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ABSTRACT

In this paper, we introduce a multi-model approach to a large-scale, activity-based, multi-agent1

travel demand simulation. The Multi-Agent Transport Simulation toolkit, MATSim, is a full2

activity-based travel demand model, capable of handling very large urban scenarios in the3

order of millions of commuters. Its greatest current performance limitation is the network4

loading simulation, currently a queue simulation (‘QSim’). In our application, the multi-model5

system periodically replaces the current QSim for a number of iterations with a simplified6

pseudo-simulation (‘PSim’) that runs approximately two orders of magnitude faster. PSim uses7

information generated in the preceding QSim iteration to produce an estimate of how well an8

agent day plan might perform, which allows the existing model framework to select and improve9

plans before executing them in a full queue simulation.10

We test the technique in an extensive scenario for Zurich, Switzerland, incorporating mode11

choice, road-pricing, secondary activity location choice, activity timing adjustment and dynamic12

routing. We find that the technique dramatically improves convergence rates for such complex,13

large-scale simulations, and fully exploits modern multi-core computer architectures. Its simple14

operational logic promises easy integration with all existing and upcoming MATSim functional-15

ity, and opens the door to more sophisticated approaches to large-scale, integrated transportation16

planning.17
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INTRODUCTION

It is common knowledge in transportation modeling that transportation is mostly a derived1

demand; produced by the need for individuals to pursue schedules of activities, separated in time2

and space. Furthermore, it is known that individuals can adjust their activity schedules to various3

degrees in response to experienced transport system performance, e.g. by changing the timing4

and location of activities, changing routes and modes of travel, avoiding toll or sharing rides, etc.5

Individuals do not have complete freedom in this regard; they are constrained by demographics,6

material means, household, work and other prior commitments, physical needs and many more7

(1). No closed-form analytical solution exists that captures the full complexity and dynamics of8

the transportation system and the individuals that participate and interact within it. Therefore,9

simulation-based techniques are becoming increasingly prominent as an alternative to aggregate,10

analytical methods (2, 3, 4, 5).11

The Multi-Agent Transport Simulation toolkit, MATSim (6), is a fully activity-based trans-12

port demand modeling system. It produces a full description of transport demand in the form of13

a day plan of activities and connecting trips for every individual (‘agent’) in a large-scale urban14

scenario, and the resulting congestion patterns and network performance measures. It simulates15

the interaction between supply and demand by iteratively executing agent day plans in a mobility16

simulation (currently a queue simulation, called ‘QSim’; also called ‘network loading’). After17

each iteration, executed plans are scored; rewarded for time spent at activities and penalized for18

time spent traveling or arriving late for activities. Plans are replicated and mutated across a num-19

ber of choice dimensions and poorly performing plans are discarded. Agent behavior therefore20

adapts to transport system performance across ‘generations’ (iterations) through trial-and-error,21

analogous to evolutionary adaptation (7, 8); the overall approach is thus one of co-evolution22

(9, 10, 11). The process continues until some user-specified measure of convergence is reached.23

Mobility simulations are time-consuming, as the interactions of all agents participating in the24

transportation network are executed for every second in a 24-hour simulated day. Plan mutators25

are comparatively fast (if mutation is simple and random), even when mutation occurs across26

many dimensions. However, as the number of choice dimensions in the scenario increases,27

the number of iterations and thus the number of mobility simulation runs required to explore28

the solution space increases. On the other hand, the impact of random changes to day plans29

on the agents’ and thus the transport system’s performance rapidly diminishes with increasing30

iterations; therefore a lot of time gets spent on mobility simulation with diminishing returns in31

terms of the rate of system evolution.32

Compounding the problem is that it is relatively more challenging to gain performance33

from modern multi-core computer architectures in the case of the mobility simulator design,34

versus that of the plan mutators. The synchronization required between computer threads in35

the mobility simulation typically produces diminishing returns in performance with increasing36

computation cores (12). In comparison, plan mutators operate independently on plans, requiring37

little or no synchronization; consequently, their performance scales linearly with increasing38

cores.39

There is a growing need to integrate existing and emerging model capabilities such as within-40

household interaction and coordination (13, 14, 4), ride-sharing (15), social network interaction41

