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Abstract

The transport system is an essential prerequisite for the development of societies and

economies. At the same time, it is a driver of severe problems like global warming.

Therefore, innovative solutions – apart from the construction of new infrastructures

– are sought to enable the provision of a efficient transport system while limiting

negative effects of the transport system as much as possible. Transport models are

the most important tool to assess transport policies and schemes and to forecast

their outcomes. However, modeling is constraint by the availability of data – an

issue that is likely to become even more relevant because of increased increased

attention paid to topics like data privacy. Further, traditional models are often

concerned with lacking representation of travelers’ behavior. The goal of this study

is to develop a transport model that suffices with a low amount of input data that

are readily available. Also, few initial assumptions are made in order to minimize

frequent sources of modeling flaws related to modeling assumptions. The model

is based on an microscopic transport supply-demand simulation in which travelers

gradually come to improved travel option. Initial suggestion for potential travel

daily travel plans are generated by an econometric activity simulator. Calibration

of the thus generated demand for transport is done by a novel calibration algorithm

that interacts with the transport simulation. This way, an initial transport model

used for adjustment of various model parameters and a more elaborate model based

on a widely realistic population representation are created. The elaborate model is

shown to possess a model fit that reaches the quality of more extensive travel-diary

based transport demand models. The validity of the created transport (demand)

model is proven on the basis of a travel survey.
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1. Introduction

According to the recently published report of the Intergovernmental Panel on Cli-

mate Change (IPCC) ”warming of the climate system is unequivocal, and since the

1950s, many of the observed changes are unprecedented over decades to millennia.

The atmosphere and ocean have warmed, the amounts of snow and ice have dimin-

ished, sea level has risen, and the concentrations of greenhouse gases have increased”

[IPCC, 2013, p.2]. The report further states that ”it is extremely likely that human

influence has been the dominant cause of the observed warming since the mid-20th

century” [IPCC, 2013, p.15], with greenhouse gases being the major contributor.

Most importantly, the report alerts that ”continued emissions of greenhouse gases

will cause further warming and changes in all components of the climate system.

Limiting climate change will require substantial and sustained reductions of green-

house gas emissions” [IPCC, 2013, p.17].

In 2004, about 13% of global greenhouse gas emissions were caused by activities

within the transport systems [IPCC, 2007, p.105], making transport one of the major

contributors to climate change. Alarmingly, the transport sector has (next to the

energy supply sector) shown the largest growth from 1970 through 2004 with an

increase by 120%1 [IPCC, 2007, p.105].

In developed countries, the transport sector’s share in greenhouse gas emissions

is even higher. In the United States, for instance, transport accounts for about 28%

of all greenhouse gas emissions2 and also in Germany, with its more multimodal

transport system, still about 17% of greenhouse gas emissions are attributable to

transport. While Germany has been among the countries with the highest reduc-

tion rates concerning greenhouse gas emissions over the last two decades (ca. 25%

reduction from 1990 through 2012 [Umweltbundesamt, 2013, p.3]), the reduction

of emissions caused by transport (reduction of 5.5% from 1990 though 2012) has

been significantly lower than those of all other sectors [Umweltbundesamt, 2013,

p.4]. These observations point out both the importance of transport in terms of its

impact on climate change as well as the specific difficulties associated with reducing

greenhouse gas emissions caused by transport.

1 During the same period, the increases in greenhouse gas emission attributable to other sectors
[IPCC, 2007, p.105] were the following: Energy supply: 145%; industry 65%; land use, land-use
change, and forestry: 40%; agriculture: 27%; and residential/commercial: 26%.

2 Cf. http://www.epa.gov/climatechange/ghgemissions/sources.html, last accessed on 20
November 2013.

1

http://www.epa.gov/climatechange/ghgemissions/sources.html


On the other hand, a reliable and efficient transport system is a pivotal prerequisite

for our economy and society. ”Since the beginning of civilization, the viability and

economic success of communities have been, to a major extent, determined by the

efficiency of the transportation infrastructure” [Bhat and Koppelman, 2003, p.39].

The transport system provides people and organizations with mobility, which is vital

for markets and for the quality of life of citizens. Accordingly, the European Union,

for instance, considers the establishment and maintenance of an efficient transport

system one of its major long-term tasks as future prosperity ”will depend on the

ability of all of its regions to remain fully and competitively integrated in the world

economy” [EC, 2011, p.4].

At the same time recognizing the urgent need to address global warming, the

EU has called for ”the need to drastically reduce world greenhouse gas emissions,

with the goal of limiting climate change below 2oC. Overall, the EU needs to reduce

emissions by 80–95% below 1990 levels by 2050. [...] A reduction of at least 60% of

greenhouse gas emissions by 2050 with respect to 1990 is required from the transport

sector”[EC, 2011, p.5].

The crucial question now is how to bring the provision of a capable transport sys-

tem in line with earnest efforts towards greenhouse gas reduction. This question has

to be addressed in times of more and more constraint national budgets, especially

with regard to the global financial crisis. In developed countries like Germany, the

need for increases in efficiency is further reinforced because of demographic changes

and the related phenomenon of shrinking populations. But also from the perspec-

tive of other regions of the world, globalization has increased the need of national

economies to become ever more efficient, while the demand for transport is steadily

increasing because of the same development. This increase in demand is partic-

ularly pronounced with regard to freight transport whose volumes are increasing

even in developed regions with declining populations because of rising volumes of

international trade. At the same time, people – in developed countries as well as in

developing countries – are becoming less willing to accept the negative impacts of

traffic like noise, pollution, congestion, and accidents.

Accordingly, policy makers have started to acknowledge the fact that the in-

creased demand for transportation cannot be handled by simply building more and

more infrastructure. Instead, new, innovate solutions are sought to manage the in-

creased demand for transport. Among them are, for instance, ”demand-management

policies such as VMT-reduction policies, employer parking restrictions and carpool

mandates, vehicle user pricing, congestion pricing, flexible work schedules, carpool-

ing and vehicle sharing; technological changes such as vehicle fuel efficiency, energy

constraints and costs; transportation system actions such as capacity reductions,

pedestrian-bike systems, transit improvements and transit-oriented development;

transportation funding mechanisms such as tolling, and impact issues such as air

2



quality, climate change, noise, induced travel, socioeconomic impacts, land use, ur-

ban form and equity issues” [Hartgen, 2013, p.10f].

To be able to come to good transport planning decisions, planners and engineers

need to forecast the response of transport demand to changes in the transport system

and changes in the attributes of the people using the transport system [Kitamura,

1988, p.10], [Bhat and Koppelman, 2003, p.39], [Moyo Oliveros, 2013, p.3]. Since

transport systems are, however, very complex and constitute the outcome of the

interaction of a high number of individual actors and innumerable interdependencies

among them, predicting or estimating the effects of a proposed transport policy is

a challenging task.

An approach to tackle this task is to create a model of the transport system

which reacts to changes in its relevant characteristics like the real-world transport

system. So, transport models are used to predict travel characteristics and the

usage of transport services with regard to alternative socioeconomic scenarios or

alternative transport policies and transport schemes [Bhat and Koppelman, 2003,

p.39]. In order to be able to model the transport system, the major components of

the transport system and its fundamental properties have to be understood.

Next, a brief description of the modeling of transport systems is given (cf. section

1.1). This is followed by a presentation of applied tools and the requirements imposed

on them in section 1.2. In section 1.3, the basic idea, motivated by the aim to address

current constraints in transport demand modeling, is outline. The chapter ends with

a short outline of the remaining chapters of this study in section 1.4.

1.1. Modeling Transport Systems

Essentially, the transport system, as we can perceive it in our everyday lives, consists

of two major components:

• Transport supply

• Transport demand

The interaction of transport supply and transport demand produces the traffic pat-

terns that are observable in the transport systems.

1.1.1. Modeling Transport Supply

Transport supply consists of roads, sidewalks, bike lanes, train rides, bus rides,

airplane flights etc., i.e. all the goods and services that enable movements of people

and goods. Among these goods and services the notion of ”supply”, however, differs

significantly in terms of its intuitiveness. An airplane ticket, for instance, is very

intuitively understood as a service that supplies consumers with a form of transport.

3



One can easily check the quotes of different suppliers (i.e. airline companies) and

observe the effects of Smith’s invisible hand as quotes keep changing dependent on

levels of supply and demand. A sidewalk, however, is also a form of transport supply.

With transport being defined as the movement of people or goods from an origin to

a destination, the sidewalk is the good that is needed to conduct this itinerary in

case the desired mode of transport is walking by foot. As opposed to an airplane

trip, which is a private good3, the sidewalk is a public good4.

In order to model the interaction of transport demand and transport supply and,

in particular, how transport demand adapts itself to changes in transport supply

induced by (proposed) transport policies and schemes, a model representation of

the relevant elements of transport supply and its fundamental characteristics has

to be found. In case the automobile transport system is to be modeled, the supply

description consists of a representation of the roadway network. This representation

is mostly based on a graph whose vertices represent intersections and whose edges

represent roadway segments.

As transport supply can be assumed unaltered for the scope of assessment, the

modeling of the overall transport systems is to a large extent concerned with the

modeling of the demand for transport as dealt with in the subsequent section (cf.

section 1.1.2).

1.1.2. Modeling Transport Demand

Transport demand arises from people’s wishes to travel from an origin to a destina-

tion (passenger traffic) or to transport goods from an origin to a destination (freight

traffic). Modeling the demand for (passenger) transport on a given portion of a

transport system is related to answering the following questions:

1. How many people wish to travel?

2. From where to where do they wish to travel?

3. At what time do they wish to travel?

4. Which mode of transport do they wish to use?

5. Which route do they wish to follow?

3 For a private good or service, the utilization is excludable and rivalrous, i.e. the supplier can
control who can become a user and the utilization of the good by one user affects the utilization
of the good by another user.

4 For a public good or service, the utilization is non-excludable and non-rivalrous, i.e. anybody can
use it and this does not affect anybody else in using it. As opposed to other public goods like air
or (free) television, a sidewalk can, however, also be regarded a common good whose utilization is
non-excludable, but rivalrous. Rivalry for a sidewalk can emerge when it becomes overcrowded
so that it cannot accommodate additional users. This observation becomes somewhat more
intuitive when a highway segment is considered instead of a sidewalk.

4



Leaving the third – though very important – question concerning time aside, the

remaining questions constitute the basic concept of the first generation of widely-

applied transport models, aptly referred to as four-step models.

The basic approach of these four-step models is to sequentially work through said

four questions and, thus, generate the demand for transport on each route of the

considered network [Bhat and Koppelman, 2003, p.39], [Raney and Nagel, 2006,

p.305]. These models have been developed since the mid-20th century and revised

versions of them are still applied today by practitioners all over the world. Thus,

four-step models can be regarded as the state-of-the-practice approach to transport

demand modeling. They are mostly of analytical type and consider transport as

aggregate flows of travelers. While they are generally adequate for analyzing major

transport investment proposals [Hartgen, 2013, p.7], their limitations have become

more and more obvious as proposed transport system improvements change from

construction-based schemes towards transport policies that aim to increase efficiency

in the use of already existing infrastructure [McNally, 2007, p.36], [Hartgen, 2013,

p.10]. This is due to several shortcomings of these model5.

While remedies to overcome different shortcomings of four-step models have been

proposed and implemented, researchers also developed fundamentally different mod-

eling approaches, which consider decisions of travelers in a more behaviorally sound

way. These approaches have been enabled through advances in computation and de-

veloped since the 1980s. Particular advantages of these models are that they often

consider travelers on a disaggregate, individual basis6. Thus, specific attributes of

travelers can be taken into account. Also, the interdependencies among the decisions

regarding the above questions can be considered, which offers major advantages from

a behavioral point of view. Finally, they do not analyze trips in isolation, but put

the focus on the activities dispersed in space and time, that travelers pursue, which

is why they are called activity-based demand models.

The last of the five aforementioned questions (i.e. Which route do travelers wish

to follow? ) is, however, even by most modern models still only answered on an

aggregate level. This is due to the fact that most models terminate with the provision

of origin-destination (OD) matrices [Flötteröd et al., 2011, p.482], which provide the

numbers of travelers on different relations for each mode. In most cases, these OD

matrices are, then, forwarded to a route assignment algorithm which basically does

the same as the final step of the four-step model, i.e. answering the last of the above

questions. So, the individual representation of travelers that offered advantages in

the earlier modeling steps, is lost.

5 These shortcomings as well as other properties of these models are described in a more detailed
way in section 2.1.

6 These models are discussed in more detail in section 2.2.
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It would, however, be highly beneficial if the individual representation of travelers

could be maintained in the route assignment step, too. Therefore, the transport

demand modeling process, which answers the first four above questions on a dis-

aggregate basis, will in this study be coupled with a modeling framework that is

capable to answer the final question on a disaggregate level as well. This goal moti-

vates the application of microsimulation, which is briefly presented in the following

section (cf. section 1.2).

1.2. Tools

In order to answer the five central questions concerning transport demand posed in

the previous section (cf. section 1.1.2) on a fully disaggregate level, microsimulation

is applied in this study. Microsimulation is a mechanism for reproducing or fore-

casting the state of a dynamic, complex system by simulating the behavior of the

individual actors in the system over both time and space [Miller et al., 2004, p.10],

[Guo and Bhat, 2007, p.2].

A microsimulation modeling approach seems reasonable since ”the behavior of the

actors within the system being modeled is significantly non-linear in nature, and,

hence, significant bias can exist if one attempts to model such a system using arbi-

trary aggregations of these actors” [Miller et al., 2004, p.16]. Via a microsimulation

approach every traveler is considered individually with all their relevant attributes

retained throughout the whole modeling process [Meister et al., 2010, p.2].

Specifically, two types of models are used in this study. First, an activity-based

demand model (ABDM, cf. section 1.1.2) based on microsimulation is used to gen-

erate an initial, disaggregate demand representation. As pointed out in the previous

section (cf. section 1.1.2), these demand models, however, typically end with the

travel pattern of individuals. Thus, no informations concerning the individual’s

concrete travel activities on the network are given.

In order to obtain this information on a disaggregate (i.e. microscopic) level as

well, a microscopic transport simulation is used, which simulates the interaction

of the disaggregate transport demand with the supply of transport. In technical

terms, the disaggregate travel patterns from the activity-based demand model are

forwarded to the transport simulation framework.

Since the traveling individual is the unit of observation and analysis, these type of

models are also called agent-based models. The term is rooted in the ”computational

paradigm where individual entities called agents have their own objectives and make

autonomous decisions. They interact with other agents in an independent way and

the effects of the interactions are evaluated globally”[Moyo Oliveros, 2013, p.5].

According to Miller et al. [2004, p.23], ”agent-based microsimulation is ideally

suited to activity-based travel modeling given the disaggregated, dynamic, complex
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nature of the phenomenon.” Furthermore, ”it is hypothesized that agent-based mi-

crosimulation, in fact, represents the best approach currently available to modeling

large, complex, dynamic, open-ended socio-economic systems. [...] It is believed

that microsimulation may prove to be the most computationally efficient, practical

approach to modeling highly complex systems” [Miller et al., 2004, p.12]. As a re-

sult, microsimulations have been applied with increasing frequency since the end of

the last century, in particular in the field of transport research [Miller et al., 2004,

p.10].

1.3. Vision

State-of-the-art models allow for the analysis and assessment of basically any pro-

posed transport policy or scheme as well as any socioeconomic scenario. The major

problem of many current models is, however, that they are data-hungry and re-

quire a high amounts of resources [Flötteröd, 2010, p.1]. This is problematic in the

following (and potentially additional) modeling contexts:

• In preliminary studies, first estimations, and many other contexts, a high

input of resources is not feasible. Neither can the required amount of data be

provided without incurring prohibitively high expenses.

• In many regions of the world, required data are not available. While this is

particularly true for developing regions, many types of very specific data (e.g.

time-use surveys) are not available in many highly-developed countries either.

• The collection, processing, and storage of many kinds of data needed for trans-

port models is strictly protected or even forbidden by reason of information

privacy. In particular, data with geographical coordinates which are highly

relevant for transport planning are often regarded as risky in terms of data

abuse.

Accordingly, one major goal of this study is to build a model that suffices with a very

low amount of input data and still yields a good representation of real-world traffic

patterns. Hence, the overarching premise of this study is not to use any data that

are not readily accessible and, thus, inexpensive to obtain. So, this model does not

utilize any form of data which is regarded as risky in terms of information privacy.

As will be shown, the established approach is also viable in regions with low general

levels of data available because only some labor market data and traffic counts are

necessary. Chances are high that labor market data are available since these data

are important for taxing. Traffic count data can – in case of need – even be obtained

by simple manual counting. This is realistic in countries where costs per working

hour are low, which is often the case in those regions where data availability is low.
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While comparable modeling approaches to transport demand generation exist, the

unique property of this study’s approach is that transport demand modeling is done

with a much lower amount of input data. The major goal of this study is to examine

the quality of the demand for transport that is generated based on this modeling

approach.

1.4. Outline of this Study

The remainder of this work is organized as follows: In the following two chapters

the modeling approaches, which are applied for the transport model to be built, are

discussed conceptually: While demand modeling is addressed in chapter 2, chap-

ter 3 deals with transport simulation. Then, a detailed description of the applied

methodology along with a discussion of the justification of this approach is presented

in chapter 4. This chapter also includes a description of input data and data used

for calibration and validation. Next, the setup, the properties, and the results of

an initial model based on the approach developed in this study together with an

analysis and assessment thereof is presented in chapter 5. Here, a particular fo-

cus is one examining the influence of various configurable parameters. Building on

the knowledge gained from the initial model, a more elaborate model based on this

study’s methodology is built, analyzed, and validated in chapter 6. The work is

finished with a discussion and conclusion in chapter 7.
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2. Demand Modeling

In this chapter, approaches to transport demand modeling are presented. The dis-

cipline concerned with modeling transport demand, referred to as transport demand

modeling, has developed since the 1950s [McNally, 2007, p.35]. First models were

analytical in nature and split up the demand modeling process in four subsequent

steps. Since the unit of analysis (around which these models are based) is single

trips, these models are also referred to as trip-based models. They are described in

the next section (cf. section 2.1), followed by a presentation of newer approaches to

transport demand modeling in section 2.2. Finally, the demand generation frame-

work applied in this study is presented in section 2.3.

2.1. Trip-Based Demand Modeling

Trip-based demand models based on analytical methods have been developed since

the 1950s, starting with Mitchell’s and Rapkin’s landmark study, which called for a

comprehensive modeling framework [McNally, 2007, p.35]. As their name suggests,

the unit of analysis, which these models are based on, are uncorrelated trips. The

model output is flows of traffic on the routes of the network. Thus, these models

describe the demand for transport in aggregated form, neglecting the fact that these

flows are made up by individual travelers that may react differently to changes in

the transport system.

These models found their first comprehensive application in the Chicago Area

Transportation Study that was established in 1955 to ”provide the basis for a uni-

fied transportation development program for the [Chicago] area” [Chicago Area

Transportation Study, 1959, p.2]. The study’s objective is defined as ”to maximize

the ease of travel within the urban region”[Chicago Area Transportation Study,

1959, p.2]. Hence, the focus of applications of these demand models ”was decid-

edly highway-oriented with new facilities being evaluated versus traffic engineering

improvements”[McNally, 2007, p.36].

The fundamental approach of these trip-based models is to sequentially work

through the following four subsequent steps in order to calculate the demand for

transport on each route of the considered network [Bhat and Koppelman, 2003,

p.39], [Raney and Nagel, 2006, p.305]:
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• Trip Generation: The magnitude of total daily travel originating and termi-

nating at given geographical locations is defined.

• Trip Distribution: Trip ends from trip generation are combined to trips. A

typical procedure applied for this is the gravity model, which – just like its

name-giving natural phenomenon – accounts for attraction and impedance

between two entities (bodies in physics and activity locations in transporta-

tion) and, thereby, calculate the forces (physics) and traffic flows (transport),

respectively, between them. The output is mostly given by so-called origin-

destination (OD) matrices, which state the magnitude of traffic flows between

any origin and destination of the considered scenario.

• Mode Choice: Modes of transport are chosen for parts of traffic flows yielding

mode-specific OD matrices.

• Route Assignment: Mode-specific OD trip matrices are loaded on the (mode-

specific) networks. Algorithms are used to arrange the flows on each network

link so that the outcome constitutes a user equilibrium [Gawron, 1998, p.2]

(also referred to as Nash equilibrium), where all paths utilized for a given

OD pair have equal impedances. Thus, these equilibrium-based aggregate

assignment algorithms yield results that adhere to Wardrop’s first principle

[Wardrop, 1952, p.345], which describes the state of a system where no indi-

vidual can improve their situation by a unilateral change in behavior. Proba-

bilistic elements in the algorithm may be used so that the procedure becomes

stochastic assignment and the outcome becomes a stochastic user equilibrium.

By reason of their structure, these models became widely known as four-step mod-

els. With new federal legislation established in the United States the 1960s, requir-

ing continuous, comprehensive, and cooperative urban transport planning, four-step

models became more and more institutionalized and the standard approach to de-

mand modeling [McNally, 2007, p.36]. Up to today, improvements to this modeling

approach have been made by considering time dependency (to a limited extent) and

by introducing a feedback of information concerning network status from the route

assignment step in earlier model steps. Since various versions of these models are

still applied by practitioners all over the world, they are considered state of the

practice.

As exemplified by the objectives of the Chicago Area Transportation Study, trip-

based models ”were initially developed to evaluate alternative major transportation

actions such as new roads, major widenings and major new fixed-guideway transit

proposals” [Hartgen, 2013, p.10]. For these type of transport schemes, trip-based

models could be proven suitable [Bhat and Koppelman, 2003, p.41]. With the emer-

gence of more diverse policy options (as, for instance, summarized in chapter 1),
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the limitations and inadequacy of trip-based models have become more and more

obvious [McNally, 2007, p.36], [Hartgen, 2013, p.10] because of the following model

properties.

First, the time of day of trips is either not modeled in trip-based models or only

modeled in a limited way. In case it is considered, it is mostly introduced by applying

time-of-day factors to daily travel volumes [Bhat and Koppelman, 2003, p.39]. If

time of day is not or not suffienctly well integrated, ”it is difficult or impossible to

model any kind of time-dependent effect, such as emissions (which depend on engine

temperature, which in turn depends on how long the car has been running), or peak

traffic spreading” [Raney and Nagel, 2006, p.305].

Second, ”a fundamental conceptual problem with the trip-based approach is the

use of trips as the unit of analysis [...] without consideration of dependence among

trips” [Bhat and Koppelman, 2003, p.40]. Hence, no distinction is made between

single-stop trips and multiple-stop trips (trip chaining). ”Thus, the organization of

trips and the resulting inter-relationship in the attributes of multiple trips is ignored

in all steps of the trip-based method. This is difficult to justify from a behavioral

standpoint” [Bhat and Koppelman, 2003, p.40], as, for instance, the destination of a

trip of a tour1 is dependent on the previous destinations of this tour. Moreover, the

mode of transport chosen for a single trip of the tour is obviously highly dependent

on the mode chosen for preceding trips of thats tour [Meister et al., 2010, p.3]. By

considering trips in isolation from other trips, these essential dependencies cannot

be taken into account by the trip-based approach [Kitamura, 1988, p.15].

Third, because trips are the unit of analysis, decisions are decoupled from persons

and therefore from demographic attributes” [Raney and Nagel, 2006, p.305f], which,

however, mostly constitute essential determinants for travel demand.

Finally, the sequential structure of most trip-based models is hard to interpret

behaviorally, since it implicitly assumes that people take decisions in the same se-

quence as the model represents these decisions. Its inadequacy is easily exemplified

by a person who first decides to go to a cinema by car and then chooses one of

the cinemas accessible by car, instead of first choosing the destination and then the

mode like the four-step model would assume.

These shortcomings led to the realization that the traditional trip-based approach

towards travel demand modeling ”needs to be replaced by a more behaviorally-

oriented activity-based modeling approach” [Bhat and Koppelman, 2003, p.39].

1 A tour is defined as a chain of trips without returning to the origin of the first trip in the
meantime. The tour ends when the origin of the first trip is reached after multiple trips have
been conducted.
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2.2. Activity-Based Demand Modeling

As described in the previous section (cf. section 2.1), trip-based approaches to

travel demand modeling are concerned with various shortcomings, which can be

summarized as follows:

• Time of day of trips is either not modeled or only modeled in a limited way.

• Dependences among trips of a given traveler are not considered.

• Decisions are not related to persons and their demographic attributes.

• The sequential structure of models brings about behavioral inadequacies.

Especially, with more diverse transport policies (cf. chapter 1) that go beyond

infrastructure improvement schemes, the shortcomings of trip-based models became

more and more obstructive [McNally, 2007, p.36], [Hartgen, 2013, p.10]. Therefore,

beginning in the 1970s, researchers started to develop new approaches towards the

modeling of the demand for transport [Pas, 1985, p.460].

Firstly, in contrast to trip-based models, more attention was paid to the funda-

mental fact that the overwhelming majority of trips are not conducted for their own

sake. Instead, the demand to conduct trips is derived from the desire to pursue

activities dispersed in space, leading to the notion of transport as a derived de-

mand [Pas, 1985, p.460], [Kitamura, 1988, p.15], [Bhat and Koppelman, 2003, p.40],

[Charypar and Nagel, 2005, p.369]. Therefore, it was emphasized that one ”must

understand the mechanism of activity engagement, i.e. what activity we pursue,

when and where, how long, with whom, in what sequence, and how the engagement

patterns are interrelated over time” [Kitamura, 1988, p.20]. So, ”the consideration

of revealed travel patterns in the context of a structure of activities [...] with a frame-

work emphasizing the importance of time and space constraints [became] common

ground”[Kitamura, 1988, p.11] in these new approaches to travel demand modeling.

Because the unit of analysis, thus, changed from single trips towards the activities,

these models are referred to as activity-based model. Based on the knowledge of peo-

ple’s wishes to pursue certain activities distributed over space and time, it becomes

immediately inferable what trips people seek to pursue in order to attain to these

activities and their locations.

Secondly, activity-based models ”pay more attention to the sociodemographic

characteristics of individuals and households that affect the demand for activity

participation [...] and that often constrain activity and travel choices” [Pas, 1985,

p.460]. These models enable the consideration of the impact of sociodemographic

changes such as increasing proportions of working women, single parents, and elderly

drivers on travel demand [Kitamura, 1988, p.29]. In line with this, the notion of
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lifecycle stages was developed [Kitamura, 1988, p.14]. This concept describes effects

of household interdependencies on individual activity choice represented by measures

such as presence of working spouse, number of adults, and household structure [Guo

and Bhat, 2001, p.4]. Hence, activity-based models overcome the isolation of trips

from the demographic attributes of the traveling individual (cf. section 2.1).

Accordingly, many essential phenomena that have a significant influence on ac-

tivity participation and, thus, travel decisions can be analyzed with activity-based

models. These phenomena include, for instance, activity substitution [Bhat and

Koppelman, 2003, p.40], multi-day behavior, and interpersonal linkages [Kitamura,

1988, p.28].

Most importantly, activity-based models have shown to be suitable to determine

which households and individuals will be affected by a new policy and how they

will adapt to the change [Kitamura, 1988, p.24]. Accordingly, the activity-based

modeling paradigm has received additional impetus by legislations2, which require

travel demand models to provide information at a high level of resolution along the

timeline and also to provide more specific attributes of traveling vehicles. A classic

example in this respect is engine temperature as mentioned in section 2.1. Since

activity-based demand modeling constitutes a more holistic approach with detailed

representation of the temporal dimension, it is better suited to assess novel transport

policy proposals [Bhat and Koppelman, 2003, p.41].

However, most activity-based demand models have in common that they only

answer the first three questions of the traditional four-step model, i.e. How many

people wish to travel?, From where to where do they wish to travel?, and Which mode

of transport do they wish to use? (cf. section 2.1). Specifically, most activity-based

models end with time-dependent, mode-specific OD matrices [Flötteröd et al., 2011,

p.482]. As discussed in section 2.1, these OD matrices provide information concern-

ing the number of travelers on different relations for each mode. In order to answer

the fourth question, i.e. Which route do travelers wish to follow?, these OD matrices

are then fed to separate route assignment packages, which are basically the same

as the fourth step (route assignment) of the four-step process described in section

2.1. Via equilibrium-based aggregate assignment algorithms, the route assignment

yields the required information concerning traffic on the network routes, which may

be fed back to the activity-based demand model in form of time-dependent travel

impedances [Flötteröd et al., 2011, p.482].

While it is advantageous to consider travelers individually to generate OD matrices

(e.g. in terms of the aforementioned consideration of demographic attributes [Raney

and Nagel, 2006, p.306]), the disaggregate information considered up to this point

gets, of course, lost in providing OD matrices as they are – by definition – aggregate

2 An example for such legislation is the 1990 United States Clean Air Act Amendments.
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forms of representation.

