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Abstract

When estimating future transportation costs for car users, there is some agreement that
these costs are likely to increase over the upcoming decades. The reasons could be mul-
tifaceted: rising prices for crude oil, huge investments in alternative energy supply and in
demand-side infrastructure as well as road pricing schemes or taxes in order to internalize
negative external effects of road traffic. Rising costs are likely to change aggregated air pol-
lutant emissions and result in spatially differentiated emission levels. Especially in urban
areas where the road traffic demand is high a reduction of air pollutant emissions could mit-
igate the negative impacts on human health and the environment. The question is whether
congestion relief resulting from rising car user costs can significantly reduce air pollutant
emissions.

For this purpose, a real-world scenario of the Munich metropolitan area in Germany is set
up and simulated with the large-scale multi-agent microsimulation MATSim. The software is
capable of simulating complete daily plans of several million individuals and allows emission
calculations on a detailed level, e.g. for a single street or a single vehicle over time of day.
Varying emission levels due to different vehicle characteristics, road categories, speed levels
and traffic situations are, hence, considered. By mapping emissions back to the emission
source, i.e. the road section, a spatial analysis of air pollutant emissions is possible being
able to identify congested areas and the change in emissions due to congestion relief.

In this paper, car user price elasticities of different user groups including commuters and
inner urban travel demand are found to be in a reasonable range. Congestion relief has a
significant impact on the emission level with respect to inner urban travel demand. The
reduction of air pollutant emissions is higher than the decrease in car travel demand. This
can be shown on an aggregated and spatially disaggregated level.

Keywords: Emission Modeling, Price Elasticities, Spatial Analysis, Urban transport, User
Costs, Agent Based Modeling
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1 Introduction

This paper starts from the assumption that transportation costs are likely to increase. Such a
rise in car user costs has an impact on aggregated air pollutant emissions and on the spatial
distribution of emissions. The concentration of some air pollutants still exceeds the limiting
values prescribed by the European Union, especially in urban areas. Thus, the main focus of
this paper is whether congestion relief results in a significant reduction of overall air pollutant
emissions and if spatial effects can be identified.

When it comes to the discussion of cost-related transport policies, large-scale transport
models are needed. However, for the analysis of air pollutant emissions, a detailed investigation
of the micro-level is necessary. In order to combine both objectives, a multi-agent transport
model is applied. The multi-agent transport simulation MATSim 1 is able to simulate large-scale
scenarios. It is also particularly suitable for calculating air pollutant emissions on a detailed level
as complete daily plans are modeled and the traveler’s identity is kept throughout the simulation
process. For illustration purposes of the impacts on air pollutant emissions, nitrogen dioxide
(NO2) is chosen. However, the findings are similar for the other air pollutants. Furthermore,
the transport sector is the main source of NO2 emissions and NO2 concentration limits are still
often exceeded.

The paper starts with a presentation of the transport model in Sec. 2.1, followed by a
description of the emission modeling tool in Sec. 2.2. Sec. 3 consists of three parts: the setup of
the Munich base case, the simulation approach and the evaluation of the base case with respect
to modal split and traffic volumes. In Sec. 4, car user price elasticities of different user groups
are discussed. Furthermore, the resulting car travel demand and air pollutant emissions are
analyzed on an aggregated and spatially disaggregated level for the base and the policy cases.
The paper ends with a conclusion in Sec 5.

2 Methodology

This section (i) gives a brief overview of the general simulation approach of MATSim and (ii)
shortly describes the emission modeling tool that is developed by the authors. Within the present
paper, only general ideas will be presented. For further information please refer to Raney and
Nagel [2006] and the Appendix or to Hülsmann et al. [2011], respectively.

2.1 Transport Simulation with MATSim

In MATSim, each traveler of the real system is modeled as an individual agent. The approach
consists of an iterative loop that has the following steps:

1. Plans generation: All agents independently generate daily plans that encode among
other things his or her desired activities during a typical day as well as the transport mode
for every intervening trip.

2. Traffic flow simulation: All selected plans are simultaneously executed in the simulation
of the physical system.

3. Evaluating plans: All executed plans are evaluated by a utility function which encodes
in this paper the perception of travel time and monetary costs for the available transport
modes.

4. Learning: Some agents obtain new plans for the next iteration by modifying copies
of existing plans. The modification is done by several modules that correspond to the
available choice dimensions. In this paper, agents adapt their routes for car trips and, for
car or public transport (pt) trips, can switch the transport mode to car or pt, respectively.
The choice between plans is performed with respect to a Random Utility Model.

1 “Multi-Agent Transport Simulation”, see www.matsim.org
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The repetition of the iteration cycle coupled with the agent database enables the agents to
improve their plans over many iterations. This is why it is also called learning mechanism (see
Appendix). The iteration cycle continues until the system has reached a relaxed state. At this
point, there is no quantitative measure of when the system is “relaxed”; we just allow the cycle
to continue until the outcome is stable.