(16, 17), complex mode-chaining , dynamic multi-modal pricing (18), public transportation,42

secondary activity location selection (19, 20), spatially distributed parking capacity (21), and43

multi-day, need-based activity modeling (22); to produce a truly integrated activity-based44

transport model. As the agent choice dimensions and constraints increase, the model solution45
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space explodes in size and complexity. Consequently, the MATSim solution process is expected1

to require a dramatic increase in the number of iterations in order to effectively explore the high-2

dimensional solution space. The efficiency of the solution process therefore needs improvement,3

while retaining the flexibility designed into the current framework.4

In this paper, we introduce a flexible meta-model to the MATSim framework in order5

to increase the rate of system evolution. Multi-modeling techniques are frequently used in6

simulation-based optimization, where a simplified model of the system is estimated based on7

a sample of simulated observations. The simplified surrogate- or meta-model ideally takes8

a deterministic form that is computationally cheap to evaluate (see (23) for a comprehensive9

review of surrogate-based tehniques).10

In our application, the multi-model system periodically replaces the current QSim for a11

number of iterations with a simplified pseudo-simulation (‘PSim’) that runs approximately two12

orders of magnitude faster. PSim uses information generated in the preceding QSim iteration to13

produce an estimate of how well an agent day plan might perform, which allows the existing14

model framework to select and improve plans before executing them in a full queue simulation.15

The aim of this paper is to investigate the multi-model approach for (a) performance, (b)16

compatability and (c) solution quality in comparison to the standard approach. To this end,17

it was applied to a large-scale scenario for Zurich, Switzerland, consisting of 67,239 agents18

traveling in a network of 60,518 links with a dynamic road-pricing scheme, allowing agents to19

simultaneously adjust mode choice, discretionary activity location choice, activity timing and20

travel route.21

To date, the application of multi-modeling techniques in transport simulation appears to22

be sparse. Outside of certain modules developed for MATSim, that can be seen as surrogate23

models informed by the queue simulation (24), only a single application, developed by Osorio24

and Bierlaire, serves as a true example of substituting the full simulation with a surrogate25

model (25, 26). Consequently, the work presented here should be an informative addition to the26

dynamic traffic assignment literature, and hopefully spark interest in applying a similar approach27

to other applications.28

LITERATURE REVIEW

Performance challenge29

Currently, the biggest obstacle to further acceleration of iterated transportation simulations is the30

network loading simulation. Computational performance improvements mostly come through31

multiple CPUs or multiple cores (computational nodes, or CPNs), and while the remaining tasks32

of one iteration are straightforward to distribute across multiple CPNs, this is not true for network33

loading. The reason is that the physical system is tightly integrated: a vehicle reacting to another34

vehicle with a typical reaction time of one second means that neighboring simulation items should35

not go out of synchronization by more than a second. In this situation, spatial decomposition36

(27) minimizes interactions most, and may even allow somewhat longer synchronization delays37

(28) when network links are sufficiently long. However, parallel implementations of the network38

loading are difficult to maintain stable in terms of software engineering, and making them more39

stable eats into their performance (12). The standard queue simulation (QSim) used in MATSim40

is no exception.41
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initial demand relaxed demandQSim score

replan

PSim score

Inner loop: execute p times for every QSim iteration in outer loop

Outer loop: execute q+1 times, switch to inner loop after each execution for iterations 1..q

FIGURE 1 Illustration of the operational principle for the multi-model approach in the
MATSim framework. The current framework is shown by the white boxes;
the logic behind the multi-model approach is to introduce an extra feedback
loop (inner loop).

