
Spatial interpolation of accessibilities

Theresa Thunig
Transport Planning and Transport Telematics Group,

Berlin Institute of Technology (TU Berlin), Berlin, Germany

Thomas W. Nicolai
Transport Planning and Transport Telematics Group,

Berlin Institute of Technology (TU Berlin), Berlin, Germany

June 24, 2013

Abstract

This paper is a technical report about the spatial interpolation
of structured data. There are many different interpolation methods.
This report provides a general overview about interpolation methods,
discusses three methods bilinear interpolation, bicubic spline interpola-
tion and inverse distance weighting in more depth and compares them
based on different testing criteria.

1 Introduction

This work is motivated by an attempt to couple a land use simulation model,
UrbanSim (Miller et al., 2005; OPUS User Guide, 2011; Waddell, 2002),
with a transport simulation model, MATSim (Balmer et al., 2005, 2009;
Raney and Nagel, 2006). The transport model is to feed back information
to the land use model such as accssibilities to certain activity locations, e.g.
work places. Normally, accessibilities are attached to spatial units like zones
or parcels. However, the computational effort on the disaggregated parcel
level would be rather large. Nicolai and Nagel (2012a, submitted in 2013)
are introducing an approach to calculate accessibilities at high-resolutions
where the study area is approximated by a grid of configurable size. In this
approach accessessibilities are measured at and attached to cell centroids.
Accessibilites at arbitrary locations, e.g. individual parcels or buildings, may
be interpolated based on the grid.

The present paper discusses different interpolation methods and strate-
gies to obtain an interpolated value from the grid at an arbitrary location.
At this point no previous knowledge about the MATSim for UrbanSim inte-
gration is required. Readers who are interested in the integration are referred
to (Nicolai, 2013; Nicolai and Nagel, 2013; Nicolai et al., 2011, 2013).

1

2 Spatial interpolation on a grid

Interpolation is the estimation of function values at unknown points with
the aid of known function values at other points. In case of spatial interpo-
lation, the point-value pairs are located in a three dimensional space. We
are working with structured data, since the known sampling points are lo-
cated in a two dimensional grid. Some interpolation methods only work
with structured data. Before we discuss different interpolation possibilities,
we define our problem formally:

Given are function values at grid points

f(xi, yi) = zij for i = 0, . . . , n, j = 0, . . . ,m.

With interpolation it is possible to estimate the function value at an arbi-
trary point (x, y) inside the grid. Therefore a function that passes through
the given function values is defined.

3 Spatial interpolation methods

There are many different interpolation methods, since there is not the only
one correct solution. You may distinguish between local and global interpo-
lation, where global interpolation uses all sampling points for the calculation
and local interpolation only uses a selected amount of them. Further pos-
sibility is the consideration of abrupt interpolation, which admits points
of discontinuity in the interpolation function, and continuous interpolation,
which requires a continuous function. Besides exact interpolation, which is
used in this case, there also exists approximative interpolation, which ad-
mits a certain mistake on the interpolation of sampling points but has other
advantages instead. Approximation is reasonable, if, for example, the un-
derlying data is only an estimation. Further there are differences between
deterministic and stochastic interpolation. Deterministic interpolation is
based on stated mathematical functions. This interpolation assumes a sim-
ple spatial coherence, where neighboring points are interpolated by related
values. Therefore this kind of interpolation is predictable. On the other
hand, stochastic or similar geostatistic interpolation assumes a distribution
function and is able to consider exact spatial coherences, like altitude dif-
ferences or coherences applied to direction (see e.g. (Chang, 2012, pp. 315)
or (Peters, 2009, p. 15)).

Generally you have to think about which interpolation method is the
most appropriate one for your usage. As the statistician Georg Box once
said: “All models are wrong, but some are useful” (Box, 1979, p. 2). This
paper will present selected interpolation methods. There are many more.

2

3.1 Nearest neighbor

Nearest neighbor interpolation assigns the
value of the nearest sampling point to the
point to interpolate. In Fig. 1 for example,
where the sampling points build a grid, every
value in a grid cell will be interpolate with
the value of the grid cell sampling point. This
method is probably the most popular abrupt
interpolation method. It is also known as
Thiessen or Voronoi polygon method (see e.g.
Chang, 2012, pp. 119 and pp. 319). The algo-
rithm needs a very low calculation time, but
only offers a low precision.

Figure 1: Nearest neigh-
bor interpolation

3.2 Triangulation with linear Interpolation

Linear interpolation with triangulation is an interpolation procedure, which
divides the testing region into triangles with the sampling points as vertices.
This division is not necessarily unique. Normally the division, where the
minimum angle of the triangles is maximized, is used for interpolation. It is
called the Delaunay-Triangulation. On each triangle the procedure assumes
a linear function, i.e. points to interpolate are assigned to the value at the
plane, which goes through the three vertices of the corresponding triangle
(see e.g. de Berg et al., 2000, pp. 191). This continuous interpolation method
does not need a lot of calculation time. But if you compare it to bilinear
interpolation (see Sec. 3.4) it does not offer a high precision.

3.3 Polynomial interpolation

Polynomial interpolation defines a polynomial function, passing through all
sampling points. Thus it is a global and exact interpolation method. There
are different techniques to find such a polynomial (see e.g. Burden and Faires,
1989, pp. 91 for Lagrange interpolation polynomials). It is a strong claim,
that the polynomial has to pass exactly through all sampling points. There-
fore strong oscillations may appear at the boundary. Additionally oscilla-
tions inside the grid may occur if neighboring sampling points values differ
a lot.

For the interpolation of two dimensional data this method is almost never
used, because the strong oscillations cause a mistake which is too high.

3

3.4 Bilinear interpolation

Consider first linear spline interpolation in the plane, i.e. for one dimensional
data. This method assumes a linear function on each interval between two
sampling points.

