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In this paper, we present an approach to calculate a high-resolution first-best air
pollution toll with respect to emission cost factors provided by Maibach et al. [2008].
We link dynamic traffic flows of a multi-agent transport simulation to detailed air
pollution emission factors. The monetary equivalent of emissions is internalized in a
policy which is then used as a benchmark for evaluating the effects of a regulatory
measure — a speed limitation to 30 km/h in the inner city of Munich. We find
that the regulatory measure is considerably less successful in terms of total emission
reduction. It also reduces emissions of urban travelers too much while even increasing
the emissions of commuters and freight, both leading to a increase in deadweight
loss. That is, the regulatory measure leads to higher market inefficiencies than
a “do-nothing” strategy: too high generalized prices for urban travelers, too low
generalized prices for commuters and freight.

Keywords: external costs, first-best toll, internalization, exhaust emissions, pol-
icy evaluation, agent-based modeling

1 Introduction

External costs in the transport sector are known to lead to inefficiencies and social welfare
losses. This is due to the fact that people base their decisions on marginal private costs (MPC)
and not on marginal social costs (MSC), which is a result of market failures. The idea of
how to internalize the difference between MSC and prices by a toll has been studied widely in
the transportation economic literature. The most important dimensions of external costs are
usually found to be congestion, air pollution, accidents, and noise. However, optimal toll levels
are difficult to compute since they depend on various factors: in principle, a calculation needs
to be done (i) for every street in the network, (ii) for every time step, and, when assuming
heterogeneous travelers, additionally (iii) for every traveler that is defined by her characteristics
such as individual Values of Travel Time Savings (VTTS) or specific vehicle attributes. For that
reason, so-called second-best pricing has been advanced [e.g. Verhoef, 2001].
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The computation of second-best tolls has been addressed in several studies [e.g. Verhoef, 2002,
de Palma and Lindsey, 2006, van den Berg and Verhoef, 2011, Markose et al., 2007]. However,
most studies focus on congestion pricing [see, e.g. Mitchell et al., 2002, Namdeo and Mitchell,
2007, for exceptions]. This is consistent with current estimates that congestion currently causes
the largest part of the external effects [e.g. Maibach et al., 2008, p.103]. There is, however, some
perception that non-congestion external effects need to be addressed as well [e.g. Creutzig and
He, 2009]; those become especially important for freight traffic [see, once more, Maibach et al.,
2008, p.103].

In this context, it is important to consider regulatory measures that are not based on charging.
These might be dis-satisfactory from an economic perspective, since they always forgo some
of the benefits that one can obtain with a well-designed pricing system. Yet, they have the
advantage of better public acceptance in some countries, see, e.g., the “low-emission zones” in
German cities. Thus, it is useful to investigate economic benefits of regulatory measures, and
how close these benefits come to an optimal first-best toll [also see Proost and Van Dender,
2001].

The present study presents an approach to (i) internalize emissions costs, and to (ii) consider
regulatory measures in comparison. Since congestion was treated in a previous contribution by
Nagel et al. [2008], this study now focuses on air pollution. The eventual goal will be a com-
prehensive system which treats all external costs simultaneously. First, we present an approach
that links dynamic traffic flows of the multi-agent transport simulation MATSim1 to detailed
air pollution emission factors provided by the Handbook Emission Factors for Road Transport
[INFRAS, 2010]. Emissions are computed every time a traveler leaves a road segment and de-
pend on the traffic state on that segment at the specific time, as well as on the traveler’s vehicle
attributes. Second, we calculate external air pollution emission costs for Sulfur Dioxide (SO2),
Particular Matter (PM), Nitrogene Oxides (NOx), Non-Methane Hydrocarbons (NMHC), and
Carbon Dioxide (CO2) following external emission cost factors provided by Maibach et al. [2008].
In a third step, travelers are directly charged with the resulting costs when leaving a road seg-
ment. In an iterative process, travelers learn “from day to day” how to adapt their route and
mode choice behavior in the presence of this simulated first-best2 air pollution toll. Informa-
tion about individual generalized costs for possible routes is provided to every traveler based
on information from the previous iteration. In the last part of our study, we use the system’s
state with full air pollution cost pricing as a benchmark for evaluating the effects of a regulatory
measure — a speed limitation to 30 km/h in the inner city. All investigations are run for a 1%
real-world scenario of the Munich metropolitan area, similar to Kickhöfer et al. [2012, in press]
and Kickhöfer and Nagel [2011].

