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In this paper, the problem of setting supply and fare levels for a public transport
route is analysed within an activity-based simulation framework. We simulate the
interaction between users — who choose mode and departure time according to their
activities, timetabling and convenience of the public transport service — and a public
transport service provider. The main objective of this work is identifying differences
in optimal bus frequency and fare when the departure time decisions of users are
endogeously taken into account (in addition to mode choice), in comparison to the
traditional approach that assumes given time departure patterns by users over a
period (peak or off-peak), regardless of the supply decisions by the service provider.
Illustrative results on a test scenario are presented and discussed. We find that
the model accounting for departure time choice yields higher social welfare than the
model without time choice despite a larger headway or higher fares. Both, operator
and users, benefit from this. Furthermore, social welfare optimization leads in both
models to shorter headways and lower fares than operator profit maximization.
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1 Introduction

It is estimated that metropolitan areas will continue to contribute a large proportion of a coun-
try’s economic power and will thus attract people from rural areas. By the year 2030, more
than 60% of the world’s population is expected to be living in major cities. Therefore, the
relevance of public transport as a operator of accessibility to services and workplaces is expected
to grow, especially considering its role in reducing congestion and the land consumption of the
transport sector in urban areas [Nelson et al., 2007]. Most municipalities, especially in newly



industrializing countries, need policy advice on how to invest scarce public resources the most
efficient way.

This paper is concerned with the optimization of public transport supply in urban settings. Sev-
eral authors have approached the problem of designing a bus service for a route or network with
analytical models. Mohring [1972] developed a microeconomic model for identifying the optimal
headway for a single bus corridor with parametric demand, finding that the bus frequency should
increase less than proportionally with demand. Since then, this model has been improved by
many researchers, accounting for extensions like differences for on-peak / off-peak demand [Jans-
son, 1980], crowding [Jara-Diaz and Gschwender, 2003, Oldfield and Bly, 1988, Kraus, 1991],
bus congestion and the choice of fare collection technologies [Tirachini and Hensher, 2011] or the
consideration of simplified networks [Chang and Schonfeld, 1991, Tirachini et al., 2010a]. These
models are suitable to understand the economic principles behind the setting of key variables
such as bus frequency, capacity and density of lines. However, due to their simplified nature
they are less appropriate to handle large-scale scenarios, and activity scheduling decisions, such
as the departure time choice, are not accounted for. Another limitation is that bus travel time is
assumed fixed or subject to static congestion and therefore interdependences between buses and
cars are handled in a simple way, ignoring the dynamics and time-dependency of the congestion
phenomena and queue formation.

The problem of public transport fare and supply setting in scenarios with elastic demand and
mode choice (public vs private transport) is gaining momentum in the literature, as several
authors have developed models to obtain first best and second best public transport fare and
supply level, including rules for optimal frequency and capacity of the public transport mode
[Dodgson and Topham, 1987, De Borger and Wouters, 1998, Arnott and Yan, 2000, Pels and
Verhoef, 2007, Parry and Small, 2009, Ahn, 2009, Jansson, 2010, Basso et al., 2011, Tirachini
and Hensher, 2012]. On the other hand, the relationship between the departure time choice
by users and supply variables such as bus frequency, fare, and vehicle size is less understood.
The latter problem has been analyzed with analytical frameworks by Kraus and Yoshida [2002]
and Kraus [2003], who adopt the highway bottleneck model of Vickrey [1969] for the modeling
of rail commuting, assuming that users arrive at stations at the same time as trains do. In
this paper we take a different stance by incorporating the problem of designing a bus route
into an activity-based simulation with dynamic traffic assignment. We simulate the interaction
between users who choose mode and departure time according to their activities, timetabling
and convenience of the public transport service and operators who design their service to satisfy
demand. The main objective of our work is identifying if there are differences in optimal supply
(bus frequency, bus size) and fare when the departure time decisions of users are endogeously
taken into account (in addition to mode choice), in comparison to the traditional approach that
assumes given departure time patterns by users over a period (peak or off-peak), regardless
of the supply decisions by the service provider. The open-source agent-based microsimulation
MATSim' is used to this end.