2.2 Emission Modeling Tool

There are several sources of air pollution that can be assigned to road traffic: warm emissions
are emitted when the vehicle’s engine is already warmed-up, whereas cold-start emissions occur
during the warm-up phase. The former differ with respect to driving speed, acceleration and
stop duration as well as vehicle characteristics including vehicle type, fuel type, cubic capacity
and Euro class [André and Rapone, 2009]. The latter differ with respect to distance traveled,
parking time, average speed, ambient temperature and vehicle characteristics [Weilenmann et al.,
2009]. Furthermore, emissions also result from evaporation and air conditioning. Due to the
small contribution to the overall emission level, these sources are not further investigated here.

In the post processing step of the simulation a linkage between travel behavior and the
calculation of environmental effects is applied. The methodology of warm emissions is composed
of the deduction of kinematic characteristics and vehicle attributes from MATSim simulations
and the generation of emission factors. MATSim exhibits activity chains for every agent over the
entire day. Using this information, kinematic information per agent and link can be deduced.
When an agent enters and leaves a link a time stamp is created. Thereby, it is possible to
calculate the free flow travel time and the travel time in a loaded network for every agent and
link. As MATSim keeps the demographic information until the system is relaxed, information
about each agent’s vehicle is available at any time. Vehicle attributes are derived from survey
data (see Sec. 3.1) and comprise vehicle type, age, cubic capacity and fuel type. They can,
therefore, be used for very differentiated emission calculations. Where no detailed information
about vehicle type is available, fleet averages for Germany are used.

Having identified the kinematic characteristics for a link, specific travel behavior resulting
from such data is assigned by using the detailed handbook of emission factors called HBEFA2. For
some European countries including Germany the handbook contains country specific emission
factors that can vary by vehicle characteristics, road category, gradient and speed limit. The
handbook provides further disaggregated emission factors depending on four traffic situations:
free flow, heavy, saturated and stop&go. Such traffic situations are described by kinematic
characteristics, which are deduced from driving cycles, i.e. time-velocity profiles. Typical driving
cycles form the basis for calculating traffic situations and, thus, typical emission factors in
HBEFA.

In order to assign emission factors to the traffic flows generated by MATSim, the driving
behavior of an agent on a certain link in the MATSim simulation is linked to the respective
HBEFA driving cycle. Therefore, each link is divided into two parts representing stop&go and
free flow traffic situations. A similar methodology was developed by Hatzopoulou and Miller
[2010] who consider time dependency in the emission calculation. The present paper uses a
traffic situation approach building on the assumption that cars role in free flow until they have
to wait in the queue where a stop&go traffic situation applies. The length of the queue depends
on the traffic demand on the road. If demand is higher than the capacity of a link, a queue
emerges where stop&go is assumed. Another reason for the segmentation of a link into free
flow and stop&go parts is due to the marginal difference between the emission factors of free
flow, heavy and saturated. In contrast to these three traffic situations, the emission factors of
stop&go are around twice as high. The difference between actual travel time and free flow travel
time per link corresponds to travel time spent in stop&go. The average speed of stop&go that
represents a kinematic characteristic of the typical stop&go driving behavior can be obtained
from the HBEFA database. The stop&go average speed and travel time is used to calculate the
queue length. The respective emission factors can be assigned to the resulting stop&go and free

2 “Handbook Emission Factors for Road Transport”, Version 3.1, see www.hbefa.net
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flow fraction. The implementation of the approach has been evaluated in a test scenario, which
compared real traffic data with MATSim simulations for one road section. A more detailed
description can be found in Hülsmann et al. [2011].

Regarding the emission source due to cold-start, emission factors obtained from HBEFA
are only given for passenger cars. The application of the relevant cold-start emission factor
depends on two attributes: the distance traveled and the parking time. The latter is calculated
subtracting the time stamp when the activity starts from the one when the activity ends. The
subsequent distance traveled is determined by accumulating the distance of each link the agent
drives along until the next activity is reached. The longer the parking time and the accumulated
distance, the higher the cold-start emission factor.

In order to further process the warm and cold-start emissions, so-called emission events are
generated and further segmented into a warm pollution and cold-start pollution emission event.
The former describes the warm emissions for each person and link and adds a time stamp. Cold-
start pollution is given for each person and the link on which the trip starts. The definition
of emission events follows the MATSim framework that uses events for storing disaggregated
information in XML-format (see Appendix).

3 Scenario: Munich, Germany

The methodology described in Sec. 2 is now applied to a large-scale scenario of the Munich
metropolitan area with about two million individuals. For this purpose, a scenario needs to
be set up based on network and survey data. The process is described in Sec. 3.1, followed by
a specification of the simulation procedure in Sec. 3.2 and a validation in Sec. 3.3 where it is
discussed to what extent the simulation reproduces reality.

