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1 Introduction

This article considers the problem of refining the paransaiédisaggregate travel
demand models using observations of time-dependent nefileovs. The mea-
surement function that links the behavioral model parametethe network flows
is given through an iterated DTA (dynamic traffic assignmemtrosimulation.
The challenging aspect of this configuration is that the measent equation is
not given in closed form but is the result of a complex simataprocess, in the
course of which disaggregate models of travel behavior &metwvork flows are
repeatedly evaluated until a state of consistency betweeradd and supply is
attained (Nagel and Flotterod, forthcoming; Cascetta9)1.98

The increased availability of detailed network surveilardata triggered recent
efforts to calibrate behavioral model parameters (andrasaork supply param-
eters) jointly with the origin/destination flows represegttravel demand levels
(Antoniou et al., 2007; Balakrishna, 2006; Vaze et al., 300%ese approaches,
however, resort to black box optimization techniques ttnatjesign, exploit prob-
lem structure at most in terms of a numerical linearizatime approach of Fl6t-
terdd et al. (2011) is an exception; here, a tractable analydpproximation of a
complete DTA microsimulation system is developed and atgxo That research
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demonstrated that the calibration of individual-levelteoahoice, departure time
choice, and mode choigaobabilitiesfor a region as large as the Greater Zurich
area is possible with (i) an improvement in measurement fifpaio 80% and (ii)

a computational overhead of as small as 10% over a plain atronl

Motivated by those results, the present article moves dmetaalibration of choice
model parametersdrom network flows. Methodologically, it abstains from de-
ploying black-box optimization/calibration techniqueghe greatest possible ex-
tent and pursues an analytical approach instead. In a fyt$igeresulting find-
ings are that (i) it is possible to calibrate behavioral mqueameters and their
covariance matrices using network flows in a computatignadty efficient man-
ner, but also that (ii) the approach needs further refinenwed¢liver reliable es-
timates. The various sources of imprecision in the currppt@ach are therefore
analyzed and possibilities to overcome them are discussed.

The remainder of this article is structured as follows. B&c2 outlines MATSim,
the DTA microsimulation deployed in this work. Section 3 dieps the proposed
calibration approach. Section 4 then presents a large-seele study, which is
based in parts on real and in parts on synthetic data. Fjr&igtion 5 discusses
the results and indicates possibilities for further im@oents.

2 Outline of deployed DTA microsimulation

The experiments reported in this article are conductedgusia MATSIim sim-
ulation software (“Multi-agent transport simulation tkibl, www.matsim.org).
Since both its principles and its technical peculiarities described in various
other publications (e.g., Nagel and Flétteréd, forthcamidibtterdd et al., forth-
coming; Raney and Nagel, 2006), this section constraief &3 a presentation
of its core aspects. MATSIm is agent-based in that it modedsatl-day travel
behavior of individual decision-makers, which are dendtete byn = 1...N.
The travel behavior of an agent is encoded in its travel phdmn¢ch comprises a
complete trip sequence, including mode and departure tifioemnation for each
trip. The choice set of agent’s travel plans is denoted b§,,. In its general
design, MATSim allows this choice set to evolve in the cowta simulation.
For the purposes of this study, however, the choice set igemausly and a priori
defined. Its construction is described in Subsection 4.1.

Agents select their travel plans in consideration of neknayngestion and the
resulting travel times. MATSim uses a multinomial plan dsomodel (e.g., Ben-
Akiva and Lerman, 1985) and a utility function of the followg structure (Chary-



par and Nagel, 2005):

Viplan)=> V(U+ ) V(a) (1)

legl activity a

The utility V(a) of performing an activitya is positive and has the following
functional form:
V(a) = Bact- t(a) - Int(a) 2)

wheret(a) is the actual duration of activity, t*(a) is its ideal (intended) dura-
tion, andP 4 is the marginal utility of an activity at its typical duratioThe (dis-
utility) V(1) of traveling along a leg is typically a linearly decreasing function

of the travel timet(1) along that leg, with a mode-dependent slope. The concrete
functional form for travel (dis)utility used in this arteldiffers somewhat from
the “usual” form; hence, itis only described together with toncrete case study

in Subsection 4.1.

