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Abstract

This paper describes the modeling of destination choice for discretionary activities in a multi-
agent transport simulation, using MATSim as an example. MATSim is based on utility maximiza-
tion. Randomness was included implicitly and in an uncontrolled way through the stochasticity
of the simulation process, and sometimes through a logit choice model. Unobserved hetero-
geneity is now added directly to the utility function through a random error term. Importantly,
those random error terms are quenched, i.e., they will be the same for repeated executions of
the choice model. Real-world simulation experiments for Zurich show that this substantially
improves results.

High-resolution destination choice for large-scale microsimulations raises several technical
issues; pragmatic engineering solutions have been developed or applied to cope with them.
These solutions are described in technical detail to assist in the further development of similar
microsimulations.

Keywords
Destination choice, large-scale microsimulation scenarios, MATSim, Spatial discrete choice
modeling
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1 Introduction, Problem and Goal

1.1 Computational Process vs. Utility-Based Models

There are two general transport microsimulation types: computational process models and
utility-based models. Utility-based models focus on the definition of final decision outcomes.
These outcomes maximize the decision maker’s utility, subject to constraints. Computational
process models, on the other hand, assume that decisions are captured realistically by focusing
on the decision process, guided by heuristic decision rules.

Destination choice in utility-based transport microsimulators is mainly based on discrete choice
models, where the choice set is constructed obeying various constraints, such as Hägerstrand’s
space-time prisms (see e.g., (Kitamura et al., 2005; TRANSIMS, 2009; Henson and Goulias,
2006; Timmermans, 2001)).

MATSim (MATSim-T, 2011) belongs to the strand of utility-based transport simulation frame-
works. The persons’ activity chains are iteratively simulated, adapted and evaluated by a utility
function as described later.

1.2 Heterogeneity

Transport models need to adequately treat heterogeneity in the context of travel decisions, usually
modeled by random error terms for every person-alternative pair and by probability distributions
for the model coefficients (mixed models).

This is explained in more detail by a prototypical example: a toll road, with a non-toll, but
slower, alternative. In the absence of congestion, the Nash equilibrium solution has, for any
given origin-destination (OD) pair, either all demand on the toll road, or all demand on the
non-toll road. This is not realistic; for certain values of toll and travel time, the traffic streams
will split onto both options.

A typical approach to the problem assumes person-specific unobserved attributes for every
alternative modifying the utility; i.e., one has:

Upi = Vpi + εpi , (1)

where p is the person index, and i the index for the alternative. As usual, V denotes the
systematic part of the utility (the same for every person of a given OD relation), ε is the random
offset, and U is the resulting utility on which the user equilibrium will be based. As is well
known, one typically progresses assuming that the εpi are independently and identically Gumbel
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distributed, leading to the logit choice model, and from there, to the stochastic user equilibrium
(SUE).

An alternative is to assume that there are person-specific coefficients that modify the decision.
Let us, for example, take individual values-of-time V oTp. For this, let us assume that V is of the
form:

Vpi = −α tpi − γpcpi ,

where t is travel time, c the toll (“cost”), α the weighting factor of time, and γp the weighting
factor of the toll. Importantly, γp depends on the person. Assuming that travel times and toll
payments are the same for everybody, then alternative i is better than alternative j if

Vpi > Vpj ,

− α
γp
ti − ci > −

α

γp
tj − cj ,

ci − cj
tj − ti

<
α

γp
=: V oTp ,

where the last equation is only valid when tj > ti. Assuming then that i is the toll option,
one finds that i is accepted only when the payment divided by the time gain is less than the
person-specific value of time. Persons with a large value of time will tend to use the toll road;
persons with a small value of time will tend to use the non-toll, slower road.

However, it is not possible to use the taste variation approach without the unobserved attributes
approach, since not all heterogeneity in behavior can be explained by taste variations. Drawing
on the example above, there may be an OD relation where the toll road is both slower and more
expensive, i.e., it is pareto-dominated. That some users may use it anyway can thus, within the
utility-maximizing framework, only be explained by additional, unobserved, attributes.

1.3 Repeated Draws: Quenched vs. Annealed Randomness

1.3.1 Including Randomness in the Microsimulation

One assumed advantage of microsimulation is the conceptually straightforward inclusion of
heterogeneity. In the first instance, one can, whenever it is needed, either

• randomly draw from a choice model given as probability distribution or
• randomly generate an εpi for every person-alternative pair and select an alternative i as

argmax
i∈choice set

Upi .
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For mixed logit models, one can also draw a V oTp from a distribution (e.g., McFadden and
Train, 2000; Hess et al., 2005).

