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Abstract1

The joint participation in activities represents a major determinant of leisure2

travel. Following this observation, researchers have started to build models that3

involve the social network in the activity planning process. Existing studies,4

however, are still in a state of rather explorative research. This article intends to5

shed some light on the practical use of social networks in a leisure travel demand6

model. Two models are proposed, one with cooperating individuals, where7

the cooperation is determined by a social network generated from empirical8

observations, and one with independent individuals. Comparing both models9

in a scenario using real-world land-use and population data shows that the10

impacts of the social network become irrelevant at a macroscopic scale. Yet, at11

the microscopic scale, the social network contributes to the explanation of the12

dynamics of cooperation and joint activity participation.13
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1 Introduction14

In european countries, leisure represents the dominating purpose for human mobility.15

For instance, in Germany the share of leisure related trips is about 32 %, in the UK16

about 31 %, and in Switzerland even up to 41 %. The amount of research, however,17

appears to be at odds with the dominance of leisure travel. A query to Google’s search18

engine for scientific articles (scholar.google.com) results in 446 entries with the words19

“work” or “commuter” and “travel” in their title. The result of a query for articles20

with the words “leisure” and “travel” in their title counts 260 entries.1 Nevertheless,21

research on leisure related mobility is increasing and has gained important insights22

that explain the heterogeneity of that travel segment. Existing studies agree that a23

crucial aspect of leisure activities is the question “with whom” activities are conducted24

(Berg et al., 2010, 2012; Carrasco, 2006; Srinivasan and Bhat, 2008). For instance,25

going to a restaurant is not only for the purpose to have something to eat, it is also26

for the purpose to socialise with other people.27

The usual travel survey does not include information about with whom activities28

are conducted. However, realising that the actor’s social environment represents an29

important component in the decision making process, researchers have started to30

survey the actor’s mobility patterns and social network simultaneously (Berg et al.,31

2008; Carrasco, 2006; Kowald and Axhausen, 2012; Silvis et al., 2006). These studies32

combine tools of transport engineering and social network analysis. Results have made33

their way into simulation models, usually of microscopic architecture, investigating the34

influence of the social network on the decision behaviour (Arentze and Timmermans,35

2008; Hackney and Marchal, 2011; Marchal and Nagel, 2005; Ronald et al., 2012).36

While these models provide useful insights from a theoretical perspective, they are37

often restricted to “sandbox” scenarios and are rather of explorative nature missing38

any validation with empirical data. Moreover, it is still unclear how much explanatory39

power a social network features and at what level of detail the impacts of a social40

network become relevant.41

This article intends to shed some light on the practical use of social networks in42

a model for leisure travel. Two models are proposed: A reference model where the43

activity planning is conducted independently for each individual, and a cooperative44

model where individuals jointly plan and conduct leisure activities. With whom45

individuals plan and conduct activities is determined by an underlying social network,46

which is generated based on empirical observations. Using a simulation scenario with47

real-world land-use and population data, the question is addressed which properties48

of a social network become at which level of detail of the analysis relevant to the49

model.50

The reminder of this article is organised as follows: Section 2 provides a concise51

review of existing studies on leisure travel and simulation models incorporation social52

networks. The simulation framework, the simulation scenario, and both models, the53

reference model and the cooperative model, are presented in Sec. 3. Several simula-54

tion experiments are conducted and analysed from a macroscopic and a microscopic55

perspective in Sec. 4. Section 5 closes the article with a conclusion.56

2 Related Work57

Based on an increasing availability of empirical data sets, researchers have gained58

important insights into leisure travel behaviour. On the basis of the 2000 San Fran-59

cisco Bay Area Travel Survey, Bhat and Gossen (2004) investigate the patterns of60

weekend in-home and out-of-home leisure activities depending on household and indi-61

vidual socio-demographics, as well as land-use variables. The timing and frequency of62

leisure activities is analysed by Kemperman et al. (2006) using data from the Nether-63

lands. Surveying more than 800 respondents in Switzerland, Ohnmacht et al. (2009)64

classify leisure mobility into different mobility styles to explain the heterogeneity in65

travel behaviour. While the above studies investigate in the variance of travel pat-66

terns among individuals, longitudinal data sets, such as the German 6-week travel67

diary “Mobidrive”, allow to investigate the variations of individuals’ travel patterns68

1The queries are “allintitle: travel work OR commuter -non” and “allintitle: leisure

travel -non”.
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over time (Schlich et al., 2004; Tarigan and Kitamura, 2009). Generally, the above69

studies agree that a lot of heterogeneity in leisure travel behaviour is explained by the70

heterogeneity of the households’ and the individuals’ socio-demographic attributes.71