The remainder of the paper is organized as follows: Sec. 2 describes the agent-based microsimu-
lation framework used to solve the problem, including an overview of public transport modeling.
Sec. 3 introduces the scenario chosen for the simulation, along with the modeling approach and
all relevant assumptions. Main results are presented and discussed in Sec. 4. Finally, Sec. 5
summarizes the main findings and contributions of this paper and provides venues for further
research.

! Multi-Agent Transport Simulation, see www.matsim.org
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2 Methodology

This section (i) gives a brief overview of the general simulation approach of MATSim and
(ii) shortly describes special characteristics of the public transport simulation. For in-depth
information of the simulation framework MATSim see Raney and Nagel [2006].

2.1 MATSim Overview

In MATSim, each traveler of the real system is modeled as an individual agent. The approach
consists of an iterative loop that has the following steps:

1. Plans generation: All agents independently generate daily plans that encode among
other things their desired activities during a typical day as well as the transport mode for
every intervening trip.

2. Traffic flow simulation: All selected plans are simultaneously executed in the simulation
of the physical system. The traffic flow simulation is implemented as a queue simulation,
where each road segment (= link) is represented as a first-in first-out queue with two
restrictions [Gawron, 1998, Cetin et al., 2003]: First, each agent has to remain for a
certain time on the link, corresponding to the free speed travel time. Second, a link
storage capacity is defined which limits the number of vehicles on the link; if it is filled
up, no more agents can enter this link.

3. Evaluating plans: All executed plans are evaluated by a utility function which in this
paper encodes the perception of travel time and monetary costs for car and bus. For bus,
the utility function also accounts for waiting, access, and egress times.

4. Learning: Some agents obtain new plans for the next iteration by modifying copies of
existing plans. This modification is done by several strategy modules that correspond to the
available choice dimensions. In the present paper, agents can switch between the modes
car and bus. In the model with time choice, agents can additionally adapt their departure
times. The choice between different plans is performed with respect to a multinomial logit
model. As the number of plans is limited for every agent by memory constraints, the
plan with the worst performance is discarded when a new plan is added to a person which
already has the maximum number of plans permitted.

The repetition of the iteration cycle coupled with the agent database enables the agents to
improve their plans over many iterations. This is why it is also called learning mechanism. The
iteration cycle continues until the system has reached a relaxed state. At this point, there is no
quantitative measure of when the system is “relaxed”; we just allow the cycle to continue until
the outcome is stable.

2.2 Public Transport in MATSim

Each public transport line in MATSim is defined by its mode, e.g. train/bus, the stops or stations
vehicles will serve, the route each vehicle will ply, the vehicles associated with the line, and the
departures of each of the line’s vehicles. A public transport stop in MATSim is located at the end
of a link. Agents using public transport can board and alight vehicles at stops only. Depending
on the vehicle type, each boarding passenger and each alighting passenger delays the vehicle.
The delay can be set for each type of vehicle. In addition, the vehicle’s doors can operate in two
different modes. First, the parallel mode allows simultaneous boarding and alighting at different
doors. Thus, the total delay of the vehicle is defined by the maximum of the total boarding
delay and the total alighting delay. The second mode of operation is called serial; this mode is
used whenever a door can be used by boarding as well as by alighting passengers with alighting



