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Abstract. Numerical simulation of human crowds is a challenging task
and a number of models to simulate pedestrian dynamics on a micro-
scopic level have been established. One aim of those models is to repro-
duce a realistic, and in particular collision-free, movement of crowds in
complex environments. This work investigates three approaches on their
capability to reproduce a collision-free movement of pedestrian crowds
in complex dynamic environments. The baseline model is the well-known
social force model. While in the social force model pedestrians do not ex-
plicitly avoid each other, the second model extends the social force model
to avoid collisions explicitly. The observed collision-avoiding behavior
produced by the third model is reached by calculating velocity obstacles.
These are obstacles in the velocity space, meaning that if a pedestrian
chooses a velocity that lies inside the velocity obstacle, then a collision
occur at some time. This work discusses the models and their integra-
tion in a multi-agent simulation framework. The models are tested on
data from a real-world experiment conducted at Technische Universität
Berlin. In this experiment, two pedestrian flows intersected at an angle
of 90 degrees. The models’ performance with regard to the reproduction
of a realistic crowds movement and their computational complexity are
discussed in this work.

Keywords: intersecting pedestrian flows, multi-agent simulation, hu-
man crowd experiments

1 Introduction

One possible approach to model the movement of crowds are Cellular Automata
(CA) [14]. CA models represent the environment with a grid-like structure, where
each cell of the grid may contain at most one pedestrian at a time. CA models
have often been used for the simulation of evacuation scenarios. A common
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problem with existing CA models, however, is that they do not model complex
wayfinding, since in most CA models wayfinding is implemented via a globally
defined potential field. In theory, it would be possible to assign an individual
potential field to each pedestrian. This approach, however, would be to complex
in terms of computational costs for large scenarios.

Other simulation concepts use (discretized) differential equations similar to
equations known from the description of molecular dynamics [10, 8]. Probably
the best known model based on the molecular dynamics analogy is the social
force model [11]. In social force model simulations, each pedestrian has a desired
velocity towards a desired destination and adapts her current velocity accord-
ingly. A pedestrian’s incentive to avoid obstacles such as other pedestrians is
modeled by repelling forces. Force-based models are well understood and have
reasonable computational costs.

There is another class of models that try to achieve collision-free pedestrian
movement in complex environments. These models are based on the so-called
configuration space obstacle approach and have their foundation in computa-
tional geometry and robotics. In this context the configuration space describes
all possible locations a pedestrian can reach. Locations that cannot be reached
are the so-called configuration space obstacles. For this approach the pedestri-
ans and the obstacles in the environment (e.g., walls and other pedestrians)
are represented as a set of simple polygons. A path through the environment is
collision-free if and only if the path does not intersect the Minkowski sum of the
polygonal obstacles with the polygonal representation of the pedestrian reflected
in her reference point [1].

An extension to the configuration space obstacle approach is the velocity
obstacle approach [5]. Similar to the configuration space obstacles the velocity
obstacles describe all velocities a pedestrian can choose that will lead to a col-
lision at some point in time assuming straight movement and no acceleration
of rest of the pedestrians. In the velocity obstacle approach every pedestrian
chooses at each point in time a velocity that avoids collision and is close to the
desired velocity.

This work investigates three approaches with regard to their capability of
reproducing collision-free realistic pedestrian movement. First, there is the social
force model as it is introduced in [11]. While the social force model does not let
the pedestrians avoid collisions explicitly the collision-avoiding force-based model
proposed by [25] takes potential collisions into account. This means the repelling
forces do not only depend on the locations of the obstacles and pedestrians but
also on their velocities. When calculating the actual force that affects a given
pedestrian the model calculates the minimal time of closest approach to all
other pedestrians and obstacles in the environment. All pedestrians are then
projected up to this point in time assuming constant movement. The influencing
force on the pedestrian in question is calculated based on this projection and
weighted by the inverse of the minimal time of closest approach. This leads to a
behavior that tries to avoid the next potential collision under the assumption of
constant movement. Like in other force-based models, too, each pedestrian has a
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desired velocity to which she adapts in a given time if free movement is possible.
However, most existing force-based models do not address the important problem
of complex wayfinding. In our approach, complex wayfinding is implemented via
a navigation graph and a least cost path search: a force that lets a pedestrian
move along the navigation graph replaces the simple desired velocity vector.
Thus, it is possible to simulate pedestrian movements to multiple destinations
in a complex environment.