Bilinear interpolation extends linear spline interpolation to two dimen-
sional grid data: It interpolates first horizontal with linear spline interpola-
tion, that is, it calculates the values f(x, yj) and f(x, yj+1). After that it
interpolates f(x, y) vertically with the same interpolation method (see e.g.
Chang, 2012, pp. 119 and Fig. 2). The result is the same, if you interpolate
first vertically, then horizontally.

(a) (b)

Figure 2: Figure 2(a) illustrates the principle of bilinear interpolation with
linear interpolation in horizontal and vertical direction. Figure 2(b) visual-
izes it in the three dimensional space. Figure 2(a) and 2(b) adapted from
Smith (1997), p. 396.

Hence bilinear interpolation considers only the proportion of the dis-
tances to the sampling points. An interpolation method which considers
exact distances to the sampling points is the inverse distance weighting (see
Sec. 3.6). An important property of bilinear interpolation is that the inter-
polation of one value only uses the four sampling points of the corresponding
grid cell. This has the effect of lower computation time when compared with
global interpolation methods.

3.5 Bicubic spline interpolation

Consider again first cubic spline interpolation in the plane. This interpo-
lation method divides the testing area into intervals between the sampling
points, like linear spline interpolation, and assumes a third degree polyno-
mial on each interval. The separate functions have to blend smoothly into

4

each other at the interval boundaries, hence the first and second derivatives
of the neighboring functions have to coincide (see e.g. Burden and Faires,
1989, pp. 127).

Bicubic spline interpolation extends cubic spline interpolation to two
dimensional data: With cubic splines, which are calculated for all rows and
columns, the values of the partial derivatives may be approximated at the
sampling points. With these approximated values and the known values at
the sampling points the coefficients aij of the generally bicubic function

f(x, y) =
∑

i=0,...,3
j=0,...,3

aijx
iyj

may be calculated for every grid cell (see e.g. Späth, 1991, pp. 76). Therefore
you get a smoother surface than with bilinear interpolation, but you need,
on the other hand, more calculation time instead because bicubic spline
interpolation uses all sampling points for the calculation and has to calculate
derivatives additionally. There are some oscillations, in contrast to bilinear
interpolation, but much less than with polynomial interpolation (see the
example in Appendix A.1).

3.6 Inverse distance weighting

The inverse distance weighting method (or IDW for short) takes the exact
distances between the point to interpolate and the sampling points into ac-
count and weights accordingly. The bigger the distance between a sampling
point and the point to interpolate, the less its weight for the computation.
This interpolation method may also be used for unstructured data. For grid
data the following formula is used:

f(x, y) =
∑

i=0,...,n
j=0,...,m

wij f(xi, yj) (1)

where the factor wij weights the sampling points by its distance to the point
to interpolate and scales them. It is

wij =
dij

−a∑
k=0,...,n
l=0,...,m

dkl
−a

,

where dij =
√

(x− xi)2 − (y − yj)2 is the euclidean distance between (x, y)
and (xi, yj) in the plane. The user may decide, how many known values,
i.e. sampling points, should be used in the calculation. This decision has
a big influence on the calculation time of the interpolation. In formula
(1) all sampling points are used. Moreover the exponent a for the distance

5

weighting may be choosen. With this interpolation method, circular spreads
occur around the sampling points, which are called bull eyes. Especially the
interpolation of regions, with only a few known data values, achieves this
effect (see e.g. (Chang, 2012, pp. 321) and (Peters, 2009, pp. 15)).

3.7 Kriging

Kriging is a geostatistic interpolation procedure, which also works for un-
structured data. In constrast to the inverse distance weighting, the weight
of particular sampling points does not depend only on their distance to the
point to interpolate. The distribution of sampling points in the plane and
the correspondence of their values is used additionally. Kriging is a com-
plex interpolaion method, which is why we only describe it roughly here (for
more details see e.g. Chang, 2012, pp. 324).

The correspondences of neighboring sampling points may be analysed
with variography. A variogram which presents the spatial coherences may
be created. With it the weights wij of the sampling points may be calculated.
They are used in the interpolation formula

f(x, y) =
∑

i=0,...,n
j=0,...,m

wijf(xi, yj)

for ∑
i=0,...,n
j=0,...,m

wij = 1.

4 Implementation of selected methods

We implemented three of the presented interpolation methods: Bilinear in-
terpolation, bicubic spline interpolation and inverse distance weighting.

Since we interpolate data from a grid, it seems to be reasonable for
us to consider at least the four nearest neighboring sampling points, i.e. in
most cases the corners of the respective grid cell. Therefore the interpolation
methods nearest neighbor and triangulation drop out. Additionally, we need
good solutions at the boundary too, so polynomial interpolation drops out
due to its high oscillations there. Kriging drops out as it is a too complex
interpolation method for our case and requires too much calculation time.

Because we want to combine the interpolation with MATSim4UrbanSim
we decided to use the same programming language - Java.

You will get an overview about our implementation in the MATSim API1

under the MATSim4UrbanSim extension. There is a general class Interpo-
lation.java, which works as a wrapper to use the three named interpolation
methods, whose source code you may additionally find in the Appendix A.2.

1http://www.matsim.org/javadoc

6

http://www.matsim.org/javadoc

4.1 Implementation of bilinear interpolation

We could not find a suitable implementation of this interpolation method,
therefore we implemented it ourselves. As described in Sec. 3.4, our im-
plementation interpolates with the aid of linear spline interpolation, first
vertical, then horizontal. The implementation needs a low calculation time
and interpolates averages between the sampling points as expected. Hence
the data looks a bit blurry when you plot it. Because of this, bilinear interpo-
lation is seldemly used for imaging processing. Although in our application,
i.e. the interpolation of accessibilities, it is reasonable.

