
i
i

“chapter3-2” — 2013/12/10 — 21:05 — page 1 — #1 i
i

i
i

i
i

Integration of agent-based transport and land use
models

Thomas W. Nicolai∗1 and Kai Nagel†1

1Transport Systems Planning and Transport Telematics (VSP), Berlin
Institute of Technology (TU Berlin), Berlin, Germany

December 10, 2013

1 Introduction

The interaction between land-use and transport plays an important role as mentioned
in Ch. ?? of this Handbook. Land-use transport interaction (LUTI) models denote
models that combine land use models and transport models with feedback mecha-
nisms between them. Most urban simulation models such as UrbanSim, DELTA,
CUFM, MUSSA, POLIS or RURBAN are not modeling transport themselves; in-
stead they rely on interaction with external transport models (Wegener 2004).

The present chapter focuses on the integration of the extensible, microscopic,
agent-based urban land use model UrbanSim with the agent-based transport sim-
ulation model MATSim (“Multi-Agent Transport Simulation”; Balmer et al. 2005,
Raney & Nagel 2006). To utilize the agent-based modeling technique, both mod-
els are directly linked at the person level. The goal is to provide improved access
and accessibility indicators as feedback from the travel model in order to enhance
UrbanSim sub-models reflecting the decisions of households, businesses, and de-
velopers.

A challenge for that software integration was that UrbanSim is written in Python
and heavily using C/C++ libraries, while MATSim is written in Java. It is clear
that many ways of coupling two pieces of software are technically feasible, but the
question was which of these approaches might have a chance to remain robustly
functional beyond the end of the project without additional maintenance. Thus, the
first objective was to investigate how a robust coupling of the two software packages
at the agent level could be achieved.

∗nicolai@vsp.tu-berlin.de
†Correspondance: nagel@vsp.tu-berlin.de

1



i
i

“chapter3-2” — 2013/12/10 — 21:05 — page 2 — #2 i
i

i
i

i
i

Travel models typically return zone-to-zone impedance matrices, containing,
say, travel time or travel distance, to UrbanSim. A problem with zone-to-zone ma-
trices is that they grow quadratically in the number of zones, which for computa-
tional performance reasons puts a limit on the number of zones that can be used and
thus on the spatial resolution. Thus, another objective was to investigate if other
results of the travel model, in particular accessibility measures, could be computed
and provided at the UrbanSim parcel level.

A final question was if the number of iterations, inherent in traffic assignment
models and thus also in MATSim, could be reduced by re-using information from
previous runs. This is called the “warm” and “hot” start capability.

This chapter first summarizes the simulation approach of MATSim (Sec. 2).
Sec. 3 describes MATSim extensions that were used in the case studies. In Sec. 4
the integration approach is described, illustrating the feedback mechanism between
both frameworks and describing the data requirements. The access and accessibility
indicators provided by MATSim are explained in Sec. 5. Sec. 6 shows, as illustra-
tion, the accessibility consequences of a cordon toll for Brussels, obtained during
work on the SustainCity Brussels case study. Computational issues are briefly dis-
cussed in Sec. 7. The chapter is concluded by a discussion (Sec. 8).

2 MATSim

MATSim (Balmer et al. 2005, Raney & Nagel 2006, Balmer et al. 2009) is a dis-
aggregated, agent-based transport model that is designed to simulate several mil-
lion travellers (agents) individually for large real-world transport scenarios. Advan-
tages over traditional static assignment include: time-dependent congestion, time-
dependent mode choice, the option to accelerate computations by running small
samples. Compared to dynamic traffic assignment (DTA; Carey & Watling 2003),
the main difference is that MATSim looks at full daily plans whereas DTA looks at
trips. This gives MATSim more expressiveness with respect to individual replan-
ning which goes beyond the trip, such as mode choice, moving the whole daily plan
forward or backward in time, or activity location choice. In addition to this higher
expressiveness, MATSim is often also considerably faster, at the expense of an often
less realistic representation of traffic dynamics. MATSim has been applied to large
scale scenarios in Zurich, Berlin and many other cities (Balmer 2007).

2.1 MATSim process structure

The general MATSim process structure consists of the following parts (Fig. 1;
Balmer et al. 2009):

Initial demand: MATSim requires the physical infrastructure, determined by the
road network and facilities (i.e. activity locations like home, work, shopping
or leisure) and the population including the demand of each individual person.

2



i
i

“chapter3-2” — 2013/12/10 — 21:05 — page 3 — #3 i
i

i
i

i
i

Figure 1: Process structure of MATSim

The initial demand for each agent is usually generated based on microcensus
and/or survey data. Initial mode choice is either based on data or heuristic
assumptions; initial routes are usually the fastest paths on an empty network.

Iterative demand optimization: In an iterative demand optimization process the
demand for each individual agent is improved. It takes into account physical
constraints, e.g. the road network, and the interaction between the agents. The
optimization process consists of an iteration cycle with three main steps, “Ex-
ecution”, “Scoring” and “Re-planning”, which are explained below in more
detail.

