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Abstract

With diminishing travel time differences between mid-distance transport modes analysis and forecasting needs to con-
sider time-dependent inter-modal reactions. This paper aims at modelling such reactions using a multi-agent simulation
approach. A simulation model for air transport technology is used, that represents details of air traffic microscopically
and is fast enough to enable an iterative simulation-based passenger-trip assignment. Passengers are modelled as agents
that may have individual attributes. In this paper, passengers differ by choice of departure time and chosen connection.
Results for flights within Germany are presented, that are based on real world data. Overall, the approach appears to be
suited to analyze and forecast mid-distance transport.
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1. Introduction

In Italy, recently a private company started providing 2.5 h non-stop train rides between Milano and
Rome.1 From Paris, nearly all major French cities can be reached by high-speed train in 2–4 h trips.2

For the journey Berlin–Frankfurt in Germany, a 4h non-stop rail connection is provided.3 Many airlines
provide flights between all these destinations that take between 1 and 2 h. When comparing travel times, the
additional access time to the airport or railway railway station needs to be included. Overall travel times are
often not that different between middle range rail on the one side, and air transportation on the other.

Following recent forecasts, in 2030 13 major EU airports will operate at full capacity at least eight
hours a day [1]. Legal opening hour constraints limit operations to a certain time frame. Yet even increasing
opening hours for airports may not resolve capacity bottlenecks since it may not be possible to move enough
demand away from the peak hours.

1http://www.italotreno.it last access 19.12.2012
2www.tgv-europe.com/en/, last access 11.09.2012
3www.bahn.com, last access 11.09.2012
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In contrast, railway stations are normally not as much exposed to restrictions of opening hours due to
noise protection as airports are. Also, in comparison with airports, railway stations mostly feature a more
central geospatial location in urban areas. Slightly longer travel times can be compensated for by shorter
access times and longer opening hours. Passenger demand and technology supply for middle distance
railway or air transportation may interact and are time dependent over a day or even a longer period.

In order to provide more capacity, railway or air transport networks may be target of planned extensions.
New infrastructure is often accompanied by new emissions of noise and pollutants and is thus subject to
lenghty planning, negotiation, and high private and public costs [2]. However, improvements on infrastruc-
ture may improve quality of journeys or offer even new possibilities of transportation. Identification and
appraisal of these disadvantages and benefits is one of the key subjects in infrastructure planning.

Mutual reactions on several scales may arise if one or several transport measures cause disbenefits and
advantages for certain user groups or individuals. For each transport system user, changes in price, travel
times, schedule, or available transport modes have different impacts, which depend on planned activities,
available budget and geospatial location. In order to analyze, forecast, and assess changes in air transport in-
frastructure and service, this paper employs a simulation and forecasting approach for individual passenger
reactions, using concepts of multi-agent simulation for urban transport forecasting. The technology of air
transport networks, i.e. airports and aircraft, are microscopically modelled the same way as buses or street
cars. Details concerning modelling and simulation of air transport technology are presented in [3]. This pa-
per focuses on passengers that are represented microscopically as multi-agent demand for air transportation.
For modelling and simulation standard theory and tools available around the MATSim software toolkit are
used. While the modelling is kept simple, the paper discusses several possibilities how it could be refined in
order to provide answers to more specific questions.

The paper is organized as follows. Sec. 2 presents an overview of the methodology and the simula-
tion framework. Then, Sec. 3 explains how passengers are included in the model while Sec. 4 describes
simulation setup and results from several simulation runs. The paper ends with a discussion and conclusion.

2. Multi-Agent Transport Simulation

The simulation approach used in this paper is based on the software tool MATSim4. The next paragraphs
provide an overview of the simulation approach and highlight the most important details used in this work.
For more detailed information on technical aspects, please see [4] or [5]. For a detailed discussion of
methodology, see, e.g., [6]. Regarding economic concepts used in the simulation approach, see, e.g. [7, 8].

Simulation overview. In MATSim, each traveler of the real system is modeled as an individual virtual per-
son. The approach consists of an iterative loop that has the following important steps:

1. Plans generation: All virtual persons independently generate daily plans that encode, among other
things, their desired activities during a typical day as well as the transportation mode. Virtual persons
typically have more than one plan (“plan database”).

2. Traffic flow simulation: All selected plans are simultaneously executed in a simulation of the physical
system (often called “network loading”).

