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ABSTRACT

This paper describes the modeling of destination choice for discretionary activities in a multi-1

agent transport simulation, using MATSim as an example. MATSim is based on utility maximiza-2

tion. Randomness was included implicitly and in an uncontrolled way through the stochasticity3

of the simulation process, and sometimes through a logit choice model. Unobserved hetero-4

geneity is now added directly to the utility function through a random error term. Importantly,5

those random error terms are quenched, i.e., they will be the same for repeated executions of6

the choice model. Real-world simulation experiments for Zurich show that this substantially7

improves results.8

High-resolution destination choice for large-scale microsimulations raises several technical9

issues; pragmatic engineering solutions have been developed or applied to cope with them.10

These solutions are described in technical detail to assist in the further development of similar11

microsimulations.12
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INTRODUCTION, PROBLEM AND GOAL

Computational Process vs. Utility-Based Models1

There are two general transport microsimulation types: computational process models and2

utility-based models. Utility-based models focus on the definition of final decision outcomes.3

These outcomes maximize the decision maker’s utility, subject to constraints. Computational4

process models, on the other hand, assume that decisions are captured realistically by focusing5

on the decision process, guided by heuristic decision rules.6

Destination choice in utility-based transport microsimulators is mainly based on discrete7

choice models, where the choice set is constructed obeying various constraints, such as Häger-8

strand’s space-time prisms (see e.g., (1, 2, 3, 4)).9

MATSim (5) belongs to the strand of utility-based transport simulation frameworks. The10

persons’ activity chains are iteratively simulated, adapted and evaluated by a utility function as11

described later.12

Heterogeneity13

Transport models need to adequately treat heterogeneity in the context of travel decisions, usually14

modeled by random error terms for every person-alternative pair and by probability distributions15

for the model coefficients (mixed models).16

This is explained in more detail by a prototypical example: a toll road, with a non-toll, but17

slower, alternative. In the absence of congestion, the Nash equilibrium solution has, for any18

given origin-destination (OD) pair, either all demand on the toll road, or all demand on the19

non-toll road. This is not realistic; for certain values of toll and travel time, the traffic streams20

will split onto both options.21

A typical approach to the problem assumes person-specific unobserved attributes for every22

alternative modifying the utility; i.e., one has:23

Upi = Vpi + εpi , (1)

where p is the person index, and i the index for the alternative. As usual, V denotes the systematic24

part of the utility (the same for every person of a given OD relation), ε is the random offset, and25

U is the resulting utility on which the user equilibrium will be based. As is well known, one26

typically progresses assuming that the εpi are independently and identically Gumbel distributed,27

leading to the logit choice model, and from there, to the stochastic user equilibrium (SUE).28

An alternative is to assume that there are person-specific coefficients that modify the decision.29

Let us, for example, take individual values-of-time VoTp. For this, let us assume that V is of the30

form:31

Vpi = −α tpi − γpcpi ,

where t is travel time, c the toll (“cost”), α the weighting factor of time, and γp the weighting32

factor of the toll. Importantly, γp depends on the person. Assuming that travel times and toll33

payments are the same for everybody, then alternative i is better than alternative j if34

Vpi > Vp j ,
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where the last equation is only valid when t j > ti. Assuming then that i is the toll option,1

one finds that i is accepted only when the payment divided by the time gain is less than the2

person-specific value of time. Persons with a large value of time will tend to use the toll road;3

persons with a small value of time will tend to use the non-toll, slower road.4

However, it is not possible to use the taste variation approach without the unobserved5

attributes approach, since not all heterogeneity in behavior can be explained by taste variations.6