The reminder of the paper is organized as follows: Sec. 2 describes the agent-based microsimula-
tion framework used to solve the internalization problem, including and overview of the emission
modeling tool and the internalization procedure. Sec. 3 introduces the scenario chosen for the
simulation, along with the two policy measures and all relevant assumptions. Main results are
presented and discussed in Sec. 4. Finally, Sec. 5 summarizes the main findings and contributions
of this paper and provides venues for further research.

2 Methodology

This section (i) gives a brief overview of the general simulation approach of MATSim, (ii) shortly
describes the emission modeling tool that has been developed by Hülsmann et al. [2011], and (iii)

1 Multi-Agent Transport Simulation, see www.matsim.org
2 Please note that the simulated toll is only first-best with respect to average emission cost factors provided by

Maibach et al. [2008]. For a discussion on how to model the whole impact-path-chain of air pollution and how
to derive real marginal cost factors, please refer to Sec. 5.
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explains how the emission cost internalization procedure developed by the authors is embedded
in the MATSim framework.

2.1 Transport Simulation with MATSim

In the following, we only present general ideas about the transport simulation with MATSim.
For in-depth information of the simulation framework, please refer to Raney and Nagel [2006]
and the Appendix. In MATSim, each traveler of the real system is modeled as an individual
agent. The approach consists of an iterative loop that is characterized by the following steps:

1. Plans generation: All agents independently generate daily plans that encode among
other things their desired activities during a typical day as well as the transport mode for
every intervening trip.

2. Traffic flow simulation: All selected plans are simultaneously executed in the simulation
of the physical system.

3. Evaluating plans: All executed plans are evaluated by a utility function which encodes
in this paper the perception of travel time and monetary costs for the available transport
modes.

4. Learning: Some agents obtain new plans for the next iteration by modifying copies of
existing plans. This modification is done by several strategy modules that correspond to
the available choice dimensions. In the present paper, agents adapt their routes only for
car trips. Furthermore, they can switch between the modes car and public transport (pt).
The choice between plans is performed within a multinomial logit model.

The repetition of the iteration cycle coupled with the agent database enables the agents to
improve their plans over many iterations. This is why it is also called learning mechanism (see
Appendix). The iteration cycle continues until the system has reached a relaxed state. At this
point, there is no quantitative measure of when the system is “relaxed”; we just allow the cycle
to continue until the outcome is stable.

2.2 Emission Modeling Tool

The emission modeling tool was developed by Hülsmann et al. [2011] and is further described in
Kickhöfer et al. [2012, in press]. The tool essentially calculates warm and cold-start emissions.
The former are emitted when the vehicle’s engine is already warmed whereas the latter occur
during the warm-up phase. In the present paper, warm emissions differ with respect to driving
speed, vehicle characteristics and road type. Cold-start emissions differ with respect to distance
traveled, parking time, and vehicle characteristics. These characteristics are derived from survey
data (see Sec. 3.1) and comprise vehicle type, age, cubic capacity and fuel type. They can,
therefore, be used for very differentiated emission calculations. Where no detailed information
about the vehicle type is available, fleet averages for Germany are used.

In a first step, MATSim traffic dynamics are mapped to two traffic situations of the HBEFA3

database: free flow and stop&go. The handbook provides emission factors differentiated among
the characteristics presented above. In a second step, so-called “emission events” are generated
and segmented into warm and cold emission events. These events provide information about
the person, the time, the road segment, and the absolute emitted values by emission type.
The definition of emission events follows the MATSim framework that uses events for storing
disaggregated information as objects in JAVA and as XML in output files (see Appendix).
Emission event objects can be accessed during the simulation which is necessary in order to assign

3 Handbook on Emission Factors for Road Transport, see www.hbefa.net

3

www.hbefa.net


cost factors to emissions; the monetary value of emissions is then used for the internalization
procedure described in the next section.