Other activity-based models ”generate a sequential list of activities and trips

connecting these activities for every person in the study area” [Meister et al., 2010,

p.3]. Thus, the spatial and temporal consistency of the daily activity-travel patterns

of the individual is maintained. While maintaining disaggregate information of

travelers, the approach does still not provide the required information concerning

routing. While this fact could, at first consideration, be regarded as a disadvantage

of activity-based models, it offers, on the other hand, the opportunity to represent

the interaction of transport demand and transport supply (cf. section 1.1) on the

network in a disaggregate way as well. Instead of the equilibrium-based aggregate

assignment algorithms that are used to assign OD pairs to routes, disaggregate

information may be used to find new routes for each traveler on an individual basis.

Now that the conceptual background of activity-based demand models has been

discussed, it seems reasonable to briefly consider the different functional approaches,

which these models employ. Two major approaches to activity-based demand mod-

eling can be distinguished [Bhat et al., 2004, p.1], [Meister et al., 2010, p.3].

On the one hand, there are models which are based on random utility theory3,

which are referred to as random utility models or in this context also simply as

econometric models. These models use ”systems of equations to capture relation-

ships among activity and travel attributes and to predict the probability of decision

outcomes. The strength of this approach lies in allowing the examination of alter-

native hypotheses regarding the causal relationships among activity-travel patterns,

land use, and sociodemographic characteristics of individuals” [Bhat et al., 2004,

p.57]. Examples for such models are – among others – the Sacramento Activity-

Based Travel Simulation Model (SACSIM) and the Comprehensive Econometric

Microsimulator for Daily Activity-Travel Patterns (CEMDAP) [Meister et al., 2010,

p.3].

On the other hand, there are models based on rule-based approaches (also referred

to as computational process models), which employ psychological decision rules de-

rived from surveys. They constitute implementations of sets of rules in the form of

condition-action (if-then) pairs that specify how the solution to a given task is found

[Bhat et al., 2004, p.57]. Examples include – among others – the Travel Activity

3 Random utility theory is concerned with approaches that model discrete choices. Discrete means
that the alternatives of the choice are mutually exclusive and collectively exhaustive. These
models are based on the notion of utility maximization, which assumes that decision makers aim
to increase their personal utility in taking choices. Operational models consist of parameterized
utility functions in terms of observable independent variables and unknown parameters. The
corresponding values can be estimated from a sample of observed choices. Since it is not possible
to estimate a model that is perfect, the concept of random utility is adopted from psychology.
So, the true utilities of the alternatives are regarded as random variables so that the following
identity is true: The probability that a given alternative is chosen equals the probability that this
alternative is the one which has the greatest utility among the available alternatives [Ben-Akiva
and Lerman, 1985, p.2f].
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Scheduler for Household Agents (TASHA) and ALBATROSS (A Learning-BAsed

TRansportation Oriented Simulation System) [Meister et al., 2010, p.3].

In this study, the random-utility-based model CEMDAP is used, which is de-

scribed in more detail in the following section (cf. section 2.3).

2.3. CEMDAP

The Comprehensive Econometric Microsimulator for Daily Activity-Travel Patterns

(CEMDAP) is a software implementation of a system of econometric models that

represent the decision-making behavior of individuals [Bhat et al., 2008, p.2]. CEM-

DAP has been developed at the University of Texas at Austin, USA, and brings

together various activity-based modeling efforts [Guo and Bhat, 2001, p.5]. The

following description of CEMDAP is based on Bhat et al. [2004].

Following the modeling paradigm to represent the relevant components of a com-

plex system, i.e. the travelers in the transport system, individually (cf. section

1.2), CEMDAP is implemented as a microsimulation, a process through which the

choices of individuals are simulated dynamically on the basis of underlying econo-

metric models [Bhat et al., 2004, p.57]. The modeling system follows a holistic

approach that recognizes the complex interactions in activity and travel behavior

It is, therefore, in line with the notion of derived demand as pointed out in section

2.2. It explicitly recognizes that individuals make choices about the activities they

pursue during the day and that travel is the result of the fact that some of these

activities are locally dispersed . In particular, CEMDAP constitutes one of the first

models to comprehensively simulate the activity-travel patterns of working as well

as non-working individuals along the time line [Bhat et al., 2004, p.57], [Guo and

Bhat, 2001, p.4].

CEMDAP requires input information concerning land use, activity system, trans-

port level-of-service attributes as well as sociodemographic characteristic on house-

hold and person level (cf. figure 2.1 and section 2.3.2). As the latter are mostly only

available on aggregate level, methods such as synthetic population generation can

be used to obtain them on disaggregate level4.

As output, CEMDAP provides complete daily activity-travel patterns for each

individual in each household of a population (cf. figure 2.1 and section 2.3.4).

Activity-travel patterns are defined as the sequence of activities and intermediate

traveling that a person undertakes during the day [Bhat et al., 2004, p.58].

In CEMDAP, an activity-travel pattern is represented by a hierarchical structure

that – enumerated in bottom-up direction – consists of the levels stop, tour, and

pattern. A stop constitutes a single activity out of home, i.e. an activity which

4 For details concerning synthetic population generation, cf. Guo and Bhat [2007].
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can only be reached via traveling. It is characterized by its type, its duration, its

location, and the travel time to this location. A chain of stops made from home,

from work, or one of the two commutes from home to work or back is referred to as

a tour. Tours are characterized by their modes, durations, number of stops within

the tour, and the home-stay duration immediately before the tour. The sequence of

all tours during one day make up a pattern.

The modeling of the activity-travel patterns of individuals consists in the deter-

mination of all attributes that characterize the three-level representation structure.

As the number of attributes as well as the number of possible choice alternatives for

each attribute are very large, the joint modeling of all these attributes is not viable.

Therefore, the determination of all these attributes is broken down into a modeling

system that consists of several sub-models, which are integrated into a modeling

framework.

2.3.1. Framework

The modeling framework of CEMDAP consists of two major components: The

generation-allocation model system and the scheduling model system. First, in the

generation-allocation model system, decisions of individuals to participate in activ-

ities are represented. Then, based on these decisions, the scheduling system creates

the complete activity-travel pattern of individuals [Bhat et al., 2004, p.58].

One of the most fundamental daily decisions for the determination of the proper-

ties of an activity-travel pattern is the decision whether or not the individual par-

ticipates in out-of-home mandatory activities such as work or school. It is obvious

that this decision imposes constraints on participation in other types of activities.

Therefore, individuals are classified as workers or non-workers in CEMDAP accord-

ing to their decision whether to pursue a work activity on a given day. While work

start and end times serve as points of reference for the other decisions of workers,

this point of reference does, obviously, not exist for non-working individuals.

Accordingly, the first components of the generation-allocation modeling system

focus on the individual’s decision to pursue mandatory activities such as work or

school. This decision is based on the employment status of the individual. If a

person is classified as a worker, the work-based duration and work start times are

determined next [Bhat et al., 2004, p.59]. Then, the generation-allocation modeling

system determines whether or not shopping activities are pursued. Subsequently,

five sub-models determine the decisions to pursue activities for personal business,

social recreation, to serve a passenger, eat out, and undertake other activities.

On the basis of the distinction of workers and non-workers, separate scheduling

model systems are applied. The scheduling of workers is modeled by three sequen-

tially applied sub-model systems: the pattern-level, the tour-level and the stop-level
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model systems [Bhat et al., 2004, p.60] . Each of these systems corresponds to one

level in the daily activity-travel representation framework, i.e. patterns, tours, and

stops.

First, based on demographics, land use, transportation system characteristics,

and, most importantly, the results of the generation-allocation model system, the

pattern-level sub-model determines the properties of the commutes, i.e. the trips

from home to work and back. These attributes include travel mode, number of stops,

and commute duration. The number of commute stops is, of course, only modeled

for travelers for whom the generation-allocation model system has determined that

they pursue activities other than work during the considered day. If the traveler has

no other activities during the day, their activity-travel pattern is complete at this

point. If not, the number of tours is modeled. On the basis of work times (modeled

by the generation-allocation model system) and the commute durations (modeled

on pattern level), the times of departure and arrival at home are determined. This

yields the times available for undertaking tours before work, at work, or after work

and is used as input for the model which determines the number of tours.

Second, the tour-level model system is applied which determines mode and number

of stops first. Then, tour duration is modeled, followed by the duration of the stay

at home or work, respectively, before the tour.

Third, the stop-level model system is used to determine stop characteristics. Using

a discrete choice model, the activity type of each stop is determined. Then, regres-

sion models are applied to model activity duration and the travel time to stop. Last,

a location choice model is applied to determine stop location.

Like the scheduling model system for workers, the scheduling model system for

non-workers is also broken down into three sequential systems corresponding to

patterns, tours, and stops. In contrast to workers, the schedule fixity, given by the

need to be at work or school at a certain time, does not exist for non-workers. Thus,

the total number of tours is determined in the pattern-level model system. By the

tour-level modeling system, the attributes of each tour are sequentially determined

from the first to the last tour based on the number of tours as it has been determined

by the pattern-level modeling system. The available time left after the first tour is,

thereby, used as an explanatory variable for the determination of the attributes of

the second tour, which introduces linkages among the choices of the different tours.

Last, the stop-level model system is used to model the characteristics of each stop

in the tours [Bhat et al., 2004, p.61].

The whole modeling framework is based on input data (cf. section 2.3.2) and a

model specification (cf. section 2.3.3) [Bhat et al., 2008, p.10]:
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2.3.2. Model Input

As input data, CEMDAP needs transport system properties (i.e. levels of service for

different times of day) and the land use patterns of the planning area as illustrated

in figure 2.1. Also, CEMDAP requires disaggregate demographic characteristics of

the population. As pointed out in section 2.3, these are, however, in most cases

not available. Synthetic population generation, however, offers a method to gener-

ate a statisitcally-correct, disaggregate representation of the real population, often

referred to as synthetic population. A synthetic population reflects the real popu-

lation of the planning area in terms of major sociodemographic and socioeconomic

properties like age structure, gender, employment situation etc. Thus, ”the syn-

thetic population is a random realization of the census, that is, a census taken from

the synthetic population would return, within statistical limits, the original census”

[Raney and Nagel, 2006, p.306].

Accordingly, synthetic population generation is applied as a pre-process to CEM-

DAP in order to provide CEMDAP with a disaggregate demographics needed as

input data. Another model can be applied upstream to provide CEMDAP with in-

put variables whose values result from medium-term choices like choices concerning

residential location, employment, or car ownership [Bhat et al., 2004, p.62]. These

choices are – as opposed to those choices that are modeled in CEMDAP – not taken

on a daily, but on a longer-term basis. This medium-term choice simulator as well

as the synthetic population generator are not part of CEMDAP itself.

Figure 2.1.: CEMDAP

The required input data are forwarded to CEMDAP via text files for households,

persons, level-of-service characteristics, zones, zone-to-zone relations, and vehicle

types [Bhat et al., 2008, p.10]. The detailed preparation of the input data for this

study is given in appendix B.
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2.3.3. Model Specification

As explained in section 2.3.1, CEMDAP consists of several models that represent

the various decisions a traveler takes during a day. These models fall into seven

model categories: Linear regression, hazard duration, binary logit, multinomial logit,

location choice, ordered probit, or work start/end time [Bhat et al., 2008, p.41]. All

models used in CEMDAP, along with their variables and parameters, are specified

in a so-called model specification file [Bhat et al., 2008, p.12]. In this study, a ready-

made model specification file provided in the CEMDAP test package is used [Bhat

et al., 2008, p.21]. More details concerning the model specification file are given in

appendix B.

2.3.4. Model Output

As discussed in section 2.3, the output of CEMDAP consists in the complete daily

activity-travel patterns of each individual of the synthetic population [Bhat et al.,

2004, p.57], [Bhat et al., 2008, p.10]. In technical terms, this output is given by seven

text files which correspond to a description of the modeled attributes of adults,

children, workers, non-workers, students, tours, and stops. Some information are

given redundantly in these files. Of particular interest for the analysis of this study

is the stops files, which list all activities of each individual of the synthetic population

including activity type, start time, duration and location of the stop as well as the

location of the previous activity and the distance between the previous and the

current stop [Bhat et al., 2008, p.14]. Thus, the full daily activity-travel pattern

of any individual can be reconstructed from the information given in the stops file.

Technical details are outlined in appendix B.6.

2.3.5. Extensions

Later CEMDAP was extended a simulator of activity-travel patterns into a com-

prehensive Econometric Model of Urban System called CEMUS (also referred to

as CEMDAP-II or second-generation CEMDAP. Next to the integration of a syn-

thetic population generator, which is always needed as a pre-process for CEMDAP,

CEMUS also encompasses a module for longer term decision of individuals like car

ownership or residential location called CEMSELTS, which stands for Comprehen-

sive Econometric Microsimulator for Urban Systems. Details are given in Eluru

et al. [2007].
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3. Transport Simulation

Owing to the notion of the demand for transport as a derived demand that is derived

from individuals’ wishes to pursue activities dispersed in space and time (cf. section

2.2), the knowledge of individuals’ activity patterns is the foundation for travel

demand modeling.

As in any market, however, demand is dependent on supply. So, travel decisions of

individuals are ”interrelated with the availability and ease of transportation between

potential activity locations” [Kitamura, 1988, p.20], i.e. the quality of transport

supply. Hence, the interaction of supply and demand (cf. section 1.1) needs to be

modeled to analyze how a given transport supply influences transport demand.

In traditional transport (demand) models (i.e. trip-based models, cf. section 2.1),

this is done in the fourth and final modeling step (route assignment). As pointed

out in section 2.1, route assignment uses algorithms to distribute aggregate flows of

traffic on the network so that a user equilibrium is reached. As route assignment

is already part of four-step models, no additional model is needed to cater for the

representation of the interaction of supply and demand. On the other hand, these

models are concerned with various shortcomings as discussed in section 2.1.

As discussed in detail in section 2.2, therefore, an activity-based demand model,

which overcomes these shortcomings, is used in this study. Activity-based models,

however, mostly end with travel patterns of individuals that do not contain routing

information (cf. sections 1.1.2 and 2.2). These patterns are mostly aggregated into

OD matrices so that route assignment algorithms (as used in trip-based models) can

be applied. In case a disaggregate representation of travelers for the modeling of

the interaction of supply and demand on the network is desired, however, the task

becomes much more complicated.

Thus, a specific model is needed for this task. Here, two mechanism are relevant.

First, it is crucial to analyze what happens when the demand for transport is real-

ized on the physical network. This is simulated in a representation of the physical

transport system (traffic simulation or physical simulation, cf. section 3.1). Second,

it is important to examine how the travelers react to the result of the traffic sim-

ulation. Therefore, the choice processes (decision making) that travelers undertake

based on what they experienced while traveling are simulated (mental simulation, cf.

section 3.2). The model combining these two layers of simulation into an integrated

simulation framework called MATSim, is then presented in section 3.3.
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3.1. Physical Simulation (Traffic Simulation)

In this section, approaches towards the modeling of the physical reality, which trav-

eling vehicles are surrounded with, are presented. These approaches are also referred

to as traffic simulation, traffic flow simulation, mobility simulation (mobsim), net-

work loading or execution. The underlying models used for traffic simulation can be

divided into macroscopic and microscopic models [Gawron, 1998, p.31].

3.1.1. Macroscopic Models

Macroscopic models do not discern individual vehicles, but describe traffic as a fluid

or flow. Accordingly, they are also referred to as flow-based models. This traffic flow

is considered on the basis of aggregate traffic characteristics like traffic density, traffic

flow, and average speed1 on a given part of the transport network. Accordingly,

the focus of these models is on sections of the roadway network. These sections

are described by aforementioned three (and potentially additional) variables. The

relations of these variables are expressed by (differential) equations.

According to the notion of streams or flows, first such models were derived from

fluid dynamics leading to the development of Lighthill’s and Whitham’s kinematic

wave model in 1955. This model can, for instance, be applied to analyze bottlenecks

and their effects on speed on a roadway section and to model how disturbances of

the traffic flow propagate through a roadway section.

It was soon regarded as a shortcoming, however, that this model lacks a con-

sideration of the fact that traffic is not always in equilibrium and that drivers do

not behave perfectly rational. To take these phenomena into account, additional

terms were added to the equations, e.g. to reflect driver’s reaction times. For each

such additional variable in the model, however, a corresponding variable has to be

introduced for the description of each roadway section [Gawron, 1998, p.31]. Thus,

using these equations for the description of traffic flow dynamics either becomes

computationally expensive or fundamental aspects of traffic dynamics have to be

omitted.

Furthermore, since neither individual drivers nor individual vehicles are taken into

account in macroscopic models, it is unreasonable to consider individual travelers’

attributes and characteristics in these models. The accounting for the individuality

of travelers is, as pointed out in section 2.2, however, advantageous in many respects.

In order to make improvements to travel options, for instance, it is mandatory to

know which route a given driver took. This is why macroscopic traffic models do

not qualify as component of the modeling framework of this study.

1 The graphical representation of the relations of these three measures is called the fundamental
diagram of traffic flow.
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3.1.2. Microscopic Models

Microscopic models are based on the description of the movement of individual

vehicles through the network. Thus, individual vehicles or their drivers constitute

the unit of analysis in these models. Hence, they are also called vehicle-based models

or driver-based models. Microscopic models also have the advantage that additional

information like origin, destination, route, and departure time can be added to the

data structures of the model easily [Gawron, 1998, p.32]. This property is important.

Microscopic models can be further divided into car-following models (cf. section

3.1.2) and mesoscopic models (cf. section 3.1.2) depending on the degree to which

the interaction of individual vehicles is taken into account.

Car-Following Models

Car-following models have been applied since the 1950s. According to Ranjitkar

et al. [2005, p.1582], nearly hundred models of this type have been developed so

far. The first type of car-following models were stimulus response models, which are

based on delayed differential equations. The delay is, thereby, associated with the

reaction time of drivers. Like most other car-following models, the stimulus response

model is, however, computationally costly [Gawron, 1998, p.33].

An approach to overcome this problem is time discretization. In each time step

– in its magnitude mostly representing drivers’ reaction time – vehicles are simulta-

neously moved forward in a system of coupled maps, which consider the interaction

of adjacent vehicles. ”While the idea behind the delayed differential equation mod-

els is to make the description of the vehicle dynamics as detailed as possible, the

interesting question for the coupled-map models is how minimalistic a model can

be while still maintaining the fundamental features of traffic flow” [Gawron, 1998,

p.34]. The most minimalistic among such approaches are cellular automata models,

most prominently the Nagel-Schreckenberg model [Nagel and Schreckenberg, 1992].

Despite their simplicity, these models reproduce fundamental properties of traffic

flow. ”Above a certain density, traffic jams occur spontaneously, the density-flow

relation is qualitatively correct, the time interval between two cars passing a traffic

light — the crucial parameter for the capacity of signalized intersections — is mod-

eled correctly [...] This is especially surprising since one of the basic properties of

cars, namely the finite deceleration, is not modeled at all” [Gawron, 1998, p.34].

Different types of car-following models are based on different underlying princi-

ples. They, however, share the common property that they model the longitudinal

interaction between adjacent vehicles. While increasingly important for many appli-

cations like intelligent transportation systems or safety engineering [Ranjitkar et al.,

2005, p.1582], this information is not mandatory for the application in this study.
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Mesoscopic Models

As pointed out in the previous section (cf. section 3.1.2), important properties of

driver-oriented models are the ability to track individual drivers and to be able to

access their individual properties. The explicit consideration of car-following be-

havior, on the other hand, is not needed for the model used in this study. Instead,

so-called mesoscopic models offer a suitable compromise. These models are driver-

oriented, but do not model car-following behavior. Therefore, mesoscopic models

are computationally significantly faster than car-following models, even the Nagel-

Schreckenberg model [Gawron, 1998, p.33]. A well-known example of a mesoscopic

model is Daganzo’s cell transmission model ”which can be viewed as a spatial dis-

cretization of an underlying fluid-dynamical model” [Gawron, 1998, p.36].

Still simpler, however, is a model in which each link is represented by a simple

queue. Accordingly, the model is referred to as queue model or queuing model. In

contrast to the cell transmission model, the links are not divided into smaller parts.

Instead, each link is considered in its entirety. Travel times on links are calculated

as the sum of the time needed to travel through the link and the time that may be

spent waiting in queue. Despite its simplistic approach, this model still provides a

good approximation of the travel times and is comparable with conceptually more

complicated car-following models [Gawron, 1998, p.36].

Because of its computational performance, its vehicle-based modeling paradigm,

and its sufficient representation of travel times, the simulation applied in this study

is based on a queue model (cf. section 3.3.1).

3.2. Mental Simulation (Decision Making)

Since models which represent traffic or traffic flow are applied in various contexts

besides traffic microsimulation, it was possible to start the discussion on traffic

models in the previous section (cf. section 3.1) with a broader view on the topic

and, then, gradually narrow down the focus to mesoscopic models as they are applied

in the transport simulation framework employed in this study (cf. section 3.3).

For the modeling of decision-making processes – here referred to as mental simula-

tion in order to illustrate them as some kind of counterpart to the physical simulation

of the traffic on the network – a general discussion is not that readily viable.

As opposed to the physical simulation of traffic, mental simulations are novel to

transport simulations and are exclusively applied in disaggregated models with a

focus on the sound behavioral representation of the traveler. Accordingly, only a

brief general overview of different approaches to evaluate and improve travel options

seems reasonable at this point. For the approach’s novelty and its relative uniqueness

to the transport simulation framework applied in this study, the major part of the
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discussion will be done within the scope of the presentation of the transport modeling

framework applied in this study in section 3.3.

By traveling on the network (i.e. by the traffic simulation), travelers gain expe-

rience, e.g. by having to wait in congestion. Thanks to the application of a fully

disaggregated microsimulation approach, this experience is retained throughout the

whole modeling process and attached to the respective individual. Accordingly, the

travel experience can afterwards be used by travelers to evaluate their chosen travel

options, develop new travel alternatives, try them out again in the traffic simulation

(cf. section 3.1) and – over the course of time – come to improved travel decisions

in terms of satisfying their individual transport demand. The steps of evaluation

and development of alternative travel options is done within the mental part of

the transport simulation. Arbitrary choice dimensions to which travelers can make

improvements can be applied. These encompass for instance:

• Route choice

• Time choice

• Location choice

• Mode choice

In order to come to decisions among these choice dimensions, different approaches

are viable. First, a discrete-choice approach (cf. footnote on page 14) based on a

nested multinomial logit model may be applied. In nested multinomial logit models,

the aforementioned decisions are split up into multiple hierarchical decision levels.

To take a decision concerning a travel option, the performance of all options con-

cerning a given choice dimension – handled on each hierarchical level – have to be

calculated. Therefore, the decision tree has to be worked through from the leaves

to the root. The performance of alternatives on each level is based on the notion of

utility, a numerical value which is the higher the better the solutions is.

Once the performances of all alternatives on all hierarchical decision levels have

been calculated, the decision tree is worked trough step by step from its root to

the leaves taking one decision on each hierarchical layer at a time. The choices are

thereby related to calculated utilities. The decision concerning a (composite) travel

option is made up of the single decisions taken on each layer of the decision tree

[Charypar and Nagel, 2005, p.372].

This approach, however, becomes computationally costly [Flötteröd et al., 2011,

p.484] to infeasible the bigger the search space gets. Since the options concern-

ing time choice and location choice, for instance, are numerous, the search space

concerning transport simulations is huge. The approach is also conceptually ques-

tionable because certain measures that affect the integrity of a travel option are, in
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fact, an outcome of the model and, thus, not truly known in the process even though

they are considered in it [Flötteröd et al., 2011, p.484].

An alternative approach, which is particularly well-suited for huge search spaces,

is genetic algorithms. As the name suggests, ”genetic algorithms are biologically

inspired optimization methods that are relatively inefficient computationally, but

extremely flexible” [Charypar and Nagel, 2005, p.370]. In contrast to discrete choice

models, which enumerate all possible alternatives, genetic algorithms do not find a

globally optimal solution, but one good solution [Charypar and Nagel, 2005, p.372].

In genetic algorithms, a scope of possible solutions is maintained during the search

process. It is not important where initial solutions for starting the genetic algorithm

come from as they are to be improved through the search process. In general, the

search process of genetic algorithms encompasses mutation, crossover, and selection.

In the case of transport simulations, the possible solutions are represented by daily

activity-travel patterns.

Similar to the discrete-choice approach, also in this approach a performance evalu-

ation based on the notion of utility is conducted. To do so, a utility function based on

individual’s participation in intended activities and their travel experience is used.

Everytime a better daily activity-travel pattern is found, the worst maintained pat-

tern is removed, keeping the number of possible solutions (i.e. daily activity-travel

patterns) constant. This procedure is repeated until no further improvement can be

observed. The best solution at the time of termination is considered the solution of

the problem [Charypar and Nagel, 2005, p.374].

The approach of genetic algorithms is contrasted to the discrete-choice approach

in that individuals do not take individual decision for each choice dimension, but

choose from patterns which constitute a (momentarily) fixed set of decisions con-

cerning these choice dimensions. Further approaches to model traveler’s decisions

are discussed in Charypar and Nagel [2005, p.373].

3.3. MATSim

The core component of the modeling approach applied in this study is MATSim,

which stands for multi-agent transport simulation2. MATSim is a transport sim-

ulation, which – among other things – encompasses the physical simulation of the

transport system and the mental simulation of the individuals who use the transport

system. These two major simulation steps were conceptually described in the two

previous sections (cf. sections 3.1 and 3.2).

The physical simulation used in MATsim is based on a mesoscopic traffic model

according to the description in section 3.1. The evaluation of travel options (plans in

2 Cf. http://www.matsim.org/, last accessed 25 November 2013.
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MATSim terminology) is done with a utility function (cf. section 3.2). In MATSim,

this step is referred to as plan scoring (cf. section 3.3.2. The selection of plans (daily

activity-travel patterns) and potential creation of new, alternative plans, is done in

a step called plan selection (cf. section 3.3.3). Plan scoring and plan selection

together constitute the mental layer of the simulation as described conceptually in

the previous section (cf. section 3.2).

Conforming with the microsimulation paradigm, the software objects representing

travelers (agents in MATSim terminology) are retained during the whole simulation

process. Each agent ”makes independent decisions about its desired use of the

transportation system during a typical day. An agent keeps a record of its decisions

in a plan. A plan contains the agent’s schedule of activities it wants to perform

during the day, including times and locations, along with the travel modes3 and

routes it intends to utilize to travel between activities” [Raney and Nagel, 2006,

p.305]. Just like the agents, their ”personal attributes such as sociodemographic

properties, the activity plan, and other internal variables can be accessed during the

entire modeling process” [Meister et al., 2010, p.4].

In order to start the MATSim simulation process, input data concerning supply

and demand are necessary. As a minimum, a network file as a description of trans-

port supply and an initial plans file as a description of transport demand are needed.

MATSim’s so-called agent database reads in the initial plans file, creates the agent

objects from it, and loads their plan(s) into their memory [Meister et al., 2010, p.5].

Once this is set up, the actual transport simulation, which models the interaction of

transport supply and transport demand is started. As illustrated in figure 3.1, the

simulation procedure can be divided into three steps: Traffic simulation constitutes

the simulation of vehicles on the roadway network. Plan scoring and plan selection

together represent the mental simulation that describes the decision-making process

of the simulated agents.

3 In MATSim, it is possible to simulate different modes of transport within one scenario. Currently,
automobile traffic and public transport can be simulated on a physical network. Other modes
are treated by teleportation, which means that their respective travel times are only dependent
on mode speed, beeline distance and a configurable factor.
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Figure 3.1.: MATSim

3.3.1. Traffic Simulation

In physical simulation of the transport system (traffic simulation) of MATSim, the

selected plans of all agents (i.e. the activity-travel patterns of all traveling individ-

uals) are simultaneously simulated. This traffic simulation is based with a queue

model, which falls within the type of mesoscopic traffic models as described in section

3.1.2. A directed graph is used, whose nodes/vertices (mostly) represent intersec-

tions and whose links/edges represent roadway segments. Every roadway segment

is modeled as a first-in-first-out (FIFO) queue and has the following properties:

• Free-flow speed

• Link length

• Flow capacity

• Number of lanes

• Allowed modes

In every time step of the simulation (usually one second), the state of each queue is

updated. First, it is checked whether there is at least one agent in the FIFO queue.
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If this is the case, the agent on top of the considered queue is put into the FIFO

queue of the next link of its route and assigned with a time stamp. This is, however,

only done if the following conditions are fulfilled:

• The agent has spent at least the free-flow travel time on the link. The free-flow

travel time is calculated based on the free-flow speed and the link length. The

time spent on the link is calculated based on current simulation time and the

time stamp the agent received on entrance to the current link.