The actually implemented time structure of a travel planetels on the con-
gestion in the network, which may induce delays. The comgess in turn a
consequence of the travel plans selected by the entire pgpatation, which are
loaded on the network using a queueing simulation with 4qatik (Cetin et al.,
2003; Gawron, 1998). This mutual dependency is iterativedplved, where an
iteration can be intuitively thought of as a “simulated dayfi every iteration,
every agenh selects a travel plan fror@,, to be executed in that day, and then
the travel plans of all agents are executed jointly in the ifitglsimulation, gen-
erating network flows. Due to limited network capacitiesagestion and delays
occur. This information is observed by the agents and ad¢eduior in the next
iteration. Eventually, the system attains a stationarymmegvhere travel demand
(represented by plan choice distributions for all agentsl) reetwork supply (rep-
resented by time-dependent network conditions) are mytaahsistent. These
“equilibrated” or “relaxed” conditions constitute the gbbn of the DTA model
system. Denote bl ,; the probability that agent selects plan in stationary con-
ditions. TT = (TT,;;) is the vector of stationary choice probabilities for theirent
agent population.

3 Calibration approach

This section derives the proposed calibration approachhsé&ion 3.1 devel-
ops an analytical approximation of the measurement equ#tat connects time-
dependent network flows and behavioral model parametetsuiltts on earlier
findings by Flotterdd et al. (2011). Subsection 3.2 then fdates a nonlinear
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least squares estimator and clarifies how this estimatmsierted into the itera-
tive logic of the DTA simulation. Finally, Subsection 3.3es an approximation
of the parameter covariance matrix for this estimator.

3.1 Analytical approximation of measurement equation

The calibration objective is to identify a vect@rof behavioral model parameters,
such as travel time coefficients or alternative specific taonts for certain modes,
given a vector of observed network flows= (y.x), wherey, is the measured
flow on link a in time intervalk. Given the complexity of the iterated DTA sim-
ulation, it is technically quite challenging to analytigalink the measurements
y to the parameterg. However, this effort is worthwhile because it allows to
extract gradient information, which can be exploited toedex@te the calibration
process and to analyze solution properties.

To achieve this goal, the link demadd= (d) is defined through

N
dac=) D Ii~aklly (3)

n=11eCn

wherei ~ ak reads as “following travel plahimplies entering linka during time
stepk”, and 1(-) is the indicator function. That is]. represents the expected
number of travelers intending to enter lirkin time stepk. The simplifying
assumption is made that the flayy, across a linka in time stepk is a function
of its link demandd; only. Specifically, a linear relationship

Jak = (Xakdak + Bak (4)

is assumed, where and 3. are real-valued coefficients. Assuming for now
that these coefficients are known, (3) and (4) can be combirtec linear map-
ping of plan choice probabilitied on link flowsq = (qax):

g=LMM+b (5)

where the matrik = (lq i) consists of elementsy i = o 1(i ~ ak) and the
vectorb = (B4 ) is composed of the intercepts of model (4).

It remains to link the stationary choice probabiliti&sto the behavioral model
parameterg. For this, letx denote the vector of all network attributes that affect
the agents’ plan choice behavior, and denotertly) its stationary distribution.
Further, letP,, (i | x; B) be agenti’s behavioral model, defining the probability of
selecting plani € C,, given network attributes and behavioral model parameters
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B. LettingP(x;B) = (P.(i | X;B)), the stationary plan choice distribution can
then be written as

ne) = J P(x; B)r(x)dx. 6)

Assuming that the agents base their decisions on averag®nketonditionsx,
such thatr(x) collapses into a singletom(x) = d(x — X), one obtaindT(B) =
P(x; ), and hence

q(B) =LP(x;B) +b. (7)
This is the analytical approximation of the measurementgqgn used in this

article. Given a behavioral model that yields choice prdiiggs that are differen-
tiable with respect to the behavioral model parameterdaitebian can be written

as _
oq(p) LaP(X;B)
op op

(8)

3.2 Nonlinear least squares estimator

Relying on the approximations of the previous subsectiamprdinear ordinary
least squares estimator can now be stated:

i _l _ Ty l 0 T 0o
min Q(B) = 5y~ alp))"(y —a(B) + (B~ BIW(E ~B)

s.t.q(B) =LP(xB)—b

The first term in the objective functio® () measures the deviation between
observed and simulated flows. Given the limited amount afrmftion that can
be extracted from aggregate network flows, this objectinetion can (and should
if possible) be enriched with a priori obtained behavioratgmeter estimates.
They are represented by the second term and could result &gn a previous
survey. HereB® is a vector of prior parameter estimates ahd= (wy) is a
positive definite diagonal weighting matrix. Supersciiigtenotes the transpose.