4.2 Implementation of bicubic spline interpolation

For bicubic spline interpolation we worked with the classes BicubicSplineIn-
terpolator and BicubicSplineInterpolatingFunction from the interpolation
package provided by Apache (see Apache Software Foundation, 2013). The
Apache License is an open source license and compatible with the Gnu
Public License (GPL) from MATSim. The interpolation classes Bicubic-
SplineInterpolator and BicubicSplineInterpolatingFunction work with the
bicubic spline interpolation algorithm described in Sec. 3.5. This interpo-
lation method induces mild oscillations between neighboring values which
differ a lot. Therefore it is possible that a point at the boundary between a
mean accessibility region and a low accessibility region is interpolated with
a high accessibility, since the difference between the regions values causes
oscillations. If the difference between two neighboring values is very high, os-
cillations may occur not only between them, but also in their neighborhood
(see the example in Appendix A.1).

4.3 Implementation of inverse distance weighting

We could not find a suitable implementation of this interpolation method
too and implemented it ourselves. Our implementation interpolates such
as it is described in Sec. 3.6, but only uses the four nearest neighboring
sampling points for the calculation. The class also provides the interpo-
lation with all known sampling points, but we advise against the use of
this functionality, because the interpolation is to slowly, since the procedure
has to read all sampling points again for every point to interpolate. The
implemented interpolation should work for large study areas with a high
resolution (see (Nicolai and Nagel, 2012a), (Nicolai and Nagel, 2012b) and
(Nicolai and Nagel, submitted in 2013)), so we will consider only the in-
verse distance weighting with consideration of the four nearest neighboring
sampling points hereafter.

However, you have to choose the second parameter of the inverse distance
weighting by using our implementation - the exponent for the calculation
(see section 3.6).

7

The exponent modifies the influence of the sampling points which are
further away from the point to interpolate. The higher the exponent, the
lower the weight of these sampling points. Thus the interpolated value
depends a lot on the sampling points in the nearest neighborhood. With
a low exponent, the interpolated values are globally more similar instead.
Thereby peaks and valleys occur, since the interpolated values differ from
the values at the sampling points. Often an exponent of one or two is used
(see Peters, 2009, pp. 15).

5 Testing the implemented interpolation methods

To compare the implemented interpolation methods according to special
testing criteria, we tested them with accessibility data of a real-world sce-
nario, the city of Zurich (Switzerland) (see (Nicolai and Nagel, 2012a), (Nico-
lai and Nagel, 2012b) and (Nicolai and Nagel, submitted in 2013)). The ac-
cessibility data of the city of Zurich is available at different grid resolutions,
i.e. different grid cell sizes, for example at a resolution of 200m × 200m
or 100m × 100m. The low resolution data, i.e. 200m × 200m, is used as
input for the interpolation methods in the Zurich testing scenario and is
interpolated to the higher resolution of 100m× 100m. The resulting output
is compared with the original accessibility data at the same resolution (see
Sec. 5.2).

In MATSim4UrbanSim there are two methods to capture the study area,
i.e. to save the accessibility grid data:

• Bounding box: The study area is defined as a rectangular area, a so
called bounding box. This bounding box is approximated by the grid.
It subdivides the area into squared cells, where the resulting cell cen-
troids serve as measuring points for the accessibility calculations and
for the interpolation. The spatial resolution depends on the selected
cell size, which is configurable.

• Shapefile: The study are is specified very precisely by a shapefile.
Analog to the bounding box approach the study area is given by a
rectangular area that is approximated by a grid. However, it only
contains values (or measures) that lie within the shapefile boundaries.
Measuring points outside this boundary are marked as ‘not a number’,
i.e. they do not have a numeric value. The spatial resolution again
depends on the selected cell size, which is configurable.

In the Zurich scenario we tested the interpolation methods with both kinds
of data representations. Even if we interpolate only grid points in this
case, the interpolation procedures still may interpolate the value of an ar-
bitrary point. We considered the following testing criteria by interpolating
the Zurich scenario.

8

5.1 Interpolation time

The calculation time of the interpolation method is a very important testing
criterion in our application since the implemented interpolation should work
for large study areas with a high resolution (see (Nicolai and Nagel, 2012a),
(Nicolai and Nagel, 2012b) and (Nicolai and Nagel, submitted in 2013)).

We measured the calculation time of the different interpolation methods
by interpolating the Zurich scenario and compared the values in combination
with the second testing criterion:

5.2 Interpolation error

To compare the implemented interpolation methods based on their inter-
polation quality we summed up the absolute difference between the inter-
polated and the original values at the resolution of 100m × 100m for each
interpolation method, after interpolating the accessibility data of the city of
Zurich described above. Since many small differences to the original data
are better than a few big ones, we also calculated the relative interpolation
error by dividing the summed absolute differences by the number of points
which differ from the original data. The solutions are compared in table 3
in combination with the interpolation time required.

5.3 Testing results

Analysing the interpolation results you will make the important discovery,
that bicubic spline interpolation does not work with shapefile data (see
Fig. 4(d)). The reason is that bicubic spline interpolation is a global in-
terpolation method, which uses all sampling points for the interpolation of
one value. Since the shapefile representation of the data includes ‘not a
number’ entries outside the study area, as discussed before in the definition
of the shapefile representation, all interpolated values will become ’not a
number’.

Using the inverse distance weighting, we had to choose an exponent for
the weights. Comparing the interpolation results of the Zurich scenario with
different exponents, we selected an exponent of 10.0 in this particular sce-
nario, because it produced low interpolation errors compared to other expo-
nents. In comparison to the results with an exponent of 2.0 for example, we
reduced the relative interpolation error from 0.1733 to 0.1617 with shapefile
data and from 0.1616 to 0.1498 with bounding box data. The improvement
is therefore about seven percent. Using a high exponent like 10.0 means,
that the interpolated accessibilities depends a lot on the next neighboring
values, which is desired in our application - the interpolation of accessibili-
ties. An interpolation of a global trend between the sampling points with a
lower exponent would in this case not be helpful. Nevertheless the exponent

9

should be choosen independently for every single scenario, since in other
scenarios other exponents than 10.0 may cause better solutions.