Travel involved in leisure activities is at average longer, in terms of time and distance,72

and activities are usually driven by the need for social interaction with friends or rel-73

atives. Research has realised that the latter aspect, the question “with whom”, offers74

a lot of explanatory potential.75

Activities conducted jointly with household members and non-household members76

are analysed by Srinivasan and Bhat (2008). However, since the usual travel survey77

does not include detailed information about non-household members, researchers have78

started to survey the individuals’ travel behaviour and social network simultaneously.79

Berg et al. (2010, 2012) addresses the question of how the “with whom” influences the80

activity scheduling. Data from a social interaction diary collected in the Netherlands81

reveals that activity duration increases if activities are conducted jointly. Activities82

become more likely to be prearranged if the number of participants increases or the83

distances between participants increases. That is, activities with high scheduling84

complexity are preplanned. Similar observations are made by Habib and Carrasco85

(2011): Social activities tend to be longer if more people are involved, and people86

with more social contacts tend to have longer social activities.87

There are a couple of simulation models that incorporate these empirical observa-88

tions. Middelkoop et al. (2004) propose a model for annual activity-travel patterns89

of leisure and vacation travel that is built upon a set of discrete choice models and90

rule-based models. The model of Bradley and Vovsha (2005) for daily activity pat-91

terns involves an added utility for joint participation in activities. This adds much92

of realism to the model as it prevents the construction of unrealistic entire-household93

patterns, such as a preschool child staying at home while all adults go to work. Social94

influences on the decision of residential locations are addressed by Páez et al. (2008).95

In their model, individuals are linked by a social network over which the decision96

makers can exchange information and learn from the decisions of others. The simula-97

tion results show the influence of the social network topology on the decisions: While98

the clustering coefficient is almost irrelevant, variations of the degree distribution has99

implications on the outcomes at the macroscopic level.100

The interaction between social networks and travel behaviour is reciprocal (Larson101

et al., 2006): Social networks and travel patterns coevolve in that, on the one hand,102

the social network induces travel, and on the other hand, travel opportunities enables103

the spread of the social network. The idea of coevolution is incorporated in the104

simulation framework of Arentze and Timmermans (2008), where social connections105

are created and dissolved according to the individuals’ attributes and their travel106

patterns. Persons can interact if they meet at the same place at the same time and107

exchange information through the social network. While the complexity of Arentze’s108

and Timmermans’ model limits its applicability to small scenarios, Marchal and Nagel109

(2005) and Hackney and Marchal (2011) seize the same idea, yet in a large-scale110

context and with an underlying traffic flow model. Traditional models for location111

choice require the enumeration over all alternatives. The work of Marchal and Nagel112

(2005) emphasises that the inclusion of social networks as an information exchange113

channel offers the construction of plausible choice sets in reasonable computation114

times. In the simulation model of Hackney and Marchal (2011) social connections115

are created or reinforced if people meet at the same place in an overlapping time116

window, and fade out over time if they are not reinforced. An added utility for joint117

activities compensates for longer trips and shorted activity durations, and moreover,118

it draws agents together in the same spatiotemporal patterns. In contrast to the119

latter two simulation models, the model of Ronald et al. (2012) explicitly models120

cooperative planning of activities, yet lacking an underlying traffic simulation. In121

Ronald’s model, individuals negotiate about social activities from which they gather122

information about new activity locations and acquaintances. It is shown that person123

with a lot of social contacts participate in more activities, and that persons who are124

similar in their socio-demographics tend to socialise more often.125

The discussed models provide useful insights into the reciprocal interaction be-126

tween travel behaviour and social networks. However, the rather explorative character127

of all models has not resulted in applicable travel demand models, yet. With the ex-128

ception of Marchal and Nagel (2005) and Hackney and Marchal (2011), none of them129
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uses real-world land-use data, nor do they use social networks based on real-world ob-130

servations. The model proposed in this article intends to do a step into the direction131

of building a travel demand model applicable for real-world scenarios. The article132

presents a simulation model of cooperating agents that are linked through a social133

network, which based on real-world observations, and test our model on real-world134

land-use data.135

3 Simulation Models136

3.1 Simulation Framework137

The simulation framework uses the concepts and code parts of the MATSim project138

(Multi Agent Transport Simulation, www.matsim.org, accessed July 2012). It imple-139

ments the agent-based approach where each actor in the social network as well as in140

the transport system is modelled as an individual software entity denoted as agent.141

Each agent posses a day-plan describing the activities it intends to perform during a142