The third approach discussed in this work is based on the reciprocal velocity
obstacle approach [24]. But instead of calculating valid velocities during every
time step the pedestrians choose valid accelerations preferably close to the de-
sired one. This approach leads to a similar result like choosing a valid velocity
directly but lets the model be better integrated with force-based models. This
integration is needed since the calculation of the desired velocity and the short-
range interaction is still based on forces. Like with the first and the second
approach, the desired movement is based on a force that lets each agent move
along a navigation graph.

We compare the results of simulations performed by the three models with
data obtained from a real-world experiment conducted at Technische Universität
Berlin, see Fig. 1.

The remainder of this work is organized as follows. Section 2 gives a dis-
cussion of all three simulation models and describes extensions that have been
made in order to integrate those models in a multi-agent simulation framework
for the simulation of pedestrian crowds in complex dynamic environments. Ex-
perimental results are shown in Section 3. A discussion on this results is given
in Section 4. Section 5 concludes this work and gives a short outlook.
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Fig. 1. Experiment with two pedestrian flows intersecting at 90 degrees at time step
t = 88.3 s.. Red diamonds: group A, blue crosses: group B. Arrows indicate the velocity
of the pedestrians.
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2 Simulation models and framework

The simulation models investigated are all fully integrated into MATSim. MAT-
Sim stands for Multi-Agent Transport Simulation and provides a toolbox for
various kinds of transport simulations (see, e.g., [23]). MATSim’s major field of
application is the simulation of vehicular traffic in large-scale scenarios.

In recent times MATSim has also been used for the simulation of pedestrians
in the evacuation context [17, 16, 4]. The underlying traffic flow simulation relies
in all this works on a queue model [6]. The queue model has the advantage
of being highly efficient while retaining important physical parameters like free
speed travel time or flow capacity of links. However, when it comes to crossing
pedestrian streams it seems to be questionable if a queue model can simulate
those streams adequately.

This work extends MATSim with the capability of simulating pedestrians
in a two-dimensional continuous space. The following sub-sections discuss the
agent movement model. We distinguish between two stages in the movement
models. The first stage deals with the low level movement of the agents, meaning
collision avoidance, velocity adaptation and so on. The second stage deals with
the more high level movement of the agents, meaning moving along a given
route. While for all three models the second stage is implemented in the same
manner, for the first stage two general approaches are investigated. The social
force model and the collision-predicting force model are driven by repelling and
attracting forces, which are “pushing” the agents through the environment. In
contrast to this approach, the reciprocal velocity model calculates velocities that
let the pedestrians avoid collisions. Detailed model descriptions are given in the
following.

2.1 Social Force Model

Here and in the following the space that a pedestrian occupies in the 2D space
is approximated by a circlular disk. The true shape of a pedestrian indisputable
differs from this simplification. Some authors argue that the space is better
approximated by an ellipse [13] and what is more this ellipse should be velocity
dependent [3]. While a velocity dependent elliptical representation seems to be
a plausible choice, since pedestrians need more space in walking direction when
moving faster, it is also more consuming in terms of computational costs. For
that reason we stick with the simpler circular representation for the benefit of
faster computation.

The general force model is defined according to an analogue of Newton’s law
(F = m · a).

fi(t) =
mi

τ
(v0
i (t)− vi(t)) +

∑
j 6=i

fij(t), (1)

where v0
i (t) is the desired velocity vector for agent i at time t. The term vi(t)

denotes the agent’s actual velocity at time t. The time constant τ describes the
time that is needed to adjust the actual velocity to the desired velocity. The
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second term of the equation builds the sum over all influential entities j in the
environment (i.e., other agents, walls, and obstacles). Each of those entities emit
a repelling (or attracting) force to agent i.