We visualized the resulting accessibility data by interpolating the Zurich
scenario with the different interpolation methods in Fig. 4 and 5.

Interpolation Interpolation Sum of absolute Relative

method time differences difference

Bilinear interp. 31 ms 1419.00 0.1612

Bicubic spline 48 ms not not

interp. comparable comparable

IDW with exp. 10.0 16 ms 1398.21 0.1617

(a) Interpolation of the Zurich scenario with shapefile data

Interpolation Interpolation Sum of absolute Relative

method time differences difference

Bilinear interp. 31 ms 2530.47 0.1498

Bicubic spline interp. 68 ms 2530.25 0.1498

IDW with exp. 10.0 16 ms 2530.76 0.1498

(b) Interpolation of the Zurich scenario with bounding box data

Figure 3: Comparison of interpolation time and error of the different inter-
polation methods by interpolating the Zurich testing scenario with shapefile-
and bounding box data as described above.

10

−1

0

1

2

3

4

5

(a) Original accessibility data at a resolu-
tion of 200 meters

−1

0

1

2

3

4

5

(b) Original accessibility data at a resolu-
tion of 100 meters

−1

0

1

2

3

4

5

(c) Bilinear interpolation

−1

0

1

2

3

4

5

(d) Bicubic interpolation

−1

0

1

2

3

4

5

(e) IDW with exponent 10.0

Figure 4: The figures show the resulting accessibility plots from the Zurich
testing scenario with shapefile data. The color bar on the right hand side
indicates the accessibility level, where a good accessibility is indicated by
green areas and poor accessibility is indicated by dark blue or black areas.
More in-depth information on this can be found e.g. in Nicolai and Nagel
(2012a). 11

−1

0

1

2

3

4

5

(a) Original accessibility data at a resolu-
tion of 200 meters

−1

0

1

2

3

4

5

(b) Original accessibility data at a resolu-
tion of 100 meters

−1

0

1

2

3

4

5

(c) Bilinear interpolation

−1

0

1

2

3

4

5

(d) Bicubic interpolation

−1

0

1

2

3

4

5

(e) IDW with exponent 10.0

Figure 5: The figures show the resulting accessibility plots from the Zurich
testing scenario with bounding box data. The color bar on the right hand
side indicates the accessibility level, where a good accessibility is indicated
by green areas and poor accessibility is indicated by dark blue or black areas.
More in-depth information on this can be found e.g. in Nicolai and Nagel
(2012a). 12

6 Comparison of the implemented interpolation
methods

Testing the described criterions of the implemented interpolations you may
say that all interpolation methods were implemented successfully. With the
tabular presentation of interpolation time and error of the Zurich testing sce-
nario in Tab. 3 and the graphic representation of the testing results in Fig. 4
and 5, the three implemented methods may be easily compared. Altogether
advantages and disadvantages of the specific methods may be found.

6.1 Evaluation of bilinear interpolation

A well known advantage of bilinear interpolation is the very low interpolation
time. Also no oscillations occur in contrast to bicubic spline interpolation
since the interpolated value is always an intermediate value between the
neighboring sampling points. That is why the interpolated data seems to
be a bit blurry if you interpolate grid data to one resolution higher and plot
them. But this is no disadvantage because our application requires no im-
age processing but the interpolation of accessibilities. Bilinear interpolation
works for shapefile data and bounding box data. Hence this interpolation
method is an easy continuous interpolation which has no disadvantages in
our application.

6.2 Evaluation of bicubic spline interpolation

Bicubic spline interpolation needs more calculation time than bilinear in-
terpolation. In other applications this disadvantage often is compensated
with a higher interpolation precision. In our application this is not the case,
because of the oscillation effect which we described in section 4.2. The ob-
served interpolation error by testing the interpolation method is the same as
with bilinear interpolation. Additionally, bicubic spline interpolation does
not work with shapefile data, i.e. data with ’not a number’ entries (see
Sec. 5.3). You may try to solve this problem by replacing all ’not a number’
entries with a number, e.g. zero. After this bicubic spline interpolation will
work, but the values at the boundary regions will be falsified, which is why
this is no satisfying solution. Hence the provided bicubic spline interpola-
tion only works with bounding box data without ’not a number’ entries.
Despite its good estimation in other applications, in our case bicubic spline
interpolation only should be used if the user is able to exclude the described
problems for his application.

6.3 Evaluation of inverse distance weighting

The inverse distance weighting is a flexible interpolation method where the
user has to choose the exponent for the distance weighting. As described in

13

Sec. 5.3 the choice of the exponent has a big influence on the interpolation
error. With a suitable exponent, the inverse distance weighting produces
the same interpolation error as bilinear and bicubic spline interpolation in
the Zurich testing scenario. Since the quality of an exponent depends a lot
on the particular scenario, we did not choose a default value, but left its
choice up to the user. So this interpolation method rather is recommended
for experienced users.

The consideration of only four known sampling points, restricts the qual-
ity possibilities of the interpolation in comparison to the consideration of all
known sampling points. But the resulting interpolation error in the Zurich
testing scenario with a suitable exponent is very low anyway and compa-
rable with the one of the other two methods. Inverse distance weighting is
therefore an alternative choice to bilinear interpolation for the interpolation
of bounding box data.

But the inverse distance weighting causes problems with shapefile data,
like bicubic spline interpolation: Interpolating shapefile data with consider-
ation of the four nearest neighboring sampling points, the boundary will be
fringed, since points lying in a grid cell with at least one unknown sampling
point will be interpolated with a ’not a number’ value. You may try to solve
this problem by considering only the known neighboring sampling points. If
you do so, you assume that the point to interpolate lies within the shapefile
boundary of your study area. But the grid based representation of the area
does not contain this information. So the suggested solution would create
additionally information, which is why we did not correct the effect of the
fringed boundary. The user should implicitly take this into account if he
uses the inverse distance weighting for the interpolation of shapefile data.
We recommend to use the implemented inverse distance weighting only with
bounding box data, whithout ’not a number’ entries.