3. Scoring: All executed plans are scored by an utility function which can be personalized for every
individual.

4. Learning: At the beginning of every iteration, some virtual persons obtain new plans by modifying
copies of existing plans. This is done by several modules that correspond to the choice dimensions
available, e.g. time choice, route choice, and mode choice. In this paper, time and route choice will
be used. Virtual persons choose between their plans according to a Random Utility Model (RUM).

4Multi-Agent Transport Simulation, see www.matsim.org.

www.matsim.org
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The repetition of the iteration cycle coupled with the plan database enables the virtual persons to improve
(learn) their plans over many iterations. This is why it is also called learning mechanism which is described
in more detail by [5]. The iteration cycle continues until the system has reached a relaxed state. At this point,
there is no quantitative measure of when the system is “relaxed”; we just allow the cycle to continue until
the outcome is stable. In the steady state, the model is equivalent to the standard multinomial logit model

p j =
eµ·V j∑
i eµ·Vi

, (1)

where p j is the probability for plan j to be selected and µ is a sensitivity parameter, set to 2 for the simulations
in this paper. In consequence, V corresponds to the systematic component of utility in Random Utility
Models (RUM) e.g. [9, 10], where utility is defined as U = V +ε. In RUM, the ε is called random component
of utility. In the steady state and assuming a Gumbel distribution for ε, the choice model used in this paper
is thus equivalent to the standard multinomial logit model.

Scoring. In order to measure the quality of a plan after execution and to compare plans, it is necessary to
assign a quantitative score to the performance of each plan. For this purpose the utility function of the virtual
persons is used. The total utility of a plan is computed as the sum of individual contributions:

Vtotal =

n∑
i=1

Vperf ,i +

n∑
j=1

Vtr,j , (2)

where Vtotal is the total utility for a given plan; n is the number of activities, which equals the number of
trips (the first and the last activity are counted as one); Vperf ,i is the (positive) utility earned for performing
activity i; and Vtr,j is the (usually negative) utility earned for travelling during trip j. For calculation of Vperf ,i

a logarithmic form is used

Vperf ,i(tperf ,i) = βperf · t∗,i · ln
(

tperf ,i

t0,i

)
(3)

where tperf is the actual performed duration of the activity, t∗ is the “typical” duration of an activity, and
βperf is the marginal utility of an activity at its typical duration. βperf is the same for all activities, since in
equilibrium all activities at their typical duration need to have the same marginal utility. In this paper a βperf

of 6 utils is used. The (dis)utility of traveling is linear in travel time, i.e. Vtr,j(ttr, j) = βtr · ttr. In this work, βtr

is set to −6 for all virtual persons.
Further details on the default MATSim utility function can be found in [11] while one of the most recent

discussions of this utility based approach is in [8].

3. Modelling of Passenger Demand for Air Transport

With the results from [3] an air transport technology model is available. This section shows how a
passenger demand for air transport can be modelled with the multi-agent approach.

There are many different ways in which passenger demand for transport systems can be generated
e.g. [12]. One option is to start with origin-destination (O-D) flows between geographical regions. In a
European context, possible data-sources include OAG Aviation5 and eurostat6. They provide data about
passengers; O-D flows, however, are not provided. Data-sources geographically limited to Germany as
“Der Flughafenverband”7 or [13] do not come with O-D data, neither. The latter may have O-D relation-
ships available in an upcoming version. The German Institute of Air Transport and Airport Research (DLR)
provides monthly statistics containing O-D flows,8 but the pdf format provided is not suited for machine

5www.oagaviation.com, last access 08.08.2012
6ec.europa.eu/eurostat, last access 10.09.2012
7www.adv.aero, last access 10.09.2012
8http://www.dlr.de/fw/en/desktopdefault.aspx/tabid-2961/9753_read-19683/, last access 10.09.2012
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reading, and data is only available up to 09/2010. DESTATIS9 provides O-D data by airport for German air
traffic in a machine readable format. Data is available for whole years or a specific month. DESTATIS data
is thus used in the following to create an agent based air transport demand for Germany.