Many different force models have been discussed in recent years (see, e.g., [19]
for an overview), most of them are build on the so-called social force model
introduced by [11]. The basic social force model implicitly reproduces collision-
avoiding behavior as it can be observed in real-world situations. It has been
shown that the model works particularly well in high density conditions, such
as one observes in evacuation situations [9]. The social force model is defined as
follows:

fi(t) =
mi

τ
(v0
i (t)− vi(t)) +

∑
j 6=i

fij(t) +
∑
W

fiW (t), (2)

where fij denotes the repelling force emitted by agent j towards agent i and fiW
denotes the repelling force emitted by obstacle W (e.g., walls) towards agent i.
Both forces are calculated in the same way. For that reason only the calculation
of fij is discussed in detail here. The interested reader is referred to [9] for a
detailed discussion.

fij(t) = Ai exp((rij − dij)/Bi)nij + g(k(rij − dij)nij + κ(rij − dij)∆vtjitij). (3)

The first term of the equation’s right hand side describes the so-called repelling
social force between agent i and agent j; Ai and Bi are constants, rij = ri + rj
is the sum of i’s and j’s radius, and dij is the distance between the disks centers
of i and j. The term nij = dij/dij describes the unit vector pointing from agent
j to agent i. The second term of the equation’s right hand side expresses the
physical force between agent i and agent j. The physical force only acts if a
collision actually occurs. This is guaranteed by the function g(X), which is zero
as long as no collision occurs and equal to its argument else. If a collision occurs
there are two additional forces. First, there is a strong repelling force given by
k(rij−dij)nij , with k a constant. Second, there is a strong tangential force given
by κ(rij − dij)∆vtjitij . Again, κ is a constant, tji is the tangential unit vector
(= nij rotated by π/2), and ∆vtji is the tangential velocity difference of agent
i’s and j’s velocities. The social force model is straightforward to implement
and has reasonable computational costs. One disadvantage of the model is that
potential collisions are not explicitly considered. A novel approach that relies on
the social forces paradigm but considers potential collision explicitly has been
proposed by [25].

2.2 Collision-predicting force model

The collision-predicting force model proposed by [25] also calculates repelling
forces but it projects the present scene into the future in order to detect potential
collisions.

In the model each agent i computes for each other agent j in the environment
the angle θij between dij and vij . Where dij denotes the vector pointing from
agent j’s position to agent i’s position and vij denotes the relative velocity
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between both agents. If |θij | > π/4 then tij =∞. Otherwise tij reflects the time
of the closest approach of both agents under the assumption that neither agent i
nor agent j changes her velocity or direction of movement. The agent then takes
the minimum of these times ti = minj(tij).

Afterwards the agent computes the configuration of the environment for ti
by again assuming that none of the pedestrians change the velocity or direction
of movement. Let d′

ij(ti) denote the predicted vector pointing from agent i to
agent j at time ti. The agent j’s influence on agent i (second term in Eq. (1)) is

fij(t) = Ai
vi(t)

ti
exp(−dij(t)/Bi)

d′
ij(ti)

d′ij(ti)
. (4)

The constants Ai and Bi are free parameters in the model. Eq. (4) is not only
applicable for other agents in the environment but also for any object that is
not moving, like walls or obstacles.

2.3 Reciprocal velocity obstacle model

Another approach to model a collision-avoiding behavior in a pedestrian sim-
ulation extends a well-known approach to calculate collision-free movement of
robots in complex geometries. Consider for now that there is only one agent who
wants to navigate through a static environment without colliding with any ob-
stacle (e.g., walls, furniture, etc.). The problem for the agent is to decide for any
location in the environment if she would collide with an obstacle if she would
be at this location. If the agent would have no dimension (i.e., point shape)
then this problem would be straightforward to solve. However, since the agents
represent pedestrians in the underlying context, they have a polygonal shape.
To decide whether an agent collides with an obstacle at a certain location in
the environment one must decide whether the polygon representing the agent
intersects with some other polygon (i.e., obstacle). The computation used to de-
termine whether two polygons intersect is a rather complex operation and would
lead to long computation times.