It remains to ensure consistency between the behaviorahpers, which are
estimated subject to a particular linearization of the ekloading, and the net-
work loading, which is linearized given given the travel derd resulting from
a particular choice of the behavioral parameters. A venjlamproblem is en-
countered in the field of origin/destination matrix estimat Again following
Flotterod et al. (2011), the iterative nature of the undegyDTA simulation can
be exploited in ensuring this consistency in a computatipredficient manner.
Instead of iterating between (i) a parameter calibratioremgia linearization of
equilibrated network conditions and (ii) a complete netwequilibration given
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an updated parameter sttig parameter calibration is inserted into the iterative
(day-to-day) loop of the DTA simulation system

Specifically, the following sequence of operations takes@in every iteration of
the DTA microsimulation:

1. A parameter vectds is estimated, relying on a linearized network loading.

2. Usingp, the choice model of every agent is evaluated, and a selptdad
is obtained.

3. Allagents are loaded on the network according to the@csetl travel plans.

4. The linear approximation (parametérsandb) of the network loading is
updated.

Step 1 is solved with the Levenberg-Marquardt method, usimgnplementation
following Madsen et al. (2004) and exploiting the analyiticavailable Jacobian
(8). Steps 2 and 3 correspond to the plain DTA simulationd@gid are some-
times also referred to as “demand simulation”, followed bypply simulation”.
Step 4 requires to compute for every sensor-equipped lidiegary time step the
coefficients of model (4). This is accomplished by (i) obssg\vafter step 2 of
each iteration the current link demaudg, according to (3), (ii) observing after
step 3 the resulting link flow ., and (i) updatingx,, andf . for each link sep-
arately with a recursive regression step. This approachalvaady successfully
deployed by Flotterdd et al. (2011) in the estimation of ckalistributions (but
not of the underlying parameters) from traffic counts.

Due to the stochastic fluctuations of the DTA simulation ewvestationary con-
ditions, this approach yields one parameter estinate per iterationc. The
relevance and proper interpretation of this is clarifiechim mext subsection.

3.3 Parameter covariance analysis

The previous subsection proposes to computing one paraweteor 3 per
(stationary) iteratiort of the stochastic DTA microsimulation. These estimates
will in general be different due to the stochasticity of tiraglation. The expected
value of these stochastic estimation results in statiocanglitions is proposed as

a point estimator of the behavioral model parameters:

1 2

E{B} ~ fg = ﬁ Z B(C)- (10)

=C
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To analyze some properties of this estimator, all stochastantities of the DTA
simulation that may possibly affect the parameter estisyatare summarized in
a disturbance vectar. The variance/covariance matrix VAR} of the parameter
estimates can then be decomposed as

VAR{B} = E{VAR{B | e}} + VAR{E{B | €}}. (11)
1 2
3 i

Elements 1 through 4 of this expression are computed asv®llo

1. The covariance VAB'® | €(©)} of the parameter estimatgs® within a
single iteratiorc and given the stochasticig/® of that particular iteration
is computed with a sandwich estimator (e.g., Greene, 2003)

VAR{B(C) | £(C)} ~ AR Al (12)
where
" 2Q(p)\
AT = T (13)
© _ 3qa(B') aquk(B(CJ)T
BY = D —33 s W (14)

ak

The Hessian in (13) is numerically computed. The secondratlde(14)

results from the treatment of the prior parameter ve@bmas a supple-
mentary set of measurements, following the arguments @&sS{il987). A
more careful analysis of this covariance component is icdytaesirable
and possible (Greene, 2003).

2. B | e} = Bl® becaused® results from the minimization of (9),
which is deterministic for a given(©.

3. The expectation{®/AR{p | €}} is approximated using the arithmetic mean
over many iterations in stationary conditions:

1 c2
E(VAR{B | e}~ ———— Y AlBEA), 15
{VAR{B | &}} CZ_C1+1C_ZC] (15)

4. The variance VARE{ | ¢}} is also approximated by an average over many
iterations in stationary conditions:

1 = —
VARE | e} ~ ——7 D (B —B) (16)



The feasibility of approximations (15) and (16) depends lo& ¢rgodicity of
the stochastic process implemented by the iterated sironlaystem (e.g., Ross,
2006). One possibility to establish this property is to §3@ame fixed choice sets
and (ii) give every travel plan a strictly positive probadtyito be selected. This is
the case for the experiments presented in Section 4.

