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1 Introduction

This article considers the problem of refining the parameters of disaggregate travel
demand models using observations of time-dependent network flows. The mea-
surement function that links the behavioral model parameters to the network flows
is given through an iterated DTA (dynamic traffic assignment) microsimulation.
The challenging aspect of this configuration is that the measurement equation is
not given in closed form but is the result of a complex simulation process, in the
course of which disaggregate models of travel behavior and of network flows are
repeatedly evaluated until a state of consistency between demand and supply is
attained (Nagel and Flötteröd, forthcoming; Cascetta, 1989).

The increased availability of detailed network surveillance data triggered recent
efforts to calibrate behavioral model parameters (and alsonetwork supply param-
eters) jointly with the origin/destination flows representing travel demand levels
(Antoniou et al., 2007; Balakrishna, 2006; Vaze et al., 2009). These approaches,
however, resort to black box optimization techniques that,by design, exploit prob-
lem structure at most in terms of a numerical linearization.The approach of Flöt-
teröd et al. (2011) is an exception; here, a tractable analytical approximation of a
complete DTA microsimulation system is developed and exploited. That research

∗KTH Royal Institute of Technology, Department of TransportScience, 11428 Stockholm,
Sweden, gunnar.floetteroed@abe.kth.se

†Berlin Institute of Technology, Transport Systems Planning and Transport Telematics Labo-
ratory, 10587 Germany, {chen,nagel}@vsp.tu-berlin.de

1



demonstrated that the calibration of individual-level route choice, departure time
choice, and mode choiceprobabilitiesfor a region as large as the Greater Zurich
area is possible with (i) an improvement in measurement fit ofup to 80% and (ii)
a computational overhead of as small as 10% over a plain simulation.

Motivated by those results, the present article moves on to the calibration of choice
model parametersfrom network flows. Methodologically, it abstains from de-
ploying black-box optimization/calibration techniques to the greatest possible ex-
tent and pursues an analytical approach instead. In a nutshell, the resulting find-
ings are that (i) it is possible to calibrate behavioral model parameters and their
covariance matrices using network flows in a computationally very efficient man-
ner, but also that (ii) the approach needs further refinementto deliver reliable es-
timates. The various sources of imprecision in the current approach are therefore
analyzed and possibilities to overcome them are discussed.

The remainder of this article is structured as follows. Section 2 outlines MATSim,
the DTA microsimulation deployed in this work. Section 3 develops the proposed
calibration approach. Section 4 then presents a large-scale case study, which is
based in parts on real and in parts on synthetic data. Finally, Section 5 discusses
the results and indicates possibilities for further improvements.

2 Outline of deployed DTA microsimulation

The experiments reported in this article are conducted using the MATSim sim-
ulation software (“Multi-agent transport simulation toolkit”, www.matsim.org).
Since both its principles and its technical peculiarities are described in various
other publications (e.g., Nagel and Flötteröd, forthcoming; Flötteröd et al., forth-
coming; Raney and Nagel, 2006), this section constrains itself to a presentation
of its core aspects. MATSim is agent-based in that it models the all-day travel
behavior of individual decision-makers, which are denotedhere byn = 1 . . .N.
The travel behavior of an agent is encoded in its travel plan,which comprises a
complete trip sequence, including mode and departure time information for each
trip. The choice set of agentn’s travel plans is denoted byCn. In its general
design, MATSim allows this choice set to evolve in the courseof a simulation.
For the purposes of this study, however, the choice set is exogenously and a priori
defined. Its construction is described in Subsection 4.1.

Agents select their travel plans in consideration of network congestion and the
resulting travel times. MATSim uses a multinomial plan choice model (e.g., Ben-
Akiva and Lerman, 1985) and a utility function of the following structure (Chary-
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par and Nagel, 2005):

V(plan) =
∑

leg l

V(l) +
∑

activity a

V(a) (1)

The utility V(a) of performing an activitya is positive and has the following
functional form:

V(a) = βact · t
∗(a) · ln t(a) (2)

wheret(a) is the actual duration of activitya, t∗(a) is its ideal (intended) dura-
tion, andβact is the marginal utility of an activity at its typical duration. The (dis-
utility) V(l) of traveling along a legl is typically a linearly decreasing function
of the travel timet(l) along that leg, with a mode-dependent slope. The concrete
functional form for travel (dis)utility used in this article differs somewhat from
the “usual” form; hence, it is only described together with the concrete case study
in Subsection 4.1.