3.1 Setting up the Scenario

Network (supply side) Network data was provided by the municipality of Munich [RSB, 2005].
The data matches the format of the aggregated static transport planning tool VISUM3. It
represents the road network of the federal state Bavaria, being more detailed in and around the
city of Munich and less detailed further away. It consists of 92’259 nodes and 222’502 connecting
edges (= links). Most road attributes, such as free speed, capacity, number of lanes, etc. are
defined by the road type. Only geographical position and length are attributes of each single
link. This data is converted to MATSim format by taking length, free speed, capacity, number
of lanes, and road type from VISUM data. VISUM road capacities are meant for 24-hour
origin-destination matrices. Since the network is almost empty during night hours, peak hour
capacity is set to VISUM capacity divided by 16 (not 24). This results in an hourly capacity of
about 2000 vehicles per lane on an urban motorway. In order to speed up computation, some
road categories corresponding to small local roads are removed from the network. Furthermore,
nodes with only one ingoing and one outgoing link are removed. The two resulting links are
then merged, bringing the size of the network down to 17’888 nodes and 41’942 links. When
merging, the two link lengths are summed up; free speed is calculated based on the minimal
time needed for passing the original links; capacity is set to the minimum of the two links; the
number of lanes is calculated based on the number of vehicles that fit on the two original links;
and finally the road type – important input for emission calculations – is set to the one of the
outgoing link.

Population (demand side) In order to obtain a realistic time-dependent travel demand, sev-
eral data sources are converted into the MATSim population format. The level of detail of
the resulting individual daily plans naturally depends on the information available from either
disaggregated stated preference data or aggregated population statistics. Therefore, three sub-
populations are created, each corresponding to one of the three different data sources:

3 “Verkehr In Städten UMlegung” developed by PTV AG (see www.ptv.de)
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• Munich municipality (based on Follmer et al. [2004]):
The synthetic population of Munich is created on the base of very detailed survey data
provided by the municipality of Munich RSB [2005], named Mobility in Germany (MiD
2002). In the area of the Munich municipality, 3612 households (with 7206 individuals)
were interviewed. The data consists of different data sets such as household data, person
specific data and trip data. A detailed description of survey methods and data structure
can be found in Follmer et al. [2004]. Individuals were asked to report their activities
during a complete day including activity locations, activity start and end times as well
as the transport mode for the intervening trips. Due to privacy protection, not the exact
coordinates of activity locations are available, but only the corresponding traffic analy-
sis zones (1066 zones in total). For the generation of the synthetic MATSim population,
individual activity locations are distributed randomly within these zones. Furthermore,
all incomplete data sets are removed, e.g. when the location or the starting times of one
activity is missing in the survey. The transport modes train, bus and ship are treated
as public transport trips, motorbikes and mopeds are treated as car trips. The transport
modes ride (= in car as passenger), bike and other (= unknown) are kept for the initial
MATSim population. Overall, the data cleaning results in 3957 individuals, the repre-
sentative sample for demand generation. Finally, these agents are cloned while holding
activity transport analysis zones constant but finding new random locations within these
zones for every clone. This process is performed until the population reaches the real-world
size of 1.4 million inhabitants. Thus, the synthetic population living inside the Munich
municipality boundaries consists for this study of 1’424’520 individuals.

MiD 2002 also provides detailed vehicle information for every household. Linking this
data with individuals makes it possible to assign a vehicle to a person’s car trip and thus,
calculating emissions based on this detailed information. As of now there is, however, no
vehicle assignment module which models intra-household decision making. It is, therefore,
possible that a vehicle is assigned to more than one person at the same time.

• Commuter Traffic (based on Böhme and Eigenmüller [2006]):
Unfortunately, the detailed data for the municipality of Munich does neither contain in-
formation about commuters living outside of Munich and working in Munich nor about
people living in Munich and working outside of Munich. The data analyzed by Böhme
and Eigenmüller [2006] provides information about workers that are subject to the social
insurance contribution with the base year 2004. Origin and destination zones are classified
corresponding to the European “Nomenclature of Statistical Territorial Units” (NUTS)4,
level 3. Thus, the origin-destination flows between Munich and all other municipalities in
Germany are available. Neither departure times nor transportation mode are, however,
provided. The total number of commuters tends to be underestimated since public servants
and education trips are not included in this statistic. Therefore, every origin-destination
relation is increased by the factor 1.29 [Guth et al., 2010]. Initially, car trips are assumed
to 67% of the total commuter trips, public transport to 33% [MVV, 2007]. Departure times
are set so that people arrive at their working place, according to a normal distribution
with N(8 a.m., 2 hours) when routed on an empty network. Work end times are set to
nine hours after the arrival at the working place. This results overall in 510’150 commuters
from which 306’160 people have their working place in Munich. All these MATSim agents
perform a daily plan that encodes two trips: from their home location to work and back.
Due to this simplification, they are the first contribution to background traffic, as it will
be addressed from here on.