In summary, these developments make available an andlgpgaoximation of
the covariance matrix of the estimated parameters, whicbuats for simula-
tion stochasticity and can be efficiently computed. It dbesyever, also rely on
various approximations, the effect of which is investigate the following case
study.

4 Case study

This section presents a large case-study the purpose ohwhio demonstrate

the feasibility of the proposed calibration approach. based in large parts on
real data, but replaces unobserved quantities by simutatesl, in order to assess
the performance of the calibration.

4.1 Scenario description

This case study considers the Greater Berlin area, withvaanktsize of 24 335
links and 11 345 nodes. A synthetic population of 57 688 teagas simulated.
This constitutes a 2% sample of the Berlin population, kdito individuals
whose travel behavior is reflected in the MATSIim model systéetwork ca-
pacities are scaled accordingly, resulting in realistiogastion patterns despite of
the reduced number of travelers.

All synthetic travelers have complete daily activity pattg including typical du-
rations, based on a household survey from 1998 also usetien studies (Kutter
et al., 2002; Scheiner, 2005; Rumenapp and Steinmeyer) 2R806o0re complete
description can be found in Moyo O. and Nagel (2012). Sudkigcpatterns can
include activities of typdaome work, educationshoppingleisure holiday / jour-
ney, businessmultiple, other, see a doctarThe elements of a single agent’s plan
choice set differ in their routes and modes. The choice o&a pénce implies the
choice of an all-day mode and route sequence, with all otehawioral dimen-
sions fixed. For simplicity, a physical network simulatioinpaiblic transport is
replaced by a “teleportation mode” that moves travelersudslip transport trips
at half the speed of a car in uncongested conditions (Grethalr, 2009; Rieser
etal., 2009).



Every agent is given an exogenously created plan choiceT$es. choice set is
constructed based on a different MATSim simulation of thee&erlin scenario,
where an incremental choice set generation mechanism @& uBee resulting
choice set consists, per agent, of the following element$he last selected plan
in the simulation. This constitutes a behaviorally plalesiieference alternative.
(i) A plan where the routes of all car-legs are replaced leyftstest route given
the travel times obtained in the last iteration of the sirtiata (iii) A plan where
for all car-legs routes with a reduced number of left-turres generated. (iv) A
variation of plan (i) with randomly varied mode choice. Themnpurpose of this
choice set generation is to obtain a strong simulation respto variations in the
behavioral parameters; otherwise, it clearly is of littehhvioral relevance.

The utility contribution of a led to the all-day plan utility (1) is defined for the
purposes of these experiments (other forms are possibleaedbeen used) as
V(1) = Buavel,cat (1) + Brertmuert (L) if Lis b-y car (17)
Btravel,non-cat(l) otherwise

Here, Buavelcar IS @ Negative coefficient for the travel timél) if leg 1 uses the
car mode,Br iS a negative coefficient for the number of left-tumgg(1) in

leg 1, and Byavelnon-carlS @ Negative coefficient for the time spent traveling with a
mode different from car. Again, the illustrative purposetos behavioral model
specification needs to be stressed.

4.2 Generation of synthetic traffic counts

Although real hourly traffic counts from 346 sensor stationBerlin are avail-

able, this explorative study does not exploit this data louistrains itself to the
generation of synthetic traffic counts. Through this, thécation results can be
compared to a synthetic ground truth, which would not belalkke if real data
was used. The synthetic traffic counts are generated asvkllo

A synthetic reality is assumed, where the leg utility (17¢@nputed based on
the following parameter valueSByaveicar = —4.5EUR/, B = —0.5EUR,
Brravel,non-car= —3 EUR/h, an@ . = 6.0 EUR/h. MATSIm is then run with these
parameters, using otherwise the configuration describ8dlsection 4.1, includ-
ing the fact that the choice set for every agent is fixed. Ohedterations have
reached stationary conditions, the simulation is stoppebtle simulated hourly
traffic flows of the last iteration are extracted at all sergoations, resulting in a
set of synthetic traffic counts.



This process is repeated ten times, using different rané®ussin the simulation.
Hence, there are ten independent sensor data sets avagkbliewhich are gen-
erated based on the same behavioral parameters, but beahgstically different
due to the randomness of the MATSim simulation logic.