The actually implemented time structure of a travel plan depends on the con-
gestion in the network, which may induce delays. The congestion is in turn a
consequence of the travel plans selected by the entire agentpopulation, which are
loaded on the network using a queueing simulation with spill-back (Cetin et al.,
2003; Gawron, 1998). This mutual dependency is iterativelyresolved, where an
iteration can be intuitively thought of as a “simulated day”: In every iteration,
every agentn selects a travel plan fromCn to be executed in that day, and then
the travel plans of all agents are executed jointly in the mobility simulation, gen-
erating network flows. Due to limited network capacities, congestion and delays
occur. This information is observed by the agents and accounted for in the next
iteration. Eventually, the system attains a stationary regime where travel demand
(represented by plan choice distributions for all agents) and network supply (rep-
resented by time-dependent network conditions) are mutually consistent. These
“equilibrated” or “relaxed” conditions constitute the solution of the DTA model
system. Denote byΠni the probability that agentn selects plani in stationary con-
ditions. Π = (Πni) is the vector of stationary choice probabilities for the entire
agent population.

3 Calibration approach

This section derives the proposed calibration approach. Subsection 3.1 devel-
ops an analytical approximation of the measurement equation that connects time-
dependent network flows and behavioral model parameters. Itbuilds on earlier
findings by Flötteröd et al. (2011). Subsection 3.2 then formulates a nonlinear
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least squares estimator and clarifies how this estimator is inserted into the itera-
tive logic of the DTA simulation. Finally, Subsection 3.3 derives an approximation
of the parameter covariance matrix for this estimator.

3.1 Analytical approximation of measurement equation

The calibration objective is to identify a vectorβ of behavioral model parameters,
such as travel time coefficients or alternative specific constants for certain modes,
given a vector of observed network flowsy = (yak), whereyak is the measured
flow on link a in time intervalk. Given the complexity of the iterated DTA sim-
ulation, it is technically quite challenging to analytically link the measurements
y to the parametersβ. However, this effort is worthwhile because it allows to
extract gradient information, which can be exploited to accelerate the calibration
process and to analyze solution properties.

To achieve this goal, the link demandd = (dak) is defined through

dak =

N∑

n=1

∑

i∈Cn

1(i ∼ ak)Πni (3)

wherei ∼ ak reads as “following travel plani implies entering linka during time
stepk”, and 1(·) is the indicator function. That is,dak represents the expected
number of travelers intending to enter linka in time stepk. The simplifying
assumption is made that the flowqak across a linka in time stepk is a function
of its link demanddak only. Specifically, a linear relationship

qak = αakdak + βak (4)

is assumed, whereαak andβak are real-valued coefficients. Assuming for now
that these coefficients are known, (3) and (4) can be combinedinto a linear map-
ping of plan choice probabilitiesΠ on link flowsq = (qak):

q = LΠ+ b (5)

where the matrixL = (lak,ni) consists of elementslak,ni = αak1(i ∼ ak) and the
vectorb = (βak) is composed of the intercepts of model (4).

It remains to link the stationary choice probabilitiesΠ to the behavioral model
parametersβ. For this, letx denote the vector of all network attributes that affect
the agents’ plan choice behavior, and denote byπ(x) its stationary distribution.
Further, letPn(i | x;β) be agentn’s behavioral model, defining the probability of
selecting plani ∈ Cn given network attributesx and behavioral model parameters
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β. Letting P(x;β) = (Pn(i | x;β)), the stationary plan choice distribution can
then be written as

Π(β) =

∫

P(x;β)π(x)dx. (6)

Assuming that the agents base their decisions on average network conditionsx̄,
such thatπ(x) collapses into a singletonπ(x) = δ(x − x̄), one obtainsΠ(β) =

P(x̄;β), and hence
q(β) = LP(x̄;β) + b. (7)

This is the analytical approximation of the measurement equation used in this
article. Given a behavioral model that yields choice probabilities that are differen-
tiable with respect to the behavioral model parameters, itsJacobian can be written
as

∂q(β)
∂β

= L
∂P(x̄;β)

∂β
. (8)

3.2 Nonlinear least squares estimator

Relying on the approximations of the previous subsection, anonlinear ordinary
least squares estimator can now be stated:

min
β

Q(β) =
1

2
(y − q(β))T(y − q(β)) +

1

2
(β0 − β)TW(β0 − β)

s.t. q(β) = LP(x̄;β) − b
(9)

The first term in the objective functionQ(β) measures the deviation between
observed and simulated flows. Given the limited amount of information that can
be extracted from aggregate network flows, this objective function can (and should
if possible) be enriched with a priori obtained behavioral parameter estimates.
They are represented by the second term and could result from, e.g., a previous
survey. Here,β0 is a vector of prior parameter estimates andW = (wij) is a
positive definite diagonal weighting matrix. SuperscriptT denotes the transpose.