Multi-agent transport simulation1

MATSim simulates the traffic produced in a transportation network by agents pursuing daily2

schedules of activities (plans) separated in time and space. Its principle of operation is shown3

by the white boxes in Figure 1. The system is fed with an initial demand of agent plans that4

are repeatedly executed in a QSim network loading. After each QSim run, plan performance is5

evaluated using a utility-based scoring function. Then, agent plans are mutated along a number6

of choice dimensions, such as activity start times and durations, route choice, trip transport7

mode, activity location choice, etc., to produce new plans for execution in the following QSim8

iteration. With increasing iterations, the number of plans in each agent’s memory grows up to9

a limiting number, following which poorly performing plans are discarded. Consequently, the10

average score of plans improves with increasing iterations, until a steady state is reached where11

plan mutations produce only marginal changes in score.12

Clearly, this approach is analogous to that of evolution by natural selection, where a genotype13

(plan) is expressed as a phenotype in the physical environment (agent in traffic) (7, 10, 29). The14

success of the phenotype determines the longevity of genes in the genotype (combinations of15

plan elements, such as mode choice, activity timing and location, that become more-or-less16

stable features across generations).17

Mutation approaches18

In Figure 1, the ‘replan’ action represents the mutations producing evolutionary change. Re-19

planning is done through the chaining of modules into strategies. An example strategy might20

be:21

Draw 10% of agents, [randomly select a previously executed plan from memory22

for each agent and make a copy of it], [adjust the start time and duration for each23

activity in the plan by a random number of seconds less than half an hour], [find the24

quickest network route between activities based on travel times from the previous25

iteration], mark these plans as ready for execution.26

For all remaining agents, [select a previously executed plan from memory based on27

plan score], mark these plans as ready for execution.28
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In this example, each set of brackets denotes a replanning module. Some modules are merely1

plan selectors, and do not mutate plans. Other modules can be divided into random-response and2

best-response mutators. For the strategy set out above, the start time and duration adjustment3

module is random-response, while the router is a best-response replanning module, using a4

Dijkstra algorithm to find the lowest cost route through the network at a given time of day.5

Best-response vs. random-response replanning6

Best-response modules, though computationally burdensome, reduce total simulation time by7

exploiting traffic information from the previous iteration, to produce a near-optimal solution to8

the mutation they are suppose to effect. In the example above, the Dijkstra router produces a9

truly optimal shortest path for each set of origin and destination points in the agent’s plan.10

In contrast random-response modules rely on the trial-and-error of the evolutionary algorithm11

to produce better plans across many iterations, and do not guarantee any improvement in plan12

fitness.13

More complex best-response modules have been developed that explore multiple dimensions14

of the agent decision space, in order to dramatically reduce the number of iterations until15

convergence (e.g. 24, 30, 31).16

Such monolithic replanning modules have a number of disadvantages. Firstly, they are17

purpose-built; if a scenario element is not included in the module, its influence is not considered18

in the solution. For instance, suppose modx, a time-and-mode optimizing module, consistently19

finds that the best departure time for an agent is 7 am, by car, just when the congestion pricing20

starts on the highway connecting that agent to work. If modx does not consider road-pricing21

in its design, the resulting plan will be sub-optimal, as the router will, say, find a lower-cost22

but slower route to work for the given departure time. A more favorable possible alternative,23

e.g. departing earlier to avoid the road pricing, is unlikely to be found, as modx optimizes one24

sub-problem and the router another.25

As the feature set of MATSim grows with time, these modules therefore become obsolete,26

and require significant re-design to remain relevant. However, due to their design complexity,27

best-response replanning modules are harder to maintain and integrate with new functionalities28

than simple random-response modules.29

Simulation-based optimization using surrogate models30

To date, it appears that only one true multi-model approach has been applied to traffic simulation;31

where the detailed simulation is used to estimate a simplified surrogate. Osorio and Bierlaire (26)32

combine the output from an AIMSUN dynamic traffic microsimulator with a surrogate model33

that analytically captures stationary queue distributions. They use this approach to perform34

simulation-based optimization of signalling plans in a congested network (25).35

Their approach differs in two respects from the one presented here. Firstly, their method does36

not employ an agent-based paradigm. Secondly, they use information from the microsimulation37

to come up with an analytical description of the network. In our case, we use information from38

the queue simulation to create a simple lookup table of travel times through the course of the39

day for every link of the network. The system then uses this information to evaluate and adapt40

plans before execution in the queue simulation. It therefore relies on the same mechanism of41

learning through feedback that forms the basis of the MATSim co-evolutionary logic.42
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Feedback and learning1