Drawing on the example above, there may be an OD relation where the toll road is both slower7

and more expensive, i.e., it is pareto-dominated. That some users may use it anyway can8

thus, within the utility-maximizing framework, only be explained by additional, unobserved,9

attributes.10

Repeated Draws: Quenched vs. Annealed Randomness11

Including Randomness in the Microsimulation12

One assumed advantage of microsimulation is the conceptually straightforward inclusion of13

heterogeneity. In the first instance, one can, whenever it is needed, either14

• randomly draw from a choice model given as probability distribution or15

• randomly generate an εpi for every person-alternative pair and select an alternative i as16

argmax
i∈choice set

Upi .17

For mixed logit models, one can also draw a VoTp from a distribution (e.g., 6, 7).18

In both cases, however, problems with repeated draws must be solved. Repeated draws mean19

that the same individual p is repeatedly faced with an identical choice, a frequent situation in20

iterative models. Obviously, the VoTp of individual p should not change from one such draw to21

the next, and similarly, the εpi should remain fixed once they have been drawn for the first time.22

For the same reason, neither the εpi nor the VoTp should change during the introduction of a23

policy measure, except when it affects them directly.24

In physics, this would be called “quenched” randomness; all randomness is computed25

initially and then attached to particles or locations, rather than instantaneously generating it,26

which would be called “annealed” randomness.27

Implementing Quenched Randomness28

Quenched randomness can be achieved by applying one of the following two strategies:29

• (a) Freezing the applied global sequence of random numbers, meaning that a Monte Carlo30

method with the same random seed is used before and after the introduction of a policy31

measure and over the course of iterations. Thus, the VoTp and εpi should come out the32

same way before and after the introduction of the policy measure. Differences in the33

outcome can thus be directly attributed to the policy measure.34

• (b) Computing and storing a separate εpi for every combination of person p and alterna-35

tive i.36
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The authors reviewed relevant literature, but could not determine strategies applied in each1

case in other large-scale transport microsimulations. Through personal e-mail communication2

with the simulator authors, some answers emerged: in AMOS and OpenAMOS (8, 9) (a) is3

applied. In Albatross (10) both (a) and (b) have been applied. For the NYC activity-based4

microsimulation (11) in most cases (a) is used, although they recently switched to (b). The5

Tel Aviv model (12) is based on (a). The Sacramento and Portland models developed by Mark6

Bradley and John L. Bowman besides others (e.g., 13, 14) apply (a).7

Both strategies have flaws. Approach (a) is only an option if one is certain about all aspects8

of the computational code. Importantly, one additional random number, drawn in one run but not9

in the other, completely destroys the “quench” for all decisions computed later in the program.10

Thus, approach (b) could be more robust in practice. However, for large numbers of decision11

makers and/or alternatives, storing error terms is difficult. For destination choice, one quickly12

has 106 decision makers and 106 alternatives, resulting in 4 × 1012Byte = 4TByte of storage13

space.14

One may argue that this should not be a problem, since a normal person will rarely consider15

more than the order of a hundred alternatives in their choice set, reducing the computational16

problem. Aside from the necessity of storing every decision maker’s choice set, this converts the17

computational problem into a conceptual one, since a good method to generate choice sets then18

needs to be found. With more conceptual progress, this may eventually be an option, but at this19

point, a conceptually simpler approach is preferred.20

As far as the authors know, this set of problems has not been discussed in existing literature.21

In this paper, we present a relevant solution for the computational problem associated with22

approach (b).23

MATSim and Heterogeneity24

The utility function used until now (for route and time choice) did not contain a random error25

term. However, a certain amount of randomness (i.e., unobserved heterogeneity) implicitly26

entered the model: Two identical persons with the same origin and destination may still end27

up with different routes according to the random order in which they undergo the replanning.28

Essentially, this means that a random term is added implicitly to the choices. Also, some29

investigations applying MATSim use a logit choice model, thus adding another element of30

randomness.31

However, this randomness is introduced in an unsystematic manner. Future investigations32

are thus necessary for these choice dimensions, but this paper is focused on destination choice.33

Heterogeneity in the New Destination Choice Model34

The newly added MATSim destination choice model, like most operational destination choice35

models, does not take locational competition into account. Thus, constraints coupled to competi-36

tion cannot introduce unobserved heterogeneity the way they can for time and route choice.37