• The flow capacity has not been exceeded in this time step. This is calculated

by checking whether the inverse of the flow capacity has passed since the last

agent left the queue.

• The next link on the agent’s route has free storage capacity. The storage

capacity is calculated based on link length, number of lanes and a typical

vehicle length.

In the next time step, the same procedure is repeated for all queues, i.e. all network

links. This procedure ensures that the boundary conditions of the infrastructure, in

which activities and traveling are performed, are accounted for. The flow capacity,

for instance, may cause congestion on a link by defining the maximum number of

agents that can leave a link within a given period of time. The storage capacity

accounts for the maximum number of agents on a link and may cause upstream

congestion spill-back as agents may have to wait on upstream links before being al-

lowed to enter the downstream link. Besides constraints with regard to the network,

activity plans impose constraints on agents as they are, for instance, not allowed to

leave an activity before they have arrived at it.

The outcome of the traffic simulation is called events. Events are occurrences

which are localized in time and space, e.g. departures, arrivals, starts or ends of

activities, or enterings or leavings a link. Through this events-based approach, the

microsimulation can handle and track every agent at all times. These events are

handled by the subsequent components of MATSim as described in the following

sections.

3.3.2. Plan Scoring

In the next step, each plan is evaluated quantitatively based on its own performance

after it has been executed in the synthetic reality [Moyo Oliveros, 2013, p.34], i.e.

the traffic simulation (cf. section 3.3.1). More precisely, The events generated by the

traffic simulation are used by the agents to calculate scores for their plans. In doing

so, only new scores for the most recently selected plan are calculated. The scores of

the other, non-selected plans stay untouched. Scoring in MATSim is done based on
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an utility-based approach as explained in section 3.2. The according utility function

[Charypar and Nagel, 2005, p.377] encompasses the agents’ activity participation and

their travel performance. The utility V (i) of a plan i equals the sum of (positive)

utilities of activity participation plus the sum of (negative) utilities of traveling (also

referred to as (travel) legs) between activities as expressed in equation 3.1.

V (i) =
∑
act∈m

Vperf,m +
∑

trav∈n
Vtrav,n (3.1)

where:

Vperf,m is the utility of activity m and

Vtrav,n is the utility of travel leg n.

For the representation of the utilities gained from performing activities, a loga-

rithmic form is employed as expressed in equation 3.2.

Vperf,m = βperf · t∗m · ln tperf,m (3.2)

where:

βperf is the marginal utility of performing activities at its typical duration,

t∗m is the typical duration of a given activity m, and

tperf,m is the actual duration of a given activity m.

For the representation of utilities incurred by traveling from one activity to the

next (i.e. a (travel) leg), a linear form is used as expressed in equation 3.3.

Vtrav,n = βtrav · ttrav,n (3.3)

where:

βtrav is the marginal utility of traveling and

ttrav,n is the actual duration of a given travel leg n.

Additional components, e.g. penalties for schedule delays like arriving late or

departing too early, can be added to the scoring function [Charypar and Nagel,

2005, p.377]. The first and the last activity are handled as one activity. Therefore,

there are always the same number of travel legs activities as there are activities.

3.3.3. Plan Selection

In the third step of the MATSim iteration, the agent decides which plan to execute

in the traffic simulation (cf. section 3.3.1) of the next MATSim iteration.

Before doing so, agents may generate new plans. The creation of new plans is

done by applying modifications to copies of randomly selected existing plans of the

agent. Modifications may be done with respect to various choice dimensions (e.g.

routing or time choice). To do so, (innovative) strategy modules, which correspond
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to different choice dimensions, are used. In order to find new routes, for instance,

a time-dependent Dijkstra algorithm is applied. It determines best routes based on

link travel times which are obtained from the traffic simulation [Flötteröd et al.,

2011, p.485].

The probability for a particular strategy module applied to a copy of a plan, is

related to a configurable weight that each strategy module is equipped with. If a new

plan is created by one innovative strategy module, this plan is marked as the agent’s

selected plan, which guarantees that this plan will be used in the next iteration.

Agents may, however, also decide not to create a new plan, but instead execute

one of their already existing plans. Accordingly, one of the existing plans has to be

chosen as the selected plan for the next iteration. This choice is performed with a

multinomial logit model, where the selection probability of a given plan i is related

to the plan’s score V (i), which is determined by equation 3.1:

P (i) =
eβscore · V (i)

Σj eβscore · V (j)
(3.4)

where:

P (i) is the selection probability of plan i out of all j plans in the agent’s memory,

V (j) is the score of plan j, and

βscore is the score parameter for plan selection. The higher the value of this param-

eter, the more the agent tends to choose a plan with a higher score.

This choice is referred to as probabilistic selection. The difference towards the

aforementioned innovative strategy modules like route choice or time choice is, how-

ever, that probabilistic selection does not create new plans. Just like the innovative

strategy modules, the probabilistic selection module also possesses a weight, which

determines the probability that this module is chosen.

In most simulations all innovative strategy modules are switched off after a certain

number of iterations. Afterwards only the probabilistic selection with a probability

of being applied in a given iteration of 100% is active. Thus, a MATSim simulation

run can be viewed as existing of two phases[Flötteröd et al., 2011, p.489]. The first

phase, in which new plans are generated and tested, can be regarded as choice set

generation. In the second phase, where only probabilistic selection according to

equation 3.4 is active, the choice set are, thus, fixed and agents do only select from

these fixed choice sets.

The maximum number of plans is limited for every agent by a configurable pa-

rameter. On the one hand, this is due to memory constraints. On the other hand,

plans with a low score do not need to be considered any further. Accordingly, the

plan with the worst performance is deleted at the beginning of the next iteration in

case the maximum number of plans would be exceeded otherwise.

In most simulations, the weight for probabilistic selection is set equal or higher
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than the sum of the weights of all other strategy modules to allow for a sufficient

amount of existing plans to be maintained by the agent.

If a plan has no score for any reason, e.g. in case it has just been created via

an innovative strategy module, it is selected automatically. This is done to ensure

that all existing plans are comparable to new activity plans generated by innovate

strategy modules [Meister et al., 2010, p.6]. If multiple plans without a score exist,

a random one of these it selected for execution.

Once a plan is marked as selected, either the next simulation iteration is started

with its first step, the traffic simulation (cf. section 3.3.1), or the simulation is

terminated in case the chosen number of iterations is reached. This number is mostly

selected so that it can be assumed that no further significant plan improvements can

be achieved though additional iterations. This system state is called an agent-based

stochastic user equilibrium [Nagel and Flötteröd, 2009, p.2].

3.3.4. Model Input

As stated in section 3.3, MATSim requires as minimum input a network file (de-

scription of transport supply) and plans file (description of transport demand). For

both, the *.xml format is used. A very simple example of a network consisting of

two nodes and one link is given in the following. As pointed out in section 3.3.1, the

links are further specified by length, capacity, free-flow spped, and number of lanes.

1 ...

2 <network>

3 <nodes>

4 <node id=”1” x=”−20000” y=”0”/>

5 <node id=”2” x=”−15000” y=”0”/>

6 ...

7 </nodes>

8 <links capperiod=”01:00:00”>

9 <link id=”1” from=”1” to=”2” length=”10000.00” capacity=”36000” freespeed=”

27.78” permlanes=”1” />

10 ...

11 </links>

12 </network>

An example of a plans file is given in the following. It states the (very simple)

plan of one agent who has a home activity (”h”), followed by a short work activity

(”w”) and another home activity. The activity locations are given in terms of the

nearest network link to the activity.

1 ...

2 <population>

3 <person id=”1” employed=”no”>

4 <plan selected=”yes”>

5 <act type=”h” link=”1” end time=”06:00:00” />

31



6 <leg mode=”car”>

7 </leg>

8 <act type=”w” link=”20” max dur=”00:30:00” />

9 <leg mode=”car”>

10 </leg>

11 <act type=”h” link=”1” />

12 </plan>

13 </person>

14 ...

15 </population>

Optionally, a counts file containing data from real-world traffic count station may

be used for comparison between simulation and real-world measurements. In the

following, a simple example of one count station on a network link labeled as number

14 with the first ten hourly values of a day is given.

1 <counts>

2 <count loc id=”14” cs id=”handmade 01”>

3 <volume h=”1” val=”0” />

4 <volume h=”2” val=”0” />

5 <volume h=”3” val=”0” />

6 <volume h=”4” val=”0” />

7 <volume h=”5” val=”0” />

8 <volume h=”6” val=”0” />

9 <volume h=”7” val=”200” />

10 <volume h=”8” val=”0” />

11 <volume h=”9” val=”0” />

12 <volume h=”10” val=”0” />

13 ...

14 </count>

15 ...

16 </counts>

Other input files, for instance, regarding information on activity locations (facili-

ties) may be used optionally depending on the simulation setup.

3.3.5. Conclusion

As pointed in section 1.1, approaches to simulate the transport system have to

account for the interaction of transport supply and transport demand. Based on

this, the demand can be optimized with respect to a momentarily fixed supply and

thus a representation of the real-world travel patterns can be found. In MATSim this

task is carried out on the basis of microsimulation, which constitutes a mechanism

for reproducing or forecasting the state of a dynamic, complex system by simulating

the behavior of the individual actors in the system over both time and space [Miller

et al., 2004, p.10], [Guo and Bhat, 2007, p.2].

The optimization in MATSim, i.e. the optimal exploitation of given transport
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supply by transport demand, adheres to the concept of evolutionary algorithms,

which describes the iterative generation, evaluation, and selection of agents’ daily

plans [Moyo Oliveros, 2013, p.27]. The repetition of the MATSim iteration effects

that agents to improve their plans over many iterations, which is why this process

is referred to as learning [Flötteröd et al., 2011, p.484]. This notion becomes even

more insightful when considering the fact that an agent can hold a set of activity

plans in its memory from which a choice can be taken. Thus, the agent does not

forget ”past” plans, but may use them again later and see how good they are as

compared to other plans. In particular, a plan may perform differently in different

iterations [Meister et al., 2010, p.4] as it is dependent on the behavior of other

agents that steadily adapt their plans as well. This process may also be regarded

as a genetic algorithm as plans compete with each other. Every time a new plan is

added to the agent’s memory, the worst-performing existing plan is deleted because

of the maximum number of plans that may not be exceeded. ”This is a variation

of elitist selection in genetic algorithms, which guarantees that the individual with

the highest fitness will survive the selection process to the next generation” [Meister

et al., 2010, p.6].

As ”each traveler in the simulation is individually resolved” [Charypar and Nagel,

2005, p.370], the approach is referred to as agent-based simulation or multi-agent

simulation. As ”not only routes are considerd for fitness evaluation, but also the re-

alization of activities” [Moyo Oliveros, 2013, p.27], MATSim constitutes an activity-

based approach. Besides other advantages, it can, thus, be easily coupled with

activity-based demand models (ABDM), where each traveler is kept as an indi-

vidual throughout the whole modeling process as well [Charypar and Nagel, 2005,

p.369].

In fact, MATSim itself can be regarded as an activity-based demand module [Meis-

ter et al., 2010, p.4]. MATSim overcomes the separation of demand generation and

route assignment that exists in traditional four-step models (cf. section 2.1) as well

as approaches to couple activity-based demand models with network aggregation-

based route assignment modules (cf. section 2.2). Instead, the interaction of supply

and demand are simulated in an integrated way.

MATSim’s genetic algorithm effects that transport demand adapts itself to trans-

port supply over the course of iterations. It is, thus, possible to start the simulation

procedure with little initial assumptions and have the evolutionary algorithm cater

for the improvement of the initial demand representation. Depending on how elab-

orate the representation of transport demand is at startup of this process, it can,

thus, be argued that MATSim itself becomes the (activity-based) demand generation

module.

Specifically, Balmer [2007] shows how MATSim’s iterative simulation process ap-

plied leads to an improvement of agent’s plans with regard to various choice dimen-
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sions. To do so, a respective strategy module for each choice dimension to which

agents are supposed to conduct optimization has to be included. If the modules

work correctly, the properties of the corresponding choice dimensions (e.g. modes

shares or travel times) will converge to realistic values. In this respect, it is funda-

mental to distinguish fixed from unfixed choice dimensions. ”Based on what [choice]

dimension of the demand will be optimized, and which [choice] dimension will stay

fixed during optimization, the initial demand modeling process has to make sure to

model the fixed part such that it reflects reality. For example, if the system does

not allow agents to optimize their choice of mode of transport, the initial demand of

the scenario needs to produce a realistic modal split on the basis of available survey

data. But if the agents can choose the modes by themselves, the modal split process

step can be left out. Therefore, the relaxed state of the optimization process should

reflect reality by comparing its result with measurements” [Balmer, 2007, p.52f]. In

other words, only those properties of the choice dimension to which no modification

will be done in MATSim’s iterative procedure, have to be initially correct.

By this approach, ”elements of demand generation are thus elevated from a simple

pre-process [of route assignment] to an integrated part of demand-supply equilibra-

tion, as mode choice, departure time choice or even the activity sequence may be

susceptible to changes in traffic patterns” [Meister et al., 2010, p.4].

3.4. Cadyts

As discussed in section 1.2, microsimulations have become an important tool for the

dynamic model representation of the interaction of transport demand and transport

supply [Miller et al., 2004, p.10], [Flötteröd, 2009, p.2], [Flötteröd, 2010, p.1].

Advantages (as already mentioned in section 1.2) of microsimulations over tradi-

tional, aggregate, analytical models are that they offer a behaviorally much more

sound representation of the transport system. Because ”the behavior of the ac-

tors [...] within the system being modeled is significantly non-linear in nature, and,

hence, significant bias can exist if one attempts to model such a system using arbi-

trary aggregations of these actors” [Miller et al., 2004, p.16]. In a microsimulation

approach, every traveler is considered individually with all its relevant attributes

retained throughout the whole modeling process [Meister et al., 2010, p.2].

Furthermore, the iterative simulation procedure of the microsimulation applied

in this study has an intuitive interpretation as a learning process which travelers

conduct in optimizing their daily schedules (cf. section 3.3.5. This is an advan-

tage compared to ”mathematically more involved” [Flötteröd, 2009, p.2] analytical

approaches.

The drawbacks of microsimulations are, however, that they pose high needs on

data supply and that ”the intuition of learning alone is too weak to analyze the
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results of an iterated simulation” [Flötteröd, 2010, p.1]. In contrast to analytical

models, microsimulations do not have an explicit mathematical specification of the

respective sub-model, but rather a sequence of processing steps that build the model

output. The absence of a mathematical description for the process of generating the

output ”has, until recently, rendered the calibration of the system a task based on

intuition and, unfortunately, the arbitrariness this brings along”[Flötteröd et al.,

2011, p.487].

The aim of the tool Cadyts (Calibration of dynamic traffic simulations), which is

presented in this section, is to overcome these drawbacks. To do so, Cadyts uses a

mathematically well-defined stochastic view on the simulation and calibrates it in

a Bayesian setting [Flötteröd, 2010, p.1]. Cadyts is designed as a flexible, disag-

gregated demand calibration tool, which can interact with any stochastic, dynamic,

and iterative transport simulation framework [Moyo Oliveros, 2013, p.51], [Flötteröd,

2010, p.2]. It allows to calibrate arbitrary choice dimensions of individual-level travel

behavior from real-world measurements [Flötteröd, 2010, p.2], [Flötteröd et al., 2011,

p.487], [Moyo Oliveros, 2013, p.51]. Given a set of macroscopic observations, Cadyts

thus answers the question of ”how the physical or behavioral microscopic rules of the

agent-based simulation need to be modified in order to move the simulation closer

to the observations” [Moyo Oliveros, 2013, p.4].

3.4.1. Interaction with Transport Simulation

First, in order to apply Cadyts to a concrete dynamic transport microsimulation,

Cadyts needs to be initialized. Specifically, it also needs to be provided with the

measurement data based on which the calibration is to be conducted [Flötteröd,

2010, p.2].

These measurements have to be registered by Cadyts. The type of measurements

can – in principle – be of any kind. The most common, which will also be used in

this study is vehicular traffic counts on an hourly basis. Based on such data, Cadyts

has been employed for the estimation of vehicular travel demand in a number of

simulators and scenarios (cf., for instance, Flötteröd et al. [2011]). It has, however,

also been run for a microscopic public transport demand model, in which real-world

counts were given as passenger counts at stop facilities on an hourly and daily basis

[Moyo Oliveros, 2013, p.51].

Second, Cadyts must be able to affect the agents’ plan choice [Flötteröd, 2010, p.3].

For the calibration of a simulations in which choice is based on utility-maximization

models like MATSim, calibration works by calculating a so-called linear plan effect.

The introduction of this effect into the transport simulation is flexible and can be

done via different mathematically consistent ways. In case choices are modeled with

a multinomial logit model, the calibration is achieved by adding the linear plan effect
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to the already calculated utility of this plan4 [Moyo Oliveros, 2013, p.53].

The agents’ plan selection based on this modification is, then, reported to Cadyts,

which runs a regression model for every measurement location and every time bin.

The real-world measurement constitutes the dependent variable, while the number

of agents that intend to cross the measurement location is used as the explanatory

variable. The slope of the resulting regression line provides sensitivity information

to the calibration [Moyo Oliveros, 2013, p.53].

Third, Cadyts must be informed about the simulated network conditions in order

to compare them to the measurement data [Flötteröd, 2010, p.3]. Therefore, Cadyts

reads the output of the transport simulation into a container which stores time-bin-

specific traffic volumes for any measurement location [Moyo Oliveros, 2013, p.53].

The way these three steps are implemented depends on the transport simulation

that Cadyts is coupled with. From a computational perspective, two different ap-

proaches are possible. First, if the transport simulation is implemented in the same

programming language as Cadyts, i.e. Java, Cadyts and the transport simulation

may interact via direct function calls. Technical details are outlined in section 3

of Flötteröd [2010]. Second, if the transport simulation is implemented in a pro-

gramming language other than Java, a file-base interaction can be used, which is

presented in detail in section 4 of Flötteröd [2010].

3.4.2. Calibration via Plan Selection

The description of the calibration approach of Cadyts in this section is to some

extent based on Flötteröd et al. [2011]. In section 3.3.3, it was explained how agents

select one of their plans to be executed in each iteration of the simulation process

in MATSim. If they do not create a new plan in a given iteration by applying

an innovative strategy module, then one plan i of their existing plans is chosen

according to a choice probability P (i). Agents do not create a new plan when no

innovative strategy modules is selected in the given iteration and always in later

iterations of the simulation run when all innovative strategy modules are switched

off (cf. section 3.3.3) – as it is the case for almost every configuration. This choice

probability P (i) is determined on the basis of the scores (cf. equation 3.1) of the

plans through equation 3.4, which represents a multinomial logit model. Capturing

the essence of this equation and taking care of the fact that multiple agents n ∈ N
will be considered from now on, equation 3.4 may be written as

Pn(i) ∼ exp(V (i)) (3.5)

4 The details concerning the calculation a given in the following section (cf. Section 3.4.2.
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Formula 3.5 is called the a-priori choice probability (of agent n to choose plan i),

indicating that this is the choice probability of the plan prior to considering how

the choice probability changes when, additionally, real-world observation data are

taken into account by Cadyts.

For calibration, Cadyts combines the a-priori choice distribution Pn(i) with the

available traffic counts ~y into a a-posteriori choice distribution Pn(i|~y) in a Bayesian

manner [Flötteröd et al., 2011, p.487]. ”The approach uses the freedom that is

left when individual decisions are modeled as random draws from a discrete choice

model: Decisions that are congruent with the observations become preferred over

those that are not” [Moyo Oliveros, 2013, p.51]. In its most simple and general

representation5,

Pn(i|~y) ∼ exp

(
∂L(~y)

∂Pn(i)

)
· Pn(i) (3.6)

where:

Pn(i|y) is the a-posteriori choice probability of plan i of agent n,

Pn(i) is the a-priori choice probability of plan i of agent n,

~y is the vector of all measurement data, and

L(~y) is the log-likelihood function of observing the measurement data ~y.

Substituting equation 3.5 into the posterior choice model (i.e. equation 3.6) yields6

equation 3.7:

Pn(i|~y) ∼ exp

(
V (i) +

∂L(~y)

∂Pn(i)

)
(3.7)

As stated in equation 3.7, the application of the a-posteriori choice distribution

requires nothing but adding a plan-specific utility correction (also referred to as

utility correction, utility offset, or linear plan effect) to every considered plan. In

adding this utility correction, ”Cadyts does not make any assumption about the form

of the choice distribution or about the choice dimensions it represents” [Flötteröd

et al., 2011, p.487]. Cadyts does not change anything about the parameters of

the choice model that generates the a-priori choice probabilities Pn(i). Thus, this

approach is independent of the specification of the choice model and therefore very

felxible [Flötteröd et al., 2011, p.488].

If traffic counts are independently distributed,

L(~y) =
∑
ak

L(ya(k)) (3.8)

5 For more theoretical background, cf. [Flötteröd, 2009, p.4f].
6 Here the identity exp(x) · exp(y) = exp(x + y) is utilized.
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Using this identity, equation 3.7 becomes

Pn(i|~y) ∼ exp

V (i) +
∑
ak∈i

∂L(ya(k))

∂Pn(i)

 (3.9)

where:

ya(k) is the real-world measurement of traffic count location a in time bin k.

Introducing a notation for the plan-specific utility corrections
∑
ak∈i ∆Va(k), for-

mula 3.9 may be rewritten as:

Pn(i|~y) ∼ exp

V (i) +
∑
ak∈i

∆Va(k)

 (3.10)

The plan-specific utility corrections are composed of link- and time-additive cor-

rection terms Va(k), which are determined per measurement location and per time

bin. They are determined independent of affected plans. The utility correction of

a full plan of a given agents is calculated as the sum of all Va(k) that are covered

by this plan [Flötteröd et al., 2011, p.488]. In case congestion can assumed to be

light and the traffic counts are independently and normally distributed, the utility

correction term becomes

∆Va(k) =
ya(k)− qa(k)

σ2
a(k)

(3.11)

Therefore, the a-posteriori choice probability of plan i of agent n becomes

Pn(i|~y) ∼ exp

V (i) +
∑
ak∈i

ya(k)− qa(k)

σ2
a(k)

 (3.12)

where: Pn(i) is the a-priori choice probability of plan i of agent n,

ya(k) is the real-world traffic count at location a for time bin k,

qa(k) is the simulated traffic count at location a for time bin k,

Vn(i) is the score of a plan i of agent n as calculated with equation 3.1, and

σ2a(k) is the variance of the traffic count at location a for time bin k. It is calculated as

σ2a = max (varianceScale·ya(k), minStdDev2). The variance scale is a configurable

factor – here chosen as 1.0 – for measurements without explicit variance declaration,

assuming to be proportional to the measured value ya(k) to maintain consistency

with the assumption of Poisson distributed measurements [Moyo Oliveros, 2013,

p.54].
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Figure 3.2.: MATSim with Cadyts Calibration via Plan Selection

To conclude, in this calibration approach Cadyts affects the transport simulation

in the plan selection step (cf. section 3.3.3) in this calibration approach. To illustrate

this graphically, the MATSim structural schema (cf. figure 3.1) can be modified as

depicted in figure 3.2.

Cadyts effects that plan selection becomes – in addition to being dependent plan

scores – a function of real-world measurements (e.g. real.world traffic counts). The

more a plan contributes to reproducing the real-world measurements in the simu-

lation, the more likely it will be selected by the agent. Therefore, Cadyts ”adjusts

the plan choice probabilities of all agents such that they result in simulated network

conditions that are consistent with the traffic counts” [Flötteröd, 2009, p.3].

3.4.3. Calibration via Plan Scoring

A discussed in section 3.3, the mental simulation of MATSim consists of two steps:

Plan Scoring and plan selection. In the previous section (cf. section 3.4.2), it was

shown how the calibration based on Cadyts can be carried out by influencing the

agents’ plan selection by a utility correction (linear plan effect). More precisely, the

linear plan effect calculated by Cadyts was used to modify the (a-priori) plan choice

probability by including the utility correction alongside the considered plan’s score
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in the logit model (cf. equation 3.12) used for plan selection.

Thus, Cadyts acted as a selector on the basis of its own internal plans evaluation

[Moyo Oliveros, 2013, p.64]. This has the disadvantage that the utility correction

is not a part of the plan score which the agent maintains (learning mechanism, cf.

section 3.3.5). Instead, it is only temporarily calculated and only applied in the

moment when the plan selection process is influenced by it. Since there is no data

structure to carry the information along over more iterations, the utility correction

is discarded after being applied in the plan selection.

An alternative to the integration of the Cadyts utility offset into the choice process

is to embed the Cadyts utility correction into the MATSim scoring function (cf.

equation 3.1. Thus, the Cadyts utility correction becomes an extra component of

the compound MATSim scoring function next to activity scoring and travel leg

scoring [Moyo Oliveros, 2013, p.64]. Formally, the MATSim utility function given

in equation 3.1 is, thus, modified to:

V (i) =
∑
act∈m

Vperf,m +
∑

trav∈n
Vtrav,n + w ·

∑
ak∈i

∆Va(k) (3.13)

where:

w is the weight of Cadyts utility correction.

Illustrating this approach graphically, the MATSim structural schema (cf. figure

3.1) can be modified as depicted in figure 3.3.
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Figure 3.3.: MATSim with Cadyts Calibration via Plan Scoring

This procedure constitutes a novel approach of coupling MATSim with Cadyts

and is first presented and applied by [Moyo Oliveros and Nagel, 2013, p.9] and

comes along with advantages.

On the one hand, through the integration of the calibration utility correction with

the other scoring components, the performance in terms of real-world measurement

reproduction is also included as part of the plan evaluation. Thus, both performance

in terms of traffic behavior (activity and travel leg scoring) and measurement re-

production (Cadyts utility offset) can be evaluated together with compound utility

formulation [Moyo Oliveros, 2013, p.74].

On the other hand, the information from measurement reproduction has a higher

longevity. By including the utility offset into the scoring function, good plans in

terms of calibration can persist along iterations. Also, this information is avail-

able when deciding which plan to discard in case the maximum number of agent

plans is exceeded. These properties are positive in terms of calibration effectiveness

[Moyo Oliveros, 2013, p.74].
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3.4.4. Demonstration

In order to briefly demonstrate the functioning of Cadyts, the so-called equil network,

a simple network regularly utilized for demonstration purposes in MATSim, is used.

It consists of one-way links, which can only be passed in clockwise direction, and is

depicted in figure 3.4.

Figure 3.4.: Equil Network

1000 agents are simulated. For demonstration purposes they are all assigned

with identical plans as given in the example in section 3.3.4. They start with a

home activity on link 1 in the upper, left part of figure 3.4 and leave for a work

activity on link 20 in the upper, right part of figure 3.4 at 6 a.m. As depicted,

there are nine alternative routes for the trip from link 1 to link 20. Since these

nine alternative routes all have the exact same length7 and exact same capacity,

it is expected that traffic will distribute equally among them. Accordingly, about

111(= 1000/9) vehicles can be expected on each of these nine links in the time bin

from 6 a.m. through 7 a.m.

For demonstration purposes, four fictitious traffic count stations are used. Ac-

cording to them, 200 vehicles have (allegedly) been counted on links 14, 15, 16 in

the time bin from 6 a.m. though 7 a.m. The fourth count station on link 21 does

not need to be considered since it is the only route which agents can use on their

way back home from work and, thus, trivial. If traffic is distributed equally on the

nine alternative link on the way from the agents’ home to their work, it is expected

7 The links have the same length in the network properties, although figure 3.4 implies differently.

42



that the number of simulated vehicles which pass the three links with the count

stations will be lower by 89 = 111− 200 than given fictitious count data. Figure 3.5

depicts the difference between simulated volumes and (fictitiously) counted volumes

over the course of a MATSim simulation run with 200 iterations. The innovative

strategy module by which agents change routes in their plans is switched off after

90 iterations. The module for the probabilistic selection among plans according to

equation 3.4 is active over all iterations. It can be seen that differences between

simulated and (fictitiously) counted volumes are in the expected magnitude.
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Figure 3.5.: Simulated and Counted Volumes without Calibration

Now, Cadyts is used. As explained in section 3.4.2, Cadyts combines the thus far

used a-priori choice probability to select a given plan with the information concern-

ing observed traffic volumes into an a-posteriori choice probability. If the algorithm

works correctly, it can, thus, be expected that Cadyts modifies agents’ plan selec-

tion in such a way that the differences between simulated and (fictitiously) counted

volumes become smaller. Figure 3.6 illustrates that this is the case. The differences

for the trivial case of link 21, where no alternative route exist, are expectedly always

zero.
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Figure 3.6.: Simulated and Counted Volumes with Calibration

It is obvious in figure 3.6 that the difference measures for links 14 though 16 do not

converge to zero, but to a value of around −30. This is due to the fact that Cadyts

does not influence agents behavior as much as to perfectly reproduce (fictitiously)

given observations form measurements.