In both cases, however, problems with repeated draws must be solved. Repeated draws mean
that the same individual p is repeatedly faced with an identical choice, a frequent situation in
iterative models. Obviously, the V oTp of individual p should not change from one such draw to
the next, and similarly, the εpi should remain fixed once they have been drawn for the first time.
For the same reason, neither the εpi nor the V oTp should change during the introduction of a
policy measure, except when it affects them directly.

In physics, this would be called “quenched” randomness; all randomness is computed initially
and then attached to particles or locations, rather than instantaneously generating it, which would
be called “annealed” randomness.

1.3.2 Implementing Quenched Randomness

Quenched randomness can be achieved by applying one of the following two strategies:

• (a) Freezing the applied global sequence of random numbers, meaning that a Monte Carlo
method with the same random seed is used before and after the introduction of a policy
measure and over the course of iterations. Thus, the V oTp and εpi should come out the
same way before and after the introduction of the policy measure. Differences in the
outcome can thus be directly attributed to the policy measure.
• (b) Computing and storing a separate εpi for every combination of person p and alterna-

tive i.

The authors reviewed relevant literature, but could not determine strategies applied in each case
in other large-scale transport microsimulations. Through personal e-mail communication with
the simulator authors, some answers emerged: in AMOS and OpenAMOS (OpenAMOS, 2011;
Pendyala et al., 1997) (a) is applied. In Albatross (Arentze and Timmermans, 2000) both (a)
and (b) have been applied. For the NYC activity-based microsimulation (Vovsha et al., 2008) in
most cases (a) is used, although they recently switched to (b). The Tel Aviv model (Cambridge
Systems Inc., 2008) is based on (a). The Sacramento and Portland models developed by Mark
Bradley and John L. Bowman besides others (e.g., Bradley et al., 2010; Bowman et al., 1999)
apply (a).

Both strategies have flaws. Approach (a) is only an option if one is certain about all aspects of
the computational code. Importantly, one additional random number, drawn in one run but not
in the other, completely destroys the “quench” for all decisions computed later in the program.
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Thus, approach (b) could be more robust in practice. However, for large numbers of decision
makers and/or alternatives, storing error terms is difficult. For destination choice, one quickly
has 106 decision makers and 106 alternatives, resulting in 4 × 1012Byte = 4TByte of storage
space.

One may argue that this should not be a problem, since a normal person will rarely consider
more than the order of a hundred alternatives in their choice set, reducing the computational
problem. Aside from the necessity of storing every decision maker’s choice set, this converts the
computational problem into a conceptual one, since a good method to generate choice sets then
needs to be found. With more conceptual progress, this may eventually be an option, but at this
point, a conceptually simpler approach is preferred.

As far as the authors know, this set of problems has not been discussed in existing literature.
In this paper, we present a relevant solution for the computational problem associated with
approach (b).

1.4 MATSim and Heterogeneity

The utility function used until now (for route and time choice) did not contain a random error
term. However, a certain amount of randomness (i.e., unobserved heterogeneity) implicitly
entered the model: Two identical persons with the same origin and destination may still end
up with different routes according to the random order in which they undergo the replanning.
Essentially, this means that a random term is added implicitly to the choices. Also, some
investigations applying MATSim use a logit choice model, thus adding another element of
randomness.

However, this randomness is introduced in an unsystematic manner. Future investigations are
thus necessary for these choice dimensions, but this paper is focused on destination choice.

1.4.1 Heterogeneity in the New Destination Choice Model

The newly added MATSim destination choice model, like most operational destination choice
models, does not take locational competition into account. Thus, constraints coupled to competi-
tion cannot introduce unobserved heterogeneity the way they can for time and route choice.

This means that every time a synthetic traveler is up for leisure destination choice (for example),
he or she will switch, if available, to a new leisure location generating a higher score. Without
additional measures, such a leisure location will almost always either be closer to home, or closer
to a trip that is done anyway, such as work-to-home. With this setup, leisure trip distances keep
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decreasing over the iterations.1 In practice, not taking into account the unobserved heterogeneity
leads to a dramatic underestimation of total travel demand (visible in too-short travel distances,
too-short travel times and underestimated link volumes as compared to count data) as shown
below and in (Horni et al., 2009b).

The intuitive explanation is that synthetic travelers do not differentiate between possible destina-
tions; one leisure or shopping location is as good as any other. An “observed” way to address
this problem might be to differentiate these facilities by type, e.g., leisure facilities into tennis,
swimming, rock climbing, parks, etc. However, in many cases, neither the land use nor the
observed tastes are available, and even then some unobserved heterogeneity will remain.

To conclude, when including destination choice, explicit random error terms should be used to
be compatible with econometric discrete choice methodology (McFadden, 1978).

1.5 This Paper’s Goal

This paper will introduce an operational destination choice approach to overcome the problems
identified below for high-resolution microsimulations. To test the new approach, a suitable
module is implemented in MATSim.