This means that every time a synthetic traveler is up for leisure destination choice (for38

example), he or she will switch, if available, to a new leisure location generating a higher score.39

Without additional measures, such a leisure location will almost always either be closer to40

home, or closer to a trip that is done anyway, such as work-to-home. With this setup, leisure41
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trip distances keep decreasing over the iterations.1 In practice, not taking into account the1

unobserved heterogeneity leads to a dramatic underestimation of total travel demand (visible in2

too-short travel distances, too-short travel times and underestimated link volumes as compared3

to count data) as shown below and in (16).4

The intuitive explanation is that synthetic travelers do not differentiate between possible5

destinations; one leisure or shopping location is as good as any other. An “observed” way to6

address this problem might be to differentiate these facilities by type, e.g., leisure facilities into7

tennis, swimming, rock climbing, parks, etc. However, in many cases, neither the land use nor8

the observed tastes are available, and even then some unobserved heterogeneity will remain.9

To conclude, when including destination choice, explicit random error terms should be used10

to be compatible with econometric discrete choice methodology (17).11

This Paper’s Goal12

This paper will introduce an operational destination choice approach to overcome the problems13

identified below for high-resolution microsimulations. To test the new approach, a suitable14

module is implemented in MATSim.15

In this paper, unobserved heterogeneity is explicitly incorporated as an error term in the16

utility function. Random taste parameters are not discussed, but are left for future work.17

The following technical issues are raised:18

First, as discussed above, with MATSim’s iterative structure, drawing from error distributions19

is not straight-forward. This holds for all iterative procedures. If the error term is drawn per20

iteration with an arbitrary random seed, there is no convergence toward a stable solution. An21

efficient mechanism to assign a fixed individual error term per person-alternative pair εpi (for22

person p and destination i) will be presented.23

Second, travel times are a very important determinant in destination choice. Calculating24

travel times includes routing, which is computationally very expensive. This makes computation25

of travel times for many alternatives, as it is necessary for destination choice, difficult, or even26

unfeasible. This problem is investigated and a first solution is presented.27

METHOD: DESIGNING THE MATSIM DESTINATION CHOICE MODULE

MATSim28

MATSim is an activity-based, extendable, open source, multi-agent simulation toolkit imple-29

mented in JAVA and designed for large-scale scenarios and is a co-evolutionary model. In30

competition for space-time slots on transportation infrastructure with all other agents, every31

agent iteratively optimizes its daily activity chain by trial and error. Every agent possesses32

a fixed amount of day plans memory, where each plan is composed of a daily activity chain33

and an associated utility value (in MATSim, called plan score). Computation of plan score is34

compatible with micro-economic foundations and is described in more detail below.35

Before plans are executed on the infrastructure in the network loading simulation (e. g.,36

18), a certain share of agents (usually 10%) is allowed to select and clone a plan (here: the37

plan with the highest score per agent) and to subsequently modify this cloned plan. Three38

1Note that this occurs only when iterative choice dimensions include destination choice. There are very few
MATSim papers doing this (15, 16).
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choice dimensions are considered: time choice (19), route choice (20), and destination choice as1

described in this paper.2

If an agent ends up with too many plans (here set to “5 plans per agent”), the plan with the3

lowest score (configurable) is removed from the agent’s memory. One iteration is completed by4

evaluating the agent’s day described by the selected day plans.5

If an agent has obtained a new plan, as described above, then that plan is selected for6

execution in the subsequent network loading. If the agent has not obtained a new plan, then7

the agent selects from existing plans. The selection model is configurable. In many MATSim8

investigations, a model generating a logit distribution is used. However, for this paper, agents9

will select the plan with the highest score.10

The MATSim Utility Function11

The basic MATSim utility function was formulated in (21), from the Vickrey model for road12

congestion as described in (22). Originally, this formulation was constructed for departure time13

choice. Several studies e.g., (23), indicate that the extended function is productive for modeling14

time choice of complete days, including route choice. It has thus been adopted as the starting15

point for handling destination choices.16

The utility of a plan Uplan (described in detail in 21) is computed as the sum of all activity17

utilities Uact,q plus the sum of all travel (dis)utilities Utrav,q18

Uplan =

n∑
q=1

Uact,q(typeq, startq, durq) +

n∑
q=2

Utrav,q(locq−1, locq) ,

where typeq, startq and durq are the type, start time and duration of the activity q respectively.19