Such a calibration behavior would, however, neither be expected nor intended.

Next to the Cadyts utility offset, the utility function also encompasses the scoring

terms related to activity participation and traveling (cf. section 3.4.3). Since these

two terms, which effected the behavior depicted in figure 3.5, are still active, they

counteract the Cadyts utility offset to some extent. This counteraction of the two

behavioral scoring components against the Cadyts scoring component seems logical,

because (fictitiously) observed measurements are somewhat illogical form a behav-

ioral point of view. They assume that significantly more travelers travel on routes

14 though 16 than on the six alternative routes even though these are fully equal

in any relevant respect. Therefore, the observation that Cadyts can only influence

agents’ choices to a limited extent is perfectly in line with expectations.

3.4.5. Conclusion

In the previous section 3.4.4, it was shown how the Cadyts calibration algorithm

takes effect. Specifically, it was observed that some agents are rerouted in such a way

as to reproduce (fictitious) observations from reality. At the same time, it became

clear that the effect of Cadyts is (as expected) limited in case it has to counteract

the behavioral parts of the plan scoring (i.e. the scoring components for activity

participation and travel legs).

Specifically in the demonstration in the last section, it was shown how Cadyts
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makes agents choose some routes with a higher probability than others even though

all of these routes were identical in terms of all relevant attributes. But why should

an agent prefer one route over another if they are identical in terms of all relevant

attributes? An interpretation of this observation may be some kind of unobserved.

For instance, links 14 through 16 may have wider lanes, a better synchronization

of traffic lights, or just look nicer. All these potentially relevant properties are not

considered in the behavioral model, but may still be important for travelers’ choices

and, thus, result in observed conditions. Therefore, Cadyts may be regarded as a tool

to bridge the gap between modeled behavior neglecting unobserved attributes and

(unexplained) observed behavior. Hence, the Cadyts utility correction (cf. sections

3.4.3 and 3.4.2), which is responsible for the calibration effect, can be considered an

equivalent to an alternative-specific constant of a discrete choice model [Flötteröd

et al., 2011, p.489]

Another intuitive interpretation of Cadyts according to Flötteröd et al. [2011,

p.488] is that of a ”controller that steers the agents towards a reasonable fulfillment

of the measurements: For any sensor-equipped link, the according [correction term]

is larger than one if the measured flow is higher than the simulated flow such that

the choice probabilities of plans that cross this link are scaled up. Vice versa, if the

measured flow is lower than the simulated flow, the according factor is smaller than

one such that plans that cross this link are penalized.”
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4. Methodology

The scenario considered in this study consists of the two German federal states

of Berlin and Brandenburg, of which the city-state Berlin constitutes the planning

area1, while the areas of Berlin and Brandenburg together make up the evaluation

area2. Only automobile traffic is considered. In the following section 4.1, the model-

ing approach is described in detail, including a discussion of alternatives. In section

4.2 the modeling approach is justified (i) in terms of its internal soundness and (ii)

with regard to current issues in travel demand modeling. Then, the creation of the

model with a focus on input data is outlined in section 4.3. Finally, approaches and

data for validation is addressed in section 4.4.

4.1. Modeling Approach

In order to model the demand for transport, the activity-based demand model CEM-

DAP (cf. section 2.3) is used. As already explained, CEMDAP produces as output

the complete daily activity-travel patterns of individuals. Being an activity-based

demand generation model, the answers to the first four of the five fundamental

questions raised in section 1.1.2 are contained within the output of CEMDAP:

1. How many people wish to travel?

2. From where to where do they wish to travel?

3. At what time do they wish to travel?

4. Which mode of transport do they wish to use?

5. Which route do they wish to follow?

Since only automobile traffic is considered in this study, the fourth question is ren-

dered obsolete. The activity-travel patterns generated by CEMDAP can, however,

not be regarded as valid representations of the travel demand of the agents in the

1 The planning area is the spatial region for which an action plan is to be developed. Often, it is
the area which a certain planning administration is in charge for [Richter and Schreiber, 2011,
p.50].

2 The influence of planned policies regularly exceeds the planning area which is why the evaluation
area encompasses the planning area plus its area of influence with regard to traffic [Richter and
Schreiber, 2011, p.50].
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scenario. This is due to the fact that the fifth aforementioned question (Which route

do travelers wish to follow? ) has not yet been answered. This is true for almost all

activity-based demand models as already pointed out in sections 1.1.2 and 2.2.

Thus, the interaction with transport demand and transport supply (cf. section 1.1

and the introduction of chapter 3) has not been considered at the point of finalization

of the activity-based demand model. For instance, only beeline distances between

different activity locations have been taken into account in this study’s application of

by CEMDAP3. In contrast, no network events, e.g. congestion, have been taken into

account. As pointed out earlier, the interaction of supply and demand is, however,

essential to understand the emergence of observable travel patterns and, thus, to

become able to analyze chances in the transport system.

Therefore, the central question for the next sections (cf. sections 4.1.1 through

4.1.3) is how the interaction of transport supply and transport demand can be

modeled under the assumption that an initial demand representation has already

been generated with CEMDAP.

4.1.1. Activity-based Demand Model and Aggregate Route Assignment

As already mentioned in section 2.2, a common approach to load transport demand

– in case it has been generated with an activity-based model – on the network

is to draw isolated trips out of the individual activity patterns generated by the

activity-based demand model (e.g. CEMDAP) and aggregate these trips into OD

matrices. These OD matrices are, then, fed into a separate route assignment module

[Flötteröd et al., 2011, p.482], [Meister et al., 2010, p.3]. This module basically works

like the fourth step (route assignment) of the four-step model (cf. section 2.1). As

explained in section 2.1, the route assignment module distributes all trips on the

network so that a predefined criterion called user equilibrium or Nash equilibrium is

reached. If time-dependency is considered, OD matrices are generated for predefined

time slices enabling, for instance, the consideration of different levels of traffic at

different times of day. If time dependency is taken into account, the procedure is

referred to as dynamic traffic assignment (DTA) 4.

The approach of coupling a activity-based demand model with (dynamic) traffic

assignment possesses advantages over the classic four-step process. For instance,

individual attributes can be considered at least up to the point of the application

3 The detailed functionings are given in appendix B.
4 In a strict sense, dynamic actually means related to forces. Thus, the physical discipline of

dynamics encompasses statics (non-moving forces) and kinetics (moving forces). Over the course
of time, dynamics became to some extent synonymous to kinetics so that, today, we think of
forces as being either static or dynamic (instead of being either static or kinetic). Since static
bodies do not move (within the scope of observation), they are somewhat time-independent. By
contrast, bodies that move are dependent upon time in various respects. Therefore, the adjective
dynamic is widely understood as time-dependent today even though instationary would be the
etymologically more correct term.
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of the route assignment algorithm [Raney and Nagel, 2006, p.306]. By aggregating

the demand into OD matrices before it is loaded on the network, however, the

individuality of the travelers is lost. Thus, their corresponding properties are a

lost before the step of choosing routes. Hence, ”problems immediately show up

if one attempts to base a route choice model in a toll situation on demographic

characteristics — the demographic characteristics, albeit present in the ABDM, are

no longer available at the level of the assignment. Similarly, in all types of intelligent

transport system (ITS) simulations, any modification of the individuals decisions

beyond route choice becomes awkward or impossible to implement” [Flötteröd et al.,

2011, p.482].

This is due to the fact that route choice is carried out in the assignment step, while

choice dimensions like location choice and time choice are conducted in the activity-

based demand model. Thus, a separation exists between route choice and the other

choice dimensions resulting in the aforementioned issues. While said separation may

be comprehensible in the light of the development history of transport models, this

splitting of choice dimensions is questionable from a behavioral perspective. ”It

can be argued that route choice is also a behavioral aspect, and in consequence

the decision to include route choice into the assignment model rather than into the

demand model is arbitrary” [Flötteröd et al., 2011, p.482]. This is why it has to be

followed that this approach does not fulfill the requirements poses above, namely to

simulate the interaction of supply and demand on the network. While interactions

imply a bidirectional information exchange, this approach takes both counterparts

largely as given, which may only be overcome to a limited extent via so-called

feedback loops as discussed in section 2.1.

4.1.2. Integrated Demand-Supply Equilibration

An alternative approach, which overcomes the behavioral inadequacy of the separate

consideration of route assignment and demand generation in the above-described

procedure (cf. section 4.1.1) is using a simulation framework that explicitly consid-

ers the interaction of supply and demand. An example is MATSim which alternates

between a physical simulation of the agents on the network and an interrelated men-

tal simulation of the decision-making processes of agents as described in section 3.3.

In MATSim, route choice is treated like any other choice dimension. All choice di-

mensions are iteratively optimized in the mental layer of the simulation (cf. sections

3.2, 3.3.2, and 3.3.3).

In technical terms, it can, thus, be argued that ”route assignment” in MATSim

– when viewed in the light of traditional models – is divided into a route choice

module and a network loading module [Flötteröd et al., 2011, p.482]. While the

route choice module is one of many strategy modules (cf. section 3.3.3) that carry
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out plan modifications in the mental layer of the integrated simulation procedure,

network loading is represented by the traffic simulation (cf. section 3.3.1). Since a

microscopic (or, more precisely mesoscopic (cf. section 3.1.2) traffic flow simulation

is applied, the integrity of individual travelers (agents) is maintained throughout

the entire modeling process.

This procedure can also be viewed as extending the iterative procedure of a dy-

namic traffic assignment (DTA) module towards choice dimensions beyond route

assignment [Meister et al., 2010, p.4]. While in a DTA a (time-dependent) user

equilibrium is found via iteratively adapting route assignment, the MATSim pro-

cedure iteratively modifies various choice dimensions to find a good set of travel

options (plans) for each agent. So, ”elements of demand generation are elevated

from a simple pre-process to an integrated part of demand-supply equilibration”

[Meister et al., 2010, p.4]. ”This implies that, at least in principle, all choice di-

mensions of the ABDM can react to the network conditions”[Flötteröd et al., 2011,

p.483].

Advantages over the procedure described in the previous section (cf. section 4.1.1)

are that all choice dimensions ”can be related to the characteristics of the synthetic

person. For example, toll avoidance can be based on income, or emission calculations

can be based on the type of vehicle” [Flötteröd et al., 2011, p.482]. Further, analyses

can be done on arbitrary levels of aggregation or without any aggregation at all, since

the properties of every individual agent are accessible during the whole simulation

process.

Since the adaption of demand is central in this procedure, it can be argued that

this procedure itself constitutes an (activity-based) demand model. In fact, it is pos-

sible to start the simulation procedure with very few initial assumptions and, then,

have the evolutionary algorithm cater for the improvement of the initial demand

representation (cf. section 3.3.5). To enable this optimization, a corresponding

strategy module for each choice dimension to which agents are supposed to make

modifications has to be included. If these modules work correctly, the properties

of the corresponding choice dimensions will converge to realistic values. Therefore,

the properties of the choice dimension to which modifications will be made during

the procedure do not need to be represented fully correct at the initialization of the

simulation. Importantly, however, those choice dimension to which no modification

will be done in MATSim’s iterative procedure, have to be initially correct [Balmer,

2007, p.52f].

In this specific study, however, many choices with respect to several choice di-

mensions have already been taken in the activity-based demand model CEMDAP.

The next section (cf. section 4.1.3), therefore, describes how the information gener-

ated by CEMDAP can be used fruitfully in the simulation procedure that has been

described in this section.
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4.1.3. Coupling CEMDAP and MATSim

As pointed out above (cf. section 4.1), the answers to four of five central questions

concerning transport demand modeling are contained within the output of CEM-

DAP. Unanswered, however, remains the question Which route do travelers wish to

follow?. Thus, the goal of this study is to couple CEMDAP with MATSim, which

addresses the selection of routes. At the same time, it is intended to use CEMDAP’s

output most effectively.

As CEMDAP’s output is fully disaggregated to the individual-traveller level it is

a perfect match with the requirements of the input population data for MATSim.

Nothing more than some data structural rearragement is necessary to use the daily

activity-travel pattern that CEMDAP provides as input for MATSim5. Hence, the

application of CEMDAP in this study can be regarded as an upstream process for

MATSim. It creates an initial demand representation so that MATSim only needs

to be applied to simulate the interaction of supply and demand on the network, but

only to a limited extent as a demand generation tool itself – as discussed in previous

section 4.1.1.

This has the advantage that fewer iterations are necessary since a demand rep-

resentation is already existing at the startup of the simulation. Moreover, fewer

innovative strategy module need to be applied during the simulation since decisions

concerning several choice dimensions have already been made in the activity-based

demand model. This speeds up the simulation.

Besides conducting the assignment of individual agents with trips, the coupling of

CEMDAP and MATSim has another purpose. Like any model, CEMDAP needs to

be estimated6 for the scenario of application. This step is, however, left out in this

study, which is due to practical as well as conceptual reasons.

From a practical perspective, the estimation effort would have been very high7

because of the sheer quantity of coefficients to be estimated and the challenging data

requirements related to it. While this may, however, not be an important reason

in its own right, saving the estimation effort is, however, perfectly in line with the

following conceptional reason.

From a conceptional perspective, one goal of this study is to build a model that

suffices with a very low amount of input data and still yields a good representation

of real-world traffic patterns (cf. section 1.3). Therefore, instead of focusing on

acquiring input data to estimate the coefficients of the applied modeling framework,

the output is generated with readily available model parameters from a somewhat

comparable setting.

As, by this means, the step of model estimation is omitted, the CEMDAP output

5 Technical details are given in A.
6 In more precise terms, the coefficients of model variables have to be estimated.
7 The reasons for this are outlined in section refsec-justification.
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may, obviously, not be regarded as representative activity-travel patterns of the real-

world traveling population of the planning area. It can, however, still be utilized

as an initial approximation towards real-world activity-travel patterns or, in other

words, an initial guess of a potential demand representation.

The crucial question now is how to come from this initial demand suggestion to a

representation of transport demand representation that can be considered valid in

that it reflects the transport-relevant strata of behavior of the real-world population.

As illustrated in the upper part of figure 4.1, the approach applied in this study is to

run CEMDAP multiple times. Since CEMDAP involves probabilistic components

in its sub-models, a to some degree different output is created each time CEMDAP

is run. Thus, multiple suggestions for potential demand representations are created.

Figure 4.1.: Methodology
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These potential representations of demand for transport are then fed into MAT-

Sim (cf. section 3.3). From this point, MATSim’s iterative simulation procedure

(illustrated in the central, circular part of figure 4.1) is carried out as described in

detail in section 3.3 as well as in the previous section (cf. section 4.1.2). First, the

realized demand for transport, i.e. traffic, is simulated in a representation of the

physical transport system (physical simulation). Second, the choice processes that

travelers undertake based on what they experienced while traveling are simulated

(mental simulation). Via this mental simulation of the individual travelers’ decision

making, the demand optimizes itself in respect to supply utilization. So, those ini-

tial suggestions of a demand representation proposed by the preceding application

of CEMDAP that do not turn out to be suitable are gradually sorted out.

As explained in section 3.3.5, the consideration of choice dimensions is central

to this process. Only the model properties related to choice dimensions towards

which no modification can be made during the simulation have to be represented

correctly at the start of the simulation. Choice dimension whose properties are

subject to modification, however, do not need to be initially correct. While in the

approach described in section 4.1.1 only (an equivalent to) route choice was left after

the demand generation, properties in respect to basically all choice dimensions were

modifiable in the transport simulation in the approach described in section 4.1.2.

Which are the fixed and which are the unfixed choice dimension for the approach

described here? First of all, since in this study only automobile traffic is considered,

the choice of a mode of transport is fixed. Accordingly, the number of motorists

should be initially correct.

Second, location choice and time choice are also regarded as fixed from the per-

spective of the transport simulation. This means that individuals cannot create new

travel options in terms of timing or location choice during the transport simulation.

The special feature of the approach here is, however, that they are still able to adjust

their timing or to switch locations among the alternatives they are provided with by

the initial demand suggestions generated by the activity simulation (cf. section 4.1.

This approach constitutes a compromise between fixed and unfixed choice dimen-

sions. On the one hand, no innovative strategy modules (cf. section 3.3.3) for these

choice dimension are needed. Thus, the effort of ensuring the correct functionings

of these modules can be saved. At the same time, the output of CEMDAP can,

as intended, be used as effectively as possible, since the decisions concerning these

choice dimension are already dealt with in CEMDAP. In more technical terms, this

approach enables the choice between discrete options as they are provided via the

CEMDAP output. If location choice and time choice were included as innovative

strategy modules in MATSim, agents would be able to optimize along a continuous

scale of these dimensions. Since the scope of options concerning locations is limited

anyway, this simplified procedure seems viable.
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As pointed out above, it is central that properties in respect of a given choice

dimensions are either represented correctly at initialization or that it is ensured

that strategy module makes said properties converge in the right direction. In this

approach, these properties can not be said to be initially correct as the CEMDAP

output may only be regarded as an suggestion for potential demand representation

(because of the omitted estimation of the model coefficients). Neither is there a

module whose convergence is ensured.

In order to ensure that those initial demand suggestions prevail during the iterative

MATSim simulation, Cadyts (cf. section 3.4) is used. Cadyts ties in with the

scoring process in the mental layer of the MATSim transport simulation and makes

those options prevail that are both reasonable from a behavioral perspective (as

determined by the activity and leg scoring components) and, at the same time

reproduce expected travel patterns (as determined by real-world traffic-count data).

In doing so, Cadyts does not pay attention in terms of which choice dimensions

plans are different from each other. Cadyts is simply provided with the agents’

executed plan by the simulation, adds a positive or negative offset to the plan’s

score dependent how well it helps reproducing observations, and thereby influences

the chance of the plan to be selected again. Thus, it is obvious that the influence

Cadyts can have is directly dependent on the variety of plans each agent has. This

is why, CEMDAP is run multiple times and each of the thus generated multiple

outputs is considered one potential solution.

Finally, route choice is enabled as a choice dimension with a corresponding strat-

egy module in the transport simulation. This means that travelers are able to create

and try out new routes during the transport simulation.

The portfolio of all choice dimensions an agent possesses is the sum of the choice

dimensions that are enabled through innovative MATSim strategy modules (here

only route choice) and the choice dimensions by which initial plans are different

(different locations, actitvities, and timing as determined by CEMDAP).

After the iterative procedure is terminated, the travel demand generated and

calibrated by it can be analyzed in order to validate it based on various real-world

traffic data. In case a sufficiently accurate representation of the demand for transport

can be found with this approach, the generated travel demand can be used to answer

planning and policy questions as raised, for instance, in chapter 1.

This approach, in a way, turns the usual procedure in transport modeling up-

side down. While many models use aggregated measures like model split data for

calibration and use traffic count data for validation [Meister et al., 2010, p.1], this

approach utilizes traffic count data for calibration. Validation is, then, carried out

on the basis of on traffic system characteristics (cf. section ?????????). The major

goal of this study is to examine the quality of the demand for transport that is

generated based on this modeling approach.

53



4.2. Justification of Research Approach

As pointed out in section 1.3, a major problem in modeling and, in particular, in

the modeling of transport systems, is the availability of data. Especially CEMDAP,

the modeling framework for activity-travel patterns applied in this study, requires a

broad scope of data in order to estimate the coefficients of the model variables. In

particular, time-use surveys concerning all activities pursued by individuals over the

course of a day are needed [Bhat and Koppelman, 2003, p.41]. While travel surveys

are already very extensive, the amount of information elicited from respondents in

time-use surveys is even more extensive since additional informations on in-home

activities are collected [Guo and Bhat, 2001, p.3f]. While experience suggests that

the respondent burden or response rates are not significantly different between time-

use and travel surveys, a major disadvantage of time-use surveys is that they are

simply less common than travel surveys so that time-use information is much less

readily available.

Owing to this fact and in line with the goal of this study is to build a model that

suffices with a very low amount of input data and still yields a good representation

of real-world traffic patterns (cf. section 1.3), the basic idea of this study is to forgo

the model estimation step. Instead, a readily estimated model 8 for the Dallas/Fort

Worth metropolitan area in Texas, USA is used. Using this model specification,

the effort of collecting extensive amounts of data and calibrating all the model

coefficients for Berlin, the planning area of this study, could be saved.

Obviously, one could bring forward the argument that the model is, thus, simply

not valid. This objection would doubtlessly be true if the activity generator (i.e.

CEMDAP) was used by itself or, in other words, if the output of the (not context-

specifically estimated) activity simulation model was considered the final result. As

already pointed out in section 4.1.3, however, the output of the activity simulator

does not constitute the final solution. Instead, it is only regarded a set of potential

solutions and further processed by the transport simulation (i.e. MATSim). Via the

MATSim’s mental simulation, agents are enabled to optimize their travel behavior

and, thereby, to gradually arrive at improvement personal activity-travel patterns.

Thus, it becomes clear how a model that has not been estimated for the specific

region, which it is to be applied to, can still be used in a meaningful way: The

choice dimension related to the properties for which differences are expected be-

tween estimation and application regions, just have to stay unfixed in the transport

simulation. If, then, a mechanism is applied which ensures that travel demand is

modified so that its properties converge towards real-world observations, it becomes

comprehensible to what extent the output of the (non-estimated) activity simulation

8 Cf. http://www.ce.utexas.edu/prof/bhat/CEMDAP_Files/CEMDAP_for_trial.zip, last ac-
cessed 27 November 2013.
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constitutes an important set of data to work with. It constitutes a very well-usable

initial suggestions of a potential demand representation. As mentioned above (cf.

section 4.1), the mechanism that ensures that these initial suggestions are modi-

fied in the intended way consists in a traffic-count-based calibration algorithm in

this study. It ensures that next to behavioral soundness of selected plans also its

representativeness with regard to real-world observations is preserved.

An analogous approach is employed by Moyo Oliveros [2013, p.74] who generates

routing information of public transport riders. First, he generates random routes.

Concerning this step, he argues that ”random routes generation might seem in-

adequate from the classical assignment models perspective [and that] it would be

impractical if it were implemented as a stand-alone module for route choice model”

[Moyo Oliveros, 2013, p.74]. Since this is, just like the approach of this study,

however, not the case, the appraisal becomes a different one: In case ”the search of

candidate solutions [i.e. routes] is combined with a selection mechanism (like Cadyts

correction inside the scoring function) where new alternatives for each agents are

evaluated and the worst are discarded, this coupling constitutes a composite co-

evolutionary algorithm that directs the choice distribution to a count match con-

vergence” [Moyo Oliveros, 2013, p.74]. These randomly generated routes behave to

some extent analogous to the travel plans generated by the (not scenario-specifically

estimated) CEMDAP model employed in this study. They have in common that they

may not be regarded as correct solutions, but constitute useful potential solutions

from which Cadyts, then, selects the most suitable one.

At this point, it seems worthwhile to have a look at the properties among which

traffic patterns between Dallas/Fort Worth (the region for which the CEMDAP

model applied in this study was estimated) and Berlin may actually be different.

The most fundamental difference will arguably consist in different modal shares. One

can easily image that travel patterns in a city whose inhabitants almost exclusively

travel by car will be fundamentally different than travel patterns of a city with a

multimodal transport system like Berlin. Since only vehicular traffic is considered

in this study, the observation that mode shares differ between Dallas/Fort Worth

and Berlin is rendered irrelevant.

The next most influential properties responsible for differences in travel patterns,

are arguably shares of activity participation, activity locations, timing, and – prob-

ably to a lesser extent – route choice. Therefore, it needs to be taken into account

that the activities, their locations, and the according scheduling (timing), which the

(not estimated) activity simulation model create, may not correctly represent the

activity schedules of traveling individuals of the planning area. In consequence, the

choice dimensions of activity participation, location choice, and timing must not be

fixed in the transport simulation.

To address this requirement, the activity simulation is run multiple times to gener-
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ate initial demand suggestions that are different with regard to activities, locations,

and timing. As already explained, this variety of possibilities is then forwarded to

the iterative procedure of the transport simulation. In interaction with the traffic-

count-based calibration algorithms, those initial demand suggestions that represent

real-world travel patterns well are selected. The demand representation created

this way needs to fulfill two basic conditions. First, it needs to fit the data it was

calibrated with well. Second, it needs to be close to real-world observations and

certain measures thereof, which were not already used for calibration. If these two

conditions are fulfilled, the model can be validated.

Now that, the internal soundness of the applied approach has been clarified, it

seems valuable to contemplate the proposed modeling approach in the context of

general challenges related to transport (demand) models. According to Hartgen

[2013, p.1], the four major weaknesses of transport demand models which lead to

inaccurate models are:

• Non-behavioral context

• Inaccuracy of inputs and key assumptions

• Excessive complexity

• Policy insensitivity

The proposed models properties can be assessed in terms of these four issues as

follows:

• The model used in this study entails behaviorally sound mechanism. Individual

travelers are retained during the whole modeling process (in CEMDAP as well

as in MATSim). Their decisions are modeled in a behaviorally consistent way.

• Since this model using little amounts of input data (as explained in section

1.3), the threat flaws may be induced by inputs is widely reduced. Also, no

strong assumption which might be sources of errors (and potentially impede

the whole subsequent modeling process) are made. Instead an optimization

procedure based on the intentions of individual agents is used as a foundation

for transport modeling.

• In this study, the activity generation module (CEMDAP) possesses a high

complexity. On the other hand, this component is widely treated as a black box

and could – if desired – be substituted by another, potentially simpler model

that creates activity patterns. The utilization of this model’s output in this

study is, by contrast, easily comprehensible. Potential demand representations

are drawn from CEMDAP and then a genetic-algorithm-based procedure is

used to find a good solution.
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• Policy sensitivity has not yet been shown and is left for follow-up studies.

4.3. Creation and Calibration of Model (Input Data)

In this section, the input data used to build the transport model are outlined. As

described in section 1.1, the emerging traffic patterns that we observe in reality can

be understood as the outcome of the interaction of transport supply and transport

demand. Accordingly, these two fundamental components have to be represented in

the transport model. The following sections describe the input data from which the

representations of transport supply and transport demand are generated.

4.3.1. Transport Supply

Since only car traffic is to be simulated, the transport supply in this model only

consists of a roadway network. It was created based on data from OpenStreetMap9

and subsequently simplified [Zilske et al., 2011] in order to reduce the number of

links and nodes. After simplification, the network consists of 11,345 nodes and

24,335 single-direction car-only links, of which 18,326 (or 75%) have a free speed of

50km/h, which equals the general speed limit within urbanized areas in Germany.

4,015 links have a free speed of 30km/h corresponding to the widely-used reduced

speed limit for neighborhood streets in Germany. Since the network mainly consists

of bigger roads, while many smaller roads are excluded for reasons of simplification,

it is in line with expectations that the share of reduced-speed streets is lower than

in reality. Most of the remaining links (e.g. urban and rural autobahns and extra-

urban roads) possess a higher free speed. 15,938 (or 65%) of the links consist of one

lane, while 7,327 (or 30%) posseses two directional lanes. 12,096 (or 50%) of the

links have a capacity of between 1,000 and 2,000 vehicles/h, while 4,236 (or 17%)

possess a capacity of less than 1,000 vehicles/h.

4.3.2. Transport Demand

Transport demand in this model is build on commuter data provided by the German

Federal Employment Agency Bundesagentur für Arbeit [2010]. These data yield

the home municipalities and workplace municipalities of that part of the working

population that is subject to social insurance contributions, i.e. working persons

who are not self-employed and whose income exceeds a certain minimum threshold10.

9 Cf. http://www.openstreetmap.org, last accessed 3 November 2013
10 For the precise definition of persons subject to social insurance contributions (in German:

sozialversicherungspflichtige Beschäftigte), cf. https://www.destatis.de/DE/Publikationen/

STATmagazin/Arbeitsmarkt/2008_01/WW_Sozialversicherungspflichtige.html, last ac-
cessed on 4 November 2013.
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In Berlin, the share of the working population that is subject to social insurance

contributions equals about 66%11 of all working persons (in German: Erwerbstätige).

For Brandenburg, the spatial resolution of these data is quite high as most of

Brandenburg’s municipalities are rather small. They accommodate between 549

inhabitants (Kleßen-Görne) and 159,695 inhabitants (City of Potsdam), with the

overwhelming majority of 404 of out 419 Brandenburg municipalities having less

than 25,000 inhabitants (Amt für Statsitk Berlin-Brandenburg [2012c]).

Berlin, however, is a so-called city-state, a special case in German administrative

structure where a single city (= a single municipality) constitutes a federal state of

its own. In other words, the state of Berlin consists of only one municipality, the City

of Berlin. The largest German city, Berlin accommodates 3,375,222 inhabitans12 and

hosts 1,105,037 persons subject to social insurance contributions Bundesagentur für

Arbeit [2010]. Because all of them are – owing to the definition of a city-state – part

of one single municipality, the home and workplace locations are not specified any

more detailed than on city-state level. Therefore, the spatial resolution of home and

workplace locations in Berlin is not sufficient for the requirements of this study.