passengers giving priority. The total delay of the vehicle is then the sum of total alighting delay
and total boarding delay. Another important attribute is the capacity of each vehicle. A vehicle
fully loaded can not pick up any more passengers, in which case passengers will have to wait
for the next vehicle to arrive. Vehicles of one line can serve different tours. Consequently, the
delay of one vehicle can be transferred to the following tour, if the scheduled slack time at the
terminus is insufficient to compensate this delay. Hence, agents not responsible for the delay
in the first place are influenced in their experienced travel time and may be delayed as well.
Further delays may occur by vehicle-vehicle interaction. Private cars and buses compete for the
same limited road capacity and thus can be caught in the same traffic jam. Each stop can be
configured to either block traffic or to allow overtaking whenever a bus stops, i.e. a stop located
at the curb will block traffic; if the bus can pull in a bus bay, other vehicles can pass. For an
in-depth analysis of MATSim’s public transport dynamics please refer to Neumann and Nagel
[2010] and Rieser [2010].

3 Scenario: Multi-Modal Corridor

In this study, optimal public transport supply is identified and analyzed for a simple test scenario
of a multi-modal corridor, with car and bus as transport modes. The eventual goal in the future
will be to apply the model to large-scale networks where analytical models can not be applied
any more. We simulate the interaction between users — who choose mode and departure time
according to their activities, timetabling and convenience of the public transport service — and
operators — who design their service to maximize profit. In the following paragraphs, we give a
short description about the scenario setup and the simulation approach.

3.1 Setup

Transport Supply A multi-modal corridor (bus and car) with a total length of 20 km is con-
sidered. By assuming a sufficient high flow capacity, links are not affected from congestion.
Therefore car travel times only result from the distance traveled and a free speed of 50 km/h.
From 4 a.m. until midnight, the corridor is served by a constant number and type of buses
owned by one operator. Transit stops are located at a regular distance of 500 m along the
corridor. Access and egress times result from a walk speed of 4 km/h and the distances between
transit stop and activity location. A free speed of 30 km/h, a minimum stop time of 10 seconds
at each transit stop and a slack time of 5 min when reaching a corridor endpoint amounts to
a cycle time of 1 h 43 min. Actual cycle times and headways can differ from the schedule only
due to buses characterized by a serial door operation with assumed boarding times of 2 seconds
per person and alighting times of 1.5 seconds per person. In the case of a delay, the driver will
try to follow the schedule and try to shorten stop times and slack times. Bus bays are provided
at every bus stop, so there is no interference between bus stop operations and cars.

Travel Demand Activity patterns for a total of 4000 travelers are considered with a random
distribution of activity locations along the corridor. Two types of travel tours are considered,
divided by purpose: “Home-Work-Home”, which is assumed to represent 35% of total trips,
and “Home-Other-Home”, which accounts for 65% of trips. Different random distributions are
assumed for the departure time of work and non-work trips. On the one hand, initial departure
times from activity “Home” to “Work” follow a normal distribution with mean at 8 a.m. and a
standard deviation of 1 hour. Eight hours after starting work, agents are assumed to head back
home. On the other hand, the activity type “Other” has a typical duration of 2 hours and is
uniformly distributed from 8 a.m. to 8 p.m. “Work” and “Other” have defined opening times,
whereas “Home” can always be performed (see Tab. 1). The overlay of peak demand (commuting



and non-commuting) and off-peak demand (non-commuting only) is shown in Fig. 1. Initial
modal split for each trip purpose is 50% car and 50% bus.
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Figure 1: Initial time distribution of all travelers: departures, arrivals, en-route

3.2 Simulation Approach
3.2.1 Users

Choice Dimensions For the mental layer within MATSim which describes the behavioral learning
of agents, a simple utility based approach is used. When choosing between different options
within a multinomial logit model, agents are allowed to adjust their behavior. Choice dimensions
vary according to the simulation described in Sec. 3.2.3:

e Mode choice allows to choose the mode of transport for a sub-tour within an agent’s daily
plan. Agents can switch from car to public transport or the other way around. In this
paper it is assumed that every agent has a car available.

e Time choice allows to adapt departure times in order to shift, extend or shorten activity
durations with respect to activity specific attributes described in the following paragraph.