The idea of predicting the outcome of actions through learning and feedback between the mental2

and physical domains is not new to transport simulation (32, 33). A multi-level feedback loop,3

using transport system metrics on one level to inform the location decisions of households and4

firms, and individual learning on the other as agents respond to resulting changes in demand5

patterns, has also been the subject of recent investigation (34). Also, UrbanSim (35) can use6

so-called “skims” which means to use a previous output of the assignment model in order to7

avoid running it – this implies the assumption that travel speeds in the transport system remain8

the same over a couple of UrbanSim iterations.9

DESIGN

Figure 1 illustrates the principle behind the multi-model approach. The system is fed with an10

initial demand of agent plans, which get executed in QSim. Plans are scored and sent to the11

replanning modules. An inner loop is then executed for a number of iterations, where new plans12

are executed in the pseudo-simulation (PSim), scored, and sent for replanning. After, say, p such13

iterations, plans are selected again for execution in QSim, scored, and the inner loop repeats14

again for another p iterations. The outer loop repeats q times, then terminates with a final QSim15

and scoring step, leaving a relaxed demand.16

MATSim events17

In MATSim, QSim writes out time-stamped, atomic units of information called events, which18

describe what is happening to each agent at all times. Trawling through these events, it is19

possible to recontruct every agent’s trajectory through the transportation system, and the time20

they spent at various activity locations.21

Consider, for example, an agent traveling from home to work in a small network. Her event22

stream might look as follows:23

<event time=21600.0 type="actend" person=1 link=1 actType="home" />24

<event time=21600.0 type="departure" person=1 link=1 legMode="car" />25

<event time=21609.0 type="wait2link" person=1 link=1 vehicle=1 />26

<event time=21610.0 type="left link" person=1 link=1 vehicle=1 />27

<event time=21610.0 type="entered link" person=1 link=6 vehicle=1 />28

<event time=22057.0 type="left link" person=1 link=6 vehicle=1 />29

<event time=22057.0 type="entered link" person=1 link=15 vehicle=1 />30

<event time=22487.0 type="left link" person=1 link=15 vehicle=1 />31

<event time=22487.0 type="entered link" person=1 link=20 vehicle=1 />32

<event time=22846.0 type="arrival" person=1 link=20 legMode="car" />33

<event time=22846.0 type="actstart" person=1 link=20 actType="work" />34

<event time=61200.0 type="actend" person=1 link=20 actType="work" />35

<event time=61200.0 type="departure" person=1 link=20 legMode="car" />36

<event time=61200.0 type="wait2link" person=1 link=20 vehicle=1 />37

......38

The XML code shows the simulation time in seconds for each event. This agent (with ID=1),39

therefore ends activity “home” at six in the morning, departs by car (vehicle ID=1), then enters40

and leaves a number of links in the network to arrive at work at 06:20:46. The agent departs41

from work at the scheduled time of 5pm, as specified in her day activity plan, and continues42
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home. Each link traversed is identified explicitly by a link ID. The time taken to traverse a link1

is generated by the queue simulation dynamics (see 36), and is therefore a stochastic, emergent2

property of the simulation.3

The default scoring function, derived from Charypar and Nagel (37), in its simplest form,4

rewards the performing of activities, and penalizes travel and arriving late for activities. During5

the scoring step in Figure 1, the scoring module evaluates the timing of each agent’s actvity6

start and end events, as well as travel start and end events to derive the total time spent at each7

activity, time spent traveling, etc. It does not care where the event stream comes from, as long8

as it is properly formed and chronological for each agent. Consequently, another simulation9

module than QSim can be used to feed the scoring module with an event stream.10

PSim operation11

From the QSim event stream, we can deduce the travel time for each agent on each link during12

the course of the simulated day. We can therefore slice the simulated day up into arbitrary13

time intervals, say 15 minutes each, calculate the average travel time for each link during every14

interval, and store these values in a lookup table.15

Suppose a replanning module now produces a new plan for the agent above, where she16

leaves home a little later, or takes a different route to work. The PSim module constructs an17

event stream that represents her expected experience in the transport system, by reading the18

appropriate times from the lookup table for each link in her route, at each relevant time interval.19