To remedy this issue, so-called live-reality-oriented regions (LORs, in German:

lebensweltlich orientierte Räume) are used. The LOR zoning system has been devel-

oped since 2004 to create a uniform foundation for various types of spatial planning

and space-related analyses for Berlin [Bömermann et al., 2006, p.366]. Amongst

other criteria, LORs are spatially defined in a way that one LOR’s population does

not fall below or exceed certain minima or maxima, respectively [Bömermann et al.,

2006, p.368]. They are defined at three levels of spatial resolution in considera-

tion of the various administrative and planning tasks which they are intended for.

The medium-level resolution divides Berlin into 138 (formerly 134) zones, which

are called district regions (in German: Bezirksregionen), indicating that they are

subregions of the 12 Berlin districts. These 138 district regions have an average

population of about 25,000 inhabitants [Bömermann et al., 2006, p.369]. Together

with the 419 Brandenburg municipalities, the evaluation area of this model, thus,

consists of 557 zones altogether.

4.3.3. Counts for Calibration

As explained in section 3.4, the calibration algorithm applied in this study (i.e.

Cadyts) is based on traffic counts. In this study 8,304 hourly count values for

346 count station are used. The count values are collected by the Traffic Manage-

11 Own calculations based on Bundesagentur für Arbeit [2010] and Amt für Statsitk Berlin-
Brandenburg [2012a].

12 As of 31 December 2012, cf. https://www.statistik-berlin-brandenburg.de/

Publikationen/OTab/2013/OT_A01-10-00_124_201212_BE.pdf, last accessed on 4 November
2013
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ment Center (in German:Verkehrsmanagementzentrale) of Berlin and matched to

the roadway network used for this study (cf. section 4.3.1).

4.4. Validation of Model

The first goal of any model is to represent reality in terms of the characteristics

relevant in terms of the purpose of the model sufficiently well. Thus, the first

objective is to create a model that exhibits a model fit as good as possible. A good

model fit by itself, however, is no sufficient condition for the validity of the model

[Ziemke, 2012]. Instead, the validity of the model has to be analyzed independently

of the model generation based on data that have not been used to create the model.

As explained in section 3.4 Cadyts adds an offset to the agent’s score depending

on how well the traveler’s scored plan (i.e. the most recently executed daily plan)

reproduces aggregate attributes of observed travel behavior. If the magnitude to

which this offest takes effect is set too high, Cadyts may produce overfitting.

In fact, if the weight of the Cadyts scoring component (cf. section 3.4.3) is overly

high, Cadyts will interfere with travelers’ plan selection as much as travelers will

always choose a plan that nicely reproduces given traffic counts no matter how

much sense choosing these plans makes from a behavioral point of view. Such an

an overfitting may be detected by observing attributes of the simulation that are

independent of the calibration algorithm. In the following two sections (cf. section

4.4.1 through 4.4.2) these data are briefly outlined.

4.4.1. Travel Survey

The major source of data for validation in this study is the travel survey Mobilität in

Städten - SrV 2008 13 [Ahrens, 2009b], mostly referred to by its long-standing name

SrV. In table 4.1, some reference values calculated based on the survey are summa-

rized. These will be used to assess the quality of the results of the models created

in the subsequent chapters (cf. chapters 5 and 6). These values are based on SrV’s

2008 weekday travel survey for Berlin [Ahrens, 2009b], [Ahrens, 2010b], [Ahrens,

2010a], which encompasses 107,065 trips altogether. The detailed calculations of

the values given in table 4.1 are outlined in appendix D.

13 SrV stands for System of Representative Travel Surveys (in German: System repräsentativer
Verkehrsbefragungen). The title has been changed some years ago to emphasize the increased
comparability of these surveys with Germany’s nationwide survey MiD - Mobilität in Deutsch-
land.
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Paramter Reference

Normalized Log-Likelihood -10*

Car Trips 3.2m

Car Trips/Person 3.4

Avg. Detour Ratio 1.58**

Avg. Trip Distance 9.5

Avg. Trip Duration 22.3

* cf. [Flötteröd, 2009, p.10]
** cf. section 4.4.2

Table 4.1.: Reference Values

4.4.2. Detour Factor

The shortest connection of two points (e.g. the origin and the destination of a trip) is

a straight line. The according distance is called beeline distance or crow-fly distance.

It is obvious that in real life the traveled distance from the origin to the destination

of a trip is in almost every case greater than beeline distance. This distance may be

referred to as the routed distance. The ratio of this routed distance to the beeline

distance is an indicator of the detour a traveler has to undertake when getting from

the trip’s origin to its destination.

An unusually high ratio of the routed distance to the beeline distance may be

an indicator of overfitting, i.e. that the calibration too strongly pushes travelers to

do what is expected in terms of traffic counts and thereby to override the travel

patterns that would be reasonable from a behavioral point of view. Specifically,

it can be suspected that Cadyts might make agents choose overly long routes that

seem unreasonable from a behavioral point of view, which, however, helps reproduce

traffic counts.

To determine whether or not said ratio is unusually high, first a usual value of

the ratio has to be determined. On the one hand, literature values for this ratio

appear to be very rare. On the other hand, it is highly questionable how well such

values would be transferable from one geographic region to another, since the ratio

of routed distances to beeline distances will arguable be highly dependent on the

specific attributes of the respective city. For instance, it may be relevant whether

or not the city has a regular (e.g. a rectangular) street pattern or an irregular one.

Likewise the continuity of the cityscape will arguably be relevant. This is related to

the question whether the city is interrupted by rivers, lakes or other attributes of

the physical landscape that need to circumnavigated by travelers.

Thus, an alternative approach is used to find a benchmark value to assess detour

factor. A random ten-percent draw of the population of agents used for the runs in

chapter 5 is taken. Then, their travel plans are routed on the network using MATSim
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built-in Dijkstra-algorithm implementation. By only using a ten-percent sample it

can be considered ensured that agents can follow the shortest routes possible, since

no congestion effects are to be expected (these would, however, not be relevant

anyway, since only one iteration is carried out so that agents can not react to possible

congestion effects from previous iterations). This procedure is conducted ten times

and the average of the detour factors (which are somewhat different in each run

because of the random selection of a ten-percent sample) is determined. The result

is 1.57.

The exact same is also done for the population used in chapter 6. Here, the

detour factor comes out with a value of 1.59. Expectedly, both values are quite

similar. Accordingly, the value of 1.58, the average of the two detour factors, will

be used as a reference value for subsequent analyses.

4.4.3. Benchmarks

In this section different approaches for the establishment of benchmarks that may

be used to assess the quality of the generated transport models are presented. Also,

some instruments and methods for analysis are introduced.

Population with Home-Work-Home Plans

In order to establish a point of comparison for the analysis of the effects of CEMDAP

in interaction with MATSim and Cadyts, a very simple population of agents is

created based on the commuter data provided by the Federal Employment Agency

(cf. 4.3.2). For each 100 persons in the commuter file, one agent with home and

workplace locations according to the commuter file is created, i.e. a 1% sample is

used.

For areas in Brandenburg, the spatial mapping of agents is trivial as commuter

data is provided with respect to municipalities, which is – as pointed out in section

4.3.2 – exactly the spatial resolution that the zoning of this CEMDAP model is also

based on.

In Berlin, however, district regions (cf. chapter 4.3.2) are utilized. To map agents

to these district regions, a random draw over district regions is conducted. Since

every district region has a similar population, the likelihood for a given agent to live

in one given district region is approximately equal for all district regions. Therefore,

a random draw constitutes a valid approximation to real residential patterns. For

workplace locations, however, the procedure of a random draw introduces a bias, be-

cause the number of workplaces varies significantly over the different district regions.

This issue is discussed in chapter 7.

The agents start their trips to work at a randomly chosen point of time within a

two-hour interval around 7:30 and their trip back home at a randomly chosen point
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in time within a two-hour interval around 16:00.

While it is obvious that such a model will not be able to reflect real traffic patterns,

it is worthwhile to analyze how well morning and afternoon peak traffic can be

represented when only raw commuter relations without any additional modeling

effort are considered.

Table 4.2 contrast basic travel characteristics of the commuting population with

the survey data described in section 4.4.1. It can be seen that in the simulation

significantly fewer agents travel on the network than expected based on the survey.

Also, travel characteristics like trip duration show unrealistic values.

Paramter Run 142 Reference

Car Trips 2.53m 3.2m**

Car Trips/Person 2.0 3.4**

Avg. Detour Ratio 1.86 1.58***

Avg. Trip Distance 18.0 9.5**

Avg. Trip Duration 159.9 22.3**

Avg. Score of Exec. Plans 66 –

* cf. [Flötteröd, 2009, p.10]
** cf. scetion 4.4.1
*** cf. section 4.4.2

Table 4.2.: Settings and Results of Benchmark Models

The left part of figure 4.2 depicts an error graph of the simulated traffic volumes

against given traffic counts for Berlin (cf. section 4.3.3). Specifically, the blue line

depicts the absolute bias between simulated and observed traffic counts, averaged

over all traffic count stations – for each hour of the day. The red line shows the

mean relative error (MRE), which relates the absolute bias to the magnitude of the

respective traffic flow. These graphs are, therefore, a measure to assess how well

simulated traffic condition reproduce real-world traffic conditions. It can be seen

that the simple model exclusively based on commuter relations without any further

considerations produces very bad results. Traffic at peak hours is overly high. At

the same time, the simulation puts much less cars on the network during other times

of the day compared to expectations based on real-world counts. The goal of this

study is to use the information given by commuter data more efficiently and, thus,

come to significantly better results. Before that, however, a second benchmark in

form of a demand representation based on travel diaries is presented in the following

section (cf. section 4.4.3).
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(a) Model based on Home-Work-Home Plans
(b) Model based on Travel Diaries

Figure 4.2.: Error Graphs of Benchmark Models

Demand based on Travel Diaries

This model entails 68,572 tripmakers of Berlin and was created by Andreas Neumann

of the Transport Systems Planning and Transport Telematics Group at TU Berlin
14 for an internal study. It is based on 1998 household survey data conducted by

Berlin’s public transport operation company (BVG-Haushaltsbefragung). The right

part of figure 4.2 depicts the respective error graphs. Expectedly, this demand

representation reproduces real-world traffic significantly better. During daytime

mean relative errors show values of around 20%. Reaching such values is a goal to

be reach with the models to be developed in the subsequent chapters (cf. sections 5

and 6).

14 Cf. http://www.vsp.tu-berlin.de/, last accessed on 15 December 2013.
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5. Initial Model

In order to enhance the representativeness of the transport model, the Comprehen-

sive Econometric Model for Daily Activity-Travel Patterns (CEMDAP, cf. section

2.3) is used for initial demand generation. Thus, in this chapter, a basic transport

model whose initial demand is generated with CEMDAP is described.

The level of detail for the representation of transport demand is dependent on

the intended use of the model. The model developed in this chapter is intended

to analyze what improvements in terms of representativeness can be achieved by

utilizing CEMDAP as a tool of initial demand generation, while keeping the scope

of employed input data as simple as possible. Accordingly, this model is branded

initial. While general descriptions of the transport supply and transport demand

have been given in sections 4.3.2 and 4.3.1, the detailed model setup for the model

developed in this chapter is outlined in section 5.1. Then, results of runs with

different parameter configurations are discussed in section 5.2. Finally, the quality

of the results is appraised in section 5.3.

5.1. Setup

As pointed out in section 2.3, CEMDAP produces the complete daily activity-travel

patterns of each individual. Since MATSim is based on the simulated agents’ daily

activity plans (cf. section 3.3), it is intuitive that CEMDAP’s output can be utilized

to create these MATSim plans (cf. section 3.3.4). Therefore, the CEMDAP output

only needs to be converted into a MATSim plan file1.

In order to be able to run CEMDAP, its input data needs to be prepared. These

input data encompass files with information on households, persons, zones, network

level-of-service characteristics, and vehicles (cf. section 2.3.2). As the goal of this

initial modeling approach based on CEMDAP is to assess the basic functioning of

CEMDAP in interaction with MATSim and Cadyts and to analyze the influence

to different model parameters, the premise is to only use as much input data as

necessary.

The point of departure is again the commuter file provided by the Federal Em-

ployment Agency (cf. section 4.3.2). Again, for each 100 person in the commuter

file, one agent with home and workplace locations according to the commuter file

1 A technical description of this conversion is given in appendix A.
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is created, yielding a 1% sample. While for areas in Brandenburg the spatial map-

ping of agents is trivial as commuter data is provided with respect to municipalities,

in Berlin, again, a random district region (cf. section 4.3.2) is chosen. As already

pointed out in section 4.4.3, a random draw constitutes a valid approximation to real

residential patterns since the likelihood for a given agent to live in a given district

region is approximately equal for all district regions.

According to the premise of simplicity (cf. section 1.3), the population only con-

sists of one-person households of employed persons whose age is chosen randomly

between 18 and 99 years. Each person possesses a car, is licensed, and has the same

gender. These characteristics are stored in the household and person files2 as part

of the CEMDAP input.

To run CEMDAP, a slightly revised version (cf. appendix B.5) of the model

specification from the trail package (cf. section 4.2 is used. After the finalization of

the CEMDAP run, its output is converted3 into a MATSim plan file (cf. sec 3.3.4),

which stores the daily plans of each agent.

As explained in detail in section 4.1.3, the CEMDAP output may not be regarded

the final solution for agents’ travel patterns because of the missing context-specific

estimation of the model coefficients. Instead, CEMDAP is run multiple times and

each model output of one of these runs is considered one suggestion for a potential

demand representation (cf. section 4.2).

To ensure that those plans prevail which possess a high representativeness, Cadyts

(cf. section 3.4) is used. As explained in section 3.4.3, Cadyts ties in with the mental

layer of the transport simulation, where plans’ performance is scored by a utility

function. Through the composite design of this utility function (cf. section3.3.2),

which consists a activity scoring component, a travel leg scoring component, and

a Cadyts component, plans are scored both in terms of their behavioral soundness

and their representativeness in terms of real-world observations (here given as traffic

counts). If not stated otherwise, all following runs are carried out over 150 iterations.

The innovative strategy module (i.e. the ReRoute module to generate new routes)

is active during the first 90 of these 150 iterations.

5.1.1. Validation of Plan Properties

After the initial plans for MATSim have been created based on CEMDAP, it seems

reasonable to inspect these plans and analyze whether they possess the properties

that they were intended to. Accordingly, the home and workplace locations of a

randomly chosen agent are analyzed in the following.

2 A precise description of the definition of each model variable along with respective descriptions
of variables of the other files is provided in appendix B.

3 Using the class CemdapStops2MatsimPlansConverter, which is contained in appendix E.
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As pointed out in section 4.3.2, home locations are created based on commuter

data. Depending on the magnitude of a commuter stream starting in a given mu-

nicipality, the corresponding number of agents is chosen to have their home location

in the corresponding Brandenburg municipality or a randomly chosen district re-

gion of Berlin in case their home municipality is the city-state Berlin. The concrete

geographic location is then chosen randomly within the given zone. Thus, if the as-

signment works correctly, the potential home locations of different plans of a given

agent should all fall into the same zone4.

Figure 5.1.: Home and Workplace Locations of a Randomly Chosen Agent

The choice of workplace locations works analogous to the choice of home loca-

tions with one difference. For each plan of a given agent, a new random draw for the

district region, which the workplace location will be located in, is performed. This

means that people working in Berlin (for whom, as opposed to people in Branden-

burg, the choice of a district region is actually conducted), have a variety of potential

workplace locations in their initial plans. Thus, the workplace location choice is in

contrast to the assignment of home locations not a fixed choice that stays constant

4 Notably, it would equally well be possible to assign a unique home location that is fixed over the
different plans to every agent. Since home locations are, however, chosen randomly within the
correct zone, there is no justification to only use one particular randomly chosen location.
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over the whole subsequent simulation-calibration process, but left as a modifiable

dimension that may be influenced by the simulation-calibration process (cf. section

4.1.3). In line with the fact that properties in terms of choice dimensions that are

modifiable during the simulation-calibration process do not need to be initially cor-

rect (cf. sections 3.3.5, 4.1.2, and Balmer [2007, p.52f]), it is, thus, acceptable, that

initial workplace location do not reflect reality perfectly well.

In order to illustrate that the workplace assignment procedure works correctly, it

is worthwhile to show that the potential initial workplace locations of a given agent

fall either into the very same Brandenburg municipality or into different district

regions. Figure 5.1 depicts the initial, potential home and workplace locations of

one randomly chosen agent.

5.1.2. Anaylyis of Plan Diversity

For the selection of those plans’ of agents which help reproducing observed behavior

(as given by traffic counts), the Cadyts calibration algorithms is used. In order to be

able to select these plans, Cadyts has to be offered an actual selection. This selection

can only fulfill its purpose when its elements differ from each other sufficiently. The

first major difference consists in the diversity of initial potential workplace locations

for people working in Berlin as described in the previous section (cf. section 5.1.1).

In this section, two additional measures are defined to quantify initial plans’ diver-

sity. First, it is analyzed how many agents possess plans within their initial choice

set whose number of activities is different. Then, for all those agents whose plans

have the same number of activities, it is analyzed if there is variation in activity

times between different plans. More precisely, it is examined whether or not the

activities in different initial plans have the same end times over all plans.

In the input plans file with three initial plans (plus one stay-home plan), a 2.0x

population expansion, and demand elasticity (as dealt with in subsequent sections),

the following diversity is found. Altogether there are 18,775 agents. 2,456 of these

agents have variations in the number of activities which they pursue during their day

in their initial choice set, constituting 13.1% of all agents. The other 16,319 agents

have a constant number of activities in their plans. Among these 16,319 agents,

there are 10,757 (or 65.9%) who have some variations in terms of activity end times

over their plans. For the remaining 5,562 agents the activity pattern is the same

over all their three initial plans in terms of number of activities and activity timing.

These plans may only be different in terms of activity locations.
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5.2. Results

Now, the transport supply described in section 4.3.1 and the transport demand

described in sections 4.3.2 and 5.1 are fed into MATSim and run. As described in

section 3.4.3, MATSim is applied in interaction with Cadyts, which influences the

scores of agents’ plan dependent on how well these plans match expectations with

regard to traffic counts. As pointed out before, the goal of this initial model is to

find the combination of parameters that creates the best model and to analyze the

various influences that parameter variations have on results. To find the best values

for the parameters, more than 100 runs have been carried out. In the following, an

illustrative choice of these runs, their respective setups, and their results is presented.

Over the presented choice of runs the following parameters have been varied:

1. Population expansion

2. Demand elasticity

3. Number of plans

4. Number of initial plans

5. Flow capacity

6. Weight of the innovate strategy module

7. Cadyts scoring weight

It is worthwhile to mention at this point that none of these parameters is indepen-

dent of the other parameters. In fact, many of them are – loosely or more strongly

– correlated. Therefore, the analysis of the effects of one parameter – while holding

the others constant – may only yield results of limited generality. Finding the best

model fit by varying the different parameters is, therefore, a circular rather than a

linear process. The following sections aim to present the outcome of this circular,

iterative procedure in a concise, but still complete, linear way.

5.2.1. Population Expansion

As explained in section 4.3.2, the population used for this study is based on com-

muter data provided by the Bundesagentur für Arbeit [2010]. Even though CEM-

DAP is applied subsequently to produce complete daily activity-travel patterns (i.e.

leisure-time, shopping and other forms of traffic that go beyond mere home-work-

home travel patterns, cf. section 2.3), it is not fully clear whether the amount of

agents in the simulation reflects the amount of real-world travelers sufficiently well.
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In particular, only working people are considered in the very simple population rep-

resentation on which the runs in this section are based. Thus, travelers whose travel

activities are, not at all, based on commuting are systematically omitted.

A simple remedy consists in expanding the population by a certain factor, delib-

erately putting too many agents into the network, and at the same time assigning

a stay-home plan5 to every agent. On the one hand, this population expansion – if

the expansion factor is chosen sufficiently high – assures that the number of travel-

ing agents is not falsely low. On the other hand, this approach enables the Cadyts

algorithm to make agents choose their stay-home plan in case there are too many

agents on the network as compared to given traffic counts.

Paramter Run 112 Run 118 Reference

Population Expansion 2x 3x

Demand Elasticity Yes Yes

Number of Plans 5 5

Number of Initial Plans 4 4

Flow Capacity Factor 0.01 0.01

Innov. Strategy/Selection 1:1 1:1

Cadyts Scoring Weight 10 10

Calibration Time 0 – 24h 0 – 24h

Normalized Log-Likelihood -63 -71 -10*

Home-Staying Agents 7,858 15,429 –

Traveling Agents 10,914 12,829 –

Car Trips 3.76m 4.27m 3.2m**

Car Trips/Person 3.9 3.8 3.4**

Avg. Detour Ratio 1.97 2.01 1.58***

Avg. Trip Distance 10.9 10.5 9.5**

Avg. Trip Duration 81.6 87.9 22.3**

Avg. Score of Exec. Plans 75 53 –

* cf. [Flötteröd, 2009, p.10]
** cf. scetion 4.4.1
*** cf. section 4.4.2

Table 5.1.: Settings and Results of Runs with different Population Expansion (1)

Thus, the population expansion coupled with the amplification of the agent’s

choice set by a stay-home plan can be understood as handing over an additional

choice dimension to the Cadyts calibration algorithm. Table 5.1 gives an overview

of the parameters of two simulation runs with different levels of population expansion

and the corresponding results. Figure 5.2 depicts the error graphs of the two runs.

5 A stay-home plan is a MATSim plan that consists only of one (whole-day-long) activity at the
agent’s home location and that does not contain any travel legs. Hence, an agent choosing their
stay-home activity means to the MATSim traffic simulation basically the same as an agent that
does not exist. The mechanisms of these stay-home plans are further discussed in section 5.2.2.
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(a) Run 112 (2.0x-Exp. Population) (b) Run 118 (3.0x-Exp. Population)

Figure 5.2.: Error Graphs of Runs with different Population Expansion (1)

Both in the table as well as in the figure, it can be observed that both configura-

tions yield very similar results6. Most interestingly, the greatest difference between

the two runs consists in the number of agents who choose to stay at home (in ta-

ble 5.1 labeled as Home-Staying Agents). This number is about twice as high in

the run based on a 3.0x-expanded population (Run 118) than for the run with a

2.0x-expanded population (Run 112). The comparatively invariant measure here

is the number of agents who conduct one or more trips on the network, labeled as

Traveling Agents in table 5.1. This number is comparatively similar in both runs.

In accordance with given traffic-count data, Cadyts can only ”allow” a certain

number of agents to choose a plan which contains traveling. Thus, in the case of

the more strongly expanded population, a higher amount of agents has to be sorted

out (i.e. chosen to stay at home) so that the number of those agents who travel on

the network can converge to the same number as it does in case the less strongly

expanded population is used. This observation can be regarded as a indication that

Cadyts correctly works in terms of extracting a realistic demand representation out

of a overly expanded potential initial demand. In particular, Cadyts seems to achieve

this to some extent independent of the magnitude of the over-expansion.

At this point, it is, however, not guaranteed that a bias is not introduced by only

selecting certain types of plans and, thereby, possibly skewing certain distributions

of population characteristics. Accordingly, it seems reasonable to find the lowest

magnitude of population expansion that is still large enough.

Since the 2.0x-expanded population seems to be large enough so far, the next step

is to assess how it compares to a 1.0x-expanded (i.e. a non-expanded) population.

As pointed out above, the non-expanded population must, however, be expected to

be too small from a theoretical point of view. In table 5.2, the settings and results of

6 It has to mentioned, however, that the results are not very good at this point, especially with
regard to average trip durations. Improvements will be made gradually over the subsequent
sections of this chapter.
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two corresponding runs are given. Figure 5.3 shows the error graphs of these runs.

It should be mentioned that a direct comparison is only reasonable among the runs

contained in either table (i.e. table 5.1 or 5.2), but not between runs of different

tables, as the configurations of the runs contained in different tables are different

with respect to other parameters as well.

Paramter Run 127c Run 127a Reference

Population Expansion 1x 2x

Demand Elasticity Yes Yes

Number of Plans 5 5

Number of Initial Plans 4 4

Flow Capacity Factor 0.015 0.015

Innov. Strategy/Selection 1:1 1:1

Cadyts Scoring Weight 30 30

Calibration Time 0 – 24h 0 – 24h

Normalized Log-Likelihood -31 -36 -10*

Home-Staying Agents 1,688 7,732 –

Traveling Agents 7,622 11,043 –

Car Trips 2.92m 3.89m 3.2m**

Car Trips/Person 4.2 4.0 3.4**

Avg. Detour Ratio 1.77 1.88 1.58***

Avg. Trip Distance 12.1 11.0 9.5**

Avg. Trip Duration 40.3 41.2 22.3**

Avg. Score of Exec. Plans 163 125 –

* cf. [Flötteröd, 2009, p.10]
** cf. scetion 4.4.1
*** cf. section 4.4.2

Table 5.2.: Settings and Results of Runs with different Population Expansion (2)

(a) Run 127c (1.0x-Exp. Population) (b) Run 127a (2.0x-Exp. Population)

Figure 5.3.: Error Graphs of Runs with different Population Expansion (2)

First of all, it attracts attention that these configurations perform significantly

better than the above ones. While the discussion of other parameters does not ap-
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pears meaningful at this point because most parameters have not yet been analyzed

sufficiently, the differences in the number of car trips (as shown in table 5.2 are

interesting. The run based on a 1.0x-expanded population contains only a signifi-

cantly smaller number of agents who actually travel on the network. Even though

this number is closer to the respective reference, it has to be regarded as a worse

result than the overly high number of traveling agents in the run based on the 2.0x-

expanded population. The reason is that the overly high number of agents will likely

be reduced via the adjustments of other parameters in the subsequent sections. A

amount of car trips that is too low at this point, however, can not be made converge

in the intended direction since the agents which would produce these trips do simply

not exist in the scenario. Therefore, the use of a somewhat expanded (e.g. a 2.0x

expansion) population seems the right option at this point. This is in line with a-

priori theoretical speculations that the 1.0x-expanded population may be too small

because of the lack of representation of non-working travelers.

5.2.2. Demand Elasticity

As pointed out in the previous section (cf. section 5.2.1), the expansion of the

population coupled with assigning a stay-home plan adds another choice dimension

to the Cadyts algorithm.

Paramter Run 114 Run 115 Reference

Population Expansion 2x 2x

Demand Elasticity Yes No

Number of Plans 10 10

Number of Initial Plans 8 7

Flow Capacity Factor 0.01 0.01

Innov. Strategy/Selection 1:1 1:1

Cadyts Scoring Weight 10 10

Calibration Time 0 – 24h 0 – 24h

Normalized Log-Likelihood -53 -118 -10*

Home-Staying Agents 5,730 0 –

Traveling Agents 13,045 18,775 –

Car Trips 4.59m 7.23m 3.2m**

Car Trips/Person 4.0 4.3 3.4**

Avg. Detour Ratio 2.00 2.07 1.58***

Avg. Trip Distance 10.6 11.8 9.5**

Avg. Trip Duration 95.3 225.3 22.3**

Avg. Score of Exec. Plans 163 125 –

* cf. [Flötteröd, 2009, p.10]
** cf. scetion 4.4.1
*** cf. section 4.4.2

Table 5.3.: Settings and Results of Runs with/without Demand Elasticity

This choice dimension enables Cadyts to a certain extent to select the number of
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agents in the traffic simulation by making those agents who cause too much traffic

in relation to given traffic counts stay at home and, thus, to be unconsidered in the

traffic simulation.

While the application of an expanded population without demand elasticity ap-

pears inconsistent from a theoretical point of view, it still appears to be worthwhile

to analyze the effect of not allowing Cadyts to determine the number of traveling

agents by switching off demand elasticity. Table 5.3 depicts the settings and results

of two respective runs. Figure 5.4 shows the corresponding error graphs.

While the general performance of both runs is not yet good, they still yield quite

clear insights into the effects of the application of demand elasticity. It is obvious

that in the case with no demand elasticity, there are simply too many agents on

the network. Trip durations are unacceptably high. Also in terms of other mea-

sures, the configuration without demand elasticity performs discernibly worse than

its counterpart with demand elasticity.

(a) Run 114 (With Demand Elast.) (b) Run 115 (Without Demand Elast.)

Figure 5.4.: Error Graphs of Runs with/without Demand Elasticity

The underlying behavior of the application of demand elasticity is that agents

who have received bad scores for being stuck in congested conditions, gradually

tend towards choosing their stay-home plan. If they do not find a better-scoring

other plan over the course of the iterations, they keep executing their stay-home

plan and, thereby, become inactive in terms of travel.