24 hours period. A day-plan consists of a sequence of activities connected by travel143

legs. An activity specifies the type, location and end time. A travel leg specifies the144

path through the road network from the previous to the next activity.145

The simulation framework distinguishes between a mental and physical layer,146

which are iteratively executed in alternating order. The mental layer takes over the147

scheduling of activities in the day-plan. Agents can either cooperatively or indepen-148

dently re-schedule their day-plans. Day-plans are simultaneously executed as best as149

possible conditional on physical constraints in the physical layer. Based on the feed-150

back of the physical layer, day-plans are evaluated and either accepted or rejected.151

This procedure can be considered as a Markov process with the agents’ day-plans as152

state vector. For the identification of agents in the social network, the nomenclature153

of the sociologists is used: An agent of interest is called ego, its neighbours in the154

social network are called alters. The terms vertex, ego, agent, and individual are155

synonymously used throughout this article.156

3.2 Scenario Description157

Switzerland is used as the simulation scenario. From census data (Swiss Federal158

Statistical Office, 2005) a synthetic population is generated (Balmer, 2007). That is,159

a random realisation of census data such that a census on the synthetic population160

would approximately result in the statistics of the original census. The synthetic161

population counts more than 140 k persons, which corresponds to a 2 % sample of162

the entire Swiss population.163

A usual Sunday is considered as the simulation period. This simplifies the scenario164

with respect to two aspects: (i) About 75 % of trips are related to leisure activities165

(Federal Office for Spatial Development and Swiss Federal Statistical Office, 2007)166

so that just about 25 % of trips remain unexplained by this model. (ii) The average167

Sunday activity episode consists of 1.6 out-of-home activities. Considering only home–168

leisure–home activity episodes in the simulation model represents thus a reasonable169

approximation.170

Each agent posses a desired leisure activity type: visit means visiting other people171

at their residential location, culture comprises going to a movie theatre, concert,172

museum, doing active or passive sports, outdoor recreational activities or similar, and173

gastro denotes going to a restaurant or bar. The activity type visit implies that this174

activity is jointly done with at least one other person. In contrast, activities of type175

culture and gastro can be also conducted alone. The desired activity type for each176

agent is a priori determined by a weighted random draw with weights according to177

the trip purpose share of the Swiss national travel survey (Federal Office for Spatial178

Development and Swiss Federal Statistical Office, 2007). Furthermore, each agent179

posses a desired start time and desired duration for each possible leisure activity180

type. They are both a priori generated random realisations from the Swiss national181

travel survey. Specific to each leisure activity type are also the individual location182

choice sets. In case of visit, it is given by the residential locations of the ego and183

its alters (or a sub-sample of alters, depending on the model, see below). The fact184
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that the choice set contains also the ego’s residential location implies that staying at185

home in order to receive a visit is also a valid option. In case of culture and gastro,186

choice sets are manually generated by randomly drawing facilities from land-use data187

according to the probability distribution188

Pi(la) = κa · d(i, la)γ , (1)

where d(i, la) denotes the beeline distance between i’s residential location and facility189

la with an activity opportunity for type a. Parameter γ is arbitrarily set to −1.4.2 The190

constant of proportionality κa controls the expected number of locations in the choice191

set and is adjusted so that each individual knows at average about five locations.192

The spatial distribution of facilities where activities of type culture or gastro can be193

performed are taken from the census of enterprises (Swiss Federal Statistical Office,194

2007). This data contains 28095 facilities for activities of type gastro and 7243 facilities195

for activities of type culture.196

3.3 Reference Model197

3.3.1 Model Description198

In the reference model, the agents’ decision process is independent from other agents.199

Yet, agents are linked through a social network, which, however, affects only the200

location choice of visit activities. Each agent is initialised with a day-plan including201

three activities. The first and last activities are of type home and located at the202

agent’s residential location. Both activities are fixed in type, location, and position203

within the plan and do not change over the course of the simulation. The second204

activity is initialised with the priori given desired activity type, the a priori given205

desired start time and desired duration, and at a random location, which, however,206

can change during the simulation. The simulation logic proceeds as follows: Select207

an agent uniformly at random. Randomly select a location out of the choice set208

of activity locations specific to the desired activity type. The agent’s day-plan is209

then modified according to the above location decision and executed in the physical210

environment. From the feedback of the physical environment, which are in this case211

activity start and end times, the utility of the new plan is calculated. The new plan212

is likely to be accepted if the utility is greater than the utility of the old plan.213