It passes this event stream to the scoring module, which now produces an expected score for the20

new plan, and keeps the scored plan in the agent’s memory. After repeating the process a number21

of times, we reach the agent’s memory limit, and the poorest performing plan is discarded at the22

end of each iteration.23

The agent is now learning not from the full stochastic queue simulation, but a simplified24

representation of it; consequently PSim is a surrogate model for QSim. After a number of25

iterations, we pass the agents back to QSim, to evaluate actual plan performance and produce an26

updated lookup table of travel times, and the process repeats.27

No physical interaction occurs between agents in PSim, so it can fully exploit modern28

multi-core computer architectures, as no synchronization between threads is required and access29

to data structures outside a PSim thread is read-only. Load balancing is simple; plans scheduled30

for execution are simply divided up between threads. Event processing is also completely31

parallelized, as are re-planning operations.32

QSim always requires the full set of agent plans, as travel times emerge from their interaction.33

As there is no interaction between agents in PSim, it makes sense to only simulate newly34

generated plans, that do not have a score associated with them yet. This cuts down on the35

expected computational load even further, as each iteration only generates a small number of36

new plans, depending on the rate of replanning prescribed by the replanning strategy.37

EXPERIMENTAL SETUP

We tested the multi-model approach for compatability, computational performance and solution38

quality by comparing its results for a large-scale simulation scenario against those produced by39

a baseline simulation run, that uses the default, QSim-only approach. We are interested to find40

out if if performance gains from the multi-model approach have any implication on the solution41

state compared to the standard approach.42



Fourie, P.J., Illenberger, J. and Nagel, K. 8

Simulation scenario1

We used the MATSim development scenario of Swiss car traffic crossing or operating within a2

30km radius circle around Bellevue, Zurich, as used in the secondary activity location choice3

study of Horni et al. (38). The scenario, originally developed by Balmer et al. (39), and updated4

and further documented in (40, 41) is regularly used as a benchmark in MATSim investigations.5

We use the same 10% sample from (38) study, as well as the same network representation6

and facility information. The scenario contains 67,239 agents traveling in a network of 60,5187

links, and a total of 1,697,196 activity facilities. An arbitrary morning toll was introduced on all8

links exceeding a capacity of 4,000 vehicles per hour.9

The following re-planning modules were used in equal measure, with the total replanning10

rate (proportion of agents replanned) varied as part of the experimental setup:11

1. activity start time and duration adjustment;12

2. re-routing using travel times from the previous iteration;13

3. subtour mode choice – switches the mode of transport of a randomly selected subtour to14

car/public transport given that, for this scenario, all agents have access to cars;15

4. secondary activity location choice: shopping and leisure activities are switched to a16

randomly chosen location from a set of qualifying facilities.17

Public transport is not explicitly simulated, as this capability would require a full public18

transport schedule of vehicle departure times, and a full set of public transport lines and19

routes. Instead, trips using public transport are ‘teleported’ during the simulation from origin20

to destination with a travel time that is twice that of the free speed shortest path through the21

network (42).22

RESULTS

Characterizing solution state23

MATSim employs stochasticity at various points in a simulation run, such as agent selection for24

different modes of replanning, plan selection for execution, and transition rules at intersections25

during a queue simulation. In order to make runs repeatable, a seed number is set for the Java26

random number generator at the beginning of a simulation run.27

In our experiments, we used the same random seed for all simulation runs, except a baseline28