Instead of calculating the intersections directly one can determine collision-
free locations by a simple approach that relies on so-called configuration space
obstacles. For a detailed description of this approach the reader is referred to [1].
The basic procedure works as follows: First, each agent is assigned to a reference
point relative to her shape. If the agent has a circle shape then this could for
example be the center of the circle. Second, the shape of the agent has to be
reflected in its reference point. In the case of a circle with the reference point
locate at the center this operation has no effect. Third, for every obstacle in
the environment one has to compute the Minkowski sum of the obstacle and
the agent’s reflected shape. The Minkowski sum of two polygons A and B in
Euclidean space is defined as A ⊕ B = {a + b|a ∈ A,b ∈ B}. The result of
this operation is a set of so-called configuration space obstacles. The position of
an agent is collision-free or admissible as long as her reference point lies in no
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configuration space obstacle. With this method it is easy to calculate collision-
free paths for a single agent in complex geometric environments. When it comes
to a pedestrian simulation with a great number of agents, this approach does
not longer work.

An extension of the configuration space approach for dynamic environments
is the so-called velocity obstacle approach [5]. A velocity obstacle is a set of
velocities that would lead to a collision at some future time under the assumption
that none of the moving entities change their velocity. The authors demonstrate
that the velocity obstacle approach result in near-optimal collision-free paths
with respect to distance or travel time. However, if two agents approach in a
simulation and both of them try to avoid a collision using the velocity obstacle
approach, the agents’ movements start oscillating between moving in the desired
direction and dodging each other. The reason is that both of the agents try to
avoid each other, which leads to an undesirable feedback.

A method that deals with this issue is the reciprocal velocity obstacle ap-
proach [24]. The reciprocal velocity obstacle approach takes the collision-avoiding
behavior of the other agents into account by assuming that the other agents use
the same method to avoid collisions. In other words if two agents are about to
collide, then both of them take a share of responsibility to avoid the collision.
Such a behavior seems to be realistic also for real-world situations where pedes-
trians perform collision avoiding movements. The reciprocal velocity obstacle
approach calculates for every agent at every time step a velocity obstacle. If a
velocity lies inside the obstacle, then a collision would occur at some future time.
Again, under the assumption of constant movement of all agents. The authors
note that there may be situations where a collision-free velocity is not possible.
Therefore they propose a penalty approach that calculates a penalty based on
divergence from the desired velocity and the time to the next collision for a set of
candidate velocities. The penalty calculation for an agent i at time t and velocity
v′
i takes the following form:

penaltyi(v
′
i(t)) = wi

1

tci(v′
i(t))

+ ‖ v0
i (t)− v′

i(t) ‖ . (5)

In the simulation the agents then choose the intended velocity vi(t) out of a set
of candidate velocities so that vi minimizes the penalty.

vi = arg min
v′
i

penaltyi(v
′
i) (6)

It is obvious that the penalty approach does not guaranty a collision-free
movement. This means the simulation model has to deal with collisions somehow.
In this work we propose combining the reciprocal velocity approach with a social
force like agent interaction model. This yields in a hybrid model that calculates
a force based on velocities that are chosen according to the reciprocal velocity
approach and deals with collisions by applying agent interaction forces similar
to the social force model. The approach ends up with a single force that works
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on the agent in question.

fi(t) =
mi

τ
(v0
i (t)− vi(t)) +

∑
j 6=i

fij(t), (7)

where vi(t) is chosen according to Eq. 6 and the agent interaction force is fij(t):

fij(t) = g(Ai exp((rij − dij)/Bi)nij), (8)

with all operators, constants, and variables defined in the same way as they are
defined in Eq. 3.