Utility of an activity is essentially dependent on activity duration. Details are given in (23). The20

parameter setting described in this paper is applied to the real-world simulation configurations21

2 and 3. For configurations 0 and 1, different utility functions are employed, described at the22

appropriate location.23

Earlier MATSim Destination Choice Solutions24

The Swiss Census of Population 2000 (24) can identify home and work locations for every25

Swiss resident at hectare and municipality level respectively. Clearly, such information can not26

be logged for discretionary activities. However, to run an activity-based simulation, reasonable27

destinations for these activities must be assigned. First, a simple neighborhood search, as28

described in (23), was employed in a preprocessing step. That approach is not part of the29

optimization process and does not accurately model destination choice.30

A first improvement in destination choice—including it in the optimization process—was31

introduced by (15), based on Hägerstrand’s time geography. However, unobserved heterogeneity32

was not taken into account in that module or in MATSim. Thus, a significant underestimation33

of travel demand resulted and the module could not be productively employed. Furthermore,34

that module is based on local search. Local search applicability, however, is questionable on35

destination choice utility space. Its specific characteristics are explained later.36
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Incorporating Heterogeneity by Individual Error Terms in an Iterative Model1

In iterative models, ensuring a stable choice for the same person doing the same choice over2

the course of the iterations can be achieved as follows. Fixed random error terms are assigned3

to every person-destination pair pi. These terms can be randomly assigned in a preprocessing4

step and held constant over the course of iterations. The optimization is then performed as a5

deterministic search based on the resulting utility function. In fact, this can be seen as a return6

to the roots of random utility modeling – rather than absorbing the εpi into the choice model,7

they are now explicitly generated.8

However, when trying to store these error terms directly, an infeasible storage effort results9

for large-scale scenarios as shown earlier. Instead, the same stable error term can be re-calculated10

on the fly by using the random seed spi = g(kp, ki). The distribution of these seeds is essentially11

irrelevant. In this paper kp is a fixed uniformly distributed value per person p, and ki is a fixed12

uniformly distributed value per destination i. In this work g(kp, ki) = (kp × ki) × vmax is used.13

vmax is the maximum (long) number that can be handled by the specific machine.14

To evaluate utility for a person p visiting the destination i a sequence of Gumbel-distributed15

random numbers seqpi is generated on the fly for every person-alternative pair using the seed spi.16

The error term εpi is then derived from the mth element of the sequence seqpi[m]. Here, m is set17

to 10. This procedure is valid as the set of all mth elements of all different sequences is also a18

pseudo-random sequence following the same distribution as the sequences seqpi. In this work,19

a standard Gumbel distribution (i.e., location parameter µ = 0 and scale β = 1) is applied. It20

is first scaled to produce a 1.0 standard deviation. Second, as no utility function estimation is21

yet available, calibration of error terms is performed, where two parameters fshopping (here set to22