• Commercial Traffic (based on ITP/BVU [2005]):
The second contribution to background traffic is given by commercial traffic with the base
year 2004. On behalf of the German Ministry of Transport, ITP/BVU [2005] published
the origin-destination commodity flows throughout Germany differentiated by mode and

4 See http://epp.eurostat.ec.europa.eu/portal/page/portal/nuts_nomenclature/introduction,
last access 18.02.2011
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ten groups of commodities. Origin and destination zones inside Germany are classified
corresponding to NUTS 2, and outside Germany to NUTS 3 level, respectively. The
number of trucks (> 3.5 tons) between two zones or within a zone is calculated based on
the commodity flow in tons and the average loading of trucks.5 The starting and ending
points of the trips are due to the lack of more detailed data randomly distributed inside
the origin and destination zone, respectively. The resulting MATSim agents obtain a plan
that only consists of two activities with one intervening trip. Departure times are set so
that the number of en-route vehicles in the simulation matches a standard daily trend for
freight vehicles.5 For this scenario, trips are only considered if they are carried out at least
once in Bavaria during the day. This results in 158’860 agents with one single commercial
traffic trip.

Overall, the synthetic population now consists of 2’093’530 agents. To speed up computa-
tions, a 10%-sample is used in the subsequent simulations; other studies indicate that this seems
to be an appropriate percentage in order to achieve results close enough to reality (see e.g. Chen
et al. [2008]). For background traffic, no detailed vehicle information is available. Emissions
are, therefore, calculated with the help of fleet averages for cars and trucks from HBEFA.

3.2 Simulation Approach

Choice Dimensions For the mental layer within MATSim which describes the behavioral learning
of agents, a simple utility based approach is used in this paper. When choosing between different
options with respect to a Random Utility Model, agents are allowed to adjust their behavior
among two choice dimensions: route choice and mode choice. The former allows individuals
to adapt their routes on the road network when going by car. The latter makes it possible to
change the transport mode for a sub-tour (see Appendix) within the agent’s daily plan. Only a
switch from car to public transport or the other way around is possible. Trips that are initially
done by any other mode remain fixed within the learning cycle. From a research point of view,
this approach can be seen as defining a system where public transport is a placeholder for all
substitutes of the car mode.

Utility Functions In the calculations for the travel related part of utility (see Eq. 7 in the
Appendix), travel time and monetary distance costs are considered as attributes of every car
and public transport trip. Due to the lack of data of the municipality of Munich, the utility
parameters are taken from Kickhöfer [2009] who based the estimations on data from Switzer-
land provided by Vrtic et al. [2008]. The initial formulation of the utility functions for these
estimations is as follows:

Vcar,i,j = β0 + βtr,car · ti,car + βcost,car · ci,car
Vpt,i,j = βtr,pt · ti,pt + βcost,pt · ci,pt ,

(1)

where ti is the travel time of the trip to activity i and ci is the corresponding monetary cost.
Travel times and monetary costs are mode dependent, indicated by the indices. The utilities
Vcar,i,j and Vpt,i,j for person j are computed in “utils”. Estimating the parameters6

β̂tr,car = −2.26/h , β̂tr,pt = −2.36/h , β̂cost,car = −0.2/mU , β̂cost,pt = −0.0535/mU

and splitting the time related parameters into opportunity costs of time and additional disutility
caused by traveling (see e.g. Kickhöfer et al. [2011]), leads to the functional form7 for the overall

5 Estimations are based on personal correspondence with Dr. Gernot Liedke from Karlsruhe Institute of
Technology (October, 2010).

6 Estimated parameters are in this paper flagged by a hat. h is one hour and mU is a unit of money.
7 The alternative specific constant β0 (see e.g. Train [2003]), is estimated not significantly different from zero

and is, therefore, not considered in the functional form of the utility functions. This essentially means that no
general a-priori preference for one of the transport modes can be found in the data.
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utility of an activity:

Vcar,i,j = +
2.26

h
t∗,i · ln

(
tperf ,i
t0,i

)
− 0.2

EUR
· ci,car

Vpt,i,j = +
2.26

h
t∗,i · ln

(
tperf ,i
t0,i

)
− 0.0535

EUR
· ci,pt −

0.1

h
· ti,pt ,

(2)

In this paper, ci,car and ci,pt are calculated for every trip by multiplying the distance between
activity locations i − 1 and i by a distance cost rate of 10 ct/km and 17 ct/km, respectively.
For the functional form of the positive utility earned by performing an activity, please refer
to Eq. 8 in the Appendix. Because of the argument regarding the opportunity cost of foregone
activity time when arriving early (see Appendix), the effective marginal disutility of early arrival
is β̂earlyeff

= −β̂perf t∗,i/tperf ,i ≈ −β̂perf = −2.26/h which is equal to the effective marginal

disutility of traveling with car β̂tr ,careff
. The effective marginal disutility of traveling by pt is,

by the same argument, β̂tr ,pteff
= −β̂perf t∗,i/tperf ,i − |β̂tr ,pt | ≈ −β̂perf − |β̂tr ,pt | ≈ −2.36/h.

As a result of this simulation approach, it is possible to observe mode reactions to price
increases and to derive price elasticities of demand.