6.4 Conclusion

Based on the presented comparison of the three implemented interpolation
methods, you may say that bilinear interpolation is most suitable in our
application - the interpolation of accessibilities. This method supplies both:
fast computation and high accuracy. In addition, it works for shapefile data
too. This conclusion is unexpected, since in other applications, e.g. im-
age processing, other interpolation methods are favoured. However, for the
interpolation in the software MATSim4UrbanSim we use bilinear interpola-
tion as default. Because in specific cases it may be better to use one of the
other interpolation methods, we leave to the user the possibility to switch
between them. The following table may give a summarized overview on the
applications of the three implemented interpolation methods.

14

Bilinear Bicubic spline IDW with four

interpolation interpolation sampling points

Shapefile fast computation, impossible unrecommended:

data high accuracy boundary fringed

Bounding fast computation, suitable, suitable with

box data high accuracy but slower right exponent

Table 1: Tabular conclusion of the testing results to give an overview on the
usage of the different methods.

15

A Appendix

A.1 Minimal Example

To be able to analyse the interpolation of specific values, we also tested the
interpolation methods with a self created minimal scenario. This mininmal
scenario demonstrates a testing region as a 3 × 3-grid with low accessibility
everywhere, except one point with a high accessibility value (see Fig. 6(a)).
We interpolated this 3 × 3-grid to the next higher grid resolution, as we
did in the Zurich testing scenario. The results are 5 × 5-grids for the three
different interpolation methods (see Fig. 6). With this minimal scenario you
may test the exact interpolation at known sampling points and the range
of interpolated values at unkown points. As we described in Sec. 3, our
objective is the exact interpolation of known values. Testing the interpo-
lation of unknown data is generally more difficult, since there are different
possible solutions for an interpolation problem, as we described in section 3
too. Comparing the grids in Fig. 6 you may see that the methods partially
produce different results. In Fig. 6(c) you may see the mild oscillations of
bicubic spline interpolation described in Sec. 4.2.

16

0.0 0.5 1.0 1.5 2.0

2.
0

1.
5

1.
0

0.
5

0.
0

0

20

40

60

80

100

(a) original 3 × 3-grid

0.0 0.5 1.0 1.5 2.0

2.
0

1.
5

1.
0

0.
5

0.
0

0

20

40

60

80

100

(b) bilinear interpolation

0.0 0.5 1.0 1.5 2.0

2.
0

1.
5

1.
0

0.
5

0.
0

0

20

40

60

80

100

(c) bicubic interpolation

0.0 0.5 1.0 1.5 2.0

2.
0

1.
5

1.
0

0.
5

0.
0

0

20

40

60

80

100

(d) inverse distance weighting

Figure 6: These figures show the original 3×3-grids of the minimal scenario
and its interpolations to one resolution higher with the different interpolation
methods. In Fig. 6(c) you may see the oscillations of bicubic spline inter-
polation described in Sec. 4.2. The inverse distance weighting in Fig. 6(b)
uses the four nearest sampling points for the interpolation and an exponent
of 10.0. In this case a modification of the exponent has no effect.

17

A.2 Source code of implemented interpolation methods

The following pages show the source code of the implemented interpola-
tion methods, discussed in Sec. 4. The methods are bilinear and bicu-
bic spline interpolation as well as inverse distance weighting. The code
can also be found online at https://matsim.svn.sourceforge.net/svnroot/
matsim/contrib/trunk/matsim4urbansim.

18

https://matsim.svn.sourceforge.net/svnroot/matsim/contrib/trunk/matsim4urbansim
https://matsim.svn.sourceforge.net/svnroot/matsim/contrib/trunk/matsim4urbansim

BiLinearInterpolator.java

1 package org.matsim.contrib.matsim4opus.interpolation;

2

3 import org.matsim.contrib.matsim4opus.gis.SpatialGrid;

4

5 /**

6 * Implements bilinear interpolation.

7 * Uses linear spline interpolation with separation: first horizontal then vertical.

8 * Own implementation (no suitable implementation found).

9 *

10 * Requires values on a SpatialGrid.

11 *

12 * @author tthunig

13 *

14 */

15 class BiLinearInterpolator {

16

17 private SpatialGrid sg = null;

18

19 /**

20 * Prepares bilinear interpolation.

21 *

22 * @param sg the SpatialGrid to interpolate

23 */

24 BiLinearInterpolator(SpatialGrid sg){

25 this.sg= sg;

26 }

27

28 /**

29 * Interpolates the value on a arbitrary point with bilinear interpolation.

30 *

31 * @param xCoord the x-coordinate of the point to interpolate

32 * @param yCoord the y-coordinate of the point to interpolate

33 * @return interpolated value on the point (xCoord, yCoord)

34 */

35 double biLinearInterpolation(double xCoord, double yCoord){

36 return biLinearValueInterpolation(this.sg, xCoord, yCoord);

37 }

38

39 /**

40 * Interpolates the value on a arbitrary point with bilinear interpolation.

Page 1

BiLinearInterpolator.java

41 * Requires values on a grid as SpatialGrid.