It remains to ensure consistency between the behavioral parameters, which are
estimated subject to a particular linearization of the network loading, and the net-
work loading, which is linearized given given the travel demand resulting from
a particular choice of the behavioral parameters. A very similar problem is en-
countered in the field of origin/destination matrix estimation. Again following
Flötteröd et al. (2011), the iterative nature of the underlying DTA simulation can
be exploited in ensuring this consistency in a computationally efficient manner.
Instead of iterating between (i) a parameter calibration given a linearization of
equilibrated network conditions and (ii) a complete network equilibration given
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an updated parameter set,the parameter calibration is inserted into the iterative
(day-to-day) loop of the DTA simulation system.

Specifically, the following sequence of operations takes place in every iteration of
the DTA microsimulation:

1. A parameter vectorβ is estimated, relying on a linearized network loading.

2. Usingβ, the choice model of every agent is evaluated, and a selectedplan
is obtained.

3. All agents are loaded on the network according to their selected travel plans.

4. The linear approximation (parametersL andb) of the network loading is
updated.

Step 1 is solved with the Levenberg-Marquardt method, usingan implementation
following Madsen et al. (2004) and exploiting the analytically available Jacobian
(8). Steps 2 and 3 correspond to the plain DTA simulation logic and are some-
times also referred to as “demand simulation”, followed by “supply simulation”.
Step 4 requires to compute for every sensor-equipped link and every time step the
coefficients of model (4). This is accomplished by (i) observing after step 2 of
each iteration the current link demanddak according to (3), (ii) observing after
step 3 the resulting link flowqak, and (iii) updatingαak andβak for each link sep-
arately with a recursive regression step. This approach wasalready successfully
deployed by Flötteröd et al. (2011) in the estimation of choice distributions (but
not of the underlying parameters) from traffic counts.

Due to the stochastic fluctuations of the DTA simulation evenin stationary con-
ditions, this approach yields one parameter estimateβ(c) per iterationc. The
relevance and proper interpretation of this is clarified in the next subsection.

3.3 Parameter covariance analysis

The previous subsection proposes to computing one parameter vectorβ(c) per
(stationary) iterationc of the stochastic DTA microsimulation. These estimates
will in general be different due to the stochasticity of the simulation. The expected
value of these stochastic estimation results in stationaryconditions is proposed as
a point estimator of the behavioral model parameters:

E{β} ≈ β̄ =
1

c2 − c1 + 1

c2∑

c=c1

β(c). (10)
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To analyze some properties of this estimator, all stochastic quantities of the DTA
simulation that may possibly affect the parameter estimatesβ are summarized in
a disturbance vectorε. The variance/covariance matrix VAR{β} of the parameter
estimates can then be decomposed as

VAR{β} = E{VAR{β | ε}
︸ ︷︷ ︸

1

}

︸ ︷︷ ︸

3

+VAR{E{β | ε}
︸ ︷︷ ︸

2

}

︸ ︷︷ ︸

4

. (11)

Elements 1 through 4 of this expression are computed as follows.

1. The covariance VAR{β(c) | ε(c)} of the parameter estimatesβ(c) within a
single iterationc and given the stochasticityε(c) of that particular iteration
is computed with a sandwich estimator (e.g., Greene, 2003)

VAR{β(c) | ε(c)} ≈ A(c)B(c)A(c) (12)

where

A(c) =

(

∂2Q(β(c))

∂β2

)−1

(13)

B(c) =
∑

ak

∂qak(β
(c))

∂β

∂qak(β
(c))

∂β

T

+ W. (14)

The Hessian in (13) is numerically computed. The second addend in (14)
results from the treatment of the prior parameter vectorβ0 as a supple-
mentary set of measurements, following the arguments of Spiess (1987). A
more careful analysis of this covariance component is certainly desirable
and possible (Greene, 2003).

2. E{β(c) | ε(c)} = β(c) becauseβ(c) results from the minimization of (9),
which is deterministic for a givenε(c).

3. The expectation E{VAR{β | ε}} is approximated using the arithmetic mean
over many iterations in stationary conditions:

E{VAR{β | ε}} ≈
1

c2 − c1 + 1

c2∑

c=c1

A(c)B(c)A(c). (15)

4. The variance VAR{E{β | ε}} is also approximated by an average over many
iterations in stationary conditions:

VAR{E{β | ε}} ≈
1

c2 − c1 + 1

c2∑

c=c1

(β(c) − β̄)2. (16)
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The feasibility of approximations (15) and (16) depends on the ergodicity of
the stochastic process implemented by the iterated simulation system (e.g., Ross,
2006). One possibility to establish this property is to (i) assume fixed choice sets
and (ii) give every travel plan a strictly positive probability to be selected. This is
the case for the experiments presented in Section 4.