QSim-only run. Then, when comparing the solutions of two QSim-runs with the same parameters29

except random seed, we have an indication of the minimum deviation we can expect between30

any two runs of the same scenario.31

The baseline against which simulation runs were compared was selected as the simulation32

state obtained by running the scenario for 101 iterations with QSim only, at an overall replanning33

rate of 30% per iteration, with a maximum agent memory of 5 plans per agent.34

Five measures were used to characterize solution state for comparison against the baseline:35

Average executed QSim score36

We take the 101st iteration score of 175.4 for the baseline run as a reference value. For all other37

runs, the first QSim iteration where the score was greater or equal to this value was selected and38

the rest of the measures were calculated.39
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Departure profile RMSD1

Agent departures are compared at 5 minute intervals for the simulated day. We take the root2

mean square deviation (RMSD) from the baseline departures as an indication of how similar a3

simulation state is to the baseline in terms of activity timing.4

Mode share5

We also compare car mode share (number of car trips / total number of trips) for the large-scale6

scenario, as mode choice is one of the dimensions included in the replanning strategy.7

Daily link volume RMSD8

We compare the daily volume of car traffic traversing every link in the network against the9

volumes produced by the baseline run. We take the root mean square deviation (RMSD) from10

the baseline link volumes as an indication of how similar a simulation state is to the baseline in11

terms of car traffic volumes.12

Agent total travel time difference13

We process the event stream to compare the total travel time experienced by each agent in14

comparison with those produced by the baseline run. We compare the difference for each agent15

between the two runs, and count the percentage of agents that experienced a difference below16

five minutes and one minute, respectively.17

We refer to the reference value for each measure as the value produced by the reference case;18

i.e. the QSim-only run where only the random number seed differs from the baseline setup.19

Varying QSim:PSim ratio20

When keeping the replanning rate constant, we found that increasing the number of PSim21

iterations between QSim iterations increases the rate of convergence, as can be seen from22

Figure 2. In this figure, we compare the utility vs. number of QSim iterations for two QSim:PSim23

ratios (red) against the reference case (black).24

In general, for a given intermediate utility score, the number of QSim iterations required25

to achieve that score is approximately inversely proportional to the total number of iterations26

executed during the simulation, e.g. QSim + PSim iterations.27

Performance test28

Figure 3 compares the influence of QSim:PSim ratio, number of computational cores and29

replanning rate on simulation (wall clock) time. Here it is clear that the multi-model strategy is30

only effective as the number of cores committed to the simulation is increased.31

Figure 4 shows the wall clock time it takes, with different set-ups, to reach a certain level32

of convergence, as described earlier. One notices that the computing (= wall clock) time33

for replanning scales inversely linear in the number of cores. That is, with an ever growing34

number of cores, that number will shrink more and more. This is due to the computational35

(and conceptual) decoupling of the replanning: every agent replans for herself. Second, one36

notices that replacing most of the regular QSim runs with PSim runs, as discussed in this paper,37

results in significantly reduced QSim contributions to the overall wall clock time, even if one38
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FIGURE 2 Average executed score versus QSim iterations for two ratios of QSim:PSim
(red), compared with a reference QSim-only run. Both multi-model runs
have a replanning rate of 0.3.

counts in the additional time for the PSim and the additional overhead. At this point, it was1

possible to reduce the computing time by more than a factor of two, when comparing the 16 core2

results from the default approach to the fastest version of using the 16 core machine with the3

multi-model approach.4

An interesting result here is that lowering the replanning rate, while increasing the number5

of PSim iterations in the inner loop gives the best overall performance, with its most significant6

component being time spent on overhead operations. The reasons for this improved performance7

in comparison to the other 16 core multi-model run will be explored in the discussion section to8

follow.9

Solution state10

Departure profile RMSD11

Departure profile RMSD, mode share and daily link volume RMSD for both modes of operation12

are compared against the reference run in Figure 5. Note from the shape of the RMSD plots that13

the system has not reached a stable state at the reference score iteration, therefore the system14

departs from this state in further iterations. This is due to the slow rate of evolution of the15

random-response replanning modules, and the large number of dimensions being explored in16

the model. The slope of the RMSD curves only drop off at much higher iterations, especially for17

departure profile RMSD.18

Both the standard QSim-only model and the multi-model approach reach their minimum19