0.95) and fleisure (here set to 1.35) are used. Clearly, true random number generators relying on23

physical phenomena, such as hardware temperature, are not applicable.24

Designing the Destination Choice Module25

Essentially, MATSim is based on random mutation. However, the huge number of available26

alternatives for all choice dimensions (and hence curse of dimensionality) makes the introduction27

of optimizing mechanisms indispensable, i.e., mechanisms that return a "good" rather than a28

random alternative from the set of available alternatives.29

Search Space and Search Method30

The discrete search landscape is characterized by random noise because error terms are not (or31

only locally) spatially correlated (see Figure 1). For such problems, efficient search methods,32

such as local search methods, generally do not work. Furthermore, in the model and, in reality,33

utility contributed by the error term is unlimited. The search space for potential destinations34

is hence unlimited. Unfortunately, exhaustive search usually produces prohibitively large35

computation efforts for large-scale scenarios. Thus, the application of problem-tailored heuristics36

and approximations is unavoidable.37

A first attempt to narrow down individual search space Γpq for person p and activity q is as38

follows. In discrete choice theory, individual p chooses alternative i, producing maximum utility39

for activity q:40

Uiqp ≥ U jqp,∀ j ∈ choice set ,
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that is1

Viqp + εiqp ≥ V jqp + ε jqp,∀ j ∈ choice set ,

where V denotes the deterministic part of the utility function. V is usually composed of travel2

effort Vtravel and utility for performing an activity Vper f orm. Hence, the above formula gives:3

Vtravel,iqp + Vper f orm,iqp + εiqp ≥ Vper f orm, jqp + Vtravel, jqp + ε jqp,∀ j ∈ choice set .

In MATSim, Vper f orm, jqp is equal for all destinations j if the performed activity time is equal and
it decreases with increasing travel effort. Hence, maximum potential travel effort is equal to

εpq,max := max
ω∈choice set

εωpq .

This defines the upper-most boundary of the search space. Actually, search space is restrained4

by the travel effort to reach the destination associated with the largest error term. However, it is5

assumed that this stopping condition is seldom satisfied, and thus, its efficiency does probably6

not justify the additional implementation and computation complexity. Instead, the search space7

can be further restrained under the natural assumption that an activity is dropped if it does not8

generate positive utility at least for one destination, i.e.,9

Vtravel, jpq + Vper f orm, jpq + ε jpq
!
> 0 .

The dependency of Vper f orm on Vtravel is difficult. To make things worse, Vper f orm is usually10

non-linear. Fortunately, Vper f orm can be omitted when searching for an upper bound for the11

accepted travel costs. Clearly, Vper f orm is larger for closer locations: The longer the trip takes,12

the less time there is to perform the activity. In other words, the benefit decreases by traveling13

due to travel costs Vtravel and opportunity costs (loss of Vper f orm). This loss must be at least14

compensated by the error term for a person to choose a more distant destination and to not15

stay at the current (closer) location: A person only travels farther if that effort produces a net16

benefit. An upper bound for maximum search space can thus be found by considering only the17

compensation of the travel costs, i.e., by ignoring the opportunity costs (lost activity performing18

time).19

Hence the above equation becomes after setting ε jpq := εpq,max and rearranging:20

Vtravel,pq > −εpq,max .

Note that Vtravel is negative. The destination index j can be omitted, as the formula is not21

destination-dependent.22

Now assume:23

Vtravel,pq = βpq × fpq(t, d,m) ,

where βpq is the individual cost coefficient for person p and usually negative. fpq(t, d,m) is the24

travel cost function, usually composed of time (t), distance (d) and monetary (m) costs.25

Maximum travel costs defining search space are thus given after rearranging by:26

fpq(t, d,m) <
−εpq,max

βpq
.
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The inequality sign changes as βpq is negative. In this paper, linear travel distances Vtravel,pq =1

βdistance,pq × distance are used as travel disutilities.2

Therefore, the above equation translates to:3

distancemax
pq <

−εpq,max [ ]

βdistance,pq [ 1
m ]
. (2)

This approach is promising, as very large values for εpq,max are rare (Figure 2(a)), meaning that4

a huge space must be searched for only a few persons. The search space Γpq is constructed as5

follows. Let us assume that for the activity q of person p, a new location lpq has to be found. Γpq6

can then be defined as a circle whose center is the mid-point between the preceding activity lpq−17

and the succeeding activity lpq+1.8

The radius of the circle is set to:9

rΓpq = (distance(lpq−1, lpq+1) + distancemax
pq )/ψ .