Let V be the set of vertices in the social network. P denotes a vector of plans214

with one entry pi for each individual in V. Pk denotes the plans vector at iteration215

k. The formal specification of the simulation logic is:216

1. Randomly select an agent i.217

2. Randomly select a new activity location l from the a priori given location choice218

set, which is specific to each activity type a and to the agent i.219

3. Create a new state vectorPk+1 with the plan of agent imodified according to the220

choice l, the a priori given desired arrival time t(arr)a , and desired duration t(dur)a221

while leaving all remaining plans unchanged. The end time of the preceding222

home activity is adjusted so that the agent is expected to arrive in time at the223

leisure activity location.224

4. Execute Pk+1 in the physical environment.225

5. Calculate the utility sum V̄k+1 =
�

i∈V V (pi,k+1).226

6. AcceptPk+1 with transition probability π = exp
�
V̄k+1

�
/
�
exp

�
V̄k+1

�
+ exp

�
V̄k

��
227

or return to state Pk otherwise.228

7. Repeat step 1–6 until the system reaches a steady state distribution.229

Note that in the reference model, for each agent j �= i the utility does not change:230

V (pj,k) = V (pj,k+1). Thus, the expression for π collapses to π = 1/(1+exp(V (pi,k)−231

V (pi,k+1))) so that it depends only on the changes of i’s utility.232

2Parameter γ is set arbitrarily, yet somewhat consistent with the exponent of the power-law with
which individuals accepts other persons as social contacts (Sec. 3.5).
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Figure 1: Illustration of the utility function. The day-plan contains two activities: A leisure
activity with start time 12:00 and a duration of 6 h and a home activity with desired start
time 18:00 and a desired duration of 18 h. The trip between both activities takes 1 h. The
travel time is taken from the home activity, and thus the realised realised durations reduces
to 16 h. The total utility is obtained by summing up the partial utilities indicated by the
black dots (•).

3.3.2 Utility Function233

The utility of a plan depends only on the activity start times and end times. The234

function V (pi) evaluates activities with positive utility and represents a stripped-235

down version of the utility function proposed by Charypar and Nagel (2005):236

V (pi) =
�

n

V (act)
n , (2)

where n denotes the indices of the activities. The utility of performing an activity is237

modelled logarithmically in activity duration t(act):238

V (act) = β · t(dur)a · ln
�
t(act)

t(dur)a

· exp
�

V (act)∗

β · t(dur)a

��
, (3)

where β denotes the marginal utility (the function’s slope) at the desired duration239

t(dur)a , and V (act)∗ denotes the resulting utility if t(act) = t(dur)a . For leisure activities,240

the desired duration t(dur)a is a priori given. The desired duration of the home activity241

is then given by t(dur)(home) = 24 h − t(dur)a . Although, a day-plan consists of two home-242

activities, the first and the last activity, during the evaluation both activities are243

treated as one activity such as if the succeeding day would be executed with the same244

day-plan. That is, the merged home activity starts at the beginning of the second245

home activity and ends at the end of the first home activity. This accounts for the fact246

that the simulation starts at midnight and thus the home activity is unintentionally247

split into two activities. Travel time is implicitly evaluated with negative utility.248

The longer a travel leg takes, the shorter the realised home activity duration. If249

the realised duration is less then the desired duration, the utility for that activity250

decreases (Fig. 1).251

3.3.3 Physical Environment252

The physical environment determines the activity start and end time given the con-253

straints of the road network. To make this simulation approach computational fea-254

sible, the standard queueing model in MATSim is replaced by a pseudo simulation.255

Travel times are calculated on the basis of an uncongested road network and are mul-256

tiplied by a factor of three. This means that there is no explicit traffic flow model.257

The pseudo simulation neglects any capacity constraints and does not know about258

congestion effects. The factor of three is intended to account for different means of259

6



transportation and is validated by comparing travel distances and travel times from260

the Swiss national travel survey. The road network counts 60 k links, representing261

motorways and trunk roads in rural regions and additionally main roads in conurban262

areas.263

3.4 Cooperative Model264

3.4.1 Model Description265

The dynamics of the cooperative model are driven by the agents’ desire to perform266

joint activities with other agents of their social network. An agent randomly selects267

a subset of its alters to cooperate with for the activity planning. One can consider268

this as an invitation to all alters to conduct a joint activity, whereas alters randomly269

accept or reject the invitation. The ego and the randomly drawn alters are denoted270

as an activity group. The activity type of the inviting ego determines the choice set of271

possible activity locations. If the activity is of type visit, the joint location choice set272

includes the residential locations of each activity group member. Again, each agent273

has its own a priori generated location choice set for activities of type culture and274

gastro. The joint location choice set for culture and gastro, respectively, is then built275

by merging each activity group member’s individual choice set into one set. From the276

joint location choice set a random activity location is selected. This can be considered277

as a sharing of knowledge about activity locations between agents, yet agents do not278

remember locations of other agents in succeeding iterations. The selection process for279

the activity duration and arrival time works in the same manner. All members of the280

activity group adapt their plan according to the location, start time, and duration281

of the joint activity. The adapted plans are simulated in the physical environment.282