4.3 Calibration results

Ten experiments, each with one of the ten independentlyrgtesynthetic mea-
surement data sets, are conducted. The simulation coniguiat these exper-

iments differs from the configuration in which the synthetaffic counts were

created in that “wrong” values for the in-car travel time &mdeft turns are used:

Biavelcar = —6.0 EUR/h andBf, = 0.0 EUR/h. The calibration, which is now
inserted into the simulation loop, then adjusts these patens according to the
synthetic traffic counts. All other simulation parameters the same as in the
generation of the synthetic measurements.

Overall, a two-dimensional parameter vec®rE= (Byavelcas Blert) " iS calibrated,
using the prior estimate® = (BYaercar Bar) @nd a prior weight matrixv =
0.25 0
0 0.25
dreds or thousands, have uniform weights of one, the pri@rpeater weights have
a very low effect on the calibration results. They are usddetp the Levenberg-
Marquardt method from generating trial parameters thaeatemely far off a
reasonable value range and hence avoid numerical probteths evaluation of
the choice probabilities and their derivatives.

. Since the hourly traffic counts, which are in the order of-hun

All experiments are run well beyond stationarity. For evexperiment, the ulti-
mately estimated parameters are computed as average e&keresll stationary
iterations, and the parameter covariance matrices are weah@s described in
Subsection 3.3, also over all stationary iterations. Fduwisualizes the results.
Each dot represents the final parameter estimates of oneigoe. It is lo-
cated in the center of an ellipse representing the 95% cordele=gion, which
is computed from the corresponding parameter covariandaxmaEach cross
denotes the parameter estimate only of the last iterati@anaxperiment, with-
out any averaging. The coordinate axes intersect at thepau@meter values
(B Bres) = (—4.5,—0.5). Note the different scalings of the axes.

Overall, the parameter estimates are near the true valuebake a visible bias
in that By is underestimated by approximately 0.5 ghg is overestimated by
approximately 0.04. The 95% confidence regions have an ofaeagnitude that
roughly corresponds to the distribution of the estimatedipeters, but they vary
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Figure 1: Estimated parameters and 95% confidence regions
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quite significantly between experiments. Clearly, thesalts are yet too unreli-
able to be operationally useful. They are, however, in tgbtrorder of magni-
tude. The one-shot estimates (crosses), which incorptirate@mulation noise of
the last iteration, are within the range predicted by theadawnce matrices. Also,
the number of iterations until stationarity is only in theler of 10%. This suggests
that further refinements of the proposed method will evdhiytygeld both reliable
and efficiently computable results. The following secti@stdsses this in greater
detail.

5 Discussion and outlook

A method to calibrate behavioral model parameters from oetlow observa-
tions was presented. Different from the few other approsithéhe same problem,
an analytical approximation of the problem is derived aretlus the calibration.
Overall, the method yields estimation results of plaustotéer of magnitudes. In
its current form, however, it fails to provide a precisiomttlvould be necessary
for its deployment in practical applications. Fortunatéhe various approxima-
tions made during the derivation of the method are well-ustded, such that
systematic efforts to improve upon them are possible.

The analytical measurement equation is only an approximatind this affects
both the estimates of the parameters and their covariantteees The lineariza-
tion of then network loading (3)-(5) assumes that the flowossra link is not
affected by flows across adjacent links. This neglectsksmk effects. While
improved linearizations that capture link flow interac8aare possible and have
been demonstrated for single intersections (FlotterodBiadaire, 2009), non-
linear network dynamics in general are known to be very diffito account for
when calibrating travel demand from traffic counts (Frede2D12). In addition
to this, the recursive regression based on which the lineamlefrcoefficients are
updated maintains limited fluctuations even as the cablraimulation attains
stationarity, adding to the imprecision of the lineariaati Further, the simplifi-
cation of (6) based on the assumption that agents selectitaeel plans only in
consideration of average network conditions is not pesfexrrect. In MATSIim,
agents smooth their perceived network experiences witlcarseve first order
filter, but this filter maintains some variability even intgtaary conditions.

Operational consideration may render an exact refornoati the above ap-
proximations infeasible. Rather than switching back toackibox calibration
approach, the proposed method should thesuggplementedvith less analyti-
cal and more “sampling-based” techniques. This combinatiould exploit the
analytical approach in quickly finding good approximateusohs, which could
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then be refined using alternative techniques. The meta-napgeoach of Osorio
(2010), where a structural analytical model is supplentemigh a regression-
based approximation of the objective function, appearsquéarly applicable to
this problem.
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