Simulation Procedure For 800 iterations, 15% of the agents perform route adaption (discovering
new routes), 15% change the transport mode for a car or pt sub-tour in their daily plan and 70%
switch between their existing plans. Between iteration 801 and 1000 route and mode adaption
is switched off; in consequence, agents only switch between existing options. The output of
iteration 1000 is then used as input for the continuation of the base case and the four different
policy cases:

• Base case: holding car user costs constant at 10 ct/km

• Policy case 1: increasing car user costs by 25% to 12.5 ct/km

• Policy case 2: increasing car user costs by 50% to 15 ct/km

• Policy case 3: increasing car user costs by 75% to 17.5 ct/km

• Policy case 4: increasing car user costs by 100% to 20 ct/km

The user costs for public tansport are assumed to be constant for all policy cases. All
simulation runs are continued for another 500 iterations. Again, during the first 400 iterations
15% of the agents perform route adaption while another 15% of agents choose between car and
public transport for one of their sub-tours. The remaining agents switch between existing plans.
For the final 100 iterations only a fixed choice set is available for all agents. When evaluating
the impact of the car user cost increases, the final iteration 1500 of every policy case is compared
to iteration 1500 of the base case.

3.3 Verification of the Base Case

Modal Split While converting the input data described by Follmer et al. (2004) into the MAT-
Sim synthetic population, quite a large number of individuals was omitted due to a lack of
coordinates or activity times. Therefore, Table 1 shows differences in the modal split over all
legs comparing the input data with the synthetic population at interation 0 and 1500. Note
that only the mode share of the population traveling within Munich is analyzed. As one can
see, the initial synthetic population overestimates the percentage of walk trips by 2.55% and
of bike trips by 2.05%, while underestimating the percentage of car trips by 3.52% and of ride
trips by 1.61%. Public transport trips remain almost unchanged and the unknown mode is not
discussed further due to the small number of trips. The error seems to be acceptable since no
major differences occur.
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Table 1: Trips per transport mode as percentage of total trips; Comparison between input data
(Follmer et al., 2004) and the MATSim synthetic population.

mode Follmer et
al. (2004)

Synthetic
population
it.0

Synthetic
population
it.1500

difference
it.0

difference
it.1500

bike 10 12.05 12.05 2.05 2.05
car 26 22.48 20.88 -3.52 -5.12
pt 22 21.98 23.59 -0.02 1.59

ride 13 11.39 11.39 -1.61 -1.61
undefined 0 0.55 0.55 0.55 0.55

walk 29 31.55 31.55 2.55 2.55

When the system is in a relaxed state, car trips are even more underestimated, whereas
public transport trips are overestimated compared to iteration 0. Reasons might be the missing
location choice module and the assumptions regarding the specification of the utility function.
Overall, the additional increase in public transport and decrease in car trips amounts only to
1.6%. Thus, the synthetic MATSim population seems to be a good starting point for analyzing
the change in travel demand and air pollutant emissions due to rising car user costs.

Comparison to Counting Stations Before analyzing demand and emission reductions, the realism
of the executed plans in the simulation is verified. The interaction of individuals on the physical
representation of the road network is simulated over 1500 iterations as described in Sec. 2.1.
After reaching a stable outcome, some kind of measurement must exist to determine the quality
of the simulation output. For the Munich region, data from 166 traffic counting stations is
available and aggregated for every hour over time of day.

(a) Comparison for one hour (2 p.m to3 p.m.) (b) Hourly analysis over time of day

Figure 1: Realism of the simulation results. 166 traffic counting stations provide real-world
traffic counts for the Munich municipality area.

The best quality of this data is available for Thursday, January 10th 2008. It is now used
to compare simulated traffic volumes to real-world values. Different statistical values can be
calculated, such as mean relative error or mean absolute bias. Fig. 1 shows two examples of
standard reports that MATSim automatically generates: Fig. 1a depicts the comparison for one
hour and all counting stations. If all data points were on a 45 degree line, the simulation would
nicely reproduce reality. However, as one can see, there are errors between simulated and real
values. The mean relative error for every sensor is a good indicator for the overall fit of the
simulation. It is calculated as:

MRE =
Qsim −Qreal

Qreal

, (3)

8



where Qsim indicates the simulated and Qreal the real-world vehicle flow over the corre-
sponding counting station in the corresponding hour. Averages for a given hour are obtained
by averaging over all sensors. In the example shown in Fig. 1b, the simulation deviates strongly
from reality during night hours, i.e. from midnight until 7 a.m. During daytime, i.e. from 7 a.m.
until the evening, the hourly mean relative error is between 30% and 50% with better values in
the afternoon.

In order to reach this accuracy, some adjustments were done, e.g. varying the parameters of
the normal distribution that describe work arrival time peak and variance for commuters (see
Sec. 3.1). For now, since this is meant to be a research scenario, the quality of the simulations
seems to be adequate. However, by further optimizing travel demand and network information,
better values for the mean relative error can be obtained as Chen et al. [2008] or Flötteröd et al.
[in press] showed for a scenario of Zurich, Switzerland.