In this paper, unobserved heterogeneity is explicitly incorporated as an error term in the utility
function. Random taste parameters are not discussed, but are left for future work.

The following technical issues are raised:

First, as discussed above, with MATSim’s iterative structure, drawing from error distributions
is not straight-forward. This holds for all iterative procedures. If the error term is drawn per

iteration with an arbitrary random seed, there is no convergence toward a stable solution. An
efficient mechanism to assign a fixed individual error term per person-alternative pair εpi (for
person p and destination i) will be presented.

Second, travel times are a very important determinant in destination choice. Calculating travel
times includes routing, which is computationally very expensive. This makes computation of
travel times for many alternatives, as it is necessary for destination choice, difficult, or even
unfeasible. This problem is investigated and a first solution is presented.

1Note that this occurs only when iterative choice dimensions include destination choice. There are very few
MATSim papers doing this (Horni et al., 2009a,b).

6



High-Resolution Destination Choice in Agent-Based Demand Models February 2012

2 Method: Designing the MATSim Destination Choice Mod-
ule

2.1 MATSim

MATSim is an activity-based, expendable, open source, multi-agent simulation toolkit imple-
mented in JAVA and designed for large-scale scenarios and is a co-evolutionary model. In
competition for space-time slots on transportation infrastructure with all other agents, every
agent iteratively optimizes its daily activity chain by trial and error. Every agent possesses
a fixed number of day plans memory, where each plan is composed of a daily activity chain
and an associated utility value (in MATSim, called plan score). Computation of plan score is
compatible with micro-economic foundations and is described in more detail below. In every
iteration, prior to the simulation of the network loading (e. g., Cetin, 2005), every agent selects a
plan from its memory. This selection is dependent on the plan utility.

2.1.1 MATSim Choice Set Generation

Before the plans are executed on the infrastructure a certain share of the agents (usually 10 %)
is allowed to clone the selected plan (here: the plan with the highest score per agent) and to
subsequently modify this cloned plan. Three choice dimensions are considered: time choice
(Balmer et al., 2005), route choice (Lefebvre and Balmer, 2007), and destination choice, as
described later.

If an agent ends up with too many plans (here set to “5 plans per agent”), the plan with the
lowest score (configurable) is removed from agent’s memory. An iteration is completed by
evaluating the agent’s day described by the selected day plans.

This approach defines the generation of a choice set for the agents. The alternatives are
generated implicitly, over the course of the iterations. Remember, the alternatives are complete
daily plans. Additional choice set considerations may occur in the sub-modules, for example in
the destination choice module described later.

2.1.2 MATSim Choice

If an agent has obtained a new plan, as described in Sec. 2.1.1, then that plan is selected for
execution in the subsequent network loading. If the agent has not obtained a new plan, then the
agent selects between existing plans. The selection model is configurable. In many MATSim
investigations, a model generating a logit distribution is used. However, for this paper, such
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agents will select the plan with the highest score.2

2.1.3 The MATSim Utility Function

The basic MATSim utility function was formulated in Charypar and Nagel (2005) from the
Vickrey model for road congestion as described in Vickrey (1969) and Arnott et al. (1993).
Originally, this formulation was constructed for departure time choice. Several studies, e. g.,
Balmer et al. (2009), indicate that the extended function is productive for modeling time choice
of complete days, including route choice; It has thus been adopted as the starting point for
handling destination choices. As mentioned earlier, the inclusion of individual error terms and
individual tastes is investigated.

The utility of a plan Uplan (described in detail in Charypar and Nagel, 2005) is computed as the
sum of all activity utilities Uact,q plus the sum of all travel (dis)utilities Utrav,q

Uplan =
n∑
q=1

Uact,q(typeq, startq, durq) +
n∑
q=2

Utrav,q(locq−1, locq)

where typeq, startq and durq are the type, start time and duration of the activity q respectively.
Utility of an activity is defined by:

Uact,q = Udur,q + Ulate.ar,q ,

where:

• Udur,q = βdur × ln(tdur,q) is the utility of performing an activity q, where opening times
of activity locations are taken into account;
• Ulate.ar,q = βlate.ar × tlate.ar,q and Uearly.dp,q = βearly.dp × tearly.dp,q give the disutility of

late arrival and early departure respectively.

There may also be additional penalties for staying not long enough, departing too early, or
(beyond the implicit opportunity cost of time) for waiting. These are not used in the present
paper.

Travel disutility is given as Utravel,m = βtravel,m × ttravel,m, where m is the travel mode.

The standard MATSim utility function as described above is used for the simulation configu-

2configured by <param name="Module_X" value="BestScore" /> in the MATSim configuration
file
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rations 4.1 and 4.2. For these configurations following parameter setting is applied, which is
derived from Balmer et al. (2009, 2010):

βdur = 6.0 ,

βlate.ar = −18.0 ,

and

βtravel,car = −6.0 .