Thus, the expected result of this experiment is that demand elasticity should be

applied. This seems logical in respect to theoretical considerations concerning fixed

and unfixed choice dimensions (cf. sections 3.3.5, 4.1.3, and 4.2). Since the number

of agents used in the runs of this initial model is not ensured to be initially correct,

a module that enables adjustment with respect to this choice dimension needs to be

employed. The application of demand elasticity described in this section constitutes

this module.
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5.2.3. Number of Plans

Since multiple initial plans are assigned to each agent before the beginning of the

simulation-calibration process (cf. section 4.1.3), the number of plans during the

simulation has to be at least as high as the number of initial plans so that no initial

plan can unintentionally get lost without being evaluated. As agents create new

plans via innovative strategy modules (by copying existing plans and applying mod-

ifications to them, cf. section 3.3.3), the amount of plans increases over iterations

as long as innovative strategy modules are in use. Thus, it may be reasonable to

set the number of plans somewhat higher than the number of initial plans so that

reasonable plans, that are worth to be considered again, do not get discarded too

early. In the following, two runs that only differ with respect to the number of plans

are carried out. In table 5.4, the corresponding settings and results are outlined.

Paramter Run 127a Run 127b Reference

Population Expansion 2x 2x

Demand Elasticity Yes Yes

Number of Plans 10 5

Number of Initial Plans 4 4

Flow Capacity Factor 0.015 0.015

Innov. Strategy/Selection 1:1 1:1

Cadyts Scoring Weight 30 30

Calibration Time 0 – 24h 0 – 24h

Normalized Log-Likelihood -36 -109 -10*

Car Trips 3.89 4.20 3.2m**

Car Trips/Person 4.0 4.0 3.4**

Avg. Detour Ratio 1.88 1.87 1.58***

Avg. Trip Distance 11.0 11.6 9.5**

Avg. Trip Duration 41.2 48.1 22.3**

Avg. Score of Exec. Plans 125 40 –

* cf. [Flötteröd, 2009, p.10]
** cf. scetion 4.4.1
*** cf. section 4.4.2

Table 5.4.: Settings and Results of Runs with different Number of Plans

As shown in table 5.4, the run with ten plans performs significantly better than the

run with five plans. On the one hand, normalized log-likelihood as well as average

scores of executed plans are much better. On the other hand, travel characteristics

like number of car trips and average trip durations are much closer to expected

values. In figure 5.5, it can also be seen that mean relative errors of the run with ten

plans are discernibly lower. While both runs show simulated traffic volumes that

are too high in the evening hours, this excess is significantly higher in the run with

only five plans.

In conclusion, it seems worthwhile to raise the number of plans. Here, a good
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value appears to be a value about twice as high as the number of initial plans,

which is discussed in the following section (cf. section 5.2.4).

(a) Run 127a (10 Plans) (b) Run 127b (5 Plans)

Figure 5.5.: Error Graphs of Runs with different Numbers of Plans

5.2.4. Number of Initial Plans

The number of initial plans is a measure of the variety of the choice which an

agent possesses initially, i.e. at the beginning of the simulation-calibration process.

As pointed out in section 4.2, properties of choice dimensions that are modifiable

over the course of the iterations, do not need to be configured perfectly at initial

conditions. Choice dimensions that are fixed over the whole process, however, need

to be correct in terms of the properties of the real population which are related to

these choice dimensions.

The analogous is true for diversity in plans. As discussed in section 5.1.2, there

has to be a selection of diverse alternatives offered to the calibration. Only if this is

accounted for, the calibration can influence the choice of that element of the selection

which fits best in terms of behavior as well as in terms of real-world observations.

Properties in terms of choice dimensions whose diversity is increased over the course

of the iterations, do not have to possess diversity at initial conditions. For instance,

if agents create new routes for their trips over and over again during the iterations,

they do not need to be provided with a diverse selection of routes initially.

Regarding those properties for which no diversity is created during simulation,

however, it has to be ensured that diversity is high enough right from the start. If

the calibration can only select from indifferent or only minorly different options, the

selection process becomes meaningless.

In this section, the influence of the magnitude of the initial choice set is examined.

Table 5.5 gives an overview of the settings and results of four simulation runs used

for the according analysis. Figure 5.6 depicts the corresponding error graphs.

Observing the simulation results and the error graphs of Run 126a (eight initial
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plans) and 127a (four initial plans), it seems like the number of initial plans does not

have a big influence. To understand this observation, one has to question how much

raising the number of initial plans actually increases diversity that agents posses

among their plans. If a higher number of initial plans does not increase diversity

that much, raising the number of initial plans will be influential.

As pointed out in section 4.1.3, initial plans in this study (provided by the CEM-

DAP output) can be different in terms of number and type of activities, timing,

and workplace location for people working in Berlin. As shown in section 5.1.2, the

diversity concerning the choice dimensions activity participation and activity timing

is not found to be very big. Therefore, it must be speculated that the diversity

increase by going from four to eight initial plans is not very influential. Concerning

the third choice dimension (i.e. workplace locations), however, diversity should in-

crease linearly with any additional plan because of the random selection of district

region for workplace location of people working in Berlin (cf. section 4.3.2). Here,

however, additional locations may be not very influential as a small selection of spa-

tially well-dispersed potential workplace locations may already be good enough to

find a realistic workplace location.

Paramter Run 126 Run 127 Run 126a Run 127a Reference

Population Expansion 2x 2x 2x 2x

Demand Elasticity Yes Yes Yes Yes

Number of Plans 10 10 10 10

Number of Init. Plans 8 4 8 4

Flow Capacity Factor 0.02 0.02 0.015 0.015

Innov. Strategy/Selection 1:1 1:1 1:1 1:1

Cadyts Scoring Weight 30 30 30 30

Calibration Time 0 – 24h 0 – 24h 0 – 24h 0 – 24h

Normalized Log-Likelihood -130 -86 -40 -36 -10*

Car Trips 5.06m 3.98m 4.69m 3.89m 3.2m**

Car Trips/Person 4.2 4.2 4.0 4.0 3.4**

Avg. Detour Ratio 1.83 1.78 1.92 1.88 1.58***

Avg. Trip Distance 10.9 11.1 10.7 11.0 9.5**

Avg. Trip Duration 31.7 26.5 46.2 41.2 22.3**

Avg. Score of Exec. Plans 72 105 110 125 –

* cf. [Flötteröd, 2009, p.10]
** cf. scetion 4.4.1
*** cf. section 4.4.2

Table 5.5.: Settings and Results of Runs with different Number of Initial Plans

Now, two other runs (Run 126 and Run 127, cf. table 5.5), which again only differ

in terms of number of initial plans are observed. Here, the differences in performance

are greater than between the two runs analyzed before. In fact, the run with the

smaller number of initial plans (i.e. Run 127 with four initial plans) performs better

than its counterpart with eight initial plans in terms of reproduction of real-world
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observations (as measured by the log-likelihood), the score of executed plans, as well

as all comparative aggregate transport system measures. It is suspected that this

is rather due to a not fully converged simulation after 150 iteration than to any

potential disadvantages that come along with using more initial plans. Also, the

run with eight plans has the property that the numbers of plans and the numbers of

initial plans are very close to each other (cf. section 5.2.3). This may result in slower

convergence as more mediocre or yet unconsidered plans will be executed instead of

being able to further improve well-performing plans more rapidly. Accordingly, the

number of initial plans will be readdressed in respective section of the more precise

model to be developed (cf. section 6.2.4).

(a) Run 126 (8 Initial Plans) (b) Run 127 (4 Initial Plans)

(c) Run 126a (8 Initial Plans) (d) Run 127a (4 Initial Plans)

Figure 5.6.: Error Graphs of Runs with different Number of Initial Plans

Summing up, the preliminary result appears to be that the number of initial plans

does not have a major influence after a certain threshold of plans is exceeded. Four

initial plans (where one plan is a stay-home plan enabling demand elasticity, cf.

section 5.2.2) seems to be enough. Secondly, the ratio between the number of plans

during the simulation (cf. section 5.2.3) and the number of initial plans seems to

be more relevant than the number of initial plans itself.
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5.2.5. Flow Capacity

In table 5.5, two configurations are based on a flow capacity factor of 0.015, while

the other two possess a flow capacity of 0.02. A flow capacity factor of 0.01 would

constitute the same scaling as used for the scaling of the population (a 1%-sample is

used). Experience has shown, however, that a scaling of flow capacity proportional

to the scaling of population leads to distortion effects. Thus, the flow capacity may

not be scaled to the same degree as the population.

To analyze effects of flow capacity, runs 126 and 127 as well as Run 126a and

127a in table 5.5 and figure 5.6 are compared. Both comparisons yield the same

observations. The runs with the lower flow capacity factor (i.e Run 126a and Run

127a) show a better model fit (as measured by the normalized log-likelihood), but

worse values in terms of detour factors and trip duration. In terms of trip distances

and number of trips, the pairwise compared run perform similarly.

First, these observations exemplify why it is essential to observe different values for

evaluation. Second, the fact that the flow capacity factor is of fundamental impor-

tance is confirmed. Last but not least, the results show one important observation

quite clearly: The two runs based on a flow capacity of 0.015 show a very good

model fit. At the same time most other parameters show acceptable values. If not

for the deficient reproduction of travel times, these configurations could be regarded

as good results. Only the overly high trip duration indicate that the otherwise good

results are delusive.

The arguable reason may be due to the interplay of the behavioral scoring compo-

nents and the Cadyts scoring component in the MATSim utility function described

in section 3.4.3. As discussed in section 3.4.4, the Cadyts scoring component can

to a certain extent counteract the behavioral components. The property is intended

as the Cadyts utility correction (cf. section 3.4.2) can be interpreted as some kind

of alternative-specific constant (as in a discrete choice model, cf. section 3.4.5),

which captures unobserved attributes that cannot be described by the behavioral

components of the utility function. This model property, however, entails the risk

that Cadyts may counteract the behavioral model in an unreasonable way like ar-

guable in Run 126a and Run 127a. Here, it seems that the calibration entices agents

somewhat to much to choose somewhat congested routes. Since the fact that agents

choose these routes is arguably in line with expectations in terms of traffic counts,

agents receive a positive utility correction by choosing these routes. If this utility

correction is big enough as to compensate the disbenefit that agents experience by

spending more time than necessary in congestion, the observed conditions may re-

sult. Figure 5.7 depicts the traffic patterns of two runs with different flow capacity

factor at 18:00. It can be seen that the configuration with the lower flow capacity

factor leads to overly high levels of congestion.
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(a) Run127 (FC = 0.02) @ 18:00 (b) Run127a (FC = 0.015) @ 18:00

Figure 5.7.: Traffic Patterns of Runs with different Flow Capacity Factors

While insightful from a theoretical point of view, the interpretation from a prac-

tical perspective is rather simple. First, a flow capacity factor of 0.015 is most

probably too low. Second, the importance of observing a portfolio of traffic system

properties to ensure that results with significant shortcomings are not spuriously

evaluated as good results was exemplified.

5.2.6. Cadyts Scoring Weight

As pointed out in section 3.3.2, the plan scoring constitutes the first of two steps of

the mental simulation in MATSim. It is the part of the mental simulation, in which

agents evaluate their activity participation and travel experience of the preceding

traffic simulation. This is also the component where Cadyts ties in to calibrate the

behavior of the traveling agents. As explained in section 3.4.3, both performance

in terms of travel behavior (activity and travel leg scoring) and measurement re-

production (Cadyts utility offset) are evaluated together with a compound utility

function [Moyo Oliveros, 2013, p.74] given in equation 3.13. This formula contains

the configurable weight w, which determines the strength of the calibration effect

relative to the other (i.e. the behavioral) scoring components.

While a in-depth analysis of the influence of the Cadyts scoring weight w is left

for chapter 6, the aim here is to exemplify the general effect of this value. If this

value is set to zero, the Cadyts calibration functionality is switched off. Table 5.6

presents the settings and results of two runs of which one uses a Cadyts scoring

weight of 30 – a value which showed reasonable results over the course of different

runs – while the other run uses a Cadyts scoring weight of 0. Figure 5.8 shows the

respective error graphs.
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Paramter Run 127 Run 129 Reference

Population Expansion 2x 2x

Demand Elasticity Yes Yes

Number of Plans 10 10

Number of Initial Plans 4 4

Flow Capacity Factor 0.02 0.02

Innov. Strategy/Selection 1:1 1:1

Cadyts Scoring Weight 30 0

Calibration Time 0 – 24h 0 – 24h

Normalized Log-Likelihood -86 -592 -10*

Car Trips 3.98m 6.19m 3.2m**

Car Trips/Person 4.2 4.2 3.4**

Avg. Detour Ratio 1.78 1.78 1.58***

Avg. Trip Distance 11.1 12.0 9.5**

Avg. Trip Duration 26.5 60.4 22.3**

Avg. Score of Exec. Plans 105 140 –

* cf. [Flötteröd, 2009, p.10]
** cf. scetion 4.4.1
*** cf. section 4.4.2

Table 5.6.: Settings and Results of Runs with different Cadyts Scoring Weights

(a) Run 127 (w = 30) (b) Run 129 (w = 0)

Figure 5.8.: Error Graphs of Runs with different Cadyts Scoring Weights

Very obviously, the configuration without calibration performs much worse than

any other configuration shown thus far. The model fit is bad and significantly to

many agents are on the network. It has to be mentioned, however, that not every

run without calibration has to perform that poorly. As discussed in section 5.2.1, a

population expansion with a factor of 2.0 is applied here. It has been pointed out

that this property, along which the possibility to sort out agents by using demand

elasticity (cf. section 5.2.2), is specifically designed to be applied in connection

with Cadyts. In fact, this combination constitutes an additional choice dimension,

namely the choice of the number of agents who travel on the network. This choice
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dimension, however, becomes defunct if one central element (the Cadyts calibration

algorithm) is suspended. In fact, the generation of good demand representations

in MATSim are well possible without the application of Cadyts. In order to attain

them, however, the model setup has to be done differently. In conclusion, the analysis

in this section has rather been a reaffirmation of the model properties described in

the previous section, in particular that of population expansion (cf. section 5.2.1)

and demand elasticity (cf. section 5.2.2). A detailed examination of the actual

value of the Cadyts scoring weight w will be done in section 6.2.5 of the subsequent

chapter.

5.2.7. Weight of Strategy Module

After the effects of the the first part of the mental simulation (i.e. plan scoring)

have been analyzed in the previous section (cf. section 5.2.6), the aim of this section

is to analyze the parameters of the second part of the mental simulation (i.e. plan

selection). As outlined above (cf. section 4.1.3), the only internal MATSim strategy

module used in this study is the ReRoute module which generates new routes based

on Dijkstra’s algorithm. The interesting parameter concerning the strategy module

is the strategy module weight, which determines the probability of a strategy module

to be applied (cf. section 3.3.3). Since the ReRoute module is the only innovative

strategy module, its weight can be expressed in relative terms to the weight of the

probabilistic selection (cf. section 3.3.3).

Paramter Run 127 Run 127e Reference

Population Expansion 2x 2x

Demand Elasticity Yes Yes

Number of Plans 10 10

Number of Initial Plans 4 4

Flow Capacity Factor 0.02 0.02

Innov. Strategy/Selection 1:1 1:2

Cadyts Scoring Weight 30 30

Calibration Time 0 – 24h 0 – 24h

Normalized Log-Likelihood -86 -31 -10*

Car Trips 3.98m 3.72m 3.2m**

Car Trips/Person 4.2 4.3 3.4**

Avg. Detour Ratio 1.78 1.76 1.58***

Avg. Trip Distance 11.1 10.9 9.5**

Avg. Trip Duration 26.5 24.9 22.3**

Avg. Score of Exec. Plans 105 140 –

* cf. [Flötteröd, 2009, p.10]
** cf. scetion 4.4.1
*** cf. section 4.4.2

Table 5.7.: Settings and Results of Runs different Weights of the Strategy Module
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In table 5.7, two runs with different ratio of the weight of the ReRoute module

and the probabilistic selection module are outlined. In figure 5.9 the respective error

graphs are depicted.

It can be observed that the run in which the probabilistic selection is applied

more often relative to the application of the innovative strategy module (i.e. the

ReRoute module) performs better. Its model fit is better and also comparative

measures like trip duration are closer to reference values. The interpretation to this

observation is that in the configuration with a strategy-selection ratio of 1:1 new

plans are generated too frequently so that they displace existing plans, which would

have been worth to be considered again, too quickly.

(a) Run 127 (Strat./Sel. = 1:1) (b) Run 127e (Strat./Sel. = 1:2)

Figure 5.9.: Error Graphs of Runs with different Weights of the Strategy Module

5.2.8. Summary

Summarizing the analyses of the previous sections (cf. sections 5.2.1 through 5.2.7),

the following preliminary results can be outlined:

• Population expansion should definitely be used as the correctness of the mag-

nitude of the initial population is not certified.

• Thus, the opportunity to modify this value has to be granted to the simulation-

calibration process by also switch on demand elasticity

• Choose the number of plans should be chosen about twice as high as the

number of initial plans.

• A value of four seems to be sufficient for the number of initial plans as diversity

handed over to the simulation-calibration process does not seem to increase

with additional initial plans beyond a value of four.

• For the flow capacity a value of 0.02 was found to be reasonable.
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• The analysis of the Cadyts scoring weight showed the importance of the ap-

plication of Cadyts to come to reasonable results with this the configuration

discussed so far. A more detailed examination of the Cadyts scoring weight is

left for the subsequent chapter (cf. chapter 6)

• The weight for innovative strategy module should be selected somewhat lower

than the weight for the probabilistic plan selection module. A value half as

high was shown to yield good results.

5.3. Validation

In the previous section (cf. section 5.2) different parameter configurations for a trans-

port model based on a very population representation – whose setup was described

in section 5.1 – have been tested. In section 5.2.8, the arguably best parameter com-

bination found has been outlined. Finding the values of these parameters, reference

values have been used. To assess the model fit, normalized log-likelihood values were

compared to respective values from a study by Flötteröd [2009]. To assess charac-

teristics of the generated travel patterns, average values concerning travel times etc.

were calculated from a travel survey conducted in 2008 in the study area (cf. section

4.4.1 and for a detailed calculation of reference values appendix D). Further detour

factors (cf. section 4.4.2) as a specific indicator for overfitting were observed.

The goal of this section is to carry out some further validation by analyzing in

more detail how travel characteristics in the simulation compare to real-world travel

characteristics as contained in the travel survey. Most of these values were not

contained in the published report of the SrV travel survey (cf. 4.4.1), but calculated

on the basis of the original data files of it7. The calculations are done via the Java

program SrVTripAnalyzer, which is contained in appendix E. Some of the thus

calculated distributions had corresponding tables in Ahrens [2010b] and Ahrens

[2010a]. Where possible, the distributions based on own calculation were assured by

comparisons with data from the survey reports. One such assurance it exemplarily

outlined in appendix D

Run 127e, whose properties are outlined in table 5.7, possesses the parameter

combinations found to be best in section 5.2.8. Thus, this run will be used for the

following validation.

As shown in table 5.7, the number of all daily car trips (3.72m in Run 127e)

diverges from travel survey data (3.20m) by 16%, which appears acceptable, but

improvable. On the other hand, this parameter is the one with the highest num-

7 The author wishes to thank the Berlin Senate Department for Urban Development and the
Environment (Senatverwaltung für Stadtentwicklung und Umwelt) for granting access to the
SrV scientific use file.
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ber of calculation steps necessary. Therefore, its force of expression should not be

overrated.

Easier to determine and, thus, more insightful is the distribution of trips by time

of day. Figure 5.10 depicts a comparison of departure times for all trips by time of

day for the simulation (i.e. Run 127e) and the survey.
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Figure 5.10.: Departure Times in Simulation and Survey

While in the simulation there is somewhat more traffic during daytime and a bit

less traffic in the evening, the general pattern of trips by time of day is represented

quite well.

Next, trip distances are analyzed. Beeline distances are used (cf. section 4.4.2) as

they are more suitable for comparison. While a routed distance is given in the survey

dataset [Ahrens, 2009a, p.48f.], it is not fully clear how it has been calculated and

may, thus, be a source of flaw to the intended comparison. Figure 5.11 shows how

the relative frequencies of trip distances (measures as beeline distances) compare

between simulation results and survey data.
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Figure 5.11.: Trip Distances (Beeline Distances) in Simulation and Survey

While the two distributions look alike at first observation, it can be seen that the

survey contains somewhat more trips with short distances around five through ten

kilometers. This is left for improvement to the model to be built in the subsequent

chapter (cf. chapter 6).
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Figure 5.12.: Trip Durations in Simulation and Survey

Figure 5.12 shows how the relative frequencies of trip durations compare between

simulation results and survey data. First of all, the peaks contained in the survey
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data are striking. They are due to the fact that durations are collected in Mobilität

in Städten - SrV exclusively via survey participant’s statements. It is obvious that

travelers will likely round up value to numbers ending with 0 or 5 instead of stating

a more precise since their effort in capturing the trip duration is comprehensibly

limited. Said peaks are the result. A possible smoothing of the graphs is forgone in

order to not distort the characteristics of the survey data.

If one evens out the peaks mentally, one can notice that the survey possesses a

somewhat higher number of shorter trips. In the simulation, there is, on the other

hand, a higher amount of trips with durations of over 50 minutes. By building

an improved model in the subsequent chapter (cf. chapter 6), this effect is sought

sought to be balanced.

Figure 5.13 shows how the relative frequencies of average trip speeds (calculated

based on beeline distances) compare between simulation results and survey data.

Obviously, the speed is a measure derived from trip durations and trip distances,

whose data have, thus, in a strict sense already been presented. Still, it is worthwhile

to considered average speeds separately. Indeed, figure 5.13 shows that speeds in

the simulation match speeds from the survey strikingly well. This is comprehensible

as both trip durations and trip distances in the simulation tended to be slightly

overrepresented for higher values.
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Figure 5.13.: Average Trip Speeds (Beeline Speeds) in Simulation and Survey

Last, the distribution of activity types at trip ends (i.e. the actual reasons why

trips are actually conducted according to the notion of derived demand, cf. section

2.2) are analyzed. Figure 5.14 depicts how the according distributions from the
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simulation and the survey. Appendix D contains information on the preparation of

activity shares.
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Figure 5.14.: Activity Types in Simulation and Survey

On the one hand, it is shown that the activity purposes from the simulation in gen-

eral sense reflect the distribution given in the survey. On the other hand, differences

concerning the shares of home and work activities are significant. Specifically, work

activities are carried out relatively too often in the simulation. This is not surprising

in the light of the fact that in this simple population representation – for reasons

of simplicity – all people are assumed to be workers (cf. section 5.1). Furthermore,

there is no mechanism in the simulation-calibration process that specifically pays

attention to activities. Trips with a ”wrong” activity purpose at their destination

may only be sorted out via the scoring function that will deduct score in case the

conducted activity does not fit well into the time window open for it between two

trips. Since the translation of these effects into the scoring is, however, very indirect,

it has to be followed that no real mechanism to adjust activities exists in this initial

model. In a strict sense, this constitutes a violation of the paradigm concerning the

treatmeant of choice dimensions whose properties can not be assured to be initially

correct (cf. sections 3.3.5, 4.1.3, and 4.2). It is expected that the representation of

activity purposes will improve in the model to be developed in the subsequent chap-

ter (cf. chapter 6) as effort will be made to ensure that its population represents

the real world population realistically, also in terms of employment status which

arguable influences the share of work activities.
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6. Elaborate Model

Like in the previous chapter (cf. chapter 5), again, the Comprehensive Econometric

Model for Daily Activity-Travel Patterns (CEMDAP, cf. section 2.3) is used for

initial demand generation. While in the previous chapter, the focus was on building

a simple model with as few input data as possible and to be as efficient as possible,

the goal of this chapter is to build a more elaborate model and to increase the model

fit and the validity of this model. Thus, more effort is made to create a suitable

input database. However, the fundamental premise of this study to only use input

data that is readily available (cf. section 1.3) still holds. The general descriptions

of the transport supply and transport demand have been given in sections 4.3.2 and

4.3.1. The detailed model setup for the model developed in this chapter is outlined

in section 6.1. Next, results of different runs are presented in section 6.2. Finally,

the validity of the model is shown in section 6.3.

6.1. Setup

The general model setups of the model developed in this chapter is analogous to the

one presented in the previous chapter (cf. chapter 5). In contrast to the popula-

tion used for the initial model, however, the population created in this chapter can

be regarded as a synthetic population1 in the more strict sense of the denotation.

This means that the claim of this population is to reflect the real population of

Berlin and vicinity in terms of major sociodemographic and socioeconomic proper-

ties like age structure, gender, employment situation etc. sufficiently well. In the

previous chapter, by contrast, the focus was rather on getting the correct amount

of travelers on the network as uncomplicatedly as justifiable, without paying much

attention to the representation of further characteristics of the population. ”As it

is obvious that the representativeness of the synthetic population is critical for the

simulations accuracy [...], a population approximating as accurately as possible the

correlation structure of the true population” [Barthelemy and Cornelis, 2012, p.1] is

1 A synthetic population is generated by disaggregating census data into individual people. So,
a synthetic populations constitutes a random realization of the census, i.e. a census taken
from the synthetic population would, within statistical limits, return the original census. A
synthetic population typically encompasses households with their spatial location and some
other attributes and individuals, who populate the households and possess additional attributes
[Raney and Nagel, 2006, p.306].
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fundamentally important to come to good results [Guo and Bhat, 2007, p.2].

Thus, the aim is to produce a population, which is in terms of important properties

statistically close to the true one. To do so, again (cf. sections 4.4.3 and 5.1) the

commuter file provided by the Federal Employment Agency (cf. section 4.3.2) is

used as a starting point. As for the initial model (cf. chapter 5), for each 100 person

in the commuter file, one agent with home and workplace locations according to the

commuter file is created – so, again, a 1% sample is used.

Since only car traffic is to be represeted, the commuter relations taken from the

Federal Employment Agency Bundesagentur für Arbeit [2010] are scaled by factors

of 0.37 and 0.55 for Berlin and Brandenburg, respectively, based on information

from Senatsverwaltung für Stadtentwicklung [2009, p.32]. As computed in section

4.3.2, only working people, or, more specifically, persons subject to social insurance

contributions are contained in the commuter file. The share of the working popula-

tion that is subject to social insurance contributions equals about 66%2 in Berlin.

Accordingly, commuter relations contained in the commuter file by the Federal Em-

plyment Agency are scaled up by a factor of 1.52 (i.e. the inverse of the share of

66%) to account for all working people.

Based on Amt für Statsitk Berlin-Brandenburg [2012b] and [Amt für Statsitk

Berlin-Brandenburg, 2013, p.6], the relation between the population older than 18

years and working people was calculated as 1.9. Accordingly, the agents to be created

are scaled up by this factor. Based on the same consideration it is determined wheter

agents are employed or not. Age is assigned to agents based on the distribution given

in [Amt für Statsitk Berlin-Brandenburg, 2013, p.6]. One or the other gender is

assigned to agents with a probability of each 50%. People over 65 years are assumed

to be retired. Among the 561,343 people aged 18 through 29 years, 266,671 are

classified as not working under the assumption that shares of workers and non-

workers do not differ significantly over different ages. As there are about 150,000

students3 in Berlin, people aged 18 through 29 years who are not regularly working

are with a probability of 56% (= 150/266) treated as students.

Based on this input, CEMDAP is run with the model specification from the trail

package (cf. appendix B.5) as it was already done for the initial model in chap-

ter 5. After the finalization of the CEMDAP run, its output is converted4 into a

MATSim plan file (cf. sec 3.3.4, which stores the daily plans of each agent. As

the the CEMDAP output may not be regarded the final solution for agents’ travel

patterns because of the missing context-specific estimation of the model coefficients

(cf. section 4.1.3), CEMDAP is, again, run multiple times. Each model output of

2 Own calculations based on Bundesagentur für Arbeit [2010] and Amt für Statsitk Berlin-
Brandenburg [2012a].

3 Cf. https://www.statistik-berlin-brandenburg.de/pms/2011/11-11-28.pdf, last accessed
16 December 2013

4 Using the class CemdapStops2MatsimPlansConverter, which is contained in appendix E.
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one of these runs is considered one suggestion for a potential demand representation

(cf. section 4.2). Cadyts (cf. section 3.4) is used to ensure that plans are scored

both in terms of their behavioral soundness and their representativeness in terms

of real-world observations (here given as traffic counts). If not stated otherwise, all

following runs are carried out over 150 iterations. The innovative strategy module

(i.e. the ReRoute module to generate new routes) is active during the first 90 of

these 150 iterations.