2.4 Agent navigation and desired velocity determination

In the current setup every agent starts at a link in the navigation graph. A
simple approach would be to let v0

i point towards the to-node of the start link
at the beginning. As soon as the node is reached, v0

i points to the to-node of the
next link and so on until the agent reaches her destination. However, in [7] it has
been shown that such an approach leads to an unrealistic behavior in situations
when agents are moving next to each other. The reason is that those agents
are pulled together at close range to a node, and after the node is passed their
trajectories diverge again. The authors proposed a force system that follows the
route in the navigation graph. The basic idea is that each agent keeps a shadow
tag on the navigation graph, which moves along the graph as the agents move
forward. Furthermore, the agents are connected by a virtual rubber strap to
their corresponding shadow tag. The agents are driven by a driving force that
works parallel to the link which has the shadow tag on it. The virtual rubber
strap pulls the agents towards the shadow tag if they diverge to much from the
link. This leads to the following force:

fmovei (t) =
mi

τ
(v0
i (t)− vi(t)) + Apathe

dpi (t)/Bpathdpi (t), (9)

where dpi (t) is the agent i’s distance to the current link, and dpi (t) is the perpen-
dicular unit vector pointing from the agent to the current link.

For the social force model and the collision-predicting force model this ap-
proach is straightforward to implement. One only has to replace the term mi

τ (v0
i (t)−

vi(t)) in Eq. 2 by fmovei . However, for the reciprocal velocity obstacle model the
integration is more elaborate. We propose to derive the desired velocity v0

i (t) for
the penalty calculation in Eq. 5 from fmovei . This is achieved by implementing
a “simulated” acceleration of agent i by fmovei /mi for one simulation step and
taking the resulting velocity as the intended velocity v0

i (t) for Eq. 5. Details
for the calculation of accelerations and velocity updates are given in the next
section.

2.5 Integration into MATSim

The models discussed so far calculate forces or velocities as a function of time
in a continuous time model. However, in order to integrate the model into a
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computer simulation the time has to be discretized. This means that an agent’s
velocity will only be updated at discrete time steps. There are different ways
how to update velocities at discrete time steps. A commonly used way is the
Euler–Cromer method (see, e.g., [2]), which is based on the following equations:

ai(t) =
fi(t)

mi
, (10)

vi(t+ h) = vi(t) + hai(t), (11)

ri(t+ h) = ri(t) + hvi(t+ h). (12)

Here, ri(t) is the agent i’s position at time t and h is the time step size.

3 Experiments

In 2010, a series of human crowd experiments were conducted at Technische
Universität Berlin, with the main goal of evaluating simulation models of inter-
secting pedestrian flows. In the experiment which we use here, the participants
have been divided into two groups (group A, 142 subjects, and group B, 83
subjects), and each of the groups was instructed to walk along a given path.
These paths were arranged such that the two pedestrian groups intersected at
an angle of about 90 degrees. The scene was recorded with three networked and
temporally synchronized video cameras. The individual trajectories captured by
each camera have been extracted afterwards from the video data by photogram-
metric means. Afterwards, the paths of the pedestrians captured by different
cameras were then merged by matching trajectories of minimal spatio-temporal
distance. The latter procedure was facilitated by the Kuhn–Munkres algorithm,
also known as the Hungarian method [15, 18]. For details, we refer to [21, 22].
See Fig. 1 for a snapshot of the experiment.

In Section 4, we evaluate the performance of the force-based models and the
reciprocal velocity obstacle model by comparison with the real-world data in
terms of the pedestrian density and flow. In order to compute these data, we
first calculate a dynamic local density and flow field from the trajectories via
kernel density estimation similar to [12] but with variable kernel bandwidth –
for details on the method, see [20].