This determines the realised activity start and end times, as well as the realised joint283

activities. If activities are conducted jointly with alters they gain an extra utility for284

socialising in the evaluation process. Formally, the cooperative simulation procedure285

works as follows:286

1. Randomly select an ego i from the set of vertices V.287

2. Create an activity group by (i) drawing a random number p between 0 an 1, (ii)288

adding each alter of i with probability p to the activity group, and (iii) adding289

the ego itself to the activity group.290

3. Set the activity type a of the joint activity to the one a priori assigned to ego i.291

4. Randomly select a location l from the location choice set that is constructed by292

joining each activity group member’s individual location choice set.293

5. Randomly select an arrival time t(arr) from the arrival time choice set, which294

contains each activity group member’s desired (and a priori given) arrival time.295

6. Randomly select an activity duration t(dur) from the activity duration choice296

set, which contains each activity group member’s desired (and a priori given)297

activity duration.298

7. Create a new state vector Pk+1 with the plans of the members of the activity299

group modified according to the choices a, l, t(arr) and t(dur), while leaving the300

remaining plans unchanged.301

8. Execute Pk+1 in the physical environment.302

9. Calculate the utility sum V̄k+1 =
�

i∈V V (pi,k+1).303

10. AcceptPk+1 with transition probability π = exp
�
V̄k+1

�
/
�
exp

�
V̄k+1

�
+ exp

�
V̄k

��
304

or return to state Pk otherwise. .305

11. Repeat step 1–10 until the system reaches a steady state distribution.306

This simulation logic has two implications: First, either the entire activity group307

accepts their new plans, or the entire activity group rejects their new plans. It is308

not possible that just some members accept the new plans, while the others remain309
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with their old plans. An interpretation of this would be that if one member would310

personally gain less utility with the new plan while the remaining members gain more311

utility (so that the systems’ total utility increases), it still would accept the new joint312

activity in order to do the remaining members a favour. Second, the change of the313

system’s total utility is not only dependent on the utility change of the activity group314

but also on the utility change of the activity group members’ alters. This mean that if315

one agent leaves an activity group in order to join a new activity group, the transition316

probability accounts also for a possible loss of utility of the old activity group.317

3.4.2 Utility Function318

The utility function of the reference model is extended with a utility component to319

reward socialising. Agents that are linked through the social network and conduct a320

joint activity gain an extra positive utility. The extended utility function reads:321

V (pi) =
�

n

�
V (act)
n + V (join)

i,n

�
, (4)

where V (join) denotes the utility for socialising (see also Bradley and Vovsha, 2005;322

Hackney and Marchal, 2011). It is a function of the fraction of participating alters:323

V (join)
i = V (join)∗

�
1−

�
fi − f∗

a

f∗
a

�2
�

, (5)

where fi denotes the fraction of the ego’s alters that join the activity, and V (join)∗
324

denotes the maximum utility that can be obtained if the activity is performed with325

the desired fraction f∗
a of alters. Fraction f∗

a can be specific to activity type a. This326

function implies that conducting an activity with too many alters is likewise bad327

as conducting an activity with too few alters, where conducting an activity with no328

alters yields always no socialising utility. Further, the definition is independent from329

the time agents join, and it also specifies that staying at a location with a foreign330

person does not contribute any socialising utility. The desired fraction f∗
a is rounded331

to realisable values for practical evaluation. That is, if an agent possesses five alters332

and intends to meet with half of its alters (f∗
a = 0.5), then f∗

a is rounded to 0.6 so333

that the maximum utility V (join)∗ can be achieved.334

While in the reference model the only degree of freedom is the choice of locations,335

the cooperative model implicitly introduces the activity type, activity start time, and336

activity duration as additional choice dimensions. Regarding time choice, the function337

describing the utility for conducting an activity V (act) has two decisive features (see338

also Charypar and Nagel, 2005). First, the maximum utility is gained if activities339

are performed at their desired duration. For instance, extending the leisure activity340

for one hour while shortening the home activity for one hour yields less utility. The341

logarithmical form of the function causes that the additional utility for the extended342

leisure activity is less than then the loss of utility for the shortened home activity.343