Analysis: Finally, the simulation results such as the resulting population and de-
mand and the traffic conditions on the network can be used for post-process
analysis.

2.2 Agents and plans

Each person or traveller in MATSim is modeled as an individual agent. The demand
of an agent is called plan (Balmer et al. 2009). A plan encodes the daily routine of
an agent. It contains the agents travel schedule including its intended activities and
routing decisions between the activity locations (Balmer et al. 2005). Moreover, a
plan captures (i) the order, type, location, duration as well as other time constraints
for every activity and (ii) the selected mode, route and expected departure and travel
times of each leg (Balmer et al. 2005). A leg describes a part of a trip that uses
exactly one transport mode (Balmer et al. 2005). An example plan is illustrated and
explained in Fig. 2.

2.3 Iterative demand optimization process

As stated before, the simulation takes the representation of the infrastructure and the
population including their daily plans as input (Balmer et al. 2009). Balmer et al.
(2005), Raney & Nagel (2006), Balmer et al. (2009) explain the simulation process.
It consists of an iterative loop with three main steps, see Fig. 1. These three steps
are summarized in the following:

3



i
i

“chapter3-2” — 2013/12/10 — 21:05 — page 4 — #4 i
i

i
i

i
i

<person id="123456" employed="yes">

<plan score="128.122" selected="yes">

<act type="home" link="1000" x="100.0" y="100.0" end_time="07:00:00" />

<leg mode="car" dep_time="07:00:00" trav_time="00:20:00">
<route type="links"> 1000 1001 1002 1003 </route>

</leg>

<act type="work" link="1003" x="200.0" y="200.0" end_time="15:20:00" />

<leg mode="car" dep_time="15:20:00" trav_time="00:20:00">
<route type="links"> 1003 1004 1005 1000 </route>

</leg>

<act type="home" link="1000" x="100.0" y="100.0" />

</plan>

</person>

Figure 2: This illustrates the demand or plan of a fictive MATSim agent. The agent
with the id 123456 intends to leave home (located at link 1000) at 07:00 to go to
work. The selected route consists of four links. The expected travel time by car takes
20 minutes. At 15:20, the agent intends to travel back home, which is expected to
take again 20 minutes.

Execution: The traffic flow simulation executes the selected plans of all agents
simultaneously on the road network. At this stage agents are interacting with
the physical environment and with other agents. The traffic flow simulation
is implemented as a queue simulation, see Gawron (1998), Cetin et al. (2003)
for more details. It has the advantage that it is computationally fast while still
resolving each vehicle individually.

Scoring: All executed plans are scored by a utility function that determines the
performance of each plan. The utility or scoring function is discussed in more
detail below.

Re-planning: In this step, some agents obtain new plans (choice set extension),
while all others choose between existing plans, typically based on a logit
model. The choice set extension is implemented in a modular way so that dif-
ferent choice dimensions can be addressed. The modules used in conjunction
with the Brussels case study (Ch. ?? of this book) are:

Time allocation module: This module generates a new plan by taking an ex-
isting plan and randomly changing the planned ending times of activities
(Balmer et al. 2005).

Router module: This module generates a new plan by taking an existing
plan and recomputing all routes. The router uses the updated general-
ized costs for each link from the last traffic flow iteration. The router is
a time-dependent best path algorithm (Lefebvre & Balmer 2007), where
best path is defined as the one with the least negative utility (Balmer
et al. 2009).

4



i
i

“chapter3-2” — 2013/12/10 — 21:05 — page 5 — #5 i
i

i
i

i
i

Single trip mode switch module: This module generates a new plan by tak-
ing an existing plan, randomly selecting a trip, and switching its mode to
a randomly selected alternative mode. Other modules which take, say,
subtours into account, are available (see Rieser et al. 2013).

The number of modules is not limited to those mentioned here. Every module
is assigned a weight that determines the probability with which a module is
applied to an agent. If one of these modules makes the choice set of an agent
larger than some configurable limit, one of the plans, typically the one with
the worst score, is removed.

The repetition of the iteration cycle coupled with the agent memory, i.e. the capa-
bility to remember more than one plan per agent, enables agents to improve their
plans over several iterations (Balmer et al. 2005). The iteration cycle continues until
a “relaxed” state of the system has been reached. MATSim currently does not use
any quantitative measure of when this state is reached; usually the iteration cycle
is repeated until the outcome is stable (Balmer et al. 2005). For simple situations
(only two modes, only the car mode explicitly simulated) it is our experience that
about 100 iterations are sufficient to obtain useful results (Nagel 2008, 2011, Röder
et al. 2013). Under certain conditions, the result is a probabilistic integer version of
the stochastic user equilibrium (SUE) (Nagel & Flötteröd 2012).