4 The Relationship between Car Travel Demand and Air Pollutant Emissions

This section aims at investigating two research questions: (i) “Does congestion relief reduce
overall air pollutant emissions?” and if yes, (ii) “Can a spatial effect be observed?”. Sec. 4.1
derives overall price elasticities of car travel demand from the simulation and then compares
these to price elasticities of NO2 emissions. In a more disaggregated analysis, Sec. 4.2 will first
identify congested areas in the city of Munich. In a second step, a spatial distribution of relative
car travel demand and NO2 emission changes are calculated and compared.

4.1 Aggregated Price Elasticities

Possible reactions of car users to increasing distance costs comprise, in the present paper, either
choosing shorter but eventually more time consuming routes or changing the transport mode to
public transport, the placeholder for all substitutes to car.

Fig. 2 shows the daily demand for car trips over different distance cost factors (10 ct/km for
the base case to 20 ct/km for the highest policy case). The reduction in demand is differentiated
for the user groups of the population: black circles correspond to MiD data, red rectangles and
green crosses to inverse commuter and commuter, respectively. The MiD demand for car trips
drops from about 105’000 in the base case by 14% to roughly 90’000 in the highest policy case.
Much larger reductions in car travel demand are observed for the other two user groups: inverse
commuter car travel demand drops from 24’000 by 68% to 7’600, for commuter from 86’000
by 81% to 16’000. This is due to the much longer distances for these two groups where the
car mode gets extremely unattractive. Travel demand reactions for freight traffic is not shown
since this user group is not allowed to change from car (or truck) to public transport. The
figure also provides linear regression lines including their functional forms for every user group.
Even though, especially for commuter traffic, a linear regression obviously does not lead to the
best fit (one can nicely see the “inverse-S-shape“ produced by the logit model), it is still quite
appropriate in order to derive constant price elasticities.

Choosing p0 = 10 ct/km as operating point, price elasticities of demand can directly be
derived for every policy case i, using:

ηq,p =

qi−q0
q0

pi−p0
p0

, (4)

where qi is the number of car trips at price level pi. However, in order to describe the overall
relationship between user costs and car travel demand, a constant price elasticity can be derived
using the regression functions:

ηq,p =
dq

dp
· p0
q̂0

, (5)

where dq
dp is the gradient of the corresponding regression function and q̂0 is the estimated initial

demand for car trips at p0 = 10 ct/km. Applying Eq. 5 to all three user groups leads to the
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following estimated constant price elasticities of car travel demand:

η̂MiD
q,p = −0.126 , η̂Inverse.Commuter

q,p = −0.630 , η̂Commuter
q,p = −0.775 .

These estimations indicate that e.g. a car user cost increase of 10% (at the operating point
p0 = 10 ct/km) leads to a reduction in car trips by 1.26% for MiD, by 6.30% for inverse
commuter and by 7.75% for commuter. Graham and Glaister [2002] present a wide range of
fuel price elasticities collected from different studies. When summarizing the different studies,
the authors find short-term fuel price elasticities in the range from −0.2 to −0.5, for Germany
around −0.45. However, the range within Germany goes from −0.25 to −0.86. The fuel price
elasticities found in the present paper are smaller for MiD data but within the range for inverse
commuter and commuter. Obviously, introducing more choice dimensions in the model, such as
location choice or the possibility of dropping activities, is likely to influence the results. At this
point, it can be stated that, overall, the model produces reasonable reactions to car user price
increases.

Similarly to Fig. 2, overall NO2 emissions are shown in Fig. 3, again for the base case and
the four policy cases. Linear regression lines and functional form are also provided. In this
figure, freight traffic emissions are indicated by blue crosses, in order to show the big impact
of freight traffic emissions on overall emission levels. Since freight demand is not allowed to
change the mode to public transport, its emissions stay more or less stable for all policy cases.
Only a small reduction can be observed, probably resulting from shorter distances chosen by the
router module. Equally to the price elasticities of demand, price elasticities of NO2 emissions
are calculated:

ε̂MiD
q,p = −0.219 , ε̂Inverse.Commuter

q,p = −0.608 , ε̂Commuter
q,p = −0.792 .

These are found to be roughly the same for all exhaust emission types. When comparing
them to the price elasticities of car travel demand from above, one can notice a higher elasticity
of emissions than of demand for MiD. Thus, an increase in car user costs leads to a higher
reduction in emissions than in demand. This means, that for the MiD, congestion relief does
reduce overall NO2 emissions. The picture is, however, not as clear for inverse commuter and
commuter: emission elasticities are very similar to the demand elasticities, even being slightly
lower. This means for these user groups that an increase in car user costs leads to roughly the
same reduction in demand as in emissions. Thus, for these user groups, it cannot be proven
that congestion relief lowers car emissions. This effect might be explained by the fact that
inverse commuter and commuter drive a major part of their routes almost on a network without
congestion. Demand outside the municipality of Munich which is not touching the area of Munich
during the day is not modeled. The network outside of Munich is, therefore, underloaded. When
spatially decomposing the effect of congestion relief on emissions in the following section, only
the MiD demand will be used.