2.3 Emission Cost Calculation: Internalization

After the calculation of person and link specific time-dependent emissions as described in Sec. 2.2,
these now need to be converted into monetary units for the calculation of a first-best toll in order
to simulate the full emission cost internalization policy. For that purpose, emission cost factors
differentiated by emission type are taken from Maibach et al. [2008], shown in Tab. 1. Clearly,

Table 1: Emission cost factors
by emission type from Maibach et al. [2008]

emission type cost factor [EUR/tonne]

SO2 11’000
PM 384’500
NOx 9’600
NMHC 1’700
CO2 70

these cost factors are average costs, collected from different studies. They especially differ in
terms of a more local or more global impact. To name the two most extreme: CO2 only has a
global impact on global warming, no matter where it is emitted. In contrast, PM essentially only
has local impacts on human health. Therefore Maibach et al. [2008] distinguish between three
cost factors for PM : in “outside build-up areas” the factor is calculated to 75’000 EUR/tonne,
in “urban areas” to 124’000 EUR/tonne, in “urban/metropolitan areas” to 384’500 EUR/tonne.
In consequence, external costs for CO2 could easily be internalized by a distance based toll
(e.g. fuel tax), whereas a distance based toll for PM would either imply too low tolls in urban
areas, or too high tolls in non-urban areas. For the present setup, this means that the emission
costs outside of Munich are overestimated. In order to obtain true marginal emission costs, in
principle the whole impact-path-chain of air pollution needs be modeled. This would imply an
exposure analysis for the whole population, and monetizing the effects on human health. A
discussion on this will be given in Sec. 5.

Please note, that the simulated toll presented in this paper is still first-best with respect to the
pre-calculated emission costs. The following two paragraphs will give an overview of a first-
best emission toll implementation in the MATSim framework, given predefined person and link
specific, time dependent costs.

Evaluation of Plans The core of the emission cost internalization is a emission cost module which
converts any mapping of emission type to a value into monetary terms (see above). This unique
cost module is generated when the simulation starts. Every time the simulation produces an
emission event, the cost module is asked for the monetary value and triggers an “agent money
event” which essentially contains information about the person, the link, and the time. One
could imagine that, in the simulation, there is a toll gate at the end of each link where travelers
directly pay the monetary equivalent to the emissions they produced on that link. When the
plan is evaluated with a (possibly agent-specific) utility function at the end of every iteration,
all money events of an agent are considered in the utility calculation of her plan. This is a
standard MATSim feature which has been used frequently in other contributions [see e.g. Nagel
et al., 2008, Kickhöfer et al., 2010].
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Router Module For the router module, the implementation is not as straightforward. The
router is implemented as a time-dependent best path algorithm [Lefebvre and Balmer, 2007],
using generalized costs (= disutility of traveling) as input. At the beginning of every iteration,
the router proposes new routes to a certain share of agents based on the attributes travel
time and monetary distance costs from the previous iteration. Since travel times and distance
costs are equal for all agents, the router only needs to generate new routes based on global
information. Now, with the internalization of emission costs, the disutility of traveling on every
link is additionally dependent on the agent’s vehicle characteristics. Therefore, the router needs
to generate new routes on very disaggregated information by calculating expected emission costs
based on expected emissions in every time interval. Even though the implementation is working
properly, it makes the simulation relatively slow, for a 10% sample of the scenario in Sec. 3.1,
by a factor of 10.

3 Scenario: Munich, Germany

In this section, we first give a short introduction into the large-scale real-world scenario of the
Munich metropolitan area. This is followed by a definition of the available choice dimensions as
well as the utility functions. Finally, we define two policy measures: the zone 30 policy will be
defined as a regulatory measure of limiting the maximum speed in the inner city of Munich to
30 km/h. The internalization policy will use the methodology from Sec. 2.3 which changes the
user costs on every link for every car user dependent on her emissions.

3.1 Scenario Setup

Since the scenario setup has already been described by Kickhöfer et al. [2012, in press] and
Kickhöfer and Nagel [2011], only the key figures will be presented here.

The road network consists of 17’888 nodes and 41’942 road segments (= links). It covers the
federal state of Bavaria, being more detailed in and around the city of Munich and less detailed
further away. Every link is characterized by a maximum speed, a flow capacity, and a number
of lanes. This information is stored in the road type which is for the emission calculation always
mapped to a corresponding HBEFA road type.