For the configurations 0, 1, 2 and 3 different utility functions are employed, which are described
at the appropriate location.

2.1.4 Earlier MATSim Destination Choice Solutions

The Swiss Census of Population 2000 (Swiss Federal Statistical Office, 2000) can identify
home and work locations for every Swiss resident at hectare and municipality level respectively.
Clearly, such information can not be logged for discretionary activities. However, to run
an activity-based simulation, reasonable destinations for these activities must be assigned.
First, a simple neighborhood search, as described in (Balmer et al., 2009), was employed in a
preprocessing step. That approach is not part of the optimization process and does not accurately
model destination choice.

A first improvement in destination choice—including it in the optimization process—was intro-
duced by (Horni et al., 2009a), based on Hägerstrand’s time geography. However, unobserved
heterogeneity was not taken into account in that module or in MATSim. Thus, a significant
underestimation of travel demand resulted and the module could not be productively employed.
Furthermore, that module is based on local search. Local search applicability, however, is
questionable on destination choice utility space. Its specific characteristics are explained later.

2.2 Incorporating Heterogeneity: Individual Error Terms and Agent-specific
Taste Parameters

In iterative models, ensuring a stable choice for the same person doing the same choice over
the course of the iterations can be achieved as follows. Fixed random error terms are assigned
to every person-destination pair pi. These terms can be randomly assigned in a preprocessing
step and held constant over the course of iterations. The optimization is then performed as a
deterministic search based on the resulting utility function. In fact, this can be seen as a return
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to the roots of random utility modeling – rather than absorbing the εpi into the choice model,
they are now explicitly generated.

However, when trying to store these error terms directly, an infeasible storage effort results for
large-scale scenarios as shown earlier. Instead, the same stable error term can be re-calculated
on the fly by using the random seed spi = g(kp, ki). The distribution of these seeds is essentially
irrelevant. In this paper kp is a fixed uniformly distributed value per person p, and ki is a fixed
uniformly distributed value per destination i. In this work g(kp, ki) = (kp × ki)× vmax is used.
vmax is the maximum (long) number that can be handled by the specific machine.

To evaluate utility for a person p visiting the destination i a sequence of Gumbel-distributed
random numbers seqpi is generated on the fly for every person-alternative pair using the seed spi.
The error term εpi is then derived from the mth element of the sequence seqpi[m]. Here, m is set
to 10. This procedure is valid as the set of all mth elements of all different sequences is also a
pseudo-random sequence following the same distribution as the sequences seqpi. In this work, a
standard Gumbel distribution (i.e., location parameter µ = 0 and scale β = 1) is applied. It is
first scaled to produce a 1.0 standard deviation. Second, as no utility function estimation is yet
available, calibration of error terms is performed, where two parameters fshopping (here set to
0.95) and fleisure (here set to 1.35) are used. Clearly, true random number generators relying on
physical phenomena, such as hardware temperature, are not applicable.

2.3 Spatial Discrete Choice Modeling

This paper has, at this point, described a computationally effective method to generate person
and destination specific error terms. Yet, the definition of the utility function U itself is still
lacking. A typical specification of the distance part of U is

U(d) = βconst + βd d , (2)

where βd is typically negative. However, empirical results indicate that it may be equally valid
to describe the cost perception term by a non-linear function (Hess et al., 2008), where recent
research suggests the logarithmic function (Illenberger et al., 2010), i.e.

U(d) ∼ γ ln d ,

where “∼” means “approximately proportional” and γ is typically negative.

Together with a logit choice model pchoice(j) ∼ eU(d(j)) this leads to

• pchoice(j) ∼ eβd d, or
• pchoice(j) ∼ dγ ,
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where the “∼” notation implies that proportionality and normalization terms are left out. That is,
those specifications of the utility function recover typical specifications of destination choice
models.

The relation between the distance distribution and the choice probability is

ptrip(d) = pchoice(U(d))× nopp(d) ,

where nopp(d) is the number of opportunities at distance d. There are two relevant cases:

• In a homogeneous, two-dimensional world, the number of opportunities grows with d,
since the length of the circle line at distance d grows with d (see Figure 3). Therefore,

ptrip(d) ∼ eU(d) × d ,

and in consequence U(d) can be derived from ptrip(d). With U(d) ∼ βdd (eq. 2), this
is a function that starts at zero, initially grows proportional to d, and then declines
because of the negative exponential. A simulation generates, for a uniform distribution of
opportunities, a trip distance distribution of the correct form (see Figure 4(b)).
• If the distribution of opportunities is not homogeneous, or not two-dimensional, then the

above equation does not hold and some other way to obtain U(d) needs to be found. In
some situations, the distribution of opportunities may be fractal.
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2.4 Designing the Destination Choice Module

Conceptually MATSim is based on random mutation. However, the huge number of available
alternatives for all choice dimensions (and hence curse of dimensionality) makes the introduction
of optimizing mechanisms indispensable, i.e. mechanisms that do not return a random alternative
from the set of available alternatives but a “good” one. For route choice the A*-Star Algorithm
is applied, which finds the best route for an origin destination pair per iteration subject to
constraints. For time choice, which has relatively few search dimensions, local search is applied,
but optimal search improves performance (Meister et al., 2005). The huge number of potential
destinations makes the need for optimizing mechanisms for the destination choice module
obvious.