Utility Functions The total utility an executed plan gets is the sum of individual contributions:

n
V;fotal = Z <Vperf,i + ‘/tr,i> y (1)
i=1
where V4 is the total utility for a given plan; n is the number of activities; Vi ; is the
(positive) utility earned for performing activity ¢; and Vi, ; is the (usually negative) utility
earned for traveling during trip 7. Activities are assumed to wrap around the 24-hours-period,
that is, the first and the last activity are stitched together. In consequence, there are as many
trips between activities as there are activities. The formulation of the travel related utility
functions is as follows:

‘/;ar,i,j = 60 + Btr,car ' ti,tr,car + 60 * Ci car
‘/pt,i,j = 5v,pt : ti,v,pt + Bw,pt ' ti,w,pt + Ba,pt ' ti,a,pt + Be,pt : ti,e,pt + Bc *Cipt

(2)



where the utility V' for a person j, computed in “utils”, is mode dependent and indicated by
indices car and pt. The travel time (t; 4y cqr) and monetary distance costs (¢; cqr) are considered
as attributes of a car trip to an activity ¢. For a public transport trip in-vehicle time (¢; y pt),
waiting time (t; ., pt), access time (£;qp¢), egress time (t;ep¢) and monetary costs (c;p) are
considered. A logarithmic form is used for the positive utility earned by performing an activity
[see e.g. Charypar and Nagel, 2005, Kickhofer et al., 2011]:

vaerf,i(tperf,i) = Bperf Ty In (Ifl;;?“fﬂ> ) (3)
XA

where ¢, is the actual performed duration of the activity, t, is the “typical” duration of an
activity, and Spe,s is the marginal utility of an activity at its typical duration. B,e is the same
for all activities, since in equilibrium all activities at their typical duration need to have the
same marginal utility. ¢o; is a scaling parameter that is related both to the minimum duration
and to the importance of an activity. As long as dropping activities from the plan is not allowed,
to; has essentially no effect. Activities only can be performed within certain time slots. Tab. 1
depicts the activity specific attributes used in the scenario.

Table 1: Activity attributes

Activity Typical Duration  Opening Time Closing Time
Home 12h undefined undefined
Work 8h 6 a.m. 8 a.m.

Other 2h 8 a.m. 8 p.m.

Parameters Parameters for the traveler’s utility function are taken from an Australian study by
Tirachini et al. [2012, forthcoming]. Estimated parameters are depicted in Tab. 2. Splitting the
time related parameters into opportunity costs of time and an additional mode specific disutility
of traveling [see e.g. Kickhofer et al., 2011, 2012, in press|, leads to the parameters in Tab. 3
which match the MATSim framework. Values of Time (VoT') based on the estimated parameters

Table 2: Estimated parameters® from Tira- Table 3: Adjusted parameters accounting for
chini et al. [2012, forthcoming] opportunity costs of time

Bir.car —0.96 [utils/h] Bircar 0 [utils/h]
Bopt — —1.14 [utils/h] Bopt  —0.18 [utils/h]
Buwpt  —1.056 [utils/h] Buwpt  —0.096 [utils /1]
Bapt  —0.96 [utils/h] Bapt 0 [ut?ls /h]
Bept =33 [utils/h] Bept  —2.34 [ut?ls/h]
B, —0.062 [utils/AUD” | B —0.062 [utils/AUD]
¢ Estimated parameters are in this paper flagged by

a hat.
» AUD is Australian dollar, AUD 1 = EUR 0.78 in

May 2012.

in Tab. 2 are depicted in Tab. 4. Differentiated VoT based on the adjusted parameters in Tab. 3
accounting for opportunity costs of time are shown in Tab. 5. The alternative specific constant
Bo for car needed to be re-calibrated for the synthetic corridor scenario. For the calibration
process we assume an urban scenario in which a modal split of around 50% : 50% between car