In order to obtain a realistic time-dependent travel demand, several data sources have been
converted into the MATSim population format. The level of detail of the resulting individual
daily plans naturally depends on the information available from either disaggregated stated
preference data or aggregated population statistics. Therefore, three subpopulations are created,
each corresponding to one of the three different data sources:

• Urban population (based on Follmer et al. [2004]):
The synthetic population of Munich is created on the base of very detailed survey data
provided by the municipality of Munich RSB [2005], named “Mobility in Germany” (MiD
2002). Whole activity chains are taken from the survey data for this population. MiD
2002 also provides detailed vehicle information for every household. Linking this data
with individuals makes it possible to assign a vehicle to a person’s car trip and thus,
calculating emissions based on this detailed information. As of now, there is however no
vehicle assignment module which models intra-household decision making. It is, therefore,
possible that a vehicle is assigned to more than one person at the same time. The synthetic
urban population of Munich consists of 1’424’520 individuals.

• Commuter population (based on Böhme and Eigenmüller [2006]):
Unfortunately, the detailed data for the municipality of Munich does neither contain in-
formation about commuters living outside of Munich and working in Munich nor about
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people living in Munich and working outside of Munich. The data analyzed by Böhme
and Eigenmüller [2006] provides information about workers that are subject to the social
insurance contribution with the base year 2004. With this information, a total of 510’150
synthetic commuters are created from which 306’160 people have their place of employ-
ment in Munich. All commuters perform a daily plan that only encodes two trips: from
their home location to work and back.

• Freight population (based on ITP/BVU [2005]):
Commercial traffic is based on a study published on behalf of the German Ministry of
Transport by ITP/BVU [2005]. It provides origin-destination commodity flows throughout
Germany differentiated by mode and ten groups of commodities. After converting flows
that are relevant for the study area into flows of trucks, this population consists of 158’860
agents with one single commercial traffic trip.

Overall, the synthetic population now consists of 2’093’530 agents. To speed up computations, a
1% sample is used in the subsequent simulations. For commuters and freight, no detailed vehicle
information is available. Emissions are therefore calculated based on fleet averages for cars and
trucks from HBEFA.

3.2 Simulation Approach

Choice Dimensions For the mental layer within MATSim which describes the behavioral learning
of agents, a simple utility based approach is used in this paper. When choosing between different
options with respect to a multinomial logit model, agents are allowed to adjust their behavior
among two choice dimensions: route choice and mode choice. The former allows individuals
to adapt their routes on the road network when going by car. The latter makes it possible to
change the transport mode for a sub-tour (see Appendix) within the agent’s daily plan. Only a
switch from car to public transport or the other way around is possible. Trips that are initially
done by any other mode remain fixed within the learning cycle. From a research point of view,
this approach can be seen as defining a system where public transport is a placeholder for all
substitutes of the car mode.

Utility Functions In the present paper, travel time and monetary distance costs are considered
as attributes of every car and public transport trip. In consequence, the travel related part of
utility (see Eq. 3 in the Appendix) is defined by the following functional form:

Vcar,i,j = βtr,car · ti,car + βc · ci,car
Vpt,i,j = β0 + βtr,pt · ti,pt + βc · ci,pt ,

(1)

where ti is the travel time of a trip to activity i and ci is the corresponding monetary cost.
Travel times and monetary costs are mode dependent, indicated by the indices. The utilities
Vcar,i,j and Vpt,i,j for person j are computed in “utils”. Due to a lack of behavioral parameters
for the municipality of Munich, estimated parameters are taken from an Australian study by
Tirachini et al. [2012, forthcoming]; these parameters are shown in Tab. 2, together with the
corresponding Values of Travel Time Savings (VTTS). Necessary adjustments of the parameters
are performed in order to meet the MATSim framework. The resulting parameters and VTTS
are depicted in Tab. 3. These adjustments are described in more detail in several contributions
[see e.g. Kickhöfer et al., 2011, 2012, in press]. The argument essentially is that the estimated
time related parameters β̂tr,car and β̂tr,pt consist of the unique opportunity costs of time −βperf
and an additional mode specific disutility for traveling βtr,car and βtr,pt, respectively. Since
MATSim needs an explicit value for the opportunity costs of time (see Eq. 4 in the Appendix),
we assume that traveling with car is not perceived more negative than “doing nothing”. This
interpretation is done that way since it does not change the VTTS, as a comparison of Tab. 2

6



Table 2: Estimated parametersa and VTTS
from Tirachini et al. [2012, forth-
coming]

β̂tr,car −0.96 [utils/h]

β̂tr,pt −1.14 [utils/h]

β̂c −0.062 [utils/AUDb ]

V TTStr,car +15.48 [AUD/h]
V TTStr,pt +18.39 [AUD/h]

a Estimated parameters are in this paper flagged by
a hat.

b AUD is Australian dollar, AUD 1 = EUR 0.78 in
May 2012.