2.4.1 Search Space and Search Method

The discrete search landscape is characterized by random noise because error terms are not (or
only locally) spatially correlated (see Figure 1). For such problems, efficient search methods,
such as local search methods, generally do not work. Furthermore, in the model and, in reality,
utility contributed by the error term is unlimited. The search space for potential destinations
is hence unlimited. Unfortunately, exhaustive search usually produces prohibitively large
computation efforts for large-scale scenarios. Thus, the application of problem-tailored heuristics
and approximations is unavoidable.

A first attempt to narrow down individual search space Γpq for person p and activity q is as
follows. In discrete choice theory, individual p chooses alternative i, producing maximum utility
for activity q:

Uiqp ≥ Ujqp,∀j ∈ choice set ,

that is

Viqp + εiqp ≥ Vjqp + εjqp,∀j ∈ choice set ,

where V denotes the deterministic part of the utility function. V is usually composed of travel
effort Vtravel and utility for performing an activity Vperform. Hence, the above formula gives:

Vtravel,iqp + Vperform,iqp + εiqp ≥ Vperform,jqp + Vtravel,jqp + εjqp,∀j ∈ choice set .

In MATSim, Vperform,jqp is equal for all destinations j if the performed activity time is equal

12



High-Resolution Destination Choice in Agent-Based Demand Models February 2012

and it decreases with increasing travel effort. Hence, maximum potential travel effort is equal to

εpq,max := max
ω∈choice set

εωpq .

This defines the upper-most boundary of the search space. Actually, search space is restrained
by the travel effort to reach the destination associated with the largest error term. However, it is
assumed that this stopping condition is seldom satisfied, and thus, its efficiency does probably
not justify the additional implementation and computation complexity. Instead, the search space
can be further restrained under the natural assumption that an activity is dropped if it does not
generate positive utility at least for one destination, i.e.,

Vtravel,jpq + Vperform,jpq + εjpq
!
> 0 .

The dependency of Vperform on Vtravel is difficult. To make things worse, Vperform is usually
non-linear. Fortunately, Vperform can be omitted when searching for an upper bound for the
accepted travel costs. Clearly, Vperform is larger for closer locations: The longer the trip takes,
the less time there is to perform the activity. In other words, the benefit decreases by traveling
due to travel costs Vtravel and opportunity costs (loss of Vperform). This loss must be at least
compensated by the error term for a person to choose a more distant destination and to not
stay at the current (closer) location: A person only travels farther if that effort produces a net
benefit. An upper bound for maximum search space can thus be found by considering only the
compensation of the travel costs, i.e., by ignoring the opportunity costs (lost activity performing
time).

Hence the above equation becomes after setting εjpq := εpq,max and rearranging:

Vtravel,pq > −εpq,max .

Note that Vtravel is negative. The destination index j can be omitted, as the formula is not
destination-dependent.

Now assume:

Vtravel,pq = βpq × fpq(t, d,m) ,

where βpq is the individual cost coefficient for person p and usually negative. fpq(t, d,m) is
the travel cost function, usually composed of time (t), distance (d) and monetary (m) costs.

Maximum travel costs defining search space are thus given after rearranging by:

fpq(t, d,m) <
−εpq,max
βpq

.
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The inequality sign changes as βpq is negative. In this paper, linear travel distances Vtravel,pq =

βdistance,pq × distance are used as travel disutilities.

Therefore, the above equation translates to:

distancemaxpq <
−εpq,max [ ]

βdistance,pq [ 1
m

]
. (3)

This approach is promising, as very large values for εpq,max are rare (Figure 2), meaning that
a huge space must be searched for only a few persons. The search space Γpq is constructed as
follows. Let us assume that for the activity q of person p, a new location lpq has to be found.
Γpq can then be defined as a circle whose center is the mid-point between the preceding activity
lpq−1 and the succeeding activity lpq+1.

The radius of the circle is set to:

rΓpq = (distance(lpq−1, lpq+1) + distancemaxpq )/ψ .

The most productive value for ψ is not yet apparent. For every discretionary trip, there is a
distancemaxpq that person p is willing to travel at most. Looking at an individual discretionary
tour with fixed and identical locations lpq−1 = lpq+1 clearly distancemaxpq includes the return trip
and ψ = 2 is thus a natural choice. But, for consecutive multiple discretionary activities the
search space is probably larger, and ψ is thus smaller. However, essentially, the value of ψ is
subject to calibration and needs further research. In this paper, ψ = 2 is used.