Table 4: Values of Time based on estimated Table 5: Values of Time based on adjusted

parameters from Tirachini et al. parameters accounting for opportu-
[2012, forthcoming] nity costs of time

Vol car 1548 AUD/h Vol car 0.00 AUD/h

VoT, pt 18.39 AUD/h Volype 290 AUD/h

[ ] [ ]

[ ) [ ]

Vol — 17.03 [AUD/h] Vol —1.55 [AUD/h]
[ ) [ ]

[ ] [ ]

[ ]

VoT,,: 1548 AUD/h VoT,,:  0.00 AUD/h
VoT.,, 53.23 AUD/h VoT.,  37.74 AUD/h
Volpe; 1548 AUD/h

and bus is obtained if the bus service is provided with 15 min headway (see later on in Fig. 3).
The outcome of the calibration process is an alternative specific constant for car of 5y = —0.44.
One interpretation is that car users in reality need to walk to their car and also need to find a
parking lot at the desired activity location; in the model, however, this is not the case since they
can directly enter their vehicle at every activity location; this makes car in the simulation too
attractive compared to reality which is then corrected by a negative alternative specific constant.

Cicar is calculated for every trip by multiplying the distance between the locations of activity
i—1 and 7 by a distance cost rate of 0.40 AUD/km. c¢; ¢ is the fare which is independent of the
distance and has to be paid every time an agent boards a public transport vehicle.

3.2.2 Operator’s Profit and Social Welfare
The operator cost is estimated as follows [ATC, 2006]:
C = (vkm - ¢y +vh - cyp) - O + ONT - Cypay (4)

where total bus operating costs (C') are divided into three categories: vehicle-km (vkm), vehicle-h
(vh) and an overhead (O) including operating costs which are not covered in the other cate-
gories. Capital costs for vehicles result from the number of vehicles (vN7) engaged per day and
equivalent daily capital costs (cypay). Unit costs per vehicle-km (cyprm ), unit costs per vehicle-h
(cvn), the overhead and capital costs are based on estimations from ATC [2006] for urban re-
gions in Australia. Unit costs per vehicle-km and capital costs depend on the capacity (seats and
standing room), thus a linear regression analysis yields cost functions leading to capital costs
between 54 and 199 AUD/day and unit costs between 0.62 and 1.13 AUD/vehicle-km. Unit

costs and cost functions are shown below. The number of public transport trips per day (Tp¢)

Table 6: Unit costs and cost functions from ATC [2006]
Cokm  0.006 - capacity + 0.513 [AUD/vehicle-km]
CoDay 1.6064 - capacity + 22.622 [AUD /vehicle-day]
coh 33 [AUD /vehicle-h]
(0] 1.21

multiplied by a constant fare (f) leads to daily operator’s revenues. Hence, operator’s profit per
day (Poperator) can be depicted as follows.

Pope'ratm" = 4pt- f -C (5)



The sum of the Expected Maximum Utility (EMU) for all agents’ choice sets and the operator’s
profit amounts to a social welfare of:

J P
1
W = Bf In E E €Vp + Poperator ) (6)
c

j=1 p

where W is the monetized welfare per day; J is the number of all agents; p is a plan or alternative;
and P is the number of plans or alternatives.

3.2.3 Simulation Procedure

An iterative approach is developed to explore the interactions of supply and demand as well as
to calculate the resulting welfare and operator’s profit. The iterative loop described in Sec. 2.1
is embedded into an external loop. Public transport supply is varied in external iterations while
demand is adjusted in an internal loop until the system has reached a stable outcome. The
simulation procedure is depicted in Fig. 2. In the first external iteration, transit schedule and
transit vehicles (according to initial operator parameters) are written and used as input data
for the internal iterations. Independent of transport supply, initial plans are used as described
in Sec. 3.1. In the internal iterative loop agents execute plans simultaneously, evaluate plans
according to the utility functions described in Sec. 3.2.1, and modify these depending on the
available choice dimensions. Once a sufficient choice set is generated, experimental replanning
is switched off and agents only chose among their existing plans with respect to a multinomial
logit model. Every last internal iteration is used for welfare and operator profit calculations.
After that, the relevant parameter is systematically changed in the external loop while other
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Figure 2: Simulation Procedure

public transport supply parameters are kept fixed. Tab. 7 gives a summary of internal loop run
parameters described in Sec. 2.1.