RMSD value at the iteration where their score equals the reference score of 175.4. However the20
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FIGURE 3 Score evolution vs time for large-scale scenario, comparing the influence of
QSim:PSim ratio, number of computational cores and replanning rate.

multi-model approach differs from the baseline by a larger margin than the QSim-only reference1

run at 101 iterations.2

Mode share3

The multi-model approach produces markedly different car mode shares when compared to the4

reference run (Figure 5b). The swing towards public transport is much larger for the multi-model5

runs than for the reference run. The routing and travel time of public transport is independent of6

network conditions for our simulations, as public transport was not explicitly simulated in order7

to save simulation time. The meta-model gives many more agents the chance to consider that8

during the initial iterations, with lots of car congestion, public transit is an attractive alternative.9

An agent’s optimal departure time with public transit is, however, different from the same agent’s10

optimal departure time with car.11

This swing to public transport can be minimized by lowering the overall replanning rate, as12

well as the relative proportion of plans passed to the subtour mode-choice module. A run where13

this strategy was employed is indicated by the red line in Figure 5(b). For this run, we set the14

QSim:PSim ratio at 1:24, and the replanning rate at 0.1. The proportion of plans sent for subtour15

mode-choice mutation was set at half that of other replanning modules.16
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FIGURE 4 Computation time contributions vs number of cores for QSim only (0.3 re-
planning rate), QSim:PSim = 1:9 (0.3 replanning rate) and QSim:PSim =
1:24 (0.1 replanning rate) at the reference score (grey line in Figure 3).

Daily link volume RMSD1

The daily link volume RMSD does not show a minimum at the reference score iteration for2

any of the runs, and takes longer to reach a minimum. Even though the minimum value is3

approximately twice that of the reference case, it is still relatively small in absolute value.4

Agent total travel time difference5

Table 1 compares the agent total travel time difference for the three runs at the reference score6

iteration, along with the other measures of solution state discussed above. RMS Ddep denotes7

departure profile RMSD; RMS Dlink is the daily link volume RMSD; ∆traveltime ≤ 5min. and8

∆traveltime ≤ 1min. denote the percentage of agents with a total travel time difference (from the9

baseline) less than 5 minutes and 1 minute, respectively; sharecar denotes car mode share. We10

find that the magnitudes for ∆traveltime between the three cases to be comparable; at least 74% of11

agents have a total travel time that lies within 5 minutes of that experienced in the baseline run.12
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FIGURE 5 Departure profile RMSD, car mode share comparison and daily link vol-
ume RMSD against the baseline case, for the reference QSim case, and two
multi-model runs with varying replanning rate and QSim:PSim ratio. Col-
ored dots indicate the iteration where each run achieved the reference score
of175.4.

.

DISCUSSION

The multi-model approach was designed to be consistent with the pre-existing simulation logic1

of MATSim, and it appears to produce comparable results. In all cases, using the multi-model2

approach reduces the number of time-consuming QSim iterations required to achieve a given3

average plan score.4
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TABLE 1 Summary of solution state measures, compared against the baseline case.
Each measure is taken at the point where the average executed score is equal
to that of the baseline QSim-only case, at iteration 101.

Run descr. QSim
iter.

RMS Ddep RMS Dlink ∆traveltime ≤

5min. (%)
∆traveltime ≤

1min. (%)
sharecar

(%)

Reference 101 32.56 5.67 77.1 66.4 80.7
0.3Q:P=1:9 20 50.85 24.53 74.6 65.0 76.2
0.1Q:P=1:24 13 56.42 30.00 76.1 66.7 79.99

Performance1

The multi-model approach scales well with an increasing number of cores. Our experiments2

revealed that the interplay of replanning rate and number of PSim iterations in the inner loop3

have an important influence on convergence rate. Having a relatively low replanning rate with4

a higher number of PSim iterations in the inner loop produces the target score in less QSim5

iterations and less wallclock time.6

At first glance, this is a surprising result, because the expected number of plans generated7

from one QSim iteration to the next is comparable for the two 16-core multi-model runs in8