42 *

43 * @param sg the values on the grid as SpatialGrid

44 * @param xCoord the x-coordinate of the point to interpolate

45 * @param yCoord the y-coordinate of the point to interpolate

46 * @return interpolated value on the point (xCoord, yCoord)

47 */

48 static double biLinearValueInterpolation(SpatialGrid sg, double xCoord, double yCoord){

49 double xDif= (xCoord-sg.getXmin()) % sg.getResolution();

50 double yDif= (yCoord-sg.getYmin()) % sg.getResolution();

51

52 //corner coordinates of the grid cell

53 double x1= xCoord-xDif;

54 double x2= x1+sg.getResolution();

55 double y1= yCoord-yDif;

56 double y2= y1+sg.getResolution();

57

58 double xWeight= xDif/sg.getResolution();

59 double yWeight= yDif/sg.getResolution();

60

61 //case differentiation important for boundary data of shapefiles, because of neighboring NaN values

62 if (xDif==0){

63 if (yDif==0){

64 //known value

65 return sg.getValue(xCoord, yCoord);

66 }

67 //point to interpolate lies at the grid cell boundary

68 return sg.getValue(x1, y1)*(1-yWeight) + sg.getValue(x1, y2)*yWeight;

69 }

70 if (yDif==0){

71 //point to interpolate lies at the grid cell boundary

72 return sg.getValue(x1, y1)*(1-xWeight) + sg.getValue(x2, y1)*xWeight;

73 }

74

75 //interpolates first in y-direction then in x-direction with linear splines

76 return (sg.getValue(x1, y1)*(1-yWeight) + sg.getValue(x1, y2)*yWeight) * (1-xWeight)

77 + (sg.getValue(x2, y1)*(1-yWeight) + sg.getValue(x2, y2)*yWeight) * xWeight;

78 }

79 }

80

Page 2

BiCubicInterpolator.java

1 package org.matsim.contrib.matsim4opus.interpolation;

2

3 import org.apache.commons.math.FunctionEvaluationException;

4 import org.apache.commons.math.MathException;

5 import org.apache.commons.math.analysis.BivariateRealFunction;

6 import org.apache.commons.math.analysis.interpolation.BicubicSplineInterpolator;

7 import org.apache.commons.math.analysis.interpolation.BivariateRealGridInterpolator;

8 import org.apache.log4j.Logger;

9

10 import org.matsim.contrib.matsim4opus.gis.SpatialGrid;

11

12 /**

13 * Interpolates data on a SpatialGrid with bicubic spline interpolation from apache (http://commons.apache.org).

14 *

15 * Requires values on a SpatialGrid.

16 *

17 * Problem: Wave effects may occur.

18 *

19 * @author tthunig

20 *

21 */

22 class BiCubicInterpolator {

23

24 private static final Logger log = Logger.getLogger(BiCubicInterpolator.class);

25

26 private BivariateRealFunction interpolatingFunction = null;

27

28 private SpatialGrid sg = null;

29

30 /**

31 * Prepares bicubic spline interpolation:

32 * Generates an interpolation function with BicubicSplineInterpolator from apache

33 * (http://commons.apache.org/math/apidocs/org/apache/commons/math3/analysis/interpolation/BicubicSplineInterpolator.html).

34 *

35 * @param sg the SpatialGrid to interpolate

36 */

37 BiCubicInterpolator(SpatialGrid sg){

38 this.sg= sg;

39 sgNaNcheck();

40

Page 1

BiCubicInterpolator.java

41 //create coordinate vectors for interpolation and a compatible array of values

42 double[] x_coords= coord(sg.getXmin(), sg.getXmax(), sg.getResolution());

43 double[] y_coords= coord(sg.getYmin(), sg.getYmax(), sg.getResolution());

44 double[][] mirroredValues= sg.getMatrix();

45

46 BivariateRealGridInterpolator interpolator = new BicubicSplineInterpolator();

47 try {

48 interpolatingFunction = interpolator.interpolate(y_coords, x_coords, mirroredValues);

49 } catch (MathException e) {

50 e.printStackTrace();

51 }

52 }

53

54 private void sgNaNcheck() {

55 for (double y = this.sg.getYmin(); y <= this.sg.getYmax(); y += this.sg.getResolution()) {

56 for (double x = this.sg.getXmin(); x <= this.sg.getXmax(); x += this.sg.getResolution()) {

57 if (Double.isNaN(this.sg.getValue(x, y))){

58 log.error("Bicubic spline interpolation doesn't work with NaN entries. " +

59 "Please use bounding box data or shapefile data without NaN entries.");

60 return;

61 }

62 }

63 }

64 }

65

66 /**

67 * Interpolates the value at an arbitrary point with bicubic spline interpolation from apache.

68 *

69 * @param xCoord the x-coordinate of the point to interpolate

70 * @param yCoord the y-coordinate of the point to interpolate

71 * @return interpolated value on the point (xCoord, yCoord)

72 */

73 double biCubicInterpolation(double xCoord, double yCoord){

74 try {

75 return interpolatingFunction.value(yCoord, xCoord);

76 } catch (FunctionEvaluationException e) {

77 e.printStackTrace();

78 }

79 return Double.NaN;

80 }

Page 2

BiCubicInterpolator.java

81

82 /**

83 * Creates a coordinate vector.

84 *

85 * @param min the minimum coordinate

86 * @param max the maximum coordinate

87 * @param resolution

88 * @return coordinate vector from min to max with the given resolution

89 */

90 private static double[] coord(double min, double max, double resolution) {

91 double[] coord = new double[(int) ((max - min) / resolution) + 1];

92 coord[0] = min;

93 for (int i = 1; i < coord.length; i++) {

94 coord[i] = min + i * resolution;

95 }

96 return coord;

97 }

98

99 }

100

Page 3

InverseDistanceWeighting.java

1 package org.matsim.contrib.matsim4opus.interpolation;

2

3 import org.matsim.contrib.matsim4opus.gis.SpatialGrid;

4

5 /**

6 * Implements inverse distance weighting for interpolation. Own implementation (no suitable implementation found).

7 *

8 * Requires values on a SpatialGrid.

9 *

10 * Problem: Peaks and valleys occur.