Table 7: Internal Loop Parameters

number of internal strategy module maximum number of

iterations probability plans per agent

NTC (No Time Choice) 500 mode switch: 20 %  variable fare: 20
variable headway: 4

TC (Time Choice) 500 mode switch: 15 % variable fare: 20

time adaption: 15 %  variable headway: 4

4 Results

The simulations are undertaken assuming different values for number of buses and bus fare.
In this section, we present the results for the systematic change in headway or fare of the bus
service. To simplify the process, in each experiment only one element (frequency or fare) is used
as a variable while the other one remains fixed, as such we perform a partial rather than global
optimization. Results are in both cases provided for the model without departure time choice
(NTC), and the model with departure time choice (TC) respectively.

4.1 Optimal Headway

Possible reactions of users to a change in headway on the bus corridor comprise for both models
the change from/to car. In the TC model, users can additionally adjust their departure times.
For finding the optimal headway, fare is fixed to AUD 3 per trip and capacity of buses to 50.

Fig. 3 shows the demand for car and bus trips over different headways. The headway is indirectly
defined by the number of buses used for serving the corridor and the round trip time. Starting
off with 1 bus (resulting in a headway of 103 min), one can observe a fairly low mode share for
bus in both models. It is close to zero for the NTC model, and a bit higher for the TC model.
The alternative specific constant has been calibrated so that bus becomes competitive to car at
a headway of approximately 15 min (see Sec. 3.2). Therefore, in the NTC model, mode share
of car to bus is around 50% : 50% at a headway of 35 min. For the TC model, one notices that
bus becomes competitive to car already at a much larger headway of around 28 min. Intuitively,
this makes sense since waiting times are lower in the TC model, and thus, bus is in general more
attractive. This effect is underlined by the steeper slopes in the TC model. The slopes represent
a stronger reaction to an improved bus service than in the NTC model. Furthermore, in the TC
model, the total number of bus users is higher for all headways.
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Figure 3: Model without departure time choice (NTC) vs. Model with departure time choice
(TC): modal split for a bus headway ranging from approximately 103 min to 5 min (1
to 21 buses on the corridor); fare is fixed to AUD 3 per trip, capacity of buses to 50.

Fig. 4 presents key indicators for a bus headway ranging from approximately 103 min to 5 min



(1 to 21 buses on the corridor). On the left hand side (Fig. 4a and Fig. 4c), operator costs,
revenue, and profit are shown as a function of the headway. In both figures, the cost function is
equal since it only depends on the number of buses necessary for the respective headway. One
notices a steeper slope of the revenue curve for the TC model, which reflects the fact that users
change earlier to bus than in the NTC model. Therefore, also the profit function is steeper and
always positive up to a headway of around 8 min. From the operator’s perspective, a headway
of approximately 11 min (9 buses) in the NTC model, or a headway of 20 min (5 buses) in the
TC model would be optimal.

Fig. 4b and Fig. 4d on the right hand side depict the implications of a change in headway for
users and the social welfare. Overall, one notices a higher level of user benefit (logsum) and
social welfare for the TC model. This is due to a twofold effect: first, waiting times are lower
than in the NTC model since users adapt to the bus schedule. Second, the waiting time saved
can be used for performing activities what generates positive utility. The user logsum curve is
for large headways steeper for the TC model and then gets flatter, whereas in the NTC model,
the curve is smoother. That is, in the model with departure time choice, a smaller headway
does from a certain headway not lead to as much utility gain for the users as in the NTC model.
The welfare optimal headway for the NTC model is therefore approximately 9 min (11 buses),
and only 17 min (6 buses) in the TC model. A summary of the results obtained in this section
is provided in Tab. 8.
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Figure 4: Model without departure time choice (NTC) vs. Model with departure time choice
(TC): key figures for a bus headway ranging from 103 min to 5 min (1 to 21 buses on
the corridor); fare is fixed to AUD 3 per trip, capacity of buses to 50.
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Table 8: Comparison of NTC model vs. TC model: summary of optimal headway [min (number