Table 3: Adjusted parameters and VTTS ac-
counting for opportunity costs of
time

βtr,car −0.00 [utils/h]
βtr,pt −0.18 [utils/h]
βc −0.07949 [utils/EUR]

βperf +0.96 [utils/h]

V TTStr,car +12.08 [EUR/h]
V TTStr,pt +14.34 [EUR/h]

and Tab. 3 nicely shows: the VTTS are only rescaled from AUD to EUR. In contrast to Tirachini
et al. [2012, forthcoming], the present model does not include access, egress, and waiting times
for public transport. Therefore, the alternative specific constant β0 needs to be re-calibrated.
This is performed by a parametric calibration process which aims at holding the modal split
distribution over distance as close to the initial distribution as possible. The best fit is found
for β0 = −0.75

Simulation Procedure For 800 iterations, 15% of the agents perform route adaption (discovering
new routes), 15% change the transport mode for a car or pt sub-tour in their daily plan and 70%
switch between their existing plans. Between iteration 801 and 1000 route and mode adaption
is switched off; in consequence, agents only switch between existing options. The output of
iteration 1000 is then used as input for the continuation of the base case and the two different
policy cases:

• Base case: unchanged cost structure (see below)

• Policy case 1 (zone 30): maximum speed on all roads within the middle ring road is
limited to 30 km/h

• Policy case 2 (internalization): for car users, additional costs apply for every link;
they are dependent on the emissions emitted by an agent (see Sec. 2.3)

User costs for car are always fixed to 30 ct/km. For the internalization policy, additional costs
apply (see above). User costs for public transport are assumed to be constant at 18 ct/km for the
base case and both policy cases. Please note, that the term “user costs” is referred to as out-of-
pocket costs for the users. All simulation runs are continued for another 500 iterations. Again,
during the first 400 iterations 15% of the agents perform route adaption while another 15% of
agents choose between car and public transport for one of their sub-tours. The remaining agents
switch between existing plans. For the final 100 iterations only a fixed choice set is available for
all agents. When evaluating the impact of the two policy measures, the final iteration 1500 of
every policy case is compared to iteration 1500 of the base case.

4 Results

In this section, we present different changes to the system that result from the two policy
measures explained in Sec. 3.2. The main goal is to answer the question how close the regulatory
measure (zone 30) comes to an optimal first-best toll (internalization) in terms of emission
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reduction and economic benefits. A further discussion of the results can be found in Sec. 5. All
results in this section are given for the 1% sample simulated for a regular week day as described
in Sec. 3.

4.1 Emissions

Starting with analyzing the final iteration of the base case, Fig. 1a shows absolute emission levels
by emission type and subpopulation. Note that the commuter population is differentiated into
people commuting to Munich for work (commuters), and people commuting from Munich to work
outside of Munich (inverse commuters). Also note that the scale of the pollutants is different in
order to make absolute values visible in one graph. One can clearly see that the urban population
only contributes to a relatively small part of total emissions, knowing that they represent 68%
of the total population and perform more trips per day than the other subpopulations. PM
and SO2 emission levels are also relatively low for the urban population, whereas NMHC is
relatively much more important. This is probably due to the fact that NMHC emissions are
significantly higher for cold-starts and during the warm-up phase of the vehicle [see e.g. Schmitz
et al., 2000]. The overall contribution ofNMHC to the absolute emission level is therefore higher
for the urban population due to two reasons: first, they drive shorter distances which means
that — in some cases — the engine is not even completely warmed up when they reach their
destination. Second, due to a higher number of trips per day, the urban population produces
more cold starts per car user over time of day than the other subpopulation who in our model
only perform two trips (commuters and inverse commuters) or one trip (freight), respectively.
Commuters (14.6% of the total population) and inverse commuters (9.8%) seem to have similar
split of the different pollutants. However, commuters emit in total about three times as much
as inverse commuters, probably due to longer average distances. Finally, it is important to
note that the freight population (only 7.6% of the total population) emits around 50% of total
emissions.