The most productive value for ψ is not yet apparent. For every discretionary trip, there is a10

distancemax
pq that person p is willing to travel at most. Looking at an individual discretionary tour11

with fixed and identical locations lpq−1 = lpq+1 clearly distancemax
pq includes the return trip and12

ψ = 2 is thus a natural choice. But, for consecutive multiple discretionary activities the search13

space is probably larger, and ψ is thus smaller. However, essentially, the value of ψ is subject to14

calibration and needs further research. In this paper, ψ = 2 is used.15

It is crucial that Γpq can be computed fast and that all destinations actually accessible are16

contained. On the other hand, only computation times, but not the quality of the results, are17

influenced if destinations that are actually inaccessible are included in the evaluation. For that18

reason, it is possible to approximate the travel distance distancemax
pq by the straight-line distance.19

This distance can then be computed once in a preprocessing step.20

Convergence Speed, MATSim Best Response and Computation Times21

Normally, exactly one alternative per choice dimension is evaluated in each MATSim iteration.22

This procedure is reasonable as the persons interact in the infrastructure and influence each23

others’ choices, which can be regarded as a feedback mechanism.24

For destination choice, due to numerous available destinations in the search space, a huge25

number of iterations is required, resulting in a very low convergence speed.26

As long as the change of travel costs between succeeding iterations is not too large, multiple27

search space destinations can be evaluated per person and per iteration. Normally, the relatively28

small share of agents who re-plan, keep the inter-iteration changes small. Thus, increasing the29

number of evaluated alternatives per iteration might be feasible. This reduces the number of30

iterations and substantial costs associated with simulation of network loading.31

Despite this simulation time reduction, computation times are still infeasible and further32

speed-ups are necessary. For the 10% Zurich scenario with approx. 68’000 persons, one iteration33

takes roughly 20 hours, even when using multiple processor cores. Most computation time is34

due to calculation of travel times, i.e., due to routing, in the context of large alternatives sets. To35

reduce these huge routing costs, the following procedure is applied.36

Let us assume that location lq of activity q is changed, where all other plan activities are37
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fixed. Travel times for routes between activity location lq−1 and all potential locations lq can be1

exactly and efficiently computed by Dijkstra’s algorithm because it efficiently computes the best2

routes from one location to all other locations in the network. Travel times of the best routes3

between activity locations lq and lq+1 are computed by running Dijkstra’s algorithm backwards,4

using an average estimated arrival time as initial time. This is an approximation, as the arrival5

time at lq+1 is different for different locations lq.6

To reduce possible approximation errors, a probabilistic best response is applied. Search7

space destinations are evaluated as described above; then a random choice weighted by these8

approximated scores is performed. The plan containing the new choices is finally simulated and9

eventually scored, based on exact travel times by the MATSim iteration scoring. This approach10

is justified by the assumption that, during the course of the iterations, the probabilistic choice11

probably reduces—or even compensates for—the errors incurred by approximating travel times12

as described above.13

However, the probabilistic choice brings back the problem of slow convergence. If every14

alternative in the search space is chosen with probability greater than zero, this huge set15

necessitates a large number of iterations. For reasonable convergence, the probabilistic choice16

must be performed on a reduced choice set. Thereby, restraining the choice set to the φ17

destinations producing the highest approximate plan scores is natural. φ is essentially dependent18

on the approximation error done by estimating travel times. For our purposes φ is set to 30 but19

this value also needs further research.20

With this procedure the required computational effort is dramatically reduced, allowing21

application of destination choice to large-scale scenarios. One iteration of the 10% Zurich22

scenario takes roughly 25 minutes (instead of 20 hours). The simulation is run with 10 parallel23

JAVA threads and approximately 15GB of RAM. The Linux server is equipped with an Intel24