2.4 Evaluation of the performance of a plan with the scoring function

The utility of an executed plan is computed as (Charypar & Nagel 2005):

Vp =

n∑
i=1

(
Vperf ,i + Vlate,i + Vtr ,i

)
, (1)

where Vp is the accumulated utility for a given plan p with n activities, Vperf ,i is the
utility for performing activity i, Vlate,i is the disutility (negative utility) of being late
at activity i, and Vtr ,i is a penalty for traveling from activity i to activity i+1. Plans
are assumed to wrap around a 24-hr day, for that reason, the last activity is assumed
to be the same as the first, and in consequence there are as many trips as there are
activities.

The utility for performing an activity has a logarithmic form and is defined as:

Vperf ,i(tperf ,i) = βperf · t∗,i · ln

(
tperf ,i
t0,i

)
(2)

Here tperf is the actually performed duration of activity i, t∗ is the “typical” duration
of activity i, βperf (positive) gives the marginal utility of any activity at its typical
duration. t0,i has no effect as long as activity chains remain fixed throughout the
iterations, which will be assumed for all MATSim runs in this book. More details
are provided by Rieser et al. (2013).

5



i
i

“chapter3-2” — 2013/12/10 — 21:05 — page 6 — #6 i
i

i
i

i
i

The disutility for being late is Vlate,i(tlate,i) = βlate · tlate,i, where βlate (nor-
mally negative) is the marginal utility for being late while tlate,i gives the amount
of time of being late at activity i.

The penalty for traveling is given by

Vtr ,i = βtr ,mode · ti + βtd · di + βm ·mi, (3)

where ti is the travel time, di the distance, mi the change of the monetary position,
and the different βx are the usual pre-factors. In MATSim, m is negative when
money is taken away from the traveler, so βm is typically positive. βtd is typically
negative. βtr can be positive or negative, see next.

The effective disutility for traveling is Eq. (3) plus the lost utility of time as a
resource (opportunity cost of time). The marginal utility of time as a resource can
be understood as the marginal loss of utility when the activity which follows the trip
is shortened. This is computed as

∂Vperf
∂tperf

= βperf · t∗ ·
1

tperf
≈ βperf , (4)

where the approximation holds when the actual duration, tperf , is close to the typical
duration, t∗. That is, shortening an activity by ∆t is penalized approximately by
−βperf · ∆t. If that time is spent travelling, Eq. (3) comes on top.

In consequence, the marginal utility of travel time savings, mUTTS, is, within
the approximation of Eq. (4), equal to βperf − βtr,mode, and a monetary value of
travel time savings is given by

V TTS =
βperf − βtr,mode

βm
. (5)

Hints for calibration based on those insights are given in the MATSim user guide
(Rieser et al. 2013).

2.5 An illustration

Let us illustrate the MATSim iteration process. Initially, a synthetic traveler will
have only one plan, say by car. This plan will be repeatedly executed in the traffic
flow simulation.

Eventually, the synthetic traveler will be selected for re-planning, say for re-
routing. The previous plan will be copied, all routes will be re-computed based
on the previous iteration’s travel times, the new plan will be made ”selected”, thus
executed in the next traffic flow simulation, and scored based on its performance.
The next couple of iterations, this synthetic traveler will choose between these two
plans, based on a logit model using the scores of these two plans.

Eventually, the synthetic traveler will again be selected for re-planning, say this
time for single trip mode switch. The original plan will be copied, one trip will be

6



i
i

“chapter3-2” — 2013/12/10 — 21:05 — page 7 — #7 i
i

i
i

i
i

randomly selected, and its mode will be switched to a randomly selected alterna-
tive mode (here: pt). That trip will be routed if necessary, the plan will be made
“selected”, thus executed in the next traffic flow simulation, and scored based on
its performance. The next couple of iterations, this synthetic traveler will choose
between these three plans, based on a logit model using the scores of these three
plans.

In consequence, if the pt plan receives a much larger score than the two car
plans, it will be selected with a much higher probability. Conversely, if the car plans
have higher scores, then they will be selected with higher probability. Since for
sufficiently many iterations, eventually all travelers will have all combinations of
modes in their choice set, choice is entirely given by the calibration of the scoring
function. This statement does even hold (approximately) when the choice set is lim-
ited in size, since only options with bad scores, which thus carry a low probability
in terms of the logit model, are removed.

3 Special MATSim features used for the case studies

3.1 Public transit

MATSim provides several ways to simulate public transport (pt). The conceptually
most straightforward, but also computationally and in terms of data procurement
most demanding variant is the direct microscopic simulation, where every public
transit vehicle is simulated individually according to its schedule and operating rules
(Rieser & Nagel 2009, Rieser 2010). It includes information about public transit
lines, their routes, the travel time between stops and the time of departure at the
start of the route. Data in the GTFS format (General Transit Feed Specification,
GTFS www pages 2012) can be converted into MATSim transit schedules (MATSim
extensions www page 2013, under “GTFS2TransitSchedule”).