of buses)], provider’s profit [AUD], and social welfare [AUD] obtained in Sec. 4.1

NTC model TC model
headway ‘ profit ‘ welfare headway ‘ profit ‘ welfare
profit max. | 11 min (9) | 2425.21 | 1669253.17 | 20 min (5) | 12683.37 | 1701777.41
welfare opt. | 9 min (11) | 1685.14 | 1668092.67 | 17 min (6) | 12470.79 | 1703279.75

4.2 Optimal Fare

Finding the optimal fare in the multi-modal corridor requires in this paper the definition of a
fixed headway and a fixed capacity. Bus capacity is defined to 50 passengers per bus, equal to
the simulations aiming at finding the optimal headway. The fixed headway is here defined to
approximately 20 min (or 5 buses). That is, the operator is free at defining the profit maximizing
optimal headway with initial conditions from Sec. 4.1.

Again, Fig. 5 presents key indicators for bus fares ranging from AUD 0.00 to AUD 5.00 in steps
of AUD 0.25. Fig. 5a and Fig. 5c¢ depict operator costs, revenue, and profit. Costs are constant
for all fare levels since they only depend on the headway (number of buses) and the capacity
which are both assumed to be fixed. The NTC model predicts a profit curve with a maximum
at a fare of AUD 2.50. However, profit is only positive within a small range between fares of
AUD 1.50 and AUD 3.25. For lower fares than AUD 1.50, revenue is not covering costs. The
same is true for fares higher than AUD 3.25, where demand drops too heavy so that higher
fares cannot compensate for the decrease in demand. When assuming time choice in the model
(see Fig. 5¢), bus is again more competitive to car due to lower waiting times. Thus, there are
enough users going by bus leading to a positive profit with a maximum at AUD 3.00. Fig. 5b
and Fig. 5d show the implications of a change in fare for users and the social welfare. Similar to
the findings in Sec.4.1, the TC model predicts a higher level of user benefit and social welfare.
The two reasons mentioned there are also true for the optimization of fare.

For the NTC model, one can expectedly observe decreasing user benefits with increasing fare.
Social welfare is maximized at a zero fare, a result also found by analytical models such as Chang
and Schonfeld [1991], Ahn [2009], and Tirachini et al. [2010b].

The TC model also produces a clear shape of the user benefit curve. As expected, it is decreasing
over the whole range of fares. In contrast to the NTC model, there is a welfare maximum at a
fare of AUD 1.50. However, the welfare function is quite flat for low fares; that is, increasing
operator profit can only marginally overcompensate losses in user benefit. A summary of the
results obtained in this section is provided in Tab. 9.

Table 9: Comparison of NTC model vs. TC model: summary of optimal fare [AUD], provider’s
profit [AUD], and social welfare [AUD] obtained in Sec. 4.2

NTC model TC model
fare ‘ profit ‘ welfare fare profit ‘ welfare
profit max. | 2.50 | 834.87 | 1782613.88 | 3.00 | 8309.37 | 1809936.07
welfare opt. | 0.00 | -6702.63 | 1788731.54 | 1.50 | 3488.37 | 1813147.39
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Figure 5: Model without departure time choice (NTC) vs. Model with departure time choice
(TC): key figures for fares ranging from AUD 0.00 to AUD 5.00 (in steps of AUD 0.25);
bus headway is fixed to approximately 20 min (or 5 buses), capacity of buses to 50.