6.2. Results

The transport supply described in section 4.3.1 and the transport demand described

in sections 4.3.2 and 6.1 are fed into MATSim and run. Just as for the initial model

(cf. chapter 5), MATSim is applied in interaction with Cadyts (cf. section 3.4.3),

which influences the scores of agents’ plan dependent on how well these plans match

expectations with regard to traffic counts. As explained above the goal of the model

developed in this chapter is to find a demand representation with a model fit and a

validity as good as possible while still adhering to the premise of this study to use

only easily available data inputs (cf. section 1.3).

Based on the insight gained with the initial model (cf. chapter 5), the follow-

ing model parameters are varied over the subsequent sections to find the intended

transport demand representation:

1. Population expansion

2. Flow capacity

3. Demand elasticity

4. Number of plans and Number of initial plans

5. Weight of the strategy module

6. Cadyts scoring weight

7. Time span for calibration

6.2.1. Population Expansion

In the section on population expansion of the previous chapter (cf. section 5.2.1),

it was argued that the population should be expanded. This was due to the fact

that assurance was given that the number of agents to be put on the network was

initially correct. In line with the discussion on fixed and unfixed choice dimensions

(cf. sections 3.3.5, 4.1.3, and 4.2), it was pointed out that modifications to the
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number of agents have to be enabled to come to a valid representation with regard

to number of agents.

This more elaborate model is – as pointed out in section 6.1 – based on a much more

precise population representation. Specifically, working status of agents is considered

so that the argument that non-working people are systematically underrepresented

does not hold anymore. In fact, attention was paid to create a population whose

magnitude is initially correct and whose distribution with regard to employment

status reflects reality sufficiently well.

Thus, a population expansion for this chapter’s more elaborate model seems un-

necessary from a theoretical point of view. To check this assumption, four runs

whose settings and results are outlined in table 6.1 are used. The according error

graphs are depicted in figure 6.1.

Paramter Run 132 Run 140 Run 136 Run 141 Reference

Population Expansion 1x 1.5x 1x 1.5x

Demand Elasticity Yes Yes Yes Yes

Number of Plans 10 10 10 10

Number of Initial Plans 4 4 4 4

Flow Capacity Factor 0.02 0.02 0.015 0.015

Innov. Strategy/Selection 1:1 1:1 1:1 1:1

Cadyts Scoring Weight 30 30 30 30

Calibration Time 0 – 24h 0 – 24h 0 – 24h 0 – 24h

Normalized Log-Likelihood -28 -79 -38 -37 -10*

Home-Staying Agents 2,523 5,132 1,817 4,736 –

Traveling Agents 9,659 13,026 10,365 13,422 –

Car Trips 3.20 4.18 3.34 4.08 3.2m**

Car Trips/Person 4.0 3.9 3.9 3.8 3.4**

Avg. Detour Ratio 1.70 1.78 1.80 1.88 1.58***

Avg. Trip Distance 11.0 10.9 11.6 11.0 9.5**

Avg. Trip Duration 23.4 25.2 38.5 39.4 22.3**

Avg. Score of Exec. Plans 201 126 158 132 –

* cf. [Flötteröd, 2009, p.10]
** cf. scetion 4.4.1
*** cf. section 4.4.2

Table 6.1.: Settings and Results of Runs with different population Expansion

It is shown in table 6.1 that the runs with the expanded population put too many

agents on the network (number of car trips) who take longer detours. In terms of

other characteristics the runs based on an unexpanded population perform equally

or better. Thus, the hypothesis that population expansion is unnecessary (or rather

impedimentary) in connection with a synthetic population – whose magnitude and

basic characteristic are ensured to be represented well – can be confirmed.
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(a) Run 132 (1.0x-Exp. Population) (b) Run 140 (1.5x-Exp. Population)

(c) Run 136 (1.0x-Exp. Population) (d) Run 141 (1.5x-Exp. Population)

Figure 6.1.: Error Graphs of Runs with different Population Expansion

6.2.2. Flow Capacity

The configurations shown in table 6.1 and figure 6.1 also differ in terms of flow

capacity factors. This enables a reconsideration and potential reaffirmation of the

insights drawn in section 5.2.5 of the previous chapter with respect to the initial

model. Comparing the two configurations based on an unexpanded population (i.e.

Run 132 and Run 136), the configuration based on flow capacity factor of 0.02 shows

more realistic results. While most other measures perform similar, trip durations

are too high in the configuration with the smaller flow capacity factor (i.e. with a

value of 0.015). This is perfectly in line with the reasoning from section 5.2.5 where

it was explained why a configuration like Run 136 must be treated cautiously since

only trip duration tells that the configuration is not ideal while most other values

delusively suggest a good result. Figure 6.2 depicts the traffic patterns of two runs

with different flow capacity factor at 18:00. It can be seen that the configuration

with the lower flow capacity factor leads to overly high levels of congestion.
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(a) Run132 (FC = 0.02) @ 18:00 (b) Run136 (FC = 0.015) @ 18:00

Figure 6.2.: Traffic Patterns of Runs with different Flow Capacity Factors

6.2.3. Demand Elasticity

It was shown in section 6.2.1 that a population expansion is not recommendable in

this model setup that is based on a realistic population representation.

Paramter Run 132 Run 131 Reference

Population Expansion 1x 1x

Demand Elasticity Yes No

Number of Plans 10 10

Number of Initial Plans 4 3

Flow Capacity Factor 0.02 0.02

Innov. Strategy/Selection 1:1 1:1

Cadyts Scoring Weight 30 30

Calibration Time 0 – 24h 0 – 24h

Normalized Log-Likelihood -28 -208 -10*

Home-Staying Agents 2,523 0 –

Traveling Agents 9,659 12,182 –

Car Trips 3.20m 4.13m 3.2m**

Car Trips/Person 4.0 4.0 3.4**

Avg. Detour Ratio 1.70 1.73 1.58***

Avg. Trip Distance 11.0 12.5 9.5**

Avg. Trip Duration 23.4 33.3 22.3**

Avg. Score of Exec. Plans 200 61 –

* cf. [Flötteröd, 2009, p.10]
** cf. scetion 4.4.1
*** cf. section 4.4.2

Table 6.2.: Settings and Results of Runs with/without Demand Elasticity

As pointed out before, specifically in section 5.2.6, the function of demand elas-

ticity ties in with population expansion and the Cadyts calibration functionality to

enable the modification of the number of agents during the simulation-calibration
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process. Since this number should be initially correct the freedom for adjustment

(cf. section 5.2.2) during the simulation-calibration process does not seem necessary.

Table 6.2 outlines the settings and results of two configurations suitable to test this

hypothesis and figure 6.3 depicts the respective error graphs.

(a) Run 132 (With Demand Elast.) (b) Run 131 (No Demand Elast.)

Figure 6.3.: Error Graphs of Runs with/without Demand Elasticity

Somewhat unexpectedly, the configuration with demand elasticity shows discernibly

better results than the one without demand elasticity. As can be seen in table 6.2

the functionality to modify the number of agents makes about one fifth of all ini-

tially existing agents of the population stay at home, i.e. become inactive in terms

of traveling. The number of car trips, which perfectly matches expectations based

on survey data, reaffirms that the process of sorting out some agents was reasonable.

Accordingly, demand elasticity will be switched on this model as well to allow the

simulation-calibration process some for freedom fro adjustments.

6.2.4. Number of Plans and Number of Initial Plans

In sections 5.2.3 and 5.2.4, the number of plans and number of initial plans were

analyzed. First, it was found that the number of plans should be higher (probably

at least by a factor of 2) than the number of initial plans to allow enough ”freedom”

for all plans to be copied and evaluated sufficiently well before potentially being

discarded because of agent’s memory restriction related to their maximum number

of plans.

Second, it was questioned in section 5.2.3 how much diversity increase is actually

achieved by a higher number of initial plans (which is the actual aim of doing so)

in case the process of generating new plans does only involve a limited amount of

probabilism (cf. section 5.1.2).

Third, it seemed that the number of iterations may not have been high enough as

to allow for the simulation process, especially for those runs with a higher number
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of plans, to fully converge.

To address the last issue, the number of iterations is increased from 150 iterations

(the standard value used if not stated otherwise) to 250 iterations for the four runs

considered in this section. Their settings and results are given in table 6.3. The

error graphs of the runs are shown in figure 6.4.

Paramter Run 134a Run 137 Run 139 Run 138 Reference

Population Expansion 1x 1x 1x 1x

Demand Elasticity Yes Yes Yes Yes

Number of Plans 10 20 10 20

Number of Initial Plans 8 8 4 4

Flow Capacity Factor 0.02 0.02 0.02 0.02

Innov. Strategy/Selection 1:1 1:1 1:1 1:1

Cadyts Scoring Weight 30 30 30 30

Calibration Time 0 – 24h 0 – 24h 0 – 24h 0 – 24h

Number of Iterations 250 250 250 250

Normalized Log-Likelihood -141 -23 -20 -20 -10*

Car Trips 3.94 3.55 3.23 3.25 3.2m**

Car Trips/Person 4.0 4.0 4.0 4.0 3.4**

Avg. Detour Ratio 1.71 1.70 1.70 1.70 1.58***

Avg. Trip Distance 11.9 11.0 11.0 11.0 9.5**

Avg. Trip Duration 26.9 24.3 23.5 24.0 22.3**

Avg. Score of Exec. Plans 116 215 208 205 –

* cf. [Flötteröd, 2009, p.10]
** cf. scetion 4.4.1
*** cf. section 4.4.2

Table 6.3.: Settings and Results of Runs with diff. No. of Plans and Initial Plans

As shown in table 6.3, Run 134a possesses the already-mentioned property that

the number of plans and the number of initial plans are quite similar. As speculated,

this property seems to be somewhat hindering the finding of a good solution when

compared to Run 137, which is identical except that agents are allowed to hold 20

instead of ten plans during the simulation process. The error graphs of the two runs

depicted in figure 6.4 reaffirm the superiority of the configuration of the run with

the higher number of plans very clearly.

Therefore, the hypothesis from section 5.2.4 that the ratio between the number

of plans during the simulation and the number of initial plans is more relevant than

the number of initial plans itself can be seen as confirmed.

The other two configurations (i.e. Run 139 and Run 138) contained in table 6.3

mirror the two runs discussed thus far, with the only difference that agents are

equipped with only four initial plans instead of eight.

First, these two runs perform strikingly similar. It can, thus, be followed that

an increase of the ratio between the number of plans during the simulation and the

number of initial plans does not have a significant effect beyond a certain value. As
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speculated before, a ratio of two seems to be sufficient.

Secondly, these two runs also perform very similar as Run 137, which also has

a sufficiently high plan-to-initial-plans ratio, but a higher number of initial plans.

This observation as a confirmation to the assumption that an increase in the number

of initial plans does – beyond a certain value – not lead to a utilizable increase in

diversity.

(a) Run 134a (10 Plans) (b) Run 137 (20 Plans)

(c) Run 139 (10 Plans) (d) Run 138 (20 Plans)

Figure 6.4.: Error Graphs of Runs with different Numbers of Plans and Initial Plans

To sum up, a ratio between the number of plans during the simulation and the

number of initial plans should at least reach a value of two. Four initial plans (where

one plan is the stay-home option to enable demand elasticity) seems sufficient.

6.2.5. Cadyts Scoring Weight

In the respective section on the Cadyts scoring weight in the chapter of the initial

model (cf. section 5.2.6), only the general meaning of the Cadyts scoring weight was

discussed. Here, a detailed analysis of the concrete value w is conducted, for which

the four configurations outlined in table 6.4 are used. The respective error graphs

are depicted in figure 6.5.
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Paramter Run 130 Run 132e Run 132 Run 132a Reference

Population Expansion 1x 1x 1x 1x

Demand Elasticity Yes Yes Yes Yes

Number of Plans 10 10 10 10

Number of Initial Plans 4 4 4 4

Flow Capacity Factor 0.02 0.02 0.02 0.02

Innov. Strategy/Selection 1:1 1:1 1:1 1:1

Cadyts Scoring Weight 0 10 30 50

Calibration Time 0 – 24h 0 – 24h 0 – 24h 0 – 24h

Normalized Log-Likelihood -222 -168 -28 -22 -10*

Car Trips 4.12m 4.05m 3.20m 2.99m 3.2m**

Car Trips/Person 4.0 4.0 4.0 3.8 3.4**

Avg. Detour Ratio 1.76 1.77 1.78 1.77 1.58***

Avg. Trip Distance 12.3 12.1 11.0 11.3 9.5**

Avg. Trip Duration 30.7 29.5 23.4 23.7 22.3**

Avg. Score of Exec. Plans 172 141 200 248 –

* cf. [Flötteröd, 2009, p.10]
** cf. scetion 4.4.1
*** cf. section 4.4.2

Table 6.4.: Settings and Results of Runs with different Cadyts Scoring Weights

(a) Run 130 (w = 0.0) (b) Run 132e (w = 10.0)

(c) Run 132 (w = 30.0) (d) Run 132a (w = 50.0)

Figure 6.5.: Error Graphs of Runs with different Cadyts Scoring Weights

97



First of all, the results show that the choice of the Cadyts scoring weight w is, in

fact, influential. Not only the fact that Cadyts calibration is applied (i.e. that w is

chosen greater than zero), but also the strength of this application make a difference.

For instance, it is shown quite clearly in figure 6.5 that the effects of a Cadyts

scoring weight of 10.0 are much different from those effected by a scoring weight

of 30.0. In fact, mean relative errors of the configuration with w = 10.0 are very

similar to those without obtained without calibration (i.e. Run 130 with w = 0.0).

The configuration with w = 30.0, by contrast, yields heavily improved result in

terms of all relevant measures. Increasing w further does not lead to additional

improvement. While the normalized log-likelihood (i.e. the model fit) is improved

somewhat further, measures of travel characteristics show slight debasements. In

particular, the number of car trips falls below the number of expected trips in terms

of survey results. Thus, the deduction suggest itself that a Cadyts scoring weight

greater than 30 may promote overfitting (cf. section 5.3).

6.2.6. Weight of Strategy Module

In the respective section on the weight of the strategy module the chapter of the

initial model (cf. section 5.2.7, it was found quite clearly that runs in which the prob-

abilistic selection is applied more often relative to the application of the innovative

strategy module (i.e. the ReRoute module) perform better.

Paramter Run 132 Run 132d Run 136 Run 136b Reference

Population Expansion 1x 1x 1x 1x

Demand Elasticity Yes Yes Yes Yes

Number of Plans 10 10 10 10

Number of Initial Plans 4 4 4 4

Flow Capacity Factor 0.02 0.02 0.015 0.015

Innov. Strategy/Select. 1:1 1:2 1:1 1:2

Cadyts Scoring Weight 30 30 30 30

Calibration Time 0 – 24h 0 – 24h 0 – 24h 0 – 24h

Normalized Log-Likelihood -28 -23 -38 -23 -10*

Car Trips 3.20 3.13 3.34 3.18 3.2m**

Car Trips/Person 4.0 4.0 3.9 3.9 3.4**

Avg. Detour Ratio 1.70 1.69 1.80 1.76 1.58***

Avg. Trip Distance 11.0 11.0 11.6 11.3 9.5**

Avg. Trip Duration 23.4 22.5 38.5 36.0 22.3**

Avg. Score of Exec. Plans 201 213 158 206 –

* cf. [Flötteröd, 2009, p.10]
** cf. scetion 4.4.1
*** cf. section 4.4.2

Table 6.5.: Settings and Results of Runs with different Weights of the Strat. Mod.

The aim of this section is to reaffirm this observation also on the basis of the more
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elaborate population representation used in this section.

In table 6.5, four runs with different ratio of the weight of the ReRoute module

and the probabilistic selection module are outlined. In figure 6.6 the respective error

graphs are depicted.

(a) Run 132 (Strat./Sel. = 1:1) (b) Run 132d (Strat./Sel. = 1:2)

(c) Run 136 (Strat./Sel. = 1:1) (d) Run 136b (Strat./Sel. = 1:2)

Figure 6.6.: Error Graphs of Runs with diff. Weights of the Strategy Module

Comparing the results of the runs in table 6.5, it can be seen that – as before

(cf. section 5.2.7) – the configuration where the weight of the strategy module

is lower than the weight of the probabilistic selection perform better than there

counterparts where both said weights are eqaul. In contrast to observation made

with the initial model (cf. section 5.2.7), however, improvements made by increasing

the weight of probabilistic selection are not as big. This is likely due to be fact that

configurations in terms of other parameters have already been improved further.

While the observation that higher weights for probabilistic selection leads to a better

convergence still holds, its effect is simply not as big anymore. As a side note, the

observations concerning flow capacity factor made in sections 5.2.5 and 6.2.2 can be

reaffirmed by observing the, again, too high travel times of the two runs based on a

flow capacity facotr of 0.015 shown in the right part of table 6.5.
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6.2.7. Time Span for Calibration

The time span which is used for the Cadyts calibration can be selected. The default

is 00:00:00 through 24:00:00. In order not to spoil results, it may be reasonable to

exclude very early hours of the day from the calibration, because CEMDAP plans

do not contain any traffic before 3 a.m.5. Since traffic count data starts at midnight,

there would be a systematic deviation if very early hours are used. Accordingly, two

runs whose configurations are given in table 6.6 are compared. The according error

graphs are depicted in figure 6.7.

Paramter Run 136 Run 136a Reference

Population Expansion 1x 1x

Demand Elasticity Yes Yes

Number of Plans 10 10

Number of Initial Plans 4 4

Flow Capacity Factor 0.015 0.015

Innov. Strategy/Selection 1:1 1:1

Cadyts Scoring Weight 30 30

Calibration Time 0 – 24h 4 – 24h

Normalized Log-Likelihood -38 -27 -10*

Car Trips 3.34 3.32 3.2m**

Car Trips/Person 3.9 3.9 3.4**

Avg. Detour Ratio 1.80 1.80 1.58***

Avg. Trip Distance 11.6 11.5 9.5**

Avg. Trip Duration 38.5 37.6 22.3**

Avg. Score of Exec. Plans 158 169 –

* cf. [Flötteröd, 2009, p.10]
** cf. scetion 4.4.1
*** cf. section 4.4.2

Table 6.6.: Settings and Results of Runs with different Time Spans for Calibr.

(a) Run 136 (Calibr. Time = 0 – 24h) (b) Run 136a (Calibr. Time = 4 – 24h)

Figure 6.7.: Error Graphs of Runs with different Time Spans for Calibration

5 A CEMDAP day starts by default at 3a.m. [Bhat et al., 2004, p.58].
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The run with time span for Cadyts calibration from 04:00:00 through 24:00:00

(Run 136a) shows an improvements in model fit (as measured in terms of normalized

log-likelihood) over a run whose Cadyts calibration time spans from from 00:00:00

through 24:00:00. Looking at the other parameters, however, it becomes clear that

no much has changed in terms of agents’ travel behavior. Basically, the log-likelihood

values seems to only have improvement because early morning our, which seem to

have spoilt the value to some extent, are not considered anymore. As no relevant

changed in terms of travel behavior could be detected, the choice of the time span

for calibration seems to be of very minor importance.

6.2.8. Summary

Summarizing the analyses of the previous sections (cf. sections 6.2.1 through 6.2.6),

the following insights for the creation of a transport model as close to reality as

possible can be outlined:

• As opposed to the initial model – where the inital amount of agents was not

guaranteed to be correct (cf. section 5.2.1) – a population expansion is not

necessary in this model, where efforts are taken to ensure that the initial

population is correct in terms of its basic distributions as well as the amount

of its members.

• Still, the opportunity to modify this value to some extent was found to be ben-

eficial which is why the option of demand elasticity should, again, be switched

on.

• In line with preliminary results (cf. section 5.2.8), it is recommended to choose

the number of plans about twice as high as the number of initial plans.

• Again, a value of four seems to be sufficient for the number of initial plans.

• For the flow capacity, again, a value of 0.02 was found to be reasonable.

• The Cadyts scoring weight should be chosen to a value of about w = 30.0.

Lower values were detected to be not influential enough as to cause the desired

calibration effect. Values higher than w = 30.0 showed some slight indications

of overfitting (cf. section 5.3).

• It has to be confirmed that the weight for innovative strategy module should

be selected somewhat lower than the weight for the probabilistic plan selection

module. If the simulation configuration is, however, well-balanced up to this

point, the choice of this value seems to be of minor importance.
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• The choice of time span for calibration seems to only influence results cosmet-

ically as long as it is guaranteed that those hours of the day in that significant

amounts of traffic exist, are included in this time span.

6.3. Validation

Analogous to the procedure of the validation of the initial model (cf. section 5.3, the

best model in terms of the parameter combination tested in the previous sections

of this chapter and outlined in section 6.2.8 is validated now. To do so, travel

characteristics of the simulation are compared to real-world travel characteristics

as contained in the travel survey (cf. 4.4.1). As mentioned before, the comparative

values from the survey were prepared via the Java program SrVTripAnalyzer, which

is contained in appendix E based on the originl survey data Ahrens [2010c].

Run 132d possesses the properties outlined in section 6.2.8. Its configuration

is given table 6.5. It can be seen in the table that the number of all daily car

trips (3.13m in Run 132d) hardly diverges from travel survey data (3.20m). this

constitutes an improvement over the initial model.

The distribution of trips by time of day is depicted in figure 6.8.
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Figure 6.8.: Departure Times in Simulation and Survey

As in section 5.3, there is somewhat more traffic during daytime and a bit less

traffic in the evening.

Next, trip distances are analyzed on the basis on beeline distances (cf. section

4.4.2). Figure 6.9 shows how the relative frequencies of trip distances compare
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between simulation results and survey data.
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Figure 6.9.: Trip Distances (Beeline Distances) in Simulation and Survey

The figure is very similar to figure 5.11 for the initial model. It can be seen that

the survey contains somewhat more trips with short distances around five through

ten kilometers.

Figure 6.10 shows how the relative frequencies of trip durations compare between

simulation results and survey data.
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Figure 6.10.: Trip Durations in Simulation and Survey
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Again, differences to the comparion drawn before between the initial model (cf.

section 5.3) are very small. Again, if one evens out the peaks contained in the graph

for the survey data mentally, one can notice that the survey possesses a somewhat

higher number of shorter trips. The little excess of trips with durations of over 50

minutes appear, however, slightly reduced when comapred to results for the initial

model.

Figure 5.13 shows how the relative frequencies of average trip speeds (calculated

based on beeline distances) compare between simulation results and survey data.
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Figure 6.11.: Average Trip Speeds (Beeline Speeds) in Simulation and Survey

It is shown in figure that speeds in the simulation match speeds from the survey

well.

Finally, the distribution of activity types at trip ends is analyzed. Figure 6.12 de-

picts how the according distributions from the simulation and the survey. Appendix

D contains information on the preparation of activity shares.
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Figure 6.12.: Activity Types in Simulation and Survey

Compared to the activity distribution of the initial model (cf. section 5.14, a dis-

cernible improvement can be seen. While work activities were carried out relatively

too often in the simulation of the initial model, here the share of work activities as

given in the survey is met much better. This was expected because to the fact in

the simple population representation of the initial model all people were assumed to

be workers (cf. section 5.1), whereas in this model employment status is explicitly

considered (cf. section 6.1).

In fact, the simulation produces, in contrast to observations made for the initial

model, somewhat too few work activities. Overall, the distribution of the survey is

met quite well.

As pointed out in section 5.3, there is no specific mechanism in the simulation-

calibration process that caters for the right representation of activity types. There-

fore, the the distribtion of activites at trip end needs to be initially correct (cf.

discussion of fixed and modifiable choice dimension in sections 3.3.5, 4.1.3, and 4.2).

As mentioned above, this fact has been taken into account in setting up the popu-

lation representation for the model developed in this chapter.

In fact, the simulation produces, in contrast to observations made for the initial

model, somewhat too few work activities. Overall, the distribution of the survey is

met quite well.
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7. Conclusion, Discussion, and Outlook

Transport systems of the modern world are situated in a dilemma. On the one hand,

they are fundamentally important for the development of societies and economies

and, thus, an important prerequisite for welfare. On the other hand, they constitute

an important cause of most urgent problems of our times like global warming because

they are a big contributor to the emission of greenhouse gases (cf. chapter 1). At the

same time, transport systems are also responsible for other negative effects impairing

the well-being of people and the preservation of the environment.

It has been acknowledged that novel solution are needed to come to balanced

solutions that enable the provision of an efficient transport system while limiting

and reducing adverse effects. The assessment of proposed solutions is, however,

a challenging task. Numerous actors are involved and interdependencies among

induced effects are hard to overlook. Therefore, suitable tools are needed in order to

gain insights concerning the effects of changes in the transport system. Transport

models have been shown to be able to serve this need (cf. section 1.1). Their

establishment and maintenance is, however, mostly expensive as well as the obtaining

of the required input data. Due to data privacy issues the collection of suitable input

data may become even more strenuous in the future. Furthermore, many models,

in particular traditional ones based on aggregate considerations of traffic flows, are

not suitable to assess novel transport policies that go beyond the construction of

infrastructure.

This is why, a simple transport model has been developed in this study. The

overarching premise was to only use input data that are readily available and easy

to obtain (cf. section 1.3). Thus, only data on commuter relations and some socio-

demographic population characteristics for the metropolitan area of Berlin, the study

area of the model, were used.

A microscopic modeling approach (MATSim, cf. section 3.3) based on a genetic

algorithm is used to find a transport demand representation. In this approach, each

traveler is retained individually with all their relevant properties during the whole

simulation process. Travel behavior is explicitly considered as each traveler, referred

to as an agent, assesses their own behavior based on a utility function.

Since the amount of input data is limited, it becomes more challenging to find an

initial demand representation upon which modifications can be made by the itera-

tive simulation procedure of MATSim. Therefore, an econometric activity simulator
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(CEMDAP, cf. section 2.3) is used to create initial suggestions of travel demand rep-

resentations. Notably, the CEMDAP output may, at first, not be considered a valid

representation of travel demand. This is due to the fact that no estimation of the

CEMDAP model parameters is carried out for the region of application. Instead, a

model configuration for another geographic region is applied. This limitation is com-

pensated by regarding the CEMDAP output as initial suggestions of demand instead

of final solution as it would be possible if a correctly estimated model configuration

was used.

Multiple CEMDAP output (called sets of activity-travel patterns) are created and

fed into the MATSim transport system simulation. In connection with a calibration

algorithm (Cadyts, cf. section 3.4), it is ensured that those initial demand suggestion

prevail that constitute good solutions to the problem of finding a valid transport

demand representation. The difference towards other applications of MATSim is,

thus, that less effort is put into finding a suitable initial demand. This is balanced by

ensuring that realistic traveling population develops over the course of the iteration

via the application of the Cadyts algorithm.

In the previous two chapters (cf. cahpters 5) and 6), two transport demand

models were created, analyzed, and validated. The first model, branded as initial

(cf. chapter 5) was intended to analyze effects of applying variation to several model

parameter. The second model, branded as elaborate (cf. chapter 6) was intended to

make use of the insights gained from the initial model and, based on them, build a

model, which, on the one hand, possesses a good model fit and, on the other hand,

can be validated in terms of traffic characteristics. These characteristics are mainly

drawn from the Berlin 2008 SrV travel survey (cf. section 4.4.1).

The initial model is based on a very simple representation of the real-world pop-

ulation. The guiding idea (cf. section 5.1 in creating this population representation

has been to get started as quickly as possible in order to obtain first, preliminary

results that can be used for analyses of various characteristics of the model. After

several variations of model parameters had been tested, a model with a good model

fit was found. In fact, the preferred configuration of parameters which was used for

model validation in section 5.3 is largely compatible with the preferred configuration

of parameters of the elaborate model.

The elaborate model is, by contrast, based on a population that reflects the real-

world population in its basic characteristics (e.g. age distribution or employment

status of its members etc.). The transport model built on the basis of this popu-

lation shows slight improvements over the initial model. While differences in terms

of travel characteristics like trip durations and trip distances are not majorly differ-

ent, the elaborate model performs significantly better in terms of representation of

activity participation. This was expected since activity participation is, obviously,

highly dependent on sociodemographic characteristics. As mentioned above, such
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characteristics are only modeled with sufficient accuracy in the elaborate model.

It can be considered a strength of the simulation-calibration process that it man-

ages to select a valid demand representation out of a rough initial population rep-

resentation in the initial model. To achieve this, a quite complex interaction of

the different applied functionalities is needed. For instance, it is not initially clear

whether the size of the population (i.e. the number of agents) is correct. An expan-

sion of the population beyond its actual (assumed) size, connected with the freedom

to make agents become inactive (i.e. to ”stay at home”, referred to as demand elas-

ticity) and the Cadyts calibration algorithm, which controls this effect, provides the

functionality to determine the number of agents during the simulation-calibration

process. This example illustrates how a significant amount of information that is

usually necessary at the initialization of a transport model can be forgone (cf. section

4.1).