11 *

12 * For more information see e.g.:

13 * http://www.geography.hunter.cuny.edu/~jochen/GTECH361/lectures/lecture11/concepts/Inverse%20Distance%20Weighted.htm

14 * or: http://gisbsc.gis-ma.org/GISBScL7/de/html/VL7a_V_lo7.html (German).

15 *

16 * @author tthunig

17 *

18 */

19 class InverseDistanceWeighting {

20

21 private SpatialGrid sg = null;

22

23 /**

24 * Prepares the interpolation with the inverse distance weighting method.

25 *

26 * @param sg the SpatialGrid to interpolate

27 */

28 InverseDistanceWeighting(SpatialGrid sg){

29 this.sg= sg;

30 }

31

32 /**

33 * Interpolates the value on a arbitrary point with inverse distance weighting.

34 * Considers only four neighboring values because this method needs less time for calculation than considering all known values

35 * and the result is even more suitable for accessibility interpolation.

36 *

37 * @param xCoord the x-coordinate of the point to interpolate

38 * @param yCoord the y-coordinate of the point to interpolate

39 * @param exponent the exponent for the inverse distance weighting

40 * @return interpolated value on the point (xCoord, yCoord) *

Page 1

InverseDistanceWeighting.java

41 */

42 double inverseDistanceWeighting(double xCoord, double yCoord, double exponent){

43 return fourNeighborsIDW(this.sg, xCoord, yCoord, exponent);

44 }

45

46 /**

47 * Interpolates a value at the given point (xCoord, yCoord) with the inverse distance weighting with variable power of weights.

48 * Considers only four neighboring values.

49 *

50 * @param sg the SpatialGrid with the known values

51 * @param xCoord

52 * @param yCoord

53 * @param exp the exponent for the weights. standard values are one or two.

54 * @return interpolated value at (xCoord, yCoord)

55 */

56 static double fourNeighborsIDW(SpatialGrid sg, double xCoord, double yCoord, double exp) {

57 double xDif= (xCoord-sg.getXmin()) % sg.getResolution();

58 double yDif= (yCoord-sg.getYmin()) % sg.getResolution();

59

60 //known value

61 if (xDif==0 && yDif==0){

62 return sg.getValue(xCoord, yCoord);

63 }

64

65 double x1= xCoord-xDif;

66 double x2= x1+sg.getResolution();

67 double y1= yCoord-yDif;

68 double y2= y1+sg.getResolution();

69

70 //calculate distances to the 4 neighboring sampling points

71 double d11= Math.pow(distance(x1, y1, xCoord, yCoord), exp);

72 double d12= Math.pow(distance(x1, y2, xCoord, yCoord), exp);

73 double d21= Math.pow(distance(x2, y1, xCoord, yCoord), exp);

74 double d22= Math.pow(distance(x2, y2, xCoord, yCoord), exp);

75

76 //interpolation at the boundary

77 if (xCoord == sg.getXmax()){

78 //consider only 2 neighboring sampling points (up and down)

79 return (sg.getValue(x1, y1)/d11 + sg.getValue(x1, y2)/d12) / (1/d11 + 1/d12);

80 }

Page 2

InverseDistanceWeighting.java

81 if (yCoord == sg.getYmax()){

82 //consider only 2 neighboring sampling points (left and right)

83 return (sg.getValue(x1, y1)/d11 + sg.getValue(x2, y1)/d21) / (1/d11 + 1/d21);

84 }

85

86 //interpolation with 4 neighboring sampling points

87 return (sg.getValue(x1, y1)/d11 + sg.getValue(x1, y2)/d12 + sg.getValue(x2, y1)/d21 + sg.getValue(x2, y2)/d22)

88 / (1/d11 + 1/d12 + 1/d21 + 1/d22);

89 }

90

91 /**

92 * Calculates the distance between two given points in the plane.

93 *

94 * @param x1 the x-coordinate of point 1

95 * @param y1 the y-coordinate of point 1

96 * @param x2 the x-coordinate of point 2

97 * @param y2 the y-coordinate of point 2

98 * @return distance between the points (x1,y1) and (x2,y2)

99 */

100 private static double distance(double x1, double y1, double x2, double y2) {

101 return Math.sqrt((y2-y1)*(y2-y1) + (x2-x1)*(x2-x1));

102 }

103

104 /**

105 * Attention: Experimental version. Not tested sufficiently. Requires too much calculation time.

106 *

107 * Interpolates a value at the given point (xCoord, yCoord) with the inverse distance weighting with variable power of weights:

108 * z(u_0)= Sum((1/d_i^exp)*z(u_i)) / Sum (1/d_i^exp).

109 * Needs more time for calculation than fourNeighborsIDW and the result is even less suitable for accessibility interpolation.

110 *

111 * @param sg the SpatialGrid with the known values

112 * @param xCoord

113 * @param yCoord

114 * @param exp the exponent for the weights. standard values are one or two.

115 * @return interpolated value at (xCoord, yCoord)

116 */

117 @Deprecated

118 static double allValuesIDW(SpatialGrid sg, double xCoord, double yCoord, double exp) {

119 double xDif= (xCoord-sg.getXmin()) % sg.getResolution();

120 double yDif= (yCoord-sg.getYmin()) % sg.getResolution();

Page 3

InverseDistanceWeighting.java

121

122 //known value

123 if (xDif==0 && yDif==0){

124 return sg.getValue(xCoord, yCoord);

125 }

126

127 //interpolation with all known sampling points

128 double distanceSum=0;

129 double currentWeight=1;

130 double weightSum=0;

131 for (double y = sg.getYmin(); y <= sg.getYmax(); y += sg.getResolution()){

132 for (double x = sg.getXmin(); x <= sg.getXmax(); x += sg.getResolution()){

133 currentWeight= Math.pow(distance(x, y, xCoord, yCoord), exp);

134 distanceSum+= sg.getValue(x, y)/currentWeight;

135 weightSum+= 1/currentWeight;

136 }

137 }

138 return distanceSum/weightSum;

139 }

140

141 }

142

Page 4

References

The Apache Software Foundation. Package
org.apache.commons.math3.analysis.interpolation, 2013. URL
http://commons.apache.org/math/apidocs/org/apache/commons/
math3/analysis/interpolation/. Accessed March 2013.