5 Discussion

The tables in Sec. 4 show different welfare optimal headways and different optimal fares for
the NTC and the TC model. Additionally, the overall welfare level is higher for the TC than
for the NTC model. When including departure time choice in the model, users benefit in two
dimensions: The first dimension is related to the adaption of users to the bus timetable (time
adaptation effect). That is, waiting times in the TC model are lower than the expected waiting
time of half the headway in the NTC model. The second dimension is related to users dispersing
more around the commuter peak departure times (peak spreading effect, see Fig. 6). On the
left, Fig. 6a depicts the final time distribution in the NTC model for a bus headway of 13 min,
a fare of AUD 3.00, and a capacity of 50 passengers per bus. As one can see, this distribution is
equal to Fig. 1. On the right, Fig. 6b shows the final time distribution for the same scenario.

Clearly, peak demand is spread and thus waiting times are lower since:

e waiting times include the waiting for boarding a vehicle that has already arrived at the
stop. This part of the waiting time rises with increasing demand even though the bus
still has capacity; when demand is spread, this part of the waiting time is then directly
reduced.

e there might be additional waiting time savings in the TC model; these savings could be a
result from peak hour demand where buses are working at maximum capacity (at least in
the NTC model). Any person that, in the TC model, does not need to wait any more for
the next bus, does actually save waiting time.

Both points from above need to be examined in future studies in order to get more detailed
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Figure 6: Model without departure time choice (NTC) vs. Model with departure time choice
(TC): Final time distribution of all travelers: departures, arrivals, en route. Exemplary
values for a bus headway of approximately 13 min (or 8 buses); fare is fixed to AUD
3 per trip, capacity of buses to 50.

insights into the composition of waiting times. Additionally, in the current scenario, we assume
all users to be “white-collar workers”, meaning that they can freely choose their arrival time at
work. In a more realistic scenario, one would have to define desired (or forced) arrival times at
least for parts of the population.

In consequence of both dimensions, users have more time available for performing activities,
leading to higher user benefits. Therefore, the model accounting for departure time choice yields
higher social welfare than the model without time choice despite a larger headway, respectively
higher fares. Both, operator and users, benefit from this.

The findings concerning fare are, in this scenario, only true for relatively large headways (ap-
proximately 20 min or 5 buses). For smaller headways the welfare function is found to be almost
flat for low fares where there is then also the welfare maximum for both models (NTC and TC).
For this reason, a combined optimization of headway and fare is planned in the near future.

6 Conclusion and Outlook

This paper introduced the analysis of optimal supply decisions on public transport provision
using an activity based simulation model. A single multi-modal corridor (car and bus) was
modeled, in which it is assumed that users can only choose mode or mode and departure time,
whereas the bus operator can choose frequency or fare to either maximize social welfare or
private profit. This paper describes how the theoretical modeling approach was introduced in
MATSim and provided first illustrative results for a test scenario. We systematically changed
headway or fare of the bus service, thus performing a partial optimization with predefined initial
conditions. Results were provided for the model without departure time choice and the model
with departure time choice respectively. We find that the model accounting for departure time
choice yields higher social welfare than the model without time choice despite a larger headway
or higher fares. Both, operator and users, benefit from this. This is presumably due to the fact
that waiting times are lower in the model accounting for departure time choice because of two
effects: peak spreading and time adaption. Furthermore, social welfare optimization leads in
both models to shorter headways and lower fares than operator profit maximization.
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In the near future, we plan to perform the following extensions to the model:
1. Joint optimization of headway and fare for the cases of profit and social welfare maximiza-
tion
2. Analysis concerning the composition of waiting times

3. Definition of obligatory arrival times for parts of the population (“blue collar workers”);
introducing differentiated peak-on / peak-off pricing structures

4. Inclusion of crowding effects for public transport

5. Application of the optimization to a network (test network and real-world scenario)
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