To answer the question on how close the zone 30 policy comes to the internalization policy
in terms of emission reduction, Fig. 1b provides important information. It shows the relative
change in emissions for the two policies. The zone 30 strongly reduces NMHC by around 2.5%,
all other pollutants are only slightly reduced by 0.25% or less, and PM is even increasing. The
impacts of an internalization policy result in a much more homogeneous picture: all pollutants
are reduced by 0.6% to 1.1%. Fig. 1c decomposes the information from Fig. 1b to the different
subpopulations. The picture becomes even more interesting: the zone 30 leads to a strong
emission reduction of 5% to 7% for the urban population, all other subpopulations produce more
emissions, NMHC being an exception probably resulting from a modal shift to public transit.
The remaining car users however drive longer distances and therefore emit more emissions. In
contrast, the internalization policy leads to a rather strong decrease of emissions, by 1% to 2%
for urban travelers and commuters, between 1.5% and 3% for inverse commuters. Only the
freight population does not significantly reduce emissions. Overall, one can state that in terms
of total emission reduction, the zone 30 is considerably less successful than the internalization
policy. Additionally, the zone 30 affects the emission level of the urban population way to
negatively and the emission levels of the other subpopulations even positively. The latter is —
in comparison to the first-best internalization policy — exactly the wrong direction.

4.2 Economic Evaluation

Starting again with analyzing the base case, Fig. 2a shows the absolute user benefits W in
million Euro per day. It is calculated as the user logsum or Expected Maximum Utility (EMU)
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for all choice sets of the users of the respective subpopulation pop:

Wpop = logsumpop = EMUpop =
1

βc
ln

J∑
j=1

P∑
p

eVp , (2)

where βc is the cost related parameter from the multinomial logit model or the marginal utility of
money, J is the number of agents in the subpopulation, P is the number of plans or alternatives
of individual j, and Vp is the systematic part of utility of alternative p. The urban population
contribute most to overall user benefits. This results on the one hand from the fact that they
represent a major part of the total population, on the other hand from them spending less time
and distance for transport and therefore spending more time performing activities and paying
less distance costs. When introducing the two policy cases, one obtains absolute changes in
user benefits by subpopulation, represented by yellow bars in Fig. 2b. The zone 30 policy leads
to a loss in user benefit for all subpopulations, most important for the urban population, and
almost without effect on the freight population. That is, urban travelers react most sensible
by changing especially for longer trips from car to public transit. The remaining car users can
barely profit from less car demand in the city since travel times by car are now not any more
determined by congestion but by the maximum free speed of 30 km/h. Commuters and inverse
commuters change to pt only for shorter trips. The remaining car users drive longer distances
(e.g. on the middle ring road) since driving though the inner city has become less attractive
due to the speed limit. The freight population can only change the route which seems to have a
minor effect on user benefit. The internalization policy on the right bears quite different results:
commuters, inverse commuters and freight all loose in terms of user benefit; this loss is most
pronounced for the freight population. That intuitively makes sense since they contribute to
half of the total emissions (see Sec. 4.1 and therefore also have to pay half of the total emission
costs. In contrast, the urban population even gains slightly in terms of user benefit despite the
toll they have to pay. That is, time gains for the urban population slightly overcompensate the
negative effect of the toll payments.

Now, when assuming a redistribution of the toll payments of every subpopulation (blue bars in
Fig. 2b) to the respective subpopulation, one obtains the net welfare effect for that population
(red bars in Fig. 2b). Interestingly, the redistribution of the toll payments overcompensates
the loss in user benefits for commuters and freight. For inverse commuters, the two effects
roughly even out. For urban travelers, the welfare gain becomes even more important, being the
highest of all subpopulations. In addition to the sum of user benefit change and toll payments,
a comprehensive calculation of the total welfare effect needs to include the absolute monetary
change in emission costs resulting from the policies. The emission reduction effect is — in
contrast to time gains when applying a congestion pricing scheme — not included in the user
logsum; this is due to the fact that emission costs are true external costs for the transport
market. Fig. 2c depicts the absolute change in external emission costs resulting from the two
policies. When looking at the scaling of the y-axis, it becomes obvious that these changes in
emission costs do not have the potential of compensating any losses in user benefit in Fig. 2b.
However, the figure allows interesting insights into the welfare effect of the two policies: for the
zone 30, the loss in user benefit for commuters, inverse commuters, and freight is even becoming
worse due to higher emissions and therefore higher emission costs for society. The deadweight
loss for urban travelers is reduced by a small amount. For the internalization policy, all user
groups contribute to a reduction in deadweight loss of society. This figure is naturally quite
similar to Fig. 1c. A further discussion of the results will be given in the next section.