Second, if both activities cannot be performed at their desired duration because the344

trip between both activities requires time, the travel time is taken from the activities345

proportional to their desired duration. The derivative of V (act) with respect to t(act)346

decreases slower for activities with a long desired duration compared to activities with347

a short desired duration. That is, shortening a longer activity yields less utility loss348

than shortening an already shorter activity.349

3.4.3 Physical Environment350

The physical environment of the cooperative model additionally needs to determine351

if activities are conducted jointly. Activities are conducted in facilities linked to the352

transportation network. The simulation registers if an agent enters and leaves a353

facility. From this information it is determined if an ego and alter rest at the same354

facility for an overlapping time window.355

Apart from the fact that the pseudo simulation does not have a computational356

expensive traffic flow model, the only interaction of agents remains in the joint per-357

forming of activities. The physical environment only needs to simulate those agents358

that are affected by the decisions of the activity group. In particular, these are the359
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members of the activity group, the members’ alters because their utility may change,360

and the alters of the alters, that is, agents that are two edges distant from the egos.361

The latter group of agents is required in order to properly determine the joint activ-362

ities of the activity group members’ alters.363

3.5 Social Network364

Agents are linked through a social network. The type of the social relations between365

agents can be considered as friendship or kinship, that is, contacts individuals physi-366

cally meet for leisure activities. The social network is assumed to be given and does367

not change over the course of the simulation. The structure of the social network and368

the process of network generation is described in detail in Illenberger et al., accepted.369

The following paragraphs provide a concise overview of those aspects that are relevant370

for this model.371

The social network is based on empirical data obtained from a survey that collects372

data on a social network of leisure contacts in Switzerland (Kowald and Axhausen,373

2012). The sampling design involves a so-called snowball sampling technique. In a374

snowball sample, respondents are asked to report their social contacts, which are375

then invited to participate in the survey as well. The new respondents are asked to376

report their social contacts, which in turn also are invited. This iterative process is377

continued until a predefined number of iterations is conducted or the desired number378

of samples is collected. The name of the approach stems from the image of a snowball379

accumulating more and more material when it is rolled through the snow.380

The network model generates social networks that reflect the empirical network381

with respect to the following properties:382

• The degree distribution (distribution of number of contacts per person) follows383

a log-normal distribution. The mean degree is �k� = 14.9, and the maximum384

degree is max[k] = 43. Each individual posses at least one social contact.385

• The probability that an individual accepts an other person as social contacts386

scales in distance d with the power law p(d) ∼ d−1.4.387

• Individuals tend to connect to other individuals of same age and same gender.388

The Pearson correlation coefficients yield r(age) = 0.54 and r(gender) = 0.34,389

respectively.390

The spatial structure of the generated social network is decisive for the travel de-391

mand model. On the one hand, it defines the spatial distribution of activity locations392

with purpose visit, and on the other hand, it determines the spatial distribution of393

the members of an activity group.394

The network generation process involves two phases: In the first phase, a network395

is generated with the desired degree distribution but that is random with respect all396

other properties. Each vertex is assigned a degree randomly drawn from the desired397

degree distribution. Then, random vertex-pairs are drawn and connected if the degree398

of both vertices is less than their target degree. This process is repeated until all399

vertices reached their target degree. Self-loops and double-edges are not allowed.400

In the second phase, edges are re-order based on spatial and social interaction401

forces. The re-ordering process, however, does not change the vertices’ degrees. This402

is achieved by flipping edges (ij) and (uv) to (iu) and (jv). The spatial interaction403

force incorporates the probability that individuals accept other individuals as social404

contacts with ∼ d−1.4, and the social interaction force incorporates the homophily405

effects with respect to age and gender. The re-ordering process is repeated until the406

system reaches a steady state distribution.407

4 Simulation Experiments408

4.1 Macroscopic Perspective409

In the reference model, the location of the leisure activity represents the only degree410

of freedom. The distance to the selected location is controlled by the marginal utility411

β, which represents the only adjustable parameter. Figure 2(a) shows the average412
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Figure 2: (a) Average distance to selected leisure activity location depending on β in the
reference model. (b) Average distance to selected leisure activity location depending on
V (join)∗ in the cooperative model.

distance while varying the marginal utility. Increasing the marginal utility reduces413

the average distance to the realised activity location because then travel time causes414

more utility loss. One can say that agents react more sensible towards travel time.415

The approximate average distance of 11.8 km for Sunday leisure trips observed in the416