Xeon(R) processor, 3.33GHz, with 24 cores and 96GB of RAM.25

RESULTS

The paper investigates the direct inclusion into the utility function of heterogeneity that was26

so far not present in MATSim. Solutions are presented to overcome serious computational27

difficulties in large-scale scenarios using examples integrated in both a small-scale scenario and28

a real-world scenario (the often used Zurich scenario as described below).29

Synthetic Small-Scale Scenario30

The synthetic scenario is composed as follows. The study area is a 20 km square. The network31

consists of 6561 nodes and 25920 directed links, building a grid of 6400 squares. The link32

capacities are 400 vehicles per hour. The scenario consists of 2000 persons, whose home33

locations are located at 40 central locations in the study area. 12960 shopping destinations are34

equally distributed over the study area, so that every square is connected with 4 destinations.35

Persons’ activity chains contain two home activities with an intermediate shopping activity.36

During the iterations, time, route and destination choices are made. Initially, all shopping37

activities are performed at the home location. The initial end time of the first home activity is 1138

o’clock and the desired shopping duration is arbitrarily set to 180 minutes. The opening times39

window is set narrow (from 9:30 to 14:30) so that persons cannot completely circumvent traffic40

jams. These values roughly represent Saturday shopping trips. Real data is applied in the Zurich41

scenario as described below.42
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The following two configurations are simulated:1

• Configuration 0: U = ε .2

The utility function applied for this configuration is made up only of error terms.3

• Configuration 1: U = βdistance×distance+ε, with βdistance = const = −0.0005[ 1
m ] . In this4

configuration a distance-based utility function is applied; i.e., a linear disutility distance5

term is added to the setting of configuration 0.6

As travel times are not part of the utility function for the configurations 0 and 1, the travel7

time approximation described earlier is not applied for these configurations. The error terms ε8

are independently and identically (i.i.d.) Gumbel distributed with σε = 1.9

Configuration 010

In this configuration choices are independent of travel costs. The resulting distance distribution11

is shown in Figure 2(b). Starting from the center, and increasing the travel distance, the number12

of destinations increases linearly. This means that also the probability for finding the destination13

generating maximum utility increases linearly with distance. As soon as the boundaries of the14

study area are reached, the probability of finding an even better alternative by increasing the15

travel distance again decreases. The relatively slow decrease is due to the geometrical setting.16

The area of potentially better destinations is a circle, where the study area is a square. Thus,17

some agents find their best option in the corner areas of this square, lying already outside of the18

circle mentioned before.19

The distribution of the maximum score (utility) per person again follows a Gumbel distribu-20

tion (see Figure 2(a)).21

Configuration 122

In Figure 2(b), the distance distribution roughly follows a negative exponential distribution as23

observed in empirical data, such as the Swiss National Travel Survey (25). This means that,24

in essence, realistic distance statistics can be produced very efficiently without imposing any25

complex boundary conditions (as in the earlier MATSim destination choice models, see 16) or26

applying complex behavioral models.27

When looking at real data, a relatively long distribution tail can usually be observed even for28

home-based round-trips; whereas for this scenario long distances are rare. Although the scenario29

is synthetic, this may be further evidence that the distance cost perception function might be30

better assumed to be non-linear with decreasing marginal costs for very long distances.31

As mentioned earlier, this paper aims to provide a mechanism for sampling from discrete32

choice models in combination with optimization of complete day plans in a fully integrative33

way. A first verification step of this mechanism is provided here by re-estimating the utility34

function distance parameter βdistance. The choice set consists of all shopping destinations in the35

study area, with all 2000 agents included. Choices are given by the agents’ destination choices36

for the relaxed state (final iteration 100). Consistency between the applied and the estimated37

coefficient can be observed in the significant results: β̂distance = −0.000651 with ρ2 = 0.285.38
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Real-world Scenario: 10% Zurich Scenario1

The 10% Zurich scenario is frequently used in MATSim development but also for projects in2

Swiss planning practice (e.g., 23, 15). Simulation scenario demand is derived from the Swiss3

Census of Population 2000 (24) and the National Travel Survey for the years 2000 and 2005 (25).4