In order to test the simulation models discussed in the previous section. A
digital model of the experiment area has been implemented and for each person
of group A and group B an artificial agent is created. The simulations are per-
formed on a laptop computer with a 2.66 GHz dual core CPU. The results of the
simulation models compared with experiment or given in Fig. 3, 4, and 5 respec-
tive. A discussion on the results is given in the next section. Another important
issue is the runtime performance of the simulation models. Our implementation
of the social force model needs about 3 seconds to simulate the experiment, the
collision-predicting force model needs 16 seconds, and the reciprocal velocity ob-
stacle model needs 5 seconds. The simulation times are reasonable for the social
force model and the reciprocal velocity obstacle model. The collision-predicting
force model, however, could become to slow for larger scenarios.
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Fig. 2. Temporally averaged pedestrian flow field of group B. Upper left: experiment,
upper right: Helbing simulation [9], lower left: van den Berg [24], lower right: Zan-
lungo [25].

4 Discussion

There are two general observations in the results. First, all of the models deliver
usable results in terms of travel time. This is best shown in Fig. 3. On aver-
age the last pedestrian of either groups leaves the scene after about 110 s. The
trends of the density curves are also similar even though none of the models
reach such high densities as observed in the experiment. The reason for this lies
in the nature of the simulation models which leads to the second observation.
The simulation models can be divided into two classes. On the one hand there is
the social force model, where the pedestrians act like colliding rubber balls. This
behavior lead to a strong deviation from the desired movement direction (see
Fig. 5). On the other hand there are the collision-predicting force model and the
reciprocal velocity obstacle model. In both models the agents’ strategy to avoid
collisions is more efficient than can be observed in reality. Thus, less congestion
is observed. This is indicated by lower densities compared to the experiment and
the social force model (see Fig. 3). One reason for the over-optimization could
be caused by the fact that the simulation models do not explicitly distinguish
between pedestrians who are moving in the same direction and those who are
intersecting the desired path. Furthermore, when the movement for a pedestrian
is calculated, all other pedestrians are considered as individual obstacles and not
as groups of obstacles. The hypothesis would be that humans make this distinc-
tion and that they try to avoid penetrating groups of persons that apparently
belong together. If this hypothesis is true, then the simulation models should
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Fig. 3. Pedestrian density vs. time, averaged across the region marked in Figs. 1 and 2.
Black line: group A, dashed blue line: group B. From top to bottom: experiment;
simulations: Helbing [9], van den Berg [24], Zanlungo [25].
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Fig. 4. Main flow components vs. time, averaged across the region marked in Figs. 1
and 2. Black line: flow of group A in x-direction, dashed blue line: flow of group B
in −y-direction. From top to bottom: experiment; simulations: Helbing [9], van den
Berg [24], Zanlungo [25].
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Fig. 5. Secondary flow components vs. time, averaged across the region marked in
Figs. 1 and 2. Black line: flow of group A in y-direction, dashed blue line: flow of group
B in x-direction. From top to bottom: experiment; simulations: Helbing [9], van den
Berg [24], Zanlungo [25].
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be extended accordingly. However, there are further investigations necessary to
make a conclusive statement about this hypothesis.

5 Conclusion and Outlook

This contribution discusses three different approaches for the simulation of cross-
ing pedestrian streams. The probably best-known simulation model in the pedes-
trian context is the social force model. The social force model does not consider
collisions explicitly. The second model is an extension to the social force model,
which does consider collision explicitly and calculates social forces accordingly.
The third model, the reciprocal velocity obstacle model, lets agents avoid colli-
sions by calculating admissible velocities close to the desired one. While none of
the models is novel, several adaptations were necessary to integrate them into a
multi-agent simulation, where the agents can choose paths to arbitrary destina-
tions. Furthermore, the reciprocal velocity obstacle model has been extended to
deal with collisions similar to the social force model, if those occur. The results
are plausible even so improvements are possible. In future work it is planned to
test the models on other pedestrian experiments. One focus could be the test
of the group hypothesis stated in the previous section. If the hypothesis is true,
then the development of a simulation model that takes groups of pedestrians
into account when calculating collision-avoiding movements could also be the
topic of future research.
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