4.2 Spatial Analysis of Relative Changes in Car Travel Demand and Air Pollutant Emissions

This section analyzes car travel demand and NO2 emissions on a spatially disaggregated level.
According to the methodology of the emission modelling tool, the NO2 emissions can be ag-
gregated per link. For visual presentation of the emission distribution within the urban area
of Munich, the emissions are smoothed following inverse distance weighting with a modified
weighting function.

Starting with the base case shown in Fig. 4, the inner urban area is exposed to much less NO2

emissions compared to the area around the middle ring road and other road sections showing
a high car travel demand. This finding is supported by the situation of the car travel demand
in the city. In the inner urban area the car travel demand is relatively low resulting in less
congestion compared to the middle ring road and its neighbourhood. Towards and along the
motorways the emission level is high. The population exposure of NO2 emissions near these
road sections is critical which is also shown by the air pollutant concentration levels at the
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Figure 2: Overall daily car trips for the base case and the four policy cases by user
group: simulated values and estimations as linear regression functions; values for a
representative 10% sample.
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policy cases by user group: simulated values and estimations as linear regression
functions; values for a representative 10% sample.
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Figure 4: Spatial averaging of NO2 emissions in grams per link for the base case, all user groups,
values for a representative 10% sample.

monitoring station at Landshuter Allee [LFU, 2011]. The question is now, if an increase in car
user costs reduces car travel demand significantly to reduce the environmental effects.

In order to compare the base case with a policy case the relative change in travel demand
and in emissions, ri/0, is calculated using:

ri/0 =
qi − q0
q0

, (6)

where q depicts either the car travel demand or the emissions, 0 stands for the base and i for the
respective policy case. For the relative change in car travel demand and NO2 emissions between
the base and policy cases the change is higher for both components the higher the user costs
(see Fig. 5 and Fig. 6). Especially in the northern part of Munich including a part of the middle
ring road emissions are significantly reduced in all policy cases. The decrease of emissions in the
southern part of Munich is less and at a few locations even increasing. The latter effect may be
caused by the reduced travel time due to less car travel demand that outweighs the higher car
user costs.

The comparison between the relative change in car travel demand and the relative change
in NO2 emissions of the policy cases with a 50% and 100% increase in car user costs shows the
effect of traffic congestion relief on air pollutant emissions (see Fig. 5 and Fig. 6). The emissions
caused along a congested road are about twice as much as when the traffic is flowing. When car
travel demand is reduced and, thereby, the traffic situation on the link changes from stop&go
to saturated or even heavy, the emissions are more reduced than the demand. The congestion
relief can be observed along the middle ring road, which shows a high level of car travel demand
in the base case with some minor exceptions. At Luise-Kiesselbach-Platz the relative change
in car travel demand is between -0.17 and 0.0 whereas the relative change in NO2 emissions is
between -0.25 and -0.21 if car user costs increase by 100% (see arrows in Fig. 6).
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(a) Car travel demand

(b) NO2 emissions

Figure 5: Relative change between the policy case with a 50% increase in car user cost and the
base case, values for a representative 10% MiD sample.
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(a) Car travel demand

(b) NO2 emissions

Figure 6: Relative change between the policy case with a 100% increase in car user cost and the
base case, values for a representative 10% MiD sample.
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5 Conclusion

In this paper, the analysis of congestion relief on air pollutant emissions in the municipality of
Munich required a twofold approach: the mapping of emissions back to the link allows the deter-
mination of the travel behavior per agent and location during the entire simulation. Thereby, it
can be identified if a vehicle is in a stop&go mode or another traffic situation. At the same time
large-scale scenarios can be run making an investigation of rising car user costs in the entire
urban area possible. The price elasticities of car travel demand were found to be reasonable as
for inner urban travelers they were close to the lower boundary of the range of common car user
price elasticities and for commuters and inverse commuters within the range.

The analysis of car travel demand and NO2 emissions showed that congestion relief has a
significant impact on the reduction of emissions for car travel demand within the urban area.
This means, at an aggregated level one can observe a higher price elasticity of NO2 emissions
than of car travel demand within the city. For commuters and inverse commuters this effect
was not found which might be explained by model specifications. The spatially disaggregated
analysis of car travel demand and NO2 emissions supports the finding for inner urban car
travelers. Areas with a high car travel demand were identified and showed a higher relative
decrease in emissions than in demand.

This paper could add valuable information to the transport planning and policy decision
making process. Some further enhancements including a sensitivity analysis of the distance
costs of the utility function are useful to evaluate the stability of the results. Moreover, the
extension of the emission tool towards the modelling of air pollutant concentration allows a
comparison of the results with measured concentration values.
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Appendix: Simulation Details

The following paragraphs are meant to present more information about the MATSim simulation
approach that is used in this paper. Every step of the iterative loop in Sec. 2.1 is in the following
illustrated in more detail.