A simple model, sometimes called “pseudo pt” (Grether et al. 2009, Rieser &
Nagel 2009), estimates travel times by assuming that the travel distance between
activity locations is composed of the beeline distance multiplied with a configurable
beeline distance factor, often 1.3. The pt speed is configurable as well. The resulting
travel times are determined by:

ttpt =
BeelineDistance ∗BeelineDistanceFactor

P tSpeed
(6)

Alternatively, one can multiply the car free speed travel time with a configurable
factor in order to obtain the public transit travel time. This approach models pub-
lic transport continuously and without capacity constraints and works without any
knowledge about the public transport service in an area.

Within the project, an additional approach was implemented, called “matrix
based pt”, also without capacity constraints, but taking into account access and

7



i
i

“chapter3-2” — 2013/12/10 — 21:05 — page 8 — #8 i
i

i
i

i
i

egress to pt stops and possible other details of the pt system. Given an input ta-
ble with pt stops and the associated coordinates, a matrix is generated including
travel times and travel distances for any pair of stops. Travel times are determined
based on Eq. 6. Travel distances are given by the numerator of Eq. 6, i.e. beeline
distance between two stops multiplied by the beeline distance factor. The differ-
ence to the plain “pseudo pt” is that access and agress to the pt system are now
modelled much more realistically. The stop-to-stop impedance matrix can also be
taken from an existing VISUM (PTV AG 2009b,a) model or some other equivalent
source, thereby taking connectivity characteristics of the pt system beyond its stop
locations into account.

In both cases traveling by public transport is executed as so-called teleportation
in MATSim, i.e. simulation of pt is not performed on the physical road network.
The total travel time is composed of:

tpt,ik = twlk,gap,i + tpt,matrix + twlk,gap,k , (7)

where twlk,gap,i and twlk,gap,k are the travel times on foot to overcome the gap be-
tween the activity locations i and k respectively to their nearest pt stop based on the
beeline distance, and tpt,matrix is the travel time between the two stops, given by
the matrix. The total travel distances are determined analogously:

dpt,ik = dgap,i + dpt,matrix + dgap,k (8)

Here, dgap,i and dgap,k are the beeline distances between location i and k respec-
tively to their nearest pt stop, and dpt,matrix is the travel distance between the two
stops from the matrix. The pt travel disutility is computed on those combined travel
times and travel distances; separate marginal disutilities for the walk and the pt parts
are thus (unfortunately) currently not possible. – For additional information, see the
MATSim extensions www page (2013) under “matrix based pt router”.

3.2 Road pricing

MATSim is capable of simulating different toll schemes such as distance or cordon
toll (Nagel et al. 2008, Kickhöfer et al. 2011, Kickhöfer & Nagel 2013). Tolls can
be limited to a part of the network. They can also be made time-dependent, i.e. the
amount agents have to pay for the toll can vary depending on the time-of-day. – For
additional information, see the MATSim extensions www page (2013).

4 Integration approach to use MATSim as a travel model
plugin to UrbanSim

In the past, some efforts towards integrating UrbanSim with external travel mod-
els like EMME (Babin et al. 1982) or VISUM (PTV AG 2009a,b) have been made.

8



i
i

“chapter3-2” — 2013/12/10 — 21:05 — page 9 — #9 i
i

i
i

i
i

Both EMME and VISUM are traditional assignment models using origin-destination
matrices (OD-matrices) as inputs (Ortúzar & Willumsen 2001). Thus, they do not
make use of the disaggregated nature of UrbanSim. In this situation it seems quite
natural to link UrbanSim with an agent-based travel model like MATSim directly at
the agent level, by directly feeding location and socio-economic characteristics of
individual residents and firms from the land use model to the travel model and then
having the travel model return updated accessibility measures back to the land use
model.

By default, the feedback from external travel models to UrbanSim is a zone-to-
zone impedance matrix including generalized costs of travel between any given pair
of zones (Fig. 3). This is an n×nmatrix, where n is the number of zones. UrbanSim
uses this matrix as input for various models, as explained in Ch. ??. Such matrices
are growing quadratically with the number of zones and thus quickly become very
large. This puts limits both on the spatial resolution that can be used with these
zones, and on the number of attributes which can be returned from the travel model
to UrbanSim. As one of the objectives of the present study, it makes therefore sense
to search for alternative measures to feedback from a travel model.

Figure 3: Conventional zone-to-zone impedance matrix including travel times from
any origin zone “from_zone_id” to any destination zone “to_zone_id”.

4.1 MATSim4UrbanSim at a glance

The interaction between MATSim and UrbanSim (Nicolai et al. 2011) is a bi-directional
relationship as depicted in Fig. 4. It consists of three main steps:

1. When UrbanSim iterates in annual steps, it calls MATSim from time to time,
at most once per annual step, and passes a path to the traffic network data
together with the persons and jobs data tables as input. The tables include
attributes such as the person id as well as the residence and job location of
each individual person in UrbanSim.

9



i
i

“chapter3-2” — 2013/12/10 — 21:05 — page 10 — #10 i
i

i
i

i
i

2. Given the input tables from UrbanSim, MATSim generates the traffic assign-
ment, as discussed in Sec. 2. Finally, it returns the resulting access and acces-
sibility indicators, discussed below in Sec. 5. Then MATSim terminates.