The passenger demand is based on the DESTATIS data for 09-2011 in order to be consistent with [3].
DESTATIS provides data in two different representations (data sets 2.2.1 and 2.2.2). The number of O-D
trips between airports is captured in two different ways. For all pairs of airports, the number of direct trips
between the airports is given in the data set 2.2.1. Furthermore, the second data set 2.2.2 contains O-D pairs
that do not include the first transfer, but provide the second, and possibly final destination. E.g. one person
flying from Hamburg (HAM) via Frankfurt (FRA) to Munich (MUC) is contained in the data as one O-D
pair: HAM → MUC. If a flight starts at Paris (CDG) going via FRA via MUC to HAM it is not clearly
stated how the flight is represented in the data. It might be counted as CDG → HAM or FRA → HAM
O-D relation. It is, however, unlikely that passengers will have two transfer stops within Germany. Thus an
origin or destination abroad may not be the original or final destination, but at least all passenger movements
that touch Germany along their itinery are probably included in an unequivocal way.

The second data set (2.2.2) is used to create the virtual persons for the passenger demand. For each
O-D pair the number of trips is scaled from monthly to daily values by a division by 30. If the origin or
destination airport is available in the simulation model for air transport technology, for each O-D pair and
trip a virtual person is created, otherwise the trip is neglected. The resulting synthetic population contains
64006 virtual persons, 1103 trips from the original data are neglected. Each virtual person performs two
activities, one at the origin and the other at the destination airport. Both activities are of same type, thus
time spend performing both activities is accumulated before it is evaluated by the utility function according
to Eq. (3). A “typical duration” (t∗) of 24 h is set for this activity type. In between the two activities a
flight leg is scheduled, connecting origin and destination. As is common, the demand does not specify if a
direct flight from O to D is chosen or the virtual person is on a route containing one or more transfers. The
time virtual persons arrive at the origin airport and start waiting for a connection is drawn randomly from
a uniform distribution in 04:00 to 18:00, UTC. This reflects estimated typical opening hours of airports in
Europe.

4. Simulation Setup & Results

The synthetic population is used as input for the simulation. As scenario the European flight model
with no delays and no effective runway capacity restrictions from [3] is used. The assignment of concrete
flights to the desired O-D connection, i.e. the passenger routing, is done by the default public transit routing
module of MATSim [14]. The routing basically looks for a least cost path in terms of travel time. The
network used for routing is constructed from the information contained in the transit schedule. In order to
penalize transfers, the routing assumes an additional cost of clineswitch for each transfer. The same parameter
is also considered by the scoring function, i.e. a (dis-)utility of −clineswitch is added to the score of the agent
for each transfer. The simulation is run several times using different values of the clineswitch parameter,
i.e. clineswitch ∈ {0,−6,−12,−18,−24,−30}[utils/transfer].

The simulation is run for 600 iterations. In each iteration, 10 % of the virtual persons may shift their
departure time randomly within a 2 h interval. The amount of shift is drawn from a uniform distribution.
Another 10 % may seek a different route, i.e. a different connection between origin and destination. Each
passenger chooses out of a set of 5 plans using a multinomial logit model, see [7] for details. The outcome
is stable after 500 iterations, thus departure time choice and routing are switched off. For another 100 it-
erations only the logit model is used by the passengers to select a plan. Empirically, fixing the choice set
for the last 100 iterations reduces the noise of learning and eases analysis and intepretation of results. All
other parameters used for simulation are the “default” values of the MATSim framework. For a detailed
discussion, see, e.g., [7, 6].

One iteration takes around 10 min. on an Intel Xeon Processor (2.67 GHz) using one core for the execu-
tion of mobility simulation and two cores for the replanning modules.

9destatis.de, Fachserie 8 Reihe 6, last access 10.09.2012
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(a) After 0th iteration
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(b) After 600th iteration

Fig. 1: Travelers en-route, i.e. waiting for a flight or travelling by plane, as a function of the time-of-day

First, in order to show the effects of routing, the result after the zeroth simulated iteration is presented.
Each virtual person gets a connection assigned based on a generalized cost routing for the connection and
the preset departure time. Fig 1a shows the number of travellers en-route, i.e. waiting for a flight or travelling
by plane, as a function of the time-of-day. Some passengers are still waiting for a flight at midnight. As
only one day of operation is simulated, these passengers are stuck and will not reach their destination. The
number of stuck passengers is decreasing with the increasing disutility of line switch.

The output after 600 iterations is depicted in Fig. 1b. The shape of all curves is different from the shape
of the 0th iteration. One can identify two morning and two evening peaks. Some passengers still get stuck
at the end of the day, but fewer than in the 0th iteration. In addition, the differences between the curves for
the clineswitch parameter are diminishing.