Swiss travel survey is obtained by setting β ≈ 0.25.417

With the utility for joint activities V (join), the cooperative model adds a second418

adjustable parameter. Increasing V (join)∗, to be interpreted as making joint activ-419

ities more attractive, increases the average distance (Fig. 2(b)). This means that420

the cooperative model features a mechanism to adjust the distance for leisure trips421

independent from the marginal utility. For instance, consider setting β to 0.5, which422

would be the corresponding value for all trip purposes in the reference model, then,423

setting V (join)∗ ≈ 5 results in the correct average distance for leisure trips in the424

cooperative model.425

The similarity between the reference model and the cooperative model is explained426

by considering the choice probabilities. In the logit choice model, the utility of an427

alternative is model as a composition of the systematic utility and a Gumbel dis-428

tributed error term accounting for the unobserved heterogeneity (Train, 2003). In the429

reference model, this leads to430

U(pi,l) = V (pi,l) + � (6)

where U(pi,l) denotes the utility of i’s plan that includes a leisure activity at location431

l, and � denotes the Gumbel distributed error term. Factoring out β of
�

n V
(act)
n432

(Eq. 2), Eq. 6 can be rewritten as433

U(pi,l) = β · Ṽ (pi,l) + � . (7)

In the logit choice model, this translates to the choice probability434

π(pi,l) =

exp

�
β

σ
Ṽ (pi,l)

�

�
k
exp

�
β

σ
Ṽ (pi,k)

� , (8)

where
�

k goes over all alternatives and the marginal utility β is rescaled by the scale435

parameter σ, which corresponds to the variance of the Gumbel distributed error term.436

This means that a greater variance of the error term (more heterogeneity) yields a437

smaller coefficient of Ṽ (pi,l) in the logit model, and thus the choice becomes more438

random.439

Both models, the reference model and the cooperative model, implicitly add an440

error term with scale paramter σ = 1 in step 6 (Sec. 3.3.1) and step 10 (Sec. 3.4.1)441
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Figure 3: Trip distance distributions classified according to leisure activity type.

of the simulation logic, respectively. For illustration, consider the error term as a442

utility offset that is assigned to each activity location. Increasing the variance of443

the distribution, that is, increasing the absolute value of the offsets, results in more444

random choices and consequently more distant locations. Equally, one can decreases445

the marginal utility β.446

In the cooperative model, an additional utility offset is assigned to each location447

where a joint activity is conducted. This offset is determined by the utility for so-448

cialising V (join). It is rather binary distributed than Gumbel distributed, and its449

spatial distribution is determined by the social network rather than being fully ran-450

dom. Albeit the distribution of V (join) violates the requirements of the logit model451

(not iid Gumbel distributed), it yields the same effect: Increasing the variance of the452

distribution of V (join), which is achieved by increasing V (join)∗, makes the choice of453

locations more random and distances increase (for a similar approach see also Horni454

et al., 2012).455

Figure 3 shows the distance distribution for each considered leisure activity type.456

The distributions of the reference model and the cooperative model are almost con-457

gruent. In comparison to the empirical trip distribution, both simulation models458

predict too many trips in the very short distance domain (< 1 km) and slightly too459

few trips in the mid-range domain (1–10 km). On the one hand, this can be a result460

of the missing traffic flow model so that very short distances are simulated with a too461

short travel times. On the other hand, the survey data may lack very short trips due462

to underreporting (see also Bricka and Bhat, 2006) so that the empirical distribution463

shows fewer trips then actually conducted.464

4.2 Microscopic Perspective465

With respect to trip distance distributions, both models exhibit almost congruent466

results. Turning to a microscopic analysis, however, reveals the shortcomings of the467

reference model. Quite obvious, the reference model does not know about joint activ-468

ities, and thus visit activities, which are per definition joint activities, are conducted469

alone. One can imagine this as an agent travelling to a friend’s home without that470

friend being at home.471

The concept of activity groups allows the cooperative model to reproduce (at least472

in a qualitative regard) the empirical observation that an increasing number of par-473

ticipants reduces the average distance to the joint activity (Fig. 4(a)). This effect474

is explained with costs induced by a greater willingness to compromise agents are475

required to exhibit in activities with many participants. Each agent has a desired ac-476

tivity duration. A divergence of the realised duration from the desired duration yields477

in less utility. If activity groups consist of two participants, than those groups in which478

the desired duration of both participants is most congruent, that is, those groups that479

yield a greater utility, are preferred. If the number of participants increases, there is480

more heterogeneity within the group with respect to the desired duration so that it481
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Figure 4: Microscopic dynamics of the cooperative model: (a) Trip distance depending on
the number of participants: Comparison between census data and results of the cooperative
model. (b) Average difference between realised and desired activity duration depending on
the number of participants. (c) Distribution of activity group sizes depending on the fraction
of participating alters f∗

(culture). (d) Average trip distance to culture activities depending on
the fraction of participating alters f∗

(culture).
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is more probable that a participant does not meet its desired duration (Fig. 4(b)).482