10



6

7

5

6

U
R]

4

m
ill
io
n 
EU

3
be

ne
fit
 [m

2

us
er
 b

0

1

0
URBAN COMMUTER INV_COMMUTER FREIGHT

baseCase

(a) Base case: user benefits (logsum) by subpopulation

15000

25000

U
R
B
A
N

C
O
M
M
U
TE
R

IN
V
_C

O
M
M
U
TE
R

FR
EI
G
H
T

U
R
B
A
N

C
O
M
M
U
TE
R

IN
V
_C

O
M
M
U
TE
R

FR
EI
G
H
T

zone 30 internalization

‐25000

‐15000

‐5000

5000

EU
R

change in user logsum change in toll payments sum

(b) Policy cases: absolute changes in user benefits (logsum), redis-
tributed toll payments, and sum by subpopulation

TE
R

TE
R

zone 30 internalization

BA
N

M
M
U
TE
R

_C
O
M
M
U

IG
H
T

BA
N

M
M
U
TE
R

_C
O
M
M
U

IG
H
T

30

50

U
RB

CO
M

IN
V_

FR
EI

U
RB

CO
M

IN
V_

FR
EI

‐10

10

30

‐50

‐30

EU
R

110

‐90

‐70

‐150

‐130

‐110

150

(c) Policy cases: absolute change in external emission cost by subpop-
ulation

Figure 2: Welfare analysis by subpopulation: absolute values for the base case, absolute changes
for the two policy cases
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5 Discussion and Outlook

The results in Sec. 4 indicate that in terms of total emission reduction, the zone 30 is considerably
less successful than the internalization policy. Additionally, the zone 30 affects the emission level
of urban travelers way too negatively and the emission levels of the other subpopulations even
positively. The latter is — in comparison to the first-best internalization policy — exactly
the wrong direction. Looking again at Fig. 2b and Fig. 1c clarifies that the speed limitation
to 30m/h in the inner city of Munich leads to more market inefficiencies than a “do-nothing”
strategy. When taking the internalization policy as benchmark, these two figures show that
the emission (cost) reduction is too high for urban travelers; for all other subpopulations, it is
even increasing emission costs for society. That is, too high generalized prices for the urban
population, too low generalized prices for all other subpopulations.

Yet, one could argue that the zone 30 is much better when one looks at exposure rather than
emissions. Emission cost factors from Maibach et al. [2008] are average costs and, thus, probably
too low in the inner city and too high outside of Munich. For this reason, we plan to model the
whole impact-path-chain of air pollution in the near future which implies an exposure analysis of
the whole population, and monetizing the effects on human health. Once exposure is considered,
one would argue that the internalizing prices should be corrected exactly for that effect. I.e. by
putting weights on every link that are differentiated by emission type. Weights for CO2 would be
low since it mostly has a global effect, whereas weights for PM would be high due to the strong
local effect on human health. A different approach could also be worth modeling: the calculation
of an optimal toll given the desired emission reduction in the area under consideration. This
might, similar to the zone 30, be dis-satisfactory from an economic perspective but it is also
more likely to happen in reality than the implementation of a first-best pricing scheme.
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B. Kickhöfer and K. Nagel. Mapping emissions to individuals – New insights with multi-
agent transport simulations. In Proceedings of the Conference on Computers in Urban
Planning and Urban Management (CUPUM), 2011. Also VSP WP 11-02, see www.vsp.tu-
berlin.de/publications.
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Appendix: Simulation Details

The following paragraphs are meant to present more information about the MATSim simulation
approach that is used in this paper. Every step of the iterative loop in Sec. 2.1 is in the following
illustrated in more detail.