In order to study the influence of the clineswitch parameter, the simulation results are compared with the
leg data. Recall that the synthetic population is generated based on O-D pairs that may contain transfers
(odtrans f ers), while other data directly counts the number of passengers on actual direct flights (oddirect). The
latter is used to evaluate the accuracy of the model. For comparison, the number of passengers on direct
flights is thus calculated for each O-D pair (simdirect) from the simulation results.

Based on these datasets, the mean square error σ2 is computed as

σ2 =

∑
i∈OD(simdirect(i) − oddirect(i))2

|OD|
.

The (unsigned) mean relative error for each O-D relation is calculated as

mean rel error =

∑
i∈OD |(simdirect(i) − oddirect(i))|/oddirect(i)

|OD|
.

Tab. 1 shows the results for these calculations. The first line contains the comparison of the two input data
sets from DESTATIS, i.e. in the above formulas simdirect is replaced by odtrans f ers. This serves as reference
as it would assume that all demand is served by direct flights. All simulation runs explain the data better
than that reference. The values for all simulation runs are then quite similar.

The last column of tab. 1 shows the number of passengers stuck at the end of day. Values for all parameter
settings are around 980 passengers, i.e. around 1,5 % of the 64’006 simulated passengers.

5. Discussion

Overall, the results show that a microscopic, agent-based simulation of passenger demand for air trans-
port is feasible. Most passengers are able to learn the constraints of air transport technology and arrive at
their desired destination.

Some passengers fail to reach their destination; they get “stuck”. As only trips within Germany are
modelled, which are usually completed within a few hours without any requirement for an overnight stay
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clineswitch σ2 σ mean rel error stuck
odtrans f er − oddirect 6714 81 1.56 -

-0 5329 73 0.29 982
-6 5663 75 0.27 976
-12 5801 76 0.28 967
-18 5838 76 0.24 985
-24 5889 76 0.25 968
-30 5935 77 0.25 971

Table 1: Simulation results for different values of clineswitch
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Fig. 2: Passengers and available seats over time within Germany

at an airport, this is considered unrealistic. Fig. 2 shows that this is not a consequence of a general lack of
seats: at any time-of-day, there are more seats than demand. There are many reasons why stuck passengers
can arise in such a situation. Further analysis of the simulation results leads to the following insights

• 459 passengers are stuck because there is no seat, and there is no other flight by the same airline later
during the day to which they would be shifted otherwise.

• 523 passengers are stuck at an airport because there is no connection after their departure time between
that airport and their destination airport.

These results are for the run with clineswitch = 0; the other runs are similar. It may, for example, be pos-
sible that passengers depart from an origin that only has one –early– connection to a hub per day, and the
passengers’ departure times are too late to reach that connection, and the random departure time mutation
may not be able to find that connection for all passengers. Alternatively, it may be the case that passengers
have a connection that works in theory, but they are “crowded out” by other passengers who arrive earlier
at the gate. They would make it if either of them would take a different route. The current approach would
not find such a solution, since passengers do not take into account the costs they impose on others, see [15]
for an approach to take that into account. The real-world solution presumably would be to raise prices on
congested seats until one or the other passenger re-routes. The present model does not (yet) include such a
process.

An alternative approach to remove some of these shortcomings might be to use a router that generates a
larger diversity of routes even for the same departure time. Such a router would be able to point a passenger
to a route where seats are available without by itself knowing about seat availability. That approach would,
however, not address the issue that some passengers might need to switch their path in order to allow others
to obtain a feasible path.
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6. Conclusion

This paper aims at improving mid-distance transport. It shows how an agent-based demand for air
transport can be derived from O-D flows. Use of a computationally affordable simulation technique enables
an iterative assignment to flights. Results are presented for a simulation of German national air transport
demand. It is shown that knowledge gained from input data can be improved by the learning mechanism of
the agents. Overall, results look promising, the paper discusses several possibilities of model refinement.

Alternative transport modes should be included into the modelling. Models for other modes as rail or
car transportation are the subject of current work, following the same approach as the one presented here.
The same software and solution procedure is used. In consequence, these models can be integrated into the
approach presented in this paper. This might help to get a more detailed picture of middle distance traffic
modelling.
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