Still, a more realistic reproduction of activity participation as it is achieved by

the elaborate model may be essential if the transport model created by the discussed

procedure is used for policy analysis. An examination of this assumption is left for

subsequent studies.

In terms of further refining the created model, some additional modifications seem

feasible. Residential patterns for people living in Berlin, for instance, have been mod-

eled on the basis of district regions, which subdivide Berlin into geographic area that

are homogeneous in terms of the number of people who live it (cf. section 4.3.2).

Accordingly, a random choice of one district region to become the home location

for a given agent is used to reproduce real-world residential patterns of Berlin. For

workplace locations, however, the approach is not feasible as they are distributed

differently. In this study, random geographical entities are chosen as potential work-

place locations and it is left to the simulation-calibration procedure to sort those out

that lead to realistic travel pattern. It seems worthwhile, however, to assess the ef-

fects of using data that contain information on the spatial workplace distribution of

Berlin and to select workplace locations on the basis of this data. A potential source

may be so-called enterprise registry data (in German: Unternehmensregisterdaten)

as for instance described by Bömermann and Heymann [2011].

Notably, a quite novel treatment of choice dimension has been introduced through

the application of CEMDAP and Cadyts in this study. Usually, choice dimensions

(e.g. departure time choice, mode choice, route choice etc.) can be considered ei-

ther fixed or unfixed from the point of view of the simulation (cf. sections 3.3.5,

4.1.3, and 4.2). The properties in terms of unfixed choice dimension can be modi-

fied during the simulation process and need, thus, not be perfectly represented at

simulation initialization in case a mechanism (referred to as (innovative) strategy

module, cf. section 3.3.3) is used in the simulation process to guide the development

of the considered properties in the desired direction. If no module for a given choice
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dimension is applied in the simulation process, however, it needs to be assured that

the respective property is correct at initialization as it will stay unchanged during

the simulation process. In this study, only the ReRoute module – responsible for

finding new routes – is applied. Thus, route choice is, in the stricter sense of the

concept, the only unfixed choice dimension in this model.

Even though no explicit module for time choice or location choice is applied in the

simulation process, these choice dimension are still modifiable to a limited extent.

This is due to the fact that multiple initial plan suggestion are provided to the

simulation process by CEMDAP (cf. section 4.1.3). Since these outputs contain

diversity (cf. section 5.1.2) in terms of activity timing and activity locations, a choice

among this diversity is possible during the simulation process. The major difference

towards the application of explicit strategy modules for these choice dimension is

that in this study only modifications to the discrete options provided by CEMDAP

are possible while an explicit module would theoretically enable an infinite amount

of options to select from.

An arguable disadvantage of the approach applied in this study may be, though,

that no feedback from MATSim to CEMDAP is given. So, location choice and time

choice (according options being provided via CEMDAP initially) are not dependent

on network conditions. This may be improved by the introduction of some feedback

loop from MATsim to CEMDAP in potential follow-up studies.

Finally, it has to be concluded that the model created in this study can be vali-

dated very well. First, the model fit of the preferred parameter combination (cf. Run

132d given in table 6.5 and figure 6.6) fulfills the general quality criteria in modeling.

MRE error for volumes of traffic are (as shown in figure 6.6) discernibly below 20%

during daytime hours. The performance in terms of model fit is, thus, better as that

of the benchmark model shown in section 4.4.3, even though the modeling effort is

arguably lower.

The validation based on the preferred parameter combination carried out in sec-

tion 6.3 can also be seen as successful concerning all considered properties, which

encompass the total amount of car trips, the distributions of departure times, trip

duration, trip distance, and average trips speeds as well the the distribution of ac-

tivity participation at trip ends.
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A. Documentation of Workflow

In this appendix, the workflow from receiving input data via running CEMDAP and

MATSim in interaction with Cadyts until drawing conclusions on analyzed output

data is documented. As opposed to the chapters above, the focus here is on the

technical side.

• Preparation of input data for CEMDAP

– Use the files B2009Ga.xls (outward commuters) and B2009Ge.xls (in-

ward commuter) as provided by the Federal Employment Agency (cf.

section 4.3

– Open the files in Microsoft Excel, switch off thousand seperation, and

save them as tab-separated text files

– Run the Java program DemandGeneratorOnePerson, which among oth-

ers generates an instance of the Java object CommuterFileReader. The

CommuterFileReader takes care that only lines with commuter data (i.e.

no headers, footers etc.) are read. Also, it checks whether commuter

relations fall within the planning area by comparing municipality keys

of the trips’ origins and destinations with keys gained form a shapefile

that contains all municipalities to be considered (all Brandenburg mu-

nicipalities and the city-state Berlin, which constitutes a municipality as

well). The output are one households.dat and a specified number of

person[number].dat files.

– For each persons file, load the households.dat and one of the different

persons[number].dat files along with .dat files concerning zones, zone-

to-zone relations, level of service data, and vehicle data into a PostGreSQL

database as instructed in the CEMDAP user manual [Bhat et al., 2008,

p.60], i.e. create a new database (set encoding to SQL ASCII and run two

query files given in [Bhat et al., 2008, p.61] to create tables and indices.

– On the command line, navigate to the PostGreSQL bin folder and open the

database with psql -d [database name] -U [user name] and load all

input files (e.g. copy households from ../households.dat).
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• Run CEMDAP

– Open CEMDAP (using CEMDAP5Threads)

– Load the database [Bhat et al., 2008, p.15] via Input in the Data menu.

Choose New... in the register card Machine Data Source and select

SystemDataSource. Select PostGreSQL (ANSI) as driver and specify the

database by its name. Name and save the configuration.

– Select an output folder, load a suitable model specification file, and start

the simulation run.

– Do this as many times as there are different person files to be considered.

Each of these runs constitutes one initial potential solution for a daily

activity-travel pattern for every agent (cf. section 4.1.3)

• Convert CEMDAP output into MATSim input

– Use the multiple stop files of the output of CEMDAP as described in

appendix B.6.

– Run CemdapStops2MatsimPlansConverter to create a MATSim XML plan

file that contains the activity-travel patterns drawn from all assigned

CEMDAP stop files.

• Run MATSim in connection with Cadyts

– Start Eclipse where MATSim needs to be set-up according to instruction

form the MATSim website1.

– Set the above-created MATSim XML plan as input in the MATSim setup

outlined in appendix C (which is also part of appendix E).

– Run the CadytsControllerBerlin.

• Analyze MATSim output

– Several analysis programs implemented in Java can be used to create the

analyses presented in chapters 5 and 6. These analyses are largely based

on events2 and are contained within appendix E.

1 Cf. http://www.matsim.org/docs/tutorials/8lessons, last accessed 16 December 2013.
2 Cf. http://www.matsim.org/docs/tutorials/8lessons/output/events, last accessed 16 De-

cember 2013.
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B. CEMDAP Setup

In this section, the technical setup for the CEMDAP scenario including the definition

of all used variables (cf. [Bhat et al., 2008, p.10f] and [Bhat et al., 2008, p.55f]) and

the adaption of a ready-made and provided model specification file (cf. [Bhat et al.,

2008, p.21]) are presented.

B.1. Households File

The file households.dat encompasses 32 variables altogether (cf. [Bhat et al., 2008,

p.57]), of which six are ”required” and 26 are ”optional”. The required variables

and the corresponding values used in this study are given in table B.1. Information

concerning the optional variables was not easily available, which is why the optional

variables were unconsidered in this study and set to zero 1.

Paramter Description Initial Model Elaborate Model

HHID Household ID ascending from 1 ascending from 1

NADULT Number of adults 1 1

NVEH Total number of hh. veh. 1 1

HOMETSZ Home TSZ location randomly selected* randomly selected*

NCHILD Number of children 0 0

HHSTRUCT household structure 1 1

26 remaining variables 0 0

* constant over multiple plans of a given agent

Table B.1.: Variables in Households Input File

B.2. Persons File

The file persons.dat encompasses 59 variables altogether. The considered vari-

ables and the corresponding values used in this study are given in table B.2. All

other variables are set to zero along with corresponding adjustments in the model

specification (cf. section B.5).

1 It needs to be mentioned that using a zero here, i.e. for the value of a variable, does not have
a particular meaning. In fact, it simply constitutes a randomly chosen placeholder value that
is necessary because any column expected to exist according to the modeling system needs to
be filled with a value. By corresponding adjustments in the model specification file (i.e. setting
the respective coefficient to zero, cf. section B.5), the model is told which variables effectively
stay unconsidered.
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Paramter Description Initial Model Elaborate Model

HHID Household ID cf. B.1 cf. B.1

PerID Person ID HHID + 01 = HHID + 01

Aemp Adult is employed 1 0 or 1***

Stu Adult or child is a student 0 0 or 1***

License Person is licensed to drive 1 1

WorkTSZ Work TSZ randomly selected* randomly selected*

SchTSZ School TSZ -99 randomly selected*

Female Person is female 1 0 or 1****

Age Age randomly selected** ?***

Parent Parent 1 0

42 remaining variables 0 0

* also variant over multiple plans of a given agent
** out of a range from 18 through 99
*** according to own calulations described in section 6.1
**** each with a probability of 50%

Table B.2.: Variables in Persons Input File

B.3. Zones File and Zone-to-Zone File

The file zones.dat encompasses 45 variables altogether. It is assigned according

to municipality IDs in Brandenburg and LOR IDs in Berlin (cf. section 4.3.2).

All other variables are set to zero along with according adjustments in the model

specification (cf. section B.5). The file zone2zone.dat carries four variables. The

according values used in this study are given in table B.3.

Paramter Description Initial Model Elaborate Model

Origin zone TSZ zone ID - origin municip. or LOR ID* municip. or LOR ID*

Dest zone TSZ zone ID - destination municip. or LOR ID* municip. or LOR ID*

Adjacent Orig. and dest. are adjacent 0 0

Distance Distance between zones Centroid beeline dist. Centroid beeline dist.

* In Brandenburg, zoning is based on municipalities. Here, the according municipality IDs are

used. In Berlin, zoning is based on medium-level LORs. Here, the according LOR IDs are

used (cf. section 4.3.2).

Table B.3.: Variables in Zone-to-Zone Input File

B.4. Level of Service File

The CEMDAP database contains four level of service tables corresponding to two

peak periods (a.m. and p.m.) and two offpeak periods (a.m. and p.m.) labeled

losoffpkam.dat, losoffpkpm.dat, lospeakam.dat, and lospeakpm.dat. The file

losdir.dat tells CEMDAP which of the four level of service files to use for which

period. In this study only one level of service file is used for all four time periods
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for reasons of simplicity. The layout for each of these four files is the same and

comprises 14 variables. The variables and their according values used in this study

are given in table B.4.

Paramter Description Initial Model Elaborate Model

Origin TSZ zone ID - origin B.3 cf. B.3

Destination TSZ zone ID - destination cf. B.3 cf. B.3

samezone Orig. and dest. are in same zone 1 if yes, 0 if no 1 if yes, 0 if no

Adjacent Orig. and dest. are adjacent 0 0

Distance Distance between zones B.3 cf. B.3

autoIVTT Auto in-vehicle travel time 1.2 × Distance 1.65 × Distance

autoOVTT Auto out-of-vehicle travel time 3.1 3.27

Travail Public transp. is available 0 0

TrIVTT Pub. transp. in-vehicle tr. time 0 0

TrOVTT Pub. transp. out-of-vehicle tr. time 0 0

TrCost Public transp. cost 0 0

COST Auto cost Distance / 15.0 Distance / 13.8

SRIVTT Shared ride travel time = autoIVTT = autoIVTT

SRCOST Shared ride cost = COST = COST

Table B.4.: Variables in LOS Input File

B.5. Model Specification File

For this study a ready-made and provided model specification is used (cf. section

4.2). Since not all variables are expected to be given by this model specification, some

adjustments to the model specification file had to be made. First, the constants.h

file of the CEMDAP source code, where all exogeneous and endogeneous model

variables are defined, had to be inspected to reconcile internal variable IDs with ID

descriptions according to [Bhat et al., 2008]. Some differences were found, mainly

due to the addition of further descriptive variables, so that the meaning of variables

not defined in the manual had to be reassured. Then, the coefficients of those

variables that were not to be considered by the several models included within

CEMDAP had to be set to zero in the model specification file.

A test showed that two CEMDAP runs based on the ready-made and provided

model specification file and the adjusted model specification file as described above

yielded the exact same results. This is in line with the observation that the coef-

ficients of almost all unconsidered variables were very small and, therefore, their

impact on the simulation outcome negligible. Consequently, the original model

specification file could have been used instead of the adjusted model specification

file without the danger of adulterating the results.
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B.6. Model Output

As explained in section 2.3.4, the full daily activity-travel pattern of any individual

can be reconstructed from the information given in the stops file. The variables

contained in each line of the stop file along with their column numbers are presented

in table B.5 [Bhat et al., 2008, p.14]. Note that the terms stop and activity can be

used interchangeably here.

Column No. Description

1 Household ID

2 Person ID

3 Tour ID

4 Stop ID

5 Activity type

6 Start time of travel to the stop

7 Travel time to stop

8 Stop duration

9 Stop location (zone) ID

10 Origin zone ID

11 Trip distance

12 Activity type at the previous stop

Table B.5.: Variables in Stops Output File
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C. MATSim Setup

In this section, the Java class CadytsControllerBerlin is outlined. As all configu-

rations are set directly in this controller class no additional config file as frequently

used otherwise1 is necessary.

1 public class CadytsControllerBerlin {
2 private final static Logger log = Logger.getLogger(CadytsControllerBerlin.class);

3

4 public static void main(String[] args) {
5 final Config config = ConfigUtils.createConfig();

6

7 // global

8 config.global().setCoordinateSystem("GK4");

9

10 // network

11 String inputNetworkFile = "D:/Workspace/container/demand/input/iv_counts

/network.xml";

12 config.network().setInputFile(inputNetworkFile);

13

14 // plans

15 String inputPlansFile = "D:/Workspace/container/demand/input/

cemdap2matsim/24/plans.xml.gz";

16 config.plans().setInputFile(inputPlansFile);

17

18 // simulation

19 config.addQSimConfigGroup(new QSimConfigGroup());

20 config.getQSimConfigGroup().setFlowCapFactor(0.02);

21 config.getQSimConfigGroup().setStorageCapFactor(0.02);

22 config.getQSimConfigGroup().setRemoveStuckVehicles(false);

23

24

25 // counts

26 String countsFileName = "D:/Workspace/container/demand/input/iv_counts/

vmz_di-do.xml";

27 config.counts().setCountsFileName(countsFileName);

28 config.counts().setCountsScaleFactor(100);

29 config.counts().setOutputFormat("all");

30

31 // vsp experimental

1 Cf. http://www.matsim.org/docs/tutorials/8lessons/getting-started, last accessed 16 De-
cember 2013.
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32 config.vspExperimental().addParam("vspDefaultsCheckingLevel", "abort");

33

34 // controller

35 String runId = "run_id";

36 String outputDirectory = "D:/Workspace/container/demand/output/" + runId

+ "/";

37 config.controler().setRunId(runId);

38 config.controler().setOutputDirectory(outputDirectory);

39 config.controler().setFirstIteration(0);

40 config.controler().setLastIteration(150);

41 Set<EventsFileFormat> eventsFileFormats = Collections.unmodifiableSet(

EnumSet.of(EventsFileFormat.xml));

42 config.controler().setEventsFileFormats(eventsFileFormats);

43 config.controler().setMobsim("qsim");

44 config.controler().setWritePlansInterval(50);

45 config.controler().setWriteEventsInterval(50);

46 Set<String> snapshotFormat = new HashSet<String>();

47 //snapshotFormat.add(”otfvis”);

48 config.controler().setSnapshotFormat(snapshotFormat);

49

50 // strategy

51 // StrategySettings strategySettings1 = new StrategySettings(new IdImpl(2));

52 // strategySettings1.setModuleName(”ChangeExpBeta”);

53 // strategySettings1.setProbability(1.0);

54 // config.strategy().addStrategySettings(strategySettings1);

55

56 StrategySettings strategySettings2 = new StrategySettings(new IdImpl(1));

57 strategySettings2.setModuleName("ReRoute");

58 strategySettings2.setProbability(0.5);

59 strategySettings2.setDisableAfter(90);

60 config.strategy().addStrategySettings(strategySettings2);

61

62 StrategySettings strategySetinngs3 = new StrategySettings(new IdImpl(2));

63 strategySetinngs3.setModuleName("cadytsCar") ;

64 strategySetinngs3.setProbability(1.0) ;

65 config.strategy().addStrategySettings(strategySetinngs3);

66

67 config.strategy().setMaxAgentPlanMemorySize(10);

68

69 // planCalcScore

70 ActivityParams homeActivity = new ActivityParams("home");

71 homeActivity.setTypicalDuration(12∗60∗60);

72 config.planCalcScore().addActivityParams(homeActivity);

73

74 ActivityParams workActivity = new ActivityParams("work");

75 workActivity.setTypicalDuration(9∗60∗60);

76 config.planCalcScore().addActivityParams(workActivity);

77

78 ActivityParams leisureActivity = new ActivityParams("leis");
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79 leisureActivity.setTypicalDuration(2∗60∗60);

80 config.planCalcScore().addActivityParams(leisureActivity);

81

82 ActivityParams shopActivity = new ActivityParams("shop");

83 shopActivity.setTypicalDuration(1∗60∗60);

84 config.planCalcScore().addActivityParams(shopActivity);

85

86 ActivityParams otherActivity = new ActivityParams("other");

87 otherActivity.setTypicalDuration(0.5∗60∗60);

88 config.planCalcScore().addActivityParams(otherActivity);

89

90 // ActivityParams educActivity = new ActivityParams(”educ”);

91 // educActivity.setTypicalDuration(9∗60∗60);

92 // config.planCalcScore().addActivityParams(educActivity);

93

94 // start controller

95 final Controler controler = new Controler(config);

96

97 // cadytsContext (and cadytsCarConfigGroup)

98 final CadytsContext cContext = new CadytsContext(controler.getConfig());

99 // CadytsContext generates new CadytsCarConfigGroup with name ”cadytsCar”

100 controler.addControlerListener(cContext);

101

102 controler.getConfig().getModule("cadytsCar").addParam("startTime", "

00:00:00");

103 controler.getConfig().getModule("cadytsCar").addParam("endTime", "24:00:00"

);

104

105

106 // plan strategy

107 controler.addPlanStrategyFactory("cadytsCar", new PlanStrategyFactory() {
108 @Override

109 public PlanStrategy createPlanStrategy(Scenario scenario,

EventsManager eventsManager) {
110 return new PlanStrategyImpl(new

CadytsExtendedExpBetaPlanChanger(

111 scenario.getConfig().planCalcScore().

getBrainExpBeta(), cContext));

112 }
113 });
114

115 // scoring function

116 final CharyparNagelScoringParameters params = new

CharyparNagelScoringParameters(config.planCalcScore());

117 controler.setScoringFunctionFactory(new ScoringFunctionFactory() {
118 @Override

119 public ScoringFunction createNewScoringFunction(Plan plan) {
120
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121 ScoringFunctionAccumulator scoringFunctionAccumulator =

new ScoringFunctionAccumulator();

122 scoringFunctionAccumulator.addScoringFunction(new

CharyparNagelLegScoring(params, controler.getScenario().

getNetwork()));

123 scoringFunctionAccumulator.addScoringFunction(new

CharyparNagelActivityScoring(params)) ;

124 scoringFunctionAccumulator.addScoringFunction(new

CharyparNagelAgentStuckScoring(params));

125

126 final CadytsCarScoring scoringFunction = new

CadytsCarScoring(plan, config, cContext);

127 final double cadytsScoringWeight = 10.0;

128 scoringFunction.setWeightOfCadytsCorrection(

cadytsScoringWeight) ;

129 scoringFunctionAccumulator.addScoringFunction(

scoringFunction );

130

131 return scoringFunctionAccumulator;

132 }
133 });
134 controler.run();

135 }
136 }
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D. Reference Values from Survey

In this section, the calculation of reference values (e.g. as stated in table 4.1) used

for the analysis and validation of the transport models developed and outlined in

chapters 5 and 6 is described.

• The number of car trips is calculated as follows: According to own estimations

based on [Amt für Statsitk Berlin-Brandenburg, 2013, p.12f.], approximately

1,042,395 (as of 30 June 2013) Berliners live within the S-Bahn ring, the cir-

cular line of Berlin’s commuter rail that is often used to distinguish inner-city

neighborhoods from the rest of the city. The analysis of the SrV travel sur-

vey also uses this spatial separation, which is why it is also relevant for this

study. These people conduct on average 3.0 trips per day [Ahrens, 2010b, p.3],

of which 22% [Senatsverwaltung für Stadtentwicklung, 2010, p.3] are made

by car. Berlin’s overall population (as of 30 June 2013) is 3,489,422. Thus,

2,447,027 people live outside of the S-Bahn ring. On average, they make 2.7

trips per day [Ahrens, 2010a, p.3], of which 38% [Senatsverwaltung für Stad-

tentwicklung, 2010, p.3] are made by car. Accordingly, 3,198,630 car trips are

made by Berliners on an average weekday.

• The average number of trips per person is calculated as follows: Leaving the

share of car trips among all trips aside, one can calculate the number of all

trips made by Berliners on a typical workday (9,734,158 trips) analogous to

the calculation of the number of car trips above. The share of all trips within

the S-Bahn ring is calculated to be 32%. Using this share and the information

that mobile people who live within the S-Bahn ring make 3.6 trips per day

[Ahrens, 2010b, p.3] and those living outside the S-Bahn ring make 3.3 trips

per day [Ahrens, 2010a, p.3], the average number of all trips per Berliner is

calculated as 3.4.

• In a similar way, a share of car trips made inside the S-Bahn ring among

all Berlin car trips is calculated as 22%. Using this share, the average trip

distances of 8.5km per trip [Ahrens, 2010b, p.43] for trips by car within the

S-Bahn ring and 9.8km per trip [Ahrens, 2010a, p.43] for trips by car outside

the S-Bahn ring, are combined into a average Berlin value of 9.5km per car

trip (only considering trips with a distance of less than 100km, cf. [Ahrens,

2010b, p.43] and [Ahrens, 2010a, p.43]).
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• Analogously, the average trip duration for car trips in Berlin is calculated as

22.3min.

The validation sections 5.3 and 6.3 in the two model chapters draw on data that is

not available in the published SrV survey reports. The necessary distribution of, for

instance, trip distances or departure times were, thus, calculated from the original

survey data Ahrens [2010c]. These calculations are carried out by the Java program

SrVTripAnalyzer contained in appendix E. In the following an example of one

such calculation is given to illustrate how it was assured that the SrVTripAnalyzer

carries out the correct calculations.

In the validations sections (i.e. sections 5.3 and 6.3), the distribution of activities

at trip ends for trips made by car are used to validate the output of the simulation.

The used values for the creation of figures 5.14 and 6.12 are stated in the second

column of table D.1. No corresponding data is given in the published reports.

However, distribution of activities at trip ends for all trips (independent of mode of

transport) are given in Ahrens [2010b, p.24] and Ahrens [2010a, p.24]. To assure the

correctness of the calculation of the distribution of activities at trip ends for trips

made by car, the same procedure is used to calculate the distribution of activities

at trip ends for all trips, which can be compared with data given in the published

survey reports.

Activity Car Trips (Own) All Trips (Own) All Trips (Report)

Home 38.7% 41.1% 41.1%

Leis 15.3% 15.3% 15.4%

Other 15.3% 16.8% 16.5%

Shop 11.0% 11.9% 11.8%

Work 19.7% 15.0% 14.9%

Table D.1.: Distribution of Activities at Trips Ends

One can see in table D.1 that there are – as intended – only minor deviations

between the values of the third and fourth columns. To come to comparative values

given in the rightmost column of table D.1 some rearragement of the data given in

the tables of the survey reports [Ahrens, 2010b, p.24] and [Ahrens, 2010a, p.24] was

necessary. First, activities had to be redefined as they were categorized differently.

The respective conversion is outlined in table D.2.
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German Categories (Report) Categories (Report) Categories (This Study)

Arbeit Work Work

Kindereinrichtung Kindergarten or similar Other

Schule/Ausbildung School/Education Other

Dienstl./Geschäftl. Business Work

Einkauf Shopping Shopping

Private Erledigung Private Errands Other

Freizeit Leisure Leisure

Wohnung Home Home

Sonstiges Other Other

Table D.2.: Conversion of Activity Types

Next, the values given separately for trips inside and outside of Berlin’s S-Bahn

ring had to be combined via the calculated shares of trips in- and outside the S-

Bahn ring explained above. The results of this calculation of comparative values

are, as already explained, given in the rightmost column of table D.1. Analogous

calculations for assurance of correct use of reference data for other distributions were

done where possible.
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E. Java Programs / Classes

On the CD-ROM attached below, all Java programs / classes that were used to create

the data on which is study is based are contained. All MATSim runs contained in

this study have been run with MATSim revision r23738 as of 20 July 2013.
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F. Deutsche Zusammenfassung

Funktionierende Verkehrssysteme sind eine fundamentale Voraussetzung für die Ent-

wicklung von Gesellschaften und Wirtschaftssystemen. Gleichzeitig tragen die Ver-

kehrssysteme zu großen globalen Problemen der heutigen Zeit bei, wie z.B. dem

Klimawandel bei. Es sind daher innovative Lösungen (i.d.R. die über die bloße bau-

liche Erweiterung der Infrastruktur hinausgehen) nötig, um dafür zu sorgen, dass

für den Verkehrs von Menschen und Waren langfristig effiziente Verkehrssysteme

zur Verfügung stehen und die gleichzeitig nachhaltig dazu beitragen negative Aus-

wirkungen von Verkehrsvorgängen zu reduzieren. Verkehrsmodelle stellen das wich-

tigste Werkzeug dar, um Verkehrsmaßnahmen und –projekte zu bewerten und ihre

Auswirkungen zu prognostizieren. Die Erstellung derartiger Modelle ist jedoch eine

herausfordernde Aufgabe. Insbesondere die Verfügbarkeit brauchbarer Eingangsda-

ten stellt häufig eine Hürde dar. Probleme im Zusammenhang mit der Verfügbarkeit

von Eingangsdaten werden zukünftig eher größer werden, da dem Thema Daten-

schutz wohl auch langfristig eine hohe Aufmerksamkeit zukommen wird. Weiterhin

sind viele heute in der Praxis angewendete Verkehrsmodell mit Schwächen behaftet,

die häufig in Zusammenhang mit der Modellierung des Verhaltens der Verkehrsteil-

nehmer stehen. Das Ziel dieser Arbeit ist daher, ein Verkehrsmodell zu entwickeln,

welches ausschließlich Eingangsdaten benötigt, die leicht verfügbar und zugänglich

sind und in dem das Verhalten der Verkehrsteilnehmer realitätsnah abgebildet wird.

Hierbei soll der Umfang an Modellierungsannahmen so weit wie möglich reduziert

werden, da derartige Annahmen häufige Fehlerquellen darstellen. Das erstelle Modell

basiert auf einer mikroskopischen Verkehrssimulation, bei der die Verkehrsteilnehmer

sowie all ihre relevanten Charakteristika während des gesamten Simulationsprozesses

auf individueller Ebene zur Verfügung stehen. Durch einen iterativen Prozess der als

generischer Algorithmus aufgefasst werden kann, verbessern die Verkehrsteilnehmer

nach und nach ihr Verkehrsverhalten, sodass sie langfristig zu für sie befriedigenden

Lösungen kommen. Initiale Vorschläge für mögliche Tagespläne werden hierbei mit

Hilfe eines ökonometrischen Aktivitätenerzeugungsmodells erstellt. Die Kalibrierung

der so erzeugten Verkehrsnachfrage geschieht zusammen mit der Verkehrssimulati-

on durch die Einbindung eines Kalibrierungsalgorithmus, der in die Nutzenfunkti-

on, die für die Entscheidungen der Verkehrsteilnehmer verantwortlich ist, eingreift.

Auf Basis dieses Ansatzes werden in dieser Arbeit zwei Verkehrsmodelle erstellt.

Zunächst wird initiales Modell erstellt, welches der Untersuchung der Auswirkung
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verschiedener Modellparameter dient. Auf Basis der dabei gewonnen Erkenntnisse

wird ein zweites, verfeinertes Modell auf Basis einer realistischen Abbildung der

Bevölkerung des Untersuchungsraums erstellt. Es wird gezeigt, dass dieses Modell

eine hohe Modellgüte besitzt, die vergleichbar ist mit jener von aufwändigeren, auf

Reisetagebüchern basierenden Verkehrsmodellen. Die Validität der auf Basis dieses

Modells erzeugten Verkehrsnachfrage wird mit Hilfe einer Verkehrserhebung bewie-

sen.
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