It is crucial that Γpq can be computed fast and that all destinations actually accessible are
contained. On the other hand, only computation times, but not the quality of the results, are
influenced if destinations that are actually inaccessible are included in the evaluation. For that
reason, it is possible to approximate the travel distance distancemaxpq by the straight-line distance.
This distance can then be computed once in a preprocessing step.

Following improvements are left for future work:

• First, in this work every discretionary activity is handled separately. Clearly this is
an approximation, as consecutive multiple discretionary activities should be handled
recursively as described in Horni et al. (2009a). This is a subject for future work.
• Second, if the preceding and the succeeding activity locations are not identical, the space

which can be accessed within a certain travel time or travel distance budget is elliptic.
Thus, in the future research the specification of the search space Γpq as an ellipse should
be analyzed. This is expected to produce a substantial efficiency gain. However, data
structures for efficient spatial searches (such as Quad Trees (Finkel and Bentley, 1974))
do not yet exist for elliptical spaces.
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2.4.2 Convergence Speed, MATSim Best Response and Computation Times

Normally, exactly one alternative per choice dimension is evaluated in each MATSim iteration.
This procedure is reasonable as the persons interact in the infrastructure and influence each
others’ choices, which can be regarded as a feedback mechanism.

For destination choice, due to numerous available destinations in the search space, a huge
number of iterations is required, resulting in a very low convergence speed.

As long as the change of travel costs between succeeding iterations is not too large, multiple
search space destinations can be evaluated per person and per iteration. Normally, the relatively
small share of agents who re-plan, keep the inter-iteration changes small. Thus, increasing the
number of evaluated alternatives per iteration might be feasible. This reduces the number of
iterations and substantial costs associated with simulation of network loading.

Despite this simulation time reduction, computation times are still infeasible and further speed-
ups are necessary. For the 10% Zurich scenario with approx. 68’000 persons, one iteration takes
roughly 20 hours, even when using multiple processor cores. Most computation time is due to
calculation of travel times, i.e., due to routing, in the context of large alternatives sets. To reduce
these huge routing costs, the following procedure is applied.

Let us assume that location lq of activity q is changed, where all other plan activities are fixed.
Travel times for routes between activity location lq−1 and all potential locations lq can be exactly
and efficiently computed by Dijkstra’s algorithm because it efficiently computes the best routes
from one location to all other locations in the network. Travel times of the best routes between
activity locations lq and lq+1 are computed by running Dijkstra’s algorithm backwards, using an
average estimated arrival time as initial time. This is an approximation, as the arrival time at
lq+1 is different for different locations lq.

To reduce possible approximation errors, a probabilistic best response is applied. Search
space destinations are evaluated as described above; then a random choice weighted by these
approximated scores is performed. The plan containing the new choices is finally simulated and
eventually scored, based on exact travel times by the MATSim iteration scoring. This approach
is justified by the assumption that, during the course of the iterations, the probabilistic choice
probably reduces—or even compensates for—the errors incurred by approximating travel times
as described above.

However, the probabilistic choice brings back the problem of slow convergence. If every
alternative in the search space is chosen with probability greater than zero, this huge set
necessitates a large number of iterations. For reasonable convergence, the probabilistic choice
must be performed on a reduced choice set. Thereby, restraining the choice set to the φ
destinations producing the highest approximate plan scores is natural. φ is essentially dependent
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on the approximation error done by estimating travel times. For our purposes φ is set to 30 but
this value also needs further research.

With this procedure the required computational effort is dramatically reduced, allowing appli-
cation of destination choice to large-scale scenarios. One iteration of the 10% Zurich scenario
takes roughly 25 minutes (instead of 20 hours). The simulation is run with 10 parallel JAVA
threads and approximately 15GB of RAM. The Linux server is equipped with an Intel Xeon(R)
processor, 3.33GHz, with 24 cores and 96GB of RAM.
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3 Results

The paper investigates the direct inclusion into the utility function of heterogeneity that was
so far not present in MATSim. Solutions are presented to overcome serious computational
difficulties in large-scale scenarios using examples integrated in both a small-scale scenario and
a real-world scenario (the often used Zurich scenario as described below).