Plans Generation An agents daily plan contains information about his planned activity types
and locations, about duration and other time constraints of every activity, as well as the mode,
route, the desired departure time and the expected travel time of every intervening trip (= leg).
Initial plans are usually generated based on microcensus information and/or other surveys. The
plan that was reported by an individual is in the first step marked as “selected”.

Traffic Flow Simulation The traffic flow simulation executes all selected plans simultaneously
in the physical environment and provides output describing what happened to each individual
agent during the execution of its plan. The car traffic flow simulation is implemented as a
queue simulation, where each road (= link) is represented as a first-in first-out queue with two
restrictions [Gawron, 1998, Cetin et al., 2003]: First, each agent has to remain for a certain
time on the link, corresponding to the free speed travel time. Second, a link storage capacity is
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defined which limits the number of agents on the link; if it is filled up, no more agents can enter
this link. The public transport simulation simply assumes that traveling takes twice as long as
traveling by car on the fastest route in an empty network8and that the travel distance is 1.5
times the beeline distance between the activity locations. public transport is assumed to run
continuously and without capacity restrictions [Grether et al., 2009, Rieser et al., 2009].

All other modes are modeled similar to public transport: travel times are calculated based
on mode specific travel speed and the distance estimated for public transport. However, the
attributes of these modes are not relevant for the present paper since agents are only allowed
to switch from car to public transport and the other way around. Trips from the survey that
are no car or public transport trips, are held fixed during the learning cycle, thus not changing
mode share in any direction.

Output of the traffic flow simulation is a list that describes for every agent different events,
e.g. entering or leaving a link, arriving or leaving an activity. These events are written in
XML-format and include agent ID, time and location (link or node ID). It is, therefore, quite
straightforward to use this disaggregated information for the calculation of link travel times or
costs (which is used by the router module), trip travel times, trip lengths, and many more.

Evaluating Plans In order to compare plans, it is necessary to assign a quantitative measure
to the performance of each plan. In this work, a simple utility-based approach is used. The
elements of our approach are as follows:

• The total utility of a plan is computed as the sum of individual contributions:

Vtotal =
n∑

i=1

(
Vperf ,i + Vtr ,i

)
, (7)

where Vtotal is the total utility for a given plan; n is the number of activities; Vperf ,i is the
(positive) utility earned for performing activity i; and Vtr ,i is the (usually negative) utility
earned for traveling during trip i. Activities are assumed to wrap around the 24-hours-
period, that is, the first and the last activity are stitched together. In consequence, there
are as many trips between activities as there are activities.

• A logarithmic form is used for the positive utility earned by performing an activity:

Vperf ,i(tperf ,i) = βperf · t∗,i · ln
(
tperf ,i
t0,i

)
(8)

where tperf is the actual performed duration of the activity, t∗ is the “typical” duration of
an activity, and βperf is the marginal utility of an activity at its typical duration. βperf is
the same for all activities, since in equilibrium all activities at their typical duration need
to have the same marginal utility. t0,i is a scaling parameter that is related both to the
minimum duration and to the importance of an activity. As long as dropping activities
from the plan is not allowed, t0,i has essentially no effect.

• The disutility of traveling used for simulations is estimated from survey data which is
explained in Sec. 3.2.

In principle, arriving early or late could also be punished. For the present paper, there
is, however, no need to do so, since agents are not allowed to reschedule their day by changing
departure times. Arriving early is already implicitly punished by foregoing the reward that could
be accumulated by doing an activity instead (opportunity cost). In consequence, the effective
(dis)utility of waiting is already −βperf t∗,i/tperf ,i ≈ −βperf . Similarly, that opportunity cost has
to be added to the time spent traveling.

8 This is based on the (informally stated) goal of the Berlin public transport company to generally achieve
door-to-door travel times that are no longer than twice as long as car travel times. This, in turn, is based on the
observation that non-captive travelers can be recruited into public transport when it is faster than this benchmark
Reinhold [2006].
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Learning After evaluating daily plans in every iteration, a certain number of randomly chosen
agents is forced to re-plan their day for the next iteration. This learning process is, in the
present paper, done by two modules corresponding to the two choice dimensions available: a
module called “router” for choosing new routes on the road network and a module called “sub-
tour mode choice” for choosing a new transport mode for a car or public transport trip. The
router module bases its decision for new routes on the output of the car traffic flow simulation
and the knowledge of congestion in the network. It is implemented as a time-dependent best
path algorithm [Lefebvre and Balmer, 2007], using generalized costs (= disutility of traveling)
as input. The sub-tour mode choice module changes the transport mode of a car sub-tour to
public transport or from a public transport sub-tour to car. A sub-tour is basically a sequence
of trips between activity locations. However, the simulation needs to make sure that a car can
only be used if it is parked at the current activity location. Thus, a sub-tour is defined as a
sequence of trips where the transport mode can be changed while still being consistent with the
rest of the trips. It is e.g. assured that a car which is used to go from home to work in the
morning needs to be back at the home location in the evening. If the car remains e.g. at the
work location in order to use it to go for lunch, then the whole sub-tour of going to work and
back needs to be changed to public transport.
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