3. Once MATSim has terminated, UrbanSim takes back control. It reads the
indicators and updates the data store for the next UrbanSim iteration. Urban-
Sim models that make use of the updated traffic conditions are for example
the Household and Employment Location Choice Models as well as the Real
Estate Price Model, presented in Sec. ??. In fact, arbitrary UrbanSim mod-
els can make use of the travel model output, since the data is available as a
regular UrbanSim table.

Figure 4: This shows the interaction sequence between UrbanSim and MATSim.
UrbanSim calls MATSim in regular intervals and passes the current population and
land-use pattern. MATSim computes the traffic based on the provided information
and the resulting access and accessibility indicators. UrbanSim uses these indicators
for the next year (iteration) as input for various models.

MATSim4UrbanSim simulates home-work-home commuting trips based on home
and work locations of each individual person provided by the UrbanSim input tables.
More complex, e.g. activity-based, demand patterns are possible with MATSim, but
are not implemented in the present version of MATSim4UrbanSim.

4.2 Different options to couple UrbanSim with MATSim

Given that one of the objectives is to exploit the fact that both UrbanSim and MAT-
Sim are person-centric, it would be desirable to communicate between both pack-
ages directly at the object level. This would mean to invoke and execute MATSim
by UrbanSim like other UrbanSim routines, and to exchange data, such as current
land use information in UrbanSim or computed access or accessibility indicators by
MATSim, directly via the main memory.

As stated earlier, UrbanSim is implemented in Python, while MATSim uses
Java. Both languages use different and incompatible byte code representations. Java
programs are translated into Java byte code that is executed by the Java Virtual
Machine (JVM). The reference implementation for Python is written in C, called

10



i
i

“chapter3-2” — 2013/12/10 — 21:05 — page 11 — #11 i
i

i
i

i
i

CPython. In the same way as the JVM, CPython compiles Python source code into
Python byte code. There is also a Java implementation for Python which would
simplify the integration task. However, UrbanSim relies heavily on numerical and
other libraries written in C or C++, so that was not an option.

Given the incompatible byte code representation, objects would need to be con-
verted when passed from one package to the other. The arguably first package that
comes to mind is the Java Native Interface (JNI; Liang 1999). JNI allows the calling
of Java routines from C. Unfortunately, this does not yet resolve how to get the in-
formation from Python to C; such a layer would need to be separately implemented.

Other projects have taken up that challenge. The JPype project (JPype www
pages 2013) allows Python full access to Java. This is achieved through interfacing
the Python interpreter (CPython) and the JVM at the native level using JNI and PNI
(Python Native Interface). The main problem is that JPype does not provide support
for advanced data types, let alone objects. For example, to create an array, the
number of dimensions and the number of elements in the array need to be declared
at compile time. This is completely at odds with important concepts used both in
UrbanSim and in MATSim, which decide on the size of data classes from reading
the input files. Also, there is no support for making sure that the dimensions and
sizes declared on the Python side are consistent with the dimensions and sizes used
on the MATSim side. It is our belief that projects such as UrbanSim and MATSim
have become possible for universities over the past years exactly because modern
programming languages provide support for objects. Working without such support
leads to code that neither the UrbanSim nor the MATSim team have the resources
to maintain. In addition, the JPype project does not seem overly active, with the
last blog entry from 2007, and the last two (minor) releases from 2007 and 2011,
making it problematic to base an important part of the SustainCity project on JPype.

The only other project that we could find in that area was JEPP (Jepp www
pages 2013). That project, however, looks at calling Python from Java, which is
exactly the wrong direction for what was needed here.

Thus, in the end it was decided to resort to the conventional technique of writ-
ing and reading files. UrbanSim already had methods to write and read comma-
separated files, and for MATSim they were easy to write.

A challenge was how to install and configure MATSim in a convenient and ro-
bust way. This meant that preferably, at least to get started, one file containing all the
MATSim material should be unzipped at the right place, and relevant entries should
be made in the OPUS GUI (Graphical User Interface), presumably already known
to the UrbanSim user. This, however, implied that a communcation channel from
UrbanSim to MATSim would need to be established which could be automatically
tested, so that eventual errors during future refactorings of UrbanSim or MATSim
that would destroy that communication channel could be detected.

This was resolved passing an XML (eXtensible Markup Language; W3C 2008)
document from UrbanSim to MATSim, and using a so-called XML Schema Doc-
ument (XSD; van der Vlist 2002) to standardize and certify the grammar of that

11



i
i

“chapter3-2” — 2013/12/10 — 21:05 — page 12 — #12 i
i

i
i

i
i

document. For details, see Sec. 4.3.
Another challenge stems from the data type flexibility of UrbanSim, where

virtually arbitrary attributes can be added to the tables, and related to each other
through the configurable models. One consequence of this flexibility is that the
attribute names are not standardized; for example, not even the keys (= attribute
names) for coordinate entries are standardized in UrbanSim. In consequence, the
passing of data between UrbanSim and MATSim has to rely on often-used names
on the UrbanSim side (Nicolai 2012); projects which deviate from these naming
conventions would need to implement their own data packing method on the Urban-
Sim side. This holds also for the direction from MATSim to UrbanSim: MATSim
assumes the existence of tables under certain keys on the UrbanSim size; if they
exist under a different key, the MATSim output will be added instead of replacing
the data in the UrbanSim tables.