3.1 Overview of Scenarios

3.1.1 Synthetic Small-Scale Scenario

The synthetic scenario is composed as follows. The study area is a 20 km square. The network
consists of 6561 nodes and 25920 directed links, building a grid of 6400 squares. The link
capacities are 400 vehicles per hour. The scenario consists of 2000 persons, whose home
locations are located at 40 central locations in the study area. 12960 shopping destinations are
equally distributed over the study area, so that every square is connected with 4 destinations.
Persons’ activity chains contain two home activities with an intermediate shopping activity.
During the iterations, time, route and destination choices are made. Initially, all shopping
activities are performed at the home location. The initial end time of the first home activity is 11
o’clock and the desired shopping duration is arbitrarily set to 180 minutes. The opening times
window is set narrow (from 9:30 to 14:30) so that persons cannot completely circumvent traffic
jams. These values roughly represent Saturday shopping trips. Real data is applied in the Zurich
scenario as described below.

The following four configurations are simulated:

• Configuration 0: U = ε

The utility function applied for this configuration is made up only of the error terms, which
are Gumbel-distributed as described in Sec. 2.2.
• Configuration 1: U = βdistance × distance+ ε,

with βdistance = const = −0.0005

In this configuration a distance-based utility function is applied, i.e., a linear disutility
distance term is added to the setting of configuration 0.
• Configuration 2: U = βdistance × f(distance) + ε,

with βdistance = const and f(distance) = −2.0 ln(1 + 0.0005
m

distance)

In this configuration a non-linear distance disutility term is added to the setting of configu-
ration 0.
• Configuration 3: U = ηdistance × distance+ ε, with η ∼ N(β, σtastes),

where βdistance = −0.0005 and σtastes = 6.32 ∗ 10−4 are arbitrarily but reasonable set.
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For this configuration a mixed utility function is applied.

As travel times are not part of the utility function for the configurations 0 to 3, the travel time
approximation as described in Section 2.4.2 is not applied for these configurations. The error
terms ε are independently and identically (i.i.d.) Gumbel distributed with σε = 1.0

3.2 Configuration 0

In this configuration choices are independent of travel costs. The resulting distance distribution
is shown in Figure 3. Starting from the center, and increasing the travel distance, the number of
destinations increases linearly. This means that also the probability for finding the destination
generating maximum utility increases linearly with distance. As soon as the boundaries of the
study area are reached, the probability of finding an even better alternative by increasing the
travel distance again decreases. The relatively slow decrease is due to the geometrical setting.
The area of potentially better destinations is a circle, where the study area is a square. Thus,
some agents find their best option in the corner areas of this square, lying already outside of the
circle mentioned before.

The distribution of the maximum score (utility) per person again follows a Gumbel distribution
(see Figure 2).

3.3 Configuration 1

In Figure 3, the distance distribution roughly follows a negative exponential distribution as
observed in empirical data, such as the Swiss National Travel Survey (Swiss Federal Statistical
Office, 2006). This means that, in essence, realistic distance statistics can be produced very
efficiently without imposing any complex boundary conditions (as in the earlier MATSim
destination choice models, see Horni et al., 2009b) or applying complex behavioral models.

When looking at real data, a relatively long distribution tail can usually be observed even for
home-based round-trips; whereas for this scenario long distances are rare. Although the scenario
is synthetic, this may be further evidence that the distance cost perception function might be
better assumed to be non-linear with decreasing marginal costs for very long distances.

As mentioned earlier, this paper aims to provide a mechanism for sampling from discrete choice
models in combination with optimization of complete day plans in a fully integrative way. A first
verification step of this mechanism is provided here by re-estimating the utility function distance
parameter βdistance (see Table 1). The choice set consists of all shopping destinations in the
study area, with all 2000 agents included. Choices are given by the agents’ destination choices
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Table 1: BIOGEME Estimation Results

Description and Summary statistics
βdistance -0.0005 -0.00025

Model Multinomial Logit
Number of observations 2000

Diagnostic Convergence reached...
Iteration 9 7

Final gradient norm +8.303e-004 +3.610e-003
Cte log-likelihood -12717.533 -14173.487

Likelihood ratio test 10776.620 5314.208
Variance-covariance from analytical hessian

L(0) −18939.246

L(β̂) −13550.936 −16282.142

−2[L(0)− L(β̂)] 10776.620 5314.208

ρ2 0.285 0.140

Parameters:
Robust Asympt. std. error 1.03e-005 5.49e-006

t-stat -63.05 -58.42
p-value 0.00

Coeff. estimate β̂distance -0.000651 -0.000321

for the relaxed state (final iteration 100). Consistency between the applied and the estimated
coefficient can be observed in the significant results: β̂distance = −0.000651 with ρ2 = 0.285.

3.4 Configuration 2

This configuration uses a disutility that is logarithmic in distance. The experiments (see Figure 3)
show as expected that the distance distribution’s tail is enlarged if a non-linear distance disutility
term with decreasing marginal disutility is used for the choice function.