Plans Generation An agents daily plan contains information about his planned activity types
and locations, about duration and other time constraints of every activity, as well as the mode,
route, the desired departure time and the expected travel time of every intervening trip (= leg).
Initial plans are usually generated based on microcensus information and/or other surveys. The
plan that was reported by an individual is in the first step marked as “selected”.
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Traffic Flow Simulation The traffic flow simulation executes all selected plans simultaneously
in the physical environment and provides output describing what happened to each individual
agent during the execution of its plan. The car traffic flow simulation is implemented as a
queue simulation, where each road (= link) is represented as a first-in first-out queue with two
restrictions [Gawron, 1998, Cetin et al., 2003]: First, each agent has to remain for a certain
time on the link, corresponding to the free speed travel time. Second, a link storage capacity
is defined which limits the number of agents on the link; if it is filled up, no more agents can
enter this link. The public transport simulation simply teleports agents between two activity
locations. The distance is defined by a factor of 1.3 times the beeline distance between the
locations. Travel speed can be configured and is set in this paper to 25 km/h. Public transport
is assumed to run continuously and without capacity restrictions [Grether et al., 2009, Rieser
et al., 2009]. All other modes are modeled similar to public transport: travel times are calculated
based on mode specific travel speed and the distance estimated for public transport. However,
the attributes of these modes are not relevant for the present paper since agents are only allowed
to switch from car to public transport and the other way around. Trips from the survey that
are not car or public transport trips, are fixed during the learning cycle. Output of the traffic
flow simulation is a list that describes for every agent different events, e.g. entering or leaving
a link, arriving or leaving an activity. These events are written in XML-format and include
agent ID, time and location (link or node ID). It is, therefore, quite straightforward to use this
disaggregated information for the calculation of link travel times or costs (which is used by the
router module), trip travel times, trip lengths, and many more.

Evaluating Plans In order to compare plans, it is necessary to assign a quantitative measure
to the performance of each plan. In this work, a simple utility-based approach is used. The
elements of our approach are as follows:

• The total utility of a plan is computed as the sum of individual contributions:

Vtotal =
n∑

i=1

(
Vperf ,i + Vtr ,i

)
, (3)

where Vtotal is the total utility for a given plan; n is the number of activities; Vperf ,i is the
(positive) utility earned for performing activity i; and Vtr ,i is the (usually negative) utility
earned for traveling during trip i. Activities are assumed to wrap around the 24-hours-
period, that is, the first and the last activity are stitched together. In consequence, there
are as many trips between activities as there are activities.

• A logarithmic form is used for the positive utility earned by performing an activity [see
e.g. Charypar and Nagel, 2005, Kickhöfer et al., 2011]:

Vperf ,i(tperf ,i) = βperf · t∗,i · ln

(
tperf ,i
t0,i

)
(4)

where tperf is the actual performed duration of the activity, t∗ is the “typical” duration of
an activity, and βperf is the marginal utility of an activity at its typical duration. βperf is
the same for all activities, since in equilibrium all activities at their typical duration need
to have the same marginal utility. t0,i is a scaling parameter that is related both to the
minimum duration and to the importance of an activity. As long as dropping activities
from the plan is not allowed, t0,i has essentially no effect.

• The disutility of traveling used for simulations is taken from Tirachini et al. [2012, forth-
coming]. More details are given in Sec. 3.2.

In principle, arriving early or late could also be punished. For the present paper, there is,
however, no need to do so, since agents are not allowed to reschedule their day by changing
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departure times. Arriving early is already implicitly punished by foregoing the reward that
could be accumulated by doing an activity instead (opportunity cost). In consequence, the
effective (dis)utility of waiting is already −βperf t∗,i/tperf ,i ≈ −βperf . Similarly, that opportunity
cost has to be added to the time spent traveling.

Learning After evaluating daily plans in every iteration, a certain number of randomly chosen
agents is forced to re-plan their day for the next iteration. This learning process is, in the
present paper, done by two modules corresponding to the two choice dimensions available: a
module called router for choosing new routes on the road network and a module called sub-tour
mode choice for choosing a new transport mode for a car or public transport trip. The router
module bases its decision for new routes on the output of the car traffic flow simulation and
the knowledge of congestion in the network. In the case of the internalization policy, it also
uses the knowledge about expected emission costs (see Sec. 2.3). The router is implemented as
a time-dependent best path algorithm [Lefebvre and Balmer, 2007], using generalized costs (=
disutility of traveling) as input. The sub-tour mode choice module changes the transport mode
of a car sub-tour to public transport or from a public transport sub-tour to car. A sub-tour
is basically a sequence of trips between activity locations. However, the simulation needs to
make sure that a car can only be used if it is parked at the current activity location. Thus, a
sub-tour is defined as a sequence of trips where the transport mode can be changed while still
being consistent with the rest of the trips. It is e.g. assured that a car which is used to go from
home to work in the morning needs to be back at the home location in the evening. If the car
remains e.g. at the work location in order to use it to go for lunch, then the whole sub-tour of
going to work and back needs to be changed to public transport.
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