M. Balmer, B. Raney, and K. Nagel. Adjustment of activity timing and
duration in an agent-based traffic flow simulation. In H.J.P. Timmermans,
editor, Progress in activity-based analysis, pages 91–114. Elsevier, Oxford,
UK, 2005.

M. Balmer, M. Rieser, K. Meister, D. Charypar, N. Lefebvre, K. Nagel,
and K. W. Axhausen. MATSim-T: Architecture and simulation times. In
A.L.C. Bazzan and F. Klügl, editors, Multi-Agent Systems for Traffic and
Transportation, pages 57–78. IGI Global, 2009.

G.E.P. Box. Robustness in the strategy of scientific model building. In
Robustness in Statistics, pages 201–236. Academic Press, 1979.

R.L. Burden and J.D. Faires. Numerical analysis. PWS-KENT Publishing
Company, Boston, 1989.

K.-T. Chang. Introduction to geographic information systems. McGraw-Hill,
New York, 2012.

M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computa-
tional Geometry - Algorithms and Applications. Springer-Verlag, Berlin,
Heidelberg, 2000.

E. Miller, K. Nagel, H. Ševč́ıková, D. Socha, and P. Waddell. OPUS: An
open platform for urban simulation. 2005. URL http://128.40.111.250/
cupum/searchpapers/detail.asp?pID=428.

T.W. Nicolai. MATSim for UrbanSim: Integrating an urban simulation
model with a travel model. PhD thesis, Berlin Institute of Technology,
2013. forthcomming.

T.W. Nicolai and K. Nagel. Coupling transport and land-use: Investigating
accessibility indicators for feedback from a travel to a land use model.
In Latsis Symposium 2012 – 1st European Symposium on Quantitative
Methods in Transportation Systems, Lausanne, Switzerland, 2012a. VSP
Working Paper 12-16. See www.vsp.tu-berlin.de/publications.

T.W. Nicolai and K. Nagel. Sensitivity tests with high resolution accessibil-
ity computations. VSP Working Paper 12-22, TU Berlin, Transport Sys-
tems Planning and Transport Telematics, 2012b. See www.vsp.tu-berlin.
de/publications.

28

http://commons.apache.org/math/apidocs/org/apache/commons/math3/analysis/interpolation/
http://commons.apache.org/math/apidocs/org/apache/commons/math3/analysis/interpolation/
http://128.40.111.250/cupum/searchpapers/detail.asp?pID=428
http://128.40.111.250/cupum/searchpapers/detail.asp?pID=428
www.vsp.tu-berlin.de/publications
www.vsp.tu-berlin.de/publications
www.vsp.tu-berlin.de/publications

T.W. Nicolai and K. Nagel. Handbook on Sustainable Land Use Modelling,
chapter Integration of agent-based transport and land use models. EPFL
Press, 2013. forthcoming.

T.W. Nicolai and K. Nagel. High resolution accessibility computations.
In A. Conde co, A. Reggiani, and J. Gutiérrez, editors, Accessibility and
spatial interaction. Edward Elgar, submitted in 2013. Also VSP Working
Paper 13-02. See www.vsp.tu-berlin.de/publications.

T.W. Nicolai, L. Wang, K. Nagel, and P. Waddell. Coupling an urban
simulation model with a travel model – A first sensitivity test. In
Computers in Urban Planning and Urban Management (CUPUM), Lake
Louise, Canada, 2011. Also VSP Working Paper 11-07. See www.vsp.tu-
berlin.de/publications.

T.W. Nicolai, C. Zöllig Renner, and K. Nagel. Handbook on Sustainable
Land Use Modelling, chapter General description of the state of the art of
integrated transport land use modeling. EPFL Press, 2013. forthcoming.

OPUS User Guide. The Open Platform for Urban Simulation and UrbanSim
Version 4.3. University of California Berkley and University of Washing-
ton, January 2011. URL http://www.urbansim.org.

S. Peters. Ein Vergleich räumlicher Interpolationsverfahren für Ertragswerte
im Weinanbau. In gis Science, ISSN: 1430-3663, Nr.2, pages 50–56, 2009.

B. Raney and K. Nagel. An improved framework for large-scale multi-agent
simulations of travel behaviour. pages 305–347. 2006.

S.W. Smith. The Scientist and Engineer’s Guide to Digital Signal Pro-
cessing. California Technical Publishing, San Diego, 1997. See www.
DSPguide.com.

H. Späth. Zweidimensionale Spline-Interpolations-Algorithmen. R. Olden-
bourg Verlag GmbH, München, Wien, 1991.

P. Waddell. Urbansim: Modeling urban development for land use, trans-
portation, and environmental planning. Journal of American planning
Association, 68(3):297 – 314, 2002.

29

http://www.urbansim.org
www.DSPguide.com
www.DSPguide.com

	Introduction
	Spatial interpolation on a grid
	Spatial interpolation methods
	Nearest neighbor
	Triangulation with linear Interpolation
	Polynomial interpolation
	Bilinear interpolation
	Bicubic spline interpolation
	Inverse distance weighting
	Kriging

	Implementation of selected methods
	Implementation of bilinear interpolation
	Implementation of bicubic spline interpolation
	Implementation of inverse distance weighting

	Testing the implemented interpolation methods
	Interpolation time
	Interpolation error
	Testing results

	Comparison of the implemented interpolation methods
	Evaluation of bilinear interpolation
	Evaluation of bicubic spline interpolation
	Evaluation of inverse distance weighting
	Conclusion

	Appendix
	Minimal Example
	Source code of implemented interpolation methods

	References

