stops along the transit route, and563

transfer links are meant to join near stops that belong to different transit lines. In the original564

implementation, transfer links are created between every pair of nodes within the transfer distance565

that566

• either belong to different transit lines,567

• or belong to different stop facilities.568

The adaption consisted in dropping the additional condition of linking nodes of different stop569

facilities, thus joining nodes with the only condition that they should belong to different transit570

lines.571

The goal was to avoid the creation of unnecessary transfer links between consecutive stops572

of the same transit route that are inside the transfer distance. The elimination of that requirement573

had the effect of reducing of transfer links in the transit network of the test scenario described in574

this paper from 106 059 to 83 838 (almost −21%).575

Moreover, in order to have a more realistic implementation of transfers, the original dis-576

tance of 100 meters for the search of near stop facilities was tripled. This is in accordance with577

studies that suggest transfer walk distances around 300 meters or even longer (30, 31). This radial578

distance expansion increased back from 83 838 to 143 154 (almost +71%) the number of transfer579

links.580

Stop search with progressive radius extension.581

When a transit connection search is requested, stop facilities are to be found around origin and582

destination points. Originally the router searches for stop facilities inside an initial given radius, but583

in case that the number of found stops is less than two, the radius is enlarged to the distance of the584

nearest stop plus an extension radius distance of 200 meters. A modification was done to guarantee585

a configurable minimum number of stop facilities to start the transit connection, independently of586

their distance to the activity location. It starts with a predefined initial radius but this is enlarged587

progressively by the extension radius distance so many times as needed until at least the minimum588

number of stop facilities are found. For all runs in this paper, that minimum number was set to “2”.589

Also, instead of the standard 1000 meters distance for initial search, only 600 meters were used;590

this reduces the problem size in dense urban environment.591

Results592

A simple comparison was done with the Berlin scenario before before applying any calibration593

attempt, using the transit router default values presented before. Adapting the progressive stop594

search and the simple transfer link creation produced altogether more connections (almost +12%)595
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(a) before adaptations

(b) after adaptations

FIGURE 8 Passenger occupancy results at early hours before (a) and after (b) router adap-
tations

and reduced the travel time, but it increased the walk distance and time. The sum of these values596

is shown in Tab. 2.597

before adaptations after adaptations
Number of connections 86 739 97 202
Travel time in seconds 4.49E+12 3.53E+12
Number of transfers 153 644 143 022

Walk time in seconds 1.50E+10 1.72E+11
Walk distance in meters 72443 83 198

TABLE 2 Results of transit router adaptations

In the same way, regarding the the occupancy counts, a distinct improvement was achieved598

in the occupancy counts, as it can be seen on a comparison of line M44 occupancy at early morning599

hours as it can be seen in Fig. A.3.600
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