In short, the data exchange will work as long as the naming conventions from
Nicolai (2012) are strictly followed. Any deviations from these naming conventions
mean that changes in the computer codes need to be made.

Overall, not being able to couple the two packages at the object level is a bit
disappointing, since this means that much of the agent-oriented expressiveness can-
not overcome the barrier between the two packages. For example, it is not possible
for a locating-seeking agent on the UrbanSim side to query MATSim about detailed
transportation options, and it is also not possible for a synthetic MATSim traveler
stuck in congestion to, say, go shopping at a different location if landuse information
was not passed to MATSim pre-emptively. It is to be hoped that future technological
developments will overcome this barrier.

4.3 MATSim4Urbansim configuration

Both UrbanSim and MATSim have, in principle, their own configuration file. How-
ever, to run the frameworks together for different scenarios would have the conse-
quence to set up both configuration files separately. This easily leads to inconsistent,
error-prone and fragile configurations that are inconvenient to maintain by users. To
address this issue, it was decided to provide one joint configuration for both frame-
works, at least for simple situations. At this point a brief overview is provided; a
comprehensive description is given by Nicolai & Nagel (2010):

The UrbanSim side was selected as the place to manage the joint configuration,
since it embeds MATSim as a travel model plug-in. It is achieved by embedding
necessary MATSim parameters into the travel model configuration section of the
UrbanSim configuration, as shown in Fig. 5. In this way, both simulation frame-
works are conveniently configurable via the OPUS GUI, i.e. the graphical user in-
terface that is available to configure the OPUS system and start UrbanSim runs.
Necessary parameters, for instance, include input file locations, e.g. for the traffic
network, the population sampling rate to accelerate computation times, the run de-
scription defining for which years to run MATSim, and more; in-depth information

12



i
i

“chapter3-2” — 2013/12/10 — 21:05 — page 13 — #13 i
i

i
i

i
i

about this is provided in the user guide (MATSim extensions www page 2013, see
MATSim4UrbanSim).

Figure 5: Relevant MATSim parameter are configurable via the OPUS GUI. They
are embedded in the travel_model_configuration section (marked in red) as part of
the UrbanSim configuration.

UrbanSim takes the parameter settings from the travel model configuration sec-
tion and generates a separate configuration file in XML format to initialize MAT-
Sim. This is done each time the travel model is called by UrbanSim. To achieve a
robust and reliable communication, a mutual consent between UrbanSim and MAT-
Sim regarding the structure and the parameter data types, e.g. string, int or float, of
the generated configuration file is crucial. Therefore, the generated MATSim XML
configuration is specified by a so-called XML Schema Document (XSD), which is
an abstract collection of meta data about an XML document (van der Vlist 2002).
The XSD is used to generate customized XML parsers in MATSim and UrbanSim
that read, write and validate XML documents; this technique is called XML data
binding.

In addition, this approach allows a convenient adaption of the MATSim con-
figuration to new requirements, e.g. when additional configuration parameters are
required. This can be done by adjusting the XSD and regenerating the XML parsers
on both sides.

13



i
i

“chapter3-2” — 2013/12/10 — 21:05 — page 14 — #14 i
i

i
i

i
i

4.4 Cold, warm and hot start

Here, three notations are introduced: cold, warm and hot start. Cold start was in

Figure 6: This illustrates the working of the (i) cold, (ii) warm and (iii) hot start in
MATSim. With (i) cold start MATSim generates the initial demand from the current
UrbanSim population. With warm and hot start MATSim recycles information from
previous runs; as a result less iterations are required to reach a relaxed state of the
system. (ii) Warm start will always use the same plans file, which becomes less
and less correct when running UrbanSim over a long time span. Opposed to warm
start, (iii) in hot start after each run an updated plans file is stored, incorporates
changes from the current UrbanSim population. In this case, MATSim starts from
the updated plans file instead of the initial plans file.

principle already described in Sec. 4.1 above. It means that MATSim generates the
initial travel demand based on the provided UrbanSim population, see Fig. 6.

Warm and hot start describe the capability of MATSim4UrbanSim to start a
simulation from a pre-existing, relaxed plans file (e.g. see Sec. 2) and to recycle in-
formation, such as route decisions and departure time choices, from previous runs.
In other words, MATSim “remembers” the travel schedule (daily plan) of each trav-
eller. Consequently fewer iterations are and thus less computing time is required to
reach a relaxed state of the system.

In warm start, MATSim will always use the same relaxed plans file as shown (as
“Inital Plans”) in Fig. 6. This plans file is generated from a preparatory run, which
relaxes the travel model for the base year. In subsequent UrbanSim years, those
synthetic travellers that neither change their residence nor their workplace will start
with those relaxed plans; also see below. All other travellers will start from scratch.