The calculation of rΓp as described in Section 2.4 is based on solving a non-linear equation. With
respect to random tastes and the functional form of the utility function, the focus of this paper is
not on the computation time aspects. Thus, for the moment for this configuration exhaustive
search is applied.
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3.5 Configuration 3

Configuration 3 is the same as configuration 1, i.e. with a linear distance disutility, but this
time with taste variations in the distance perception coefficient. In Figure 3 it can be seen that
this also enlarges the tail of the distance distribution. For real-world applications appropriate
(probably asymmetric) distributions for the taste coefficients have to be used.
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3.6 Real-world Scenario: 10% Zurich Scenario

The 10% Zurich scenario is frequently used in MATSim development but also for projects in
Swiss planning practice (e.g., Balmer et al., 2009; Horni et al., 2009a). Simulation scenario
demand is derived from the Swiss Census of Population 2000 (Swiss Federal Statistical Office,
2000) and the National Travel Survey for the years 2000 and 2005 (Swiss Federal Statistical
Office, 2006). A 10% sample of car traffic (including cross-border traffic) crossing the area
delineated by a 30 km circle around the center of Zurich (Bellevue) is drawn, which results
in almost 68’000 agents simulated. The activity location data set, comprising more than 106

home, work, education, shopping and leisure locations, is computed from the Swiss Census of
Population 2000 and the Federal Enterprise Census 2001 (Swiss Federal Statistical Office, 2001).
The network from the Swiss National Transport Model (Vrtic et al., 2003) is used, consisting of
60’492 directed links and 24’180 nodes. A single day is simulated, with 3.35 average number of
trips per agent. In total, 25’896 shopping activities and 40’971 leisure activities are performed.
Comparable data is available in most countries from official sources, such as censuses, national
travel diary studies and commercial sources, such as navigation network providers, yellow pages
publishers or business directories.

The trip distance distributions are taken from the National Travel Survey for the year 2005
(Swiss Federal Statistical Office, 2006), reporting 33’000 person days for Switzerland overall.
Patterns for trips undertaken by persons visiting or living in the Zurich region compared to the
complete set of trips are almost identical. However, due to the smaller sample size, the restrained
set shows more noise. Thus, all trips in Switzerland are used. Additionally, traffic count data for
2004-2005 from automatic national, cantonal and municipal count data stations (e. g. ASTRA,
2006) are taken into account. Count data is evaluated in this paper for the area delineated by a
circle with a 12km radius, containing 123 counted links.

The following two configurations are simulated:

• Configuration 4: U = f(tactivities, ttravel), i.e., excluding unobserved heterogeneity
where f(., .) refers to the standard MATSim utility function described earlier.
• Configuration 5: U = f(tactivities, ttravel) + ε, i.e., including unobserved heterogeneity.

Figures 5 and 6 show that both traffic counts and distances traveled for shopping and leisure trips
are underestimated if error terms are excluded (configuration 4). This problem would intensify
for weekend scenarios to be developed in the near future. Results indicate that incorporating
error terms (configuration 5) is highly productive. A very good match between simulated and
measured values can be achieved with only minimal calibration efforts. Similar results are
achieved for link volumes compared to traffic count data. The median relative error of daily
volumes (averaged over the 123 links) is reduced from almost −40% to approximately −20%

(see Figure 6).

21



High-Resolution Destination Choice in Agent-Based Demand Models February 2012

By applying the travel time approximation described earlier, the scenario is computable in
reasonable time. It takes roughly 25 minutes per iteration, reaching a stable state after 100
iterations. However, the 10% Zurich scenario is still at the lower bound of typical MATSim
projects. Thus, further speed-up mechanisms need to be researched.

4 Conclusions and Outlook

This paper introduces an operational destination choice approach to overcome problems iden-
tified for high-resolution microsimulations. To test the new approach, a suitable module is
implemented in MATSim that may also be important for other iterative utility-maximizing
transport simulations. With the direct inclusion of random error terms in the MATSim utility
function some previously lacking unobserved behavioral heterogeneity is introduced.

As shown in a real-world scenario, destination choices can now be modeled realistically in
MATSim, a crucial step for many transport research questions that must be investigated in the
near future.

In the future, applied parameters need to be researched more comprehensively and more system-
atically calibrated. The utility function for shopping trips will be estimated in the context of
(Horni et al., 2011a) and the Zurich scenario will be enhanced by various destination attributes,
reducing the error terms.

Other important topics include researching Monte Carlo sampling and its sampling errors
associated with our stochastic simulation. The authors have begun to work on these issues
(Horni et al., 2011b).
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Figure 1: Search space
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Figure 2: Configuration 0: scores and distances, iteration 200
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Figure 4: Configuration 1: scores and distances
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Figure 5: Zurich scenario: iteration 100 (relaxed state)
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Figure 6: Daily traffic volumes for 123 links compared to traffic counts, iteration 100. Per link
k the relative error is used, i.e, (volsimulated,k − volcounted,k)/volcounted,k.
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