Figure 4. The first run has a replanning rate of 0.3 and QSim:PSim ratio of 1:9. Consequently, in9

1+9 iterations, the expected number of new plans produced per agent comes to 3, with a standard10

deviation of 1.44. In comparison, the second run has a replanning rate of 0.1 and QSim:PSim11

ratio of 1:24, so in 1+24 iterations, it produces only 2.5 new plans per agent on average, with a12

standard deviation of 1.5.13

The reason for the quicker convergence is probably due to the larger number of combinations14

of replanning modules that can act on any given plan in successive inner loop iterations for15

the second case. Even if any given combination has only a small chance of occurring; if it is16

favorable, it will be retained.17

The expected value calculation also shows why the total replanning time of the second run is18

significantly less than the first: In total, it produces 16.7% less plans per outer loop cycle. It19

suffers, however, from an increased overhead due to a larger total number of iterations.20

Solution state21

Even though the different measures of solution state depart from those produced by the reference22

QSim-only run, the departure is not that great for the two measures critical to transport system23

performance, namely link volume and experienced travel time. The difference in mode share24

is a cause for concern however. We have come up with a strategy to minimize the overshoot25

effect, by lowering the replanning rate and relative contribution of subtour mode choice to the26

replanning strategy. However, further investigation is warranted, in a comparative study with27

full public transport simulation instead of the teleportation strategy used in this paper.28

This study also shows that it is important to consider the relative contribution of each29

replanning model to the simulation state, because utility on its own is not a complete indication30

of what is happening in the simulation.31
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CONCLUSION AND OUTLOOK

The multi-model approach should prove useful in reducing simulation times for most applications1

of MATSim. Its simple design should make it easy to maintain as MATSim functionality is2

extended. In this paper, it has been shown to work well with an extensive list of existing3

MATSim capabilities.4

Public transport5

In this paper, public transport trips are not explicitly simulated in the QSim iterations, but instead6

teleported throught the network. Preliminary tests with the multi-model approach have shown7

promising results for scenarios that explicitly simulate public transport in the presence of private8

vehicle traffic (see 43), but further investigation is required.9

Social network coordination and ride-sharing10

The ultimate purpose of developing the multi-model approach is to explore MATSim’s capability11

to test integrated, complex scenarios. If solution spaces are huge if agents replan independently12

from each other, they become massively vast when one starts to consider the possibilities that13

open up when plans are coordinated within households and social networks. A problem of this14

type stood, in fact, at the beginning of the present investigation: A computational method was15

needed that would compute utility changes resulting from switching a person’s participation16

from one social group to another (17). If one assumes that this one switch does not influence17

the network travel times, it is in fact sufficient to recompute the scores of all members of both18

affected groups. A precurser of the PSim module was used to compute those scores, without19

running the full network loading.20

Parallel simulations21

The present paper inserts the multi-model approach so that it stays close to the pre-existing22

simulation logic. Even though performance gains are the result of the Psim module’s capability23

to fully exploit parallel computation, the simulation logic is still serial.24

Currently, the MATSim framework has all agent plans evolving from a single initial condition;25

the initial demand. The evolutionary logic might preclude certain plans from ever evolving.26

Consider for instance, an agent whose initial plan is close to a local optimum for being car-only.27

Assume that the global optimum for this agent is actually a public transport plan, with a markedly28

different temporal structure to that of the optimal car plan. A random-response switch to public29

transport for one or more trips produces worse performing plans given the car plan’s temporal30

structure, and are quickly discarded as the agent’s memory limit is reached. Consequently, the31

agent remains stuck at the local optimum.32

Once the multi-model capability is fully integrated into MATSim, however, this opens33

the door to more sophisticated approaches. For example, an agent could optimize a public34

transit plan over many PSim iterations and only then compare it to an already optimized car35

plan. Furthermore, such optimizations could run in parallel when computing resources are36

under-utilized during QSim runs.37
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