When running UrbanSim over many years with a changing population, because
of the relocations the initial plans file will become less and less correct, and the

14



i
i

“chapter3-2” — 2013/12/10 — 21:05 — page 15 — #15 i
i

i
i

i
i

system will require more and more iterations to get MATSim back into a relaxed
state. This issue is addressed by hot start. Here, MATSim stores an updated plans
file after each run, including all changes of the current UrbanSim population. As a
result the differences between the updated plans file and the UrbanSim population
are kept small. As opposed to warm start, hot start uses the updated instead of the
initial plans file after the first run, as shown in Fig. 6.

Technically, when MATSim performs a warm or hot start it reads a plans file
together with the current UrbanSim population. It keeps all persons from that plans
file that have not changed; this means:

1. A person from the current UrbanSim population also exists in the plans file.

2. Has the same employment status.

3. Has the same home location.

4. And if applicable, has the same work location.

For all other persons, new initial plans are generated. Some computational results
concerning warm and hot start are available from Nicolai (2013).

5 Access and accessibility indicators

This section looks at the access (= impedance) and accessibility indicators com-
puted by MATSim as feedback for UrbanSim. UrbanSim uses the feedback to up-
date its data base for the next year as stated in Sec. 4 above. The term “access”
refers to a two-point-value such as travel time impedances between an origin and
a destination; in contrast, “accessibility" is attached to one location and thus refers
to an aggregated single-point-value. The MATSim feedback currently includes (i)
so called zone-to-zone “skims”, meaning a summary of key model predictions like
travel times by mode or time of day (OPUS User Guide 2011), (ii) individual agent-
based performances as well as (iii) accessibilities to work places. The following
provides a summary, see Nicolai (2012) for details.

5.1 Zone-to-zone impedance matrix

The zone-to-zone impedance matrices contain travel times for several transport
modes, travel distances, generalized travel costs and the number of vehicle trips
for each pair of zones. Zones are assigned to the road network by determining the
network node which is closest to the zone centroid. The centroid coordinates can
be obtained from a variety of definitions, either (i) they are directly available in the
UrbanSim model, or by (ii) averaging all parcel coordinates that belong to a zone.
Typically, (i) applies to UrbanSim zone models and (ii) to UrbanSim parcel models.

Travel times are provided for congested and free speed car, public transport,
bicycle and walk. Congested and free speed car travel times are accordingly based

15



i
i

“chapter3-2” — 2013/12/10 — 21:05 — page 16 — #16 i
i

i
i

i
i

on congested or free speed link travel times of the MATSim road network. By
default, congested car travel times are measured for the morning peak period, i.e.
trips are assumed to start at 8am. Travel times on foot or by bicycle are based on
the shortest path on the road network with a constant speed of 5km/h (walk) and
15km/h (bicycle). For public transport (pt) travel times are obtained by Eq. 7,
which is composed of traveling on foot to the nearest pt stop from both the (i) origin
and (ii) destination and (iii) the pt travel times queried from the pt matrix.

Travel distances are given using the shortest path on the road network.1 General-
ized travel costs are given by Eq. 3 – including congested car travel times, distances
and toll. The number of vehicle trips per OD pair are obtained from counting the
actually simulated trips of each synthetic traveler. The numbers are then scaled to
the full population sample.

5.2 Agent-based performance

This feedback contains the individual travel performance for each MATSim agent
based on the selected mode, congested car or public transport (pt), including travel
times and travel distances, for the selected plan, e.g. see agent plans in Sec. 2. These
are given for both directions, commuting from home to work and back. For the time
being, only information on the congested car mode and on the pt mode is returned,
corresponding to the fact that the default version of MATSim4UrbanSim only uses
these two modes. Additional modes could be integrated with relatively little effort.

5.3 Accessibility computation

A comprehensive description about high resolution accessibility computations in
MATSim is given by Nicolai & Nagel (in press, 2012). At this point a brief overview
built on these references is provided.

For the present implementation a utility-based measure is selected (e.g. Ben-
Akiva & Lerman 1985, Train 2003). It reflects the (economic) benefits, computed
as the expected maximum utility, that someone gains from access to spatially dis-
tributed opportunities (Geurs & Ritsema van Eck 2001, de Jong et al. 2007). This is
also known as the logsum term; it is defined as

Ai := ln
∑
k

eVik , (9)

where k goes over all possible destinations. Vik is the disutility of travel in order to
get from location i to location k; in discrete choice theory interpretation, these are
the so-called systematic parts of the utility.2

1Note that a car will typically not take the shortest but rather the fastest/best path, and the bicy-
cle/walk modes are not restricted to the road network. Thus, these distances should be seen as an
approximation.