A 10% sample of car traffic (including cross-border traffic) crossing the area delineated by a 305

km circle around the center of Zurich (Bellevue) is drawn, which results in almost 68’000 agents6

simulated. The activity location data set, comprising more than 106 home, work, education,7

shopping and leisure locations, is computed from the Swiss Census of Population 2000 and8

the Federal Enterprise Census 2001 (26). The network from the Swiss National Transport9

Model (27) is used, consisting of 60’492 directed links and 24’180 nodes. A single day is10

simulated, with 3.35 average number of trips per agent. In total, 25’896 shopping activities and11

40’971 leisure activities are performed. Comparable data is available in most countries from12

official sources, such as censuses, national travel diary studies and commercial sources, such as13

navigation network providers, yellow pages publishers or business directories.14

The trip distance distributions are taken from the National Travel Survey for the year 200515

(25), reporting 33’000 person days for Switzerland overall. Patterns for trips undertaken by16

persons visiting or living in the Zurich region compared to the complete set of trips are almost17

identical. However, due to the smaller sample size, the restrained set shows more noise. Thus,18

all trips in Switzerland are used. Additionally, traffic count data for 2004-2005 from automatic19

national, cantonal and municipal count data stations (e. g. 28) are taken into account. Count data20

is evaluated in this paper for the area delineated by a circle with a 12km radius, containing 12321

counted links.22

The following two configurations are simulated:23

• Configuration 2: U = f (tactivities, ttravel), i.e., excluding unobserved heterogeneity where24

f (., .) refers to the standard MATSim utility function described earlier.25

• Configuration 3: U = f (tactivities, ttravel) + ε, i.e., including unobserved heterogeneity.26

Figures 3 and 4 show that both traffic counts and distances traveled for shopping and27

leisure trips are underestimated if error terms are excluded (configuration 2). This problem28

would intensify for weekend scenarios to be developed in the near future. Results indicate that29

incorporating error terms (configuration 3) is highly productive. A very good match between30

simulated and measured values can be achieved with only minimal calibration efforts. Similar31

results are achieved for link volumes compared to traffic count data. The median relative error32

of daily volumes (averaged over the 123 links) is reduced from almost −40% to approximately33

−20% (see Figure 4).34

By applying the travel time approximation described earlier, the scenario is computable35

in reasonable time. It takes roughly 25 minutes per iteration, reaching a stable state after 10036

iterations. However, the 10% Zurich scenario is still at the lower bound of typical MATSim37

projects. Thus, further speed-up mechanisms need to be researched.38

CONCLUSIONS AND OUTLOOK

This paper introduces an operational destination choice approach to overcome problems iden-39

tified for high-resolution microsimulations. To test the new approach, a suitable module is40

implemented in MATSim that may also be important for other iterative utility-maximizing41

transport simulations. With the direct inclusion of random error terms in the MATSim utility42
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function some previously lacking unobserved behavioral heterogeneity is introduced.1

As shown in a real-world scenario, destination choices can now be modeled realistically in2

MATSim, a crucial step for many transport research questions that must be investigated in the3

near future.4

In the future, applied parameters need to be researched more comprehensively and more5

systematically calibrated. The utility function for shopping trips will be estimated in the context6

of (29) and the Zurich scenario will be enhanced by various destination attributes, reducing the7

error terms.8

Other important topics include researching Monte Carlo sampling and its sampling errors9

associated with our stochastic simulation. The authors have begun to work on these issues (30).10



Horni, A., Nagel, K. and Axhausen, K.W. 14

FIGURE 1 Search space
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FIGURE 2 Configuration 0 and 1: scores and distances, iteration 200
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FIGURE 3 Zurich scenario: iteration 100 (relaxed state)
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FIGURE 4 Daily traffic volumes for 123 links compared to traffic counts, iteration
100. Per link k the relative error is used, i.e, 100% × (volsimulated,k −

volcounted,k)/volcounted,k.
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