This means that agents need to compromise regarding the activity duration, which483

is quantified by a utility loss. This utility loss, however, is compensated by choos-484

ing more nearby activity locations so that the travel time decreases, which in turn485

positively affects the utility.486

Following the above causality, the distribution of activity group sizes affects the487

average trip distances. The distribution is controlled by the desired fraction f∗
a of488

alters an agent intends to join with. The parameter f∗
a can be set individually to489

each leisure activity type. Increasing the desired fraction causes the distribution of490

activity group sizes to evolve into two extrema: There are a few groups with many491

participants and many groups with just one participant, that is, the agent conducts492

the activity alone (Fig. 4(c)). Increasing f∗
a makes activities with more participants493

more attractive. However, if the utility loss induced by the divergence of the realised494

duration from the desired duration becomes to high, for single participants it is more495

beneficial to drop out of the activity group and conduct an activity alone. As a496

consequence, increasing f∗
a yields, on the one hand, greater activity groups having497

shorter trips, and on the other hand, more single activities that gain no joint utility498

and thus also exhibit shorter trips compared to joint activities with two participants499

(Fig. 4(d)).500

Apart from the spatial structure, the network’s social structure affects the resulting501

travel patterns. In the social network, persons tend to be connected to other persons of502

same gender and similar age. Both kinds of homophily are recovered in the structure503

of activity groups: Participants of an activity group tend to be of same gender and504

similar age. The Pearson correlation coefficient of the participants’ age is r̃(age) = 0.52505

and of the participants’ gender is r̃(gender) = 0.31. Both values are quite close to the506

correlation coefficients found for the contacts in the social network: r(age) = 0.55 and507

r(gender) = 0.34. However, at the aggregated level, these effects are irrelevant because508

age and gender are equally distributed in space. This means that the homophily509

effects observed in the activity groups have no impact on the spatial distribution of510

trips.511

5 Conclusion512

The study presented in this paper makes a step out of the “sandbox” of purely explo-513

rative models incorporating social networks and travel behaviour. Using real-world514

population and land-use data and a social network generated from real-world observa-515

tions, this work sheds some light on the alleged explanatory power of social networks516

in travel demand modelling. The key finding is that with respect to those aspects517

analysed, the question of “with whom” can be reduced to the question of “where”.518

That is, it is not the organisational structure of the social network that is decisive for519

the resulting travel patterns, it is just its spatial structure. This knowledge is gained520

by comparing a reference model, where the planning process of agents is independent521

of other agents, and a cooperative model, where the planning process is conducted522

jointly. In both models the spatial distribution of social contacts determines the523

location choice set for activities of type visit.524

From a macroscopic perspective, both models can be calibrated so that they yield525

the same results. In case of the reference model, the marginal activity utility controls526

the distance to the chosen activity location. This appears to be a valid calibration527

approach considering that empirical studies observe that the perceived travel costs528

depend on trip purpose (Vrtic et al., 2008). The utility for socialising in the cooper-529

ative model, however, represents a further parameter that allows to calibrate travel530

distances without varying the marginal activity utility. That is, according to the co-531

operative model, longer travel distance are not explained by smaller perceived travel532

costs for leisure travel but by an additional utility for joint leisure activities.533

Turning to a microscopic perspective, the cooperative model explains empirical534

observations that the reference model is incapable to reproduce. Naturally, the ob-535

servation that the average travel distance of members of an activity group decreases536

with an increasing number of participants cannot be reproduced by the reference537

model since it does not model activity groups. Moreover, homophily patterns in the538

social network are recovered in the resulting travel patterns through the formation of539
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activity groups. This effect, however, vanishes at the macroscopic scale because the540

population is, with respect to both attributes, age and gender, equally distributed541

over space. Considering other attributes such as income or ethnic groups, a spatial542

segregation is more plausible. The effects of a social network accounting for homophily543

with respect to these attributes would then also be visible at the aggregate level. The544

question that remains is how strong the spatial segregation needs to be so that it545

becomes relevant.546

In summary, at the current state of research, there may be no practical use of547

social networks for an operative travel demand model since a simple model such548

as the reference model yields the same results. However, basically, this represents549

just a statistic fit, which renders the forecasting power of the model questionable.550

The cooperative simulation is based on a sound behavioural model that provides551

an illustrative and intuitive explanation why greater travel costs for leisure trips are552

observed. Moreover, it represents a basic concept on which further models accounting553

for the interplay of social networks and travel behaviour can build on: For instance,554

evacuation simulations accounting for joint evacuation strategies of social contacts555

(Kowald et al., 2012).556
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Ohnmacht, T., K. Götz, and H. Schad (2009). “Leisure mobility styles in Swiss conur-621

bations: construction and empirical analysis”. In: Transportation 36, pp. 243–265.622
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