In summary, these developments make available an analytical approximation of
the covariance matrix of the estimated parameters, which accounts for simula-
tion stochasticity and can be efficiently computed. It does,however, also rely on
various approximations, the effect of which is investigated in the following case
study.

4 Case study

This section presents a large case-study the purpose of which is to demonstrate
the feasibility of the proposed calibration approach. It isbased in large parts on
real data, but replaces unobserved quantities by simulatedones, in order to assess
the performance of the calibration.

4.1 Scenario description

This case study considers the Greater Berlin area, with a network size of 24 335
links and 11 345 nodes. A synthetic population of 57 688 travelers is simulated.
This constitutes a 2% sample of the Berlin population, limited to individuals
whose travel behavior is reflected in the MATSim model system. Network ca-
pacities are scaled accordingly, resulting in realistic congestion patterns despite of
the reduced number of travelers.

All synthetic travelers have complete daily activity patterns, including typical du-
rations, based on a household survey from 1998 also used in other studies (Kutter
et al., 2002; Scheiner, 2005; Rümenapp and Steinmeyer, 2006). A more complete
description can be found in Moyo O. and Nagel (2012). Such activity patterns can
include activities of typehome, work, education, shopping, leisure, holiday / jour-
ney, business, multiple, other, see a doctor. The elements of a single agent’s plan
choice set differ in their routes and modes. The choice of a plan hence implies the
choice of an all-day mode and route sequence, with all other behavioral dimen-
sions fixed. For simplicity, a physical network simulation of public transport is
replaced by a “teleportation mode” that moves travelers on public transport trips
at half the speed of a car in uncongested conditions (Gretheret al., 2009; Rieser
et al., 2009).
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Every agent is given an exogenously created plan choice set.This choice set is
constructed based on a different MATSim simulation of the same Berlin scenario,
where an incremental choice set generation mechanism is used. The resulting
choice set consists, per agent, of the following elements: (i) The last selected plan
in the simulation. This constitutes a behaviorally plausible reference alternative.
(ii) A plan where the routes of all car-legs are replaced by the fastest route given
the travel times obtained in the last iteration of the simulation. (iii) A plan where
for all car-legs routes with a reduced number of left-turns are generated. (iv) A
variation of plan (i) with randomly varied mode choice. The mere purpose of this
choice set generation is to obtain a strong simulation response to variations in the
behavioral parameters; otherwise, it clearly is of little behavioral relevance.

The utility contribution of a legl to the all-day plan utility (1) is defined for the
purposes of these experiments (other forms are possible andhave been used) as

V(l) =

{

βtravel,cart(l) + βleftnleft(l) if l is by car

βtravel,non-cart(l) otherwise.
(17)

Here,βtravel,car is a negative coefficient for the travel timet(l) if leg l uses the
car mode,βleft is a negative coefficient for the number of left-turnsnleft(l) in
leg l, andβtravel,non-caris a negative coefficient for the time spent traveling with a
mode different from car. Again, the illustrative purpose ofthis behavioral model
specification needs to be stressed.

4.2 Generation of synthetic traffic counts

Although real hourly traffic counts from 346 sensor stationsin Berlin are avail-
able, this explorative study does not exploit this data but constrains itself to the
generation of synthetic traffic counts. Through this, the calibration results can be
compared to a synthetic ground truth, which would not be available if real data
was used. The synthetic traffic counts are generated as follows.

A synthetic reality is assumed, where the leg utility (17) iscomputed based on
the following parameter values:βtravel,car = −4.5EUR/h, βleft = −0.5EUR,
βtravel,non-car= −3EUR/h, andβact = 6.0EUR/h. MATSim is then run with these
parameters, using otherwise the configuration described inSubsection 4.1, includ-
ing the fact that the choice set for every agent is fixed. Once the iterations have
reached stationary conditions, the simulation is stopped and the simulated hourly
traffic flows of the last iteration are extracted at all sensorlocations, resulting in a
set of synthetic traffic counts.
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This process is repeated ten times, using different random seeds in the simulation.
Hence, there are ten independent sensor data sets available, all of which are gen-
erated based on the same behavioral parameters, but being stochastically different
due to the randomness of the MATSim simulation logic.

4.3 Calibration results

Ten experiments, each with one of the ten independently generated synthetic mea-
surement data sets, are conducted. The simulation configuration of these exper-
iments differs from the configuration in which the synthetictraffic counts were
created in that “wrong” values for the in-car travel time andfor left turns are used:
β0

travel,car = −6.0EUR/h andβ0
left = 0.0EUR/h. The calibration, which is now

inserted into the simulation loop, then adjusts these parameters according to the
synthetic traffic counts. All other simulation parameters are the same as in the
generation of the synthetic measurements.

Overall, a two-dimensional parameter vectorβ = (βtravel,car, βleft)
T is calibrated,

using the prior estimatesβ0 = (β0
travel,car, β

0
left)

T and a prior weight matrixW =
(

0.25 0

0 0.25

)

. Since the hourly traffic counts, which are in the order of hun-

dreds or thousands, have uniform weights of one, the prior parameter weights have
a very low effect on the calibration results. They are used tokeep the Levenberg-
Marquardt method from generating trial parameters that areextremely far off a
reasonable value range and hence avoid numerical problems in the evaluation of
the choice probabilities and their derivatives.

All experiments are run well beyond stationarity. For everyexperiment, the ulti-
mately estimated parameters are computed as average valuesover all stationary
iterations, and the parameter covariance matrices are computed as described in
Subsection 3.3, also over all stationary iterations. Figure 1 visualizes the results.
Each dot represents the final parameter estimates of one experiment. It is lo-
cated in the center of an ellipse representing the 95% confidence region, which
is computed from the corresponding parameter covariance matrix. Each cross
denotes the parameter estimate only of the last iteration ofan experiment, with-
out any averaging. The coordinate axes intersect at the trueparameter values
(β∗

tt, β
∗

left) = (−4.5,−0.5). Note the different scalings of the axes.

Overall, the parameter estimates are near the true values, but have a visible bias
in thatβtt is underestimated by approximately 0.5 andβleft is overestimated by
approximately 0.04. The 95% confidence regions have an orderof magnitude that
roughly corresponds to the distribution of the estimated parameters, but they vary
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Figure 1: Estimated parameters and 95% confidence regions
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quite significantly between experiments. Clearly, these results are yet too unreli-
able to be operationally useful. They are, however, in the right order of magni-
tude. The one-shot estimates (crosses), which incorporatethe simulation noise of
the last iteration, are within the range predicted by the covariance matrices. Also,
the number of iterations until stationarity is only in the order of102. This suggests
that further refinements of the proposed method will eventually yield both reliable
and efficiently computable results. The following section discusses this in greater
detail.

5 Discussion and outlook

A method to calibrate behavioral model parameters from network flow observa-
tions was presented. Different from the few other approaches to the same problem,
an analytical approximation of the problem is derived and used in the calibration.
Overall, the method yields estimation results of plausibleorder of magnitudes. In
its current form, however, it fails to provide a precision that would be necessary
for its deployment in practical applications. Fortunately, the various approxima-
tions made during the derivation of the method are well-understood, such that
systematic efforts to improve upon them are possible.

The analytical measurement equation is only an approximation, and this affects
both the estimates of the parameters and their covariance matrices: The lineariza-
tion of then network loading (3)-(5) assumes that the flow across a link is not
affected by flows across adjacent links. This neglects spillback effects. While
improved linearizations that capture link flow interactions are possible and have
been demonstrated for single intersections (Flötteröd andBierlaire, 2009), non-
linear network dynamics in general are known to be very difficult to account for
when calibrating travel demand from traffic counts (Frederix, 2012). In addition
to this, the recursive regression based on which the linear model coefficients are
updated maintains limited fluctuations even as the calibrated simulation attains
stationarity, adding to the imprecision of the linearization. Further, the simplifi-
cation of (6) based on the assumption that agents select their travel plans only in
consideration of average network conditions is not perfectly correct. In MATSim,
agents smooth their perceived network experiences with a recursive first order
filter, but this filter maintains some variability even in stationary conditions.

Operational consideration may render an exact reformulation of the above ap-
proximations infeasible. Rather than switching back to a black-box calibration
approach, the proposed method should then besupplementedwith less analyti-
cal and more “sampling-based” techniques. This combination would exploit the
analytical approach in quickly finding good approximate solutions, which could
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then be refined using alternative techniques. The meta-model approach of Osorio
(2010), where a structural analytical model is supplemented with a regression-
based approximation of the objective function, appears particularly applicable to
this problem.
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