2There is sometimes an additional scale parameter in that definition. Here it is assumed that this

16



i
i

“chapter3-2” — 2013/12/10 — 21:05 — page 17 — #17 i
i

i
i

i
i

Origin and opportunity locations do not necessarily lie on the network. Thus, for
the network-oriented modes car, bicycle, and walk, the calculation of Vik includes
the disutility of travel to overcome the gap between locations and the network; in
the current implementation it is assumed that in these modes, opportunities can
only be reached via the transport network. Overall, Vik consists of the following
components:

1. The walk disutility for reaching the transport network from a given origin
location i. This gap is determined as the shortest distance to the network either
given by (i) the distance to the nearest node or (ii) the orthogonal distance to
the nearest link on the network.

For the latter case, Vik additionally includes the travel disutility to overcome
the distance to the nearest node according to the given transport mode.

2. The travel disutility on the network towards k is given by

Vtr ,i = (βtr ,mode − βperf ) · ti + βtd · di + βm ·mi ; (10)

this is Eq. (3) plus the effect of using time as a resource. Using Eq. (5),
the first term of the sum can also be expressed as −βm · V TTS · ti . The
parameters are taken from the travel model.

3. The walk travel disutility for reaching opportunity k from the transport net-
work. Here, the distance to the nearest node is used to determine the shortest
distance to the network.

This results in

Vik,mode := Vwlk,gap,i + Vmode,tr,k + Vwlk,gap,k , (11)

where Vwlk,gap,i is the walk disutility to overcome the gap between origin location
i and the road network, Vmode,tr,k is the travel disutility on the network traveling
towards k (Eq. 10), and Vwlk,gap,k is the walk disutility to overcome the gap between
the road network and opportunity location k. The term Vwlk,gap,i consists of

Vwlk,gap,i = βtt,wlk,gap,i · twlk,gap,i + βd,wlk,gap,i · dwlk,gap,i , (12)

where twlk,gap,i is the walk time and dwlk,gap,i is the distance to overcome the gap
between location i and the network. βtt,wlk and βd,wlk are marginal utilities that
convert travel times and distances respectively into utils. Vwlk,gap,k is defined in the
same way.

For the pt mode, the accessibility computation is only implemented when the
“matrix based pt” approach described in Sec. 3.1 is used. Then, the walk times and

is absorbed into Vik. In consequence, Ai is in the same units as Vik; a conversion to, say, monetary
terms needs to be done separately.

17



i
i

“chapter3-2” — 2013/12/10 — 21:05 — page 18 — #18 i
i

i
i

i
i

distances to the network are replaced by the walk times and distances to the nearest
pt stop, and the travel times and distances on the network are replaced by the times
and distances given by the pt matrix. In contrast to Sec. 3.1, the computation here
uses different marginal disutilities for access/egress walk, and for the time spent “in
the pt system”.

Accessibilities can be calculated for two spatial systems, (i) zones and (ii) parcels.

• For zones, zone centroids are used as measuring points. The centroid coordi-
nates can be obtained from a variety of definitions, as explained in Sec. 5.1.

• For parcels, the study area is subdivided into square cells, where the resulting
cell centroids serve as origins or measuring points for the accessibility cal-
culation. The spatial resolution of this is configurable. Once the calculation
for each cell is completed, MATSim interpolates the accessibility value from
the grid-cell to each UrbanSim parcel. For more information see Thunig &
Nicolai (2013).

The intermediate result based on the grid cells can be saved as well.

The current version of MATSim4UrbanSim returns workplace accessibilities, i.e.
the opportunities mentioned above are workplaces. Accessibilities to other types of
opportunities could be added with relatively little effort.

6 Some accessibility results

As an illustration, intermediate results of the Brussels case study are shown. Fig. 7
shows the morning workplace accessibility by car in the base case. One very clearly
sees the influence of the network; since the code assumes that access to the network
is by the walk mode, the distance to the transport network is the most decisive
factor because of the low walk speed. This points to the necessity to make such
studies with higher resolution networks – this was not an option here because of
computational performance restrictions for the UrbanSim integration (see Sec. 7).

One of the scenarios of the Brussels UrbanSim case study was looking at the
influence of a possible cordon toll of 5Eu, levied between 6am and 10am. The
cordon was defined just outside the outer freeway ring; tolled links are shown in
blue in Fig. 8. Car users from outside thus need to pay toll when using the ring.
MATSim was then run again with that toll enabled, and the resulting accessibility
differences are shown in the same figure. One finds two major effects:

• The accessibility inside the cordon area is visibly improved. This is due to
reduced congestion.

• The accessibility outside the cordon area is visibly reduced. This is because
the toll is part of the travel disutility. In consequence, persons living outside
the toll area now have a higher travel disutility to reach some of their possible
workplaces, and thus their (car) accessibility to workplaces is reduced.

18



i
i

“chapter3-2” — 2013/12/10 — 21:05 — page 19 — #19 i
i

i
i

i
i

Figure 7: Brussels case study – intermediate results. Morning workplace accessi-
bility by car in the base case. Top: Using zones. Bottom: Using high resolution
(grid-based) accessibility.

19



i
i

“chapter3-2” — 2013/12/10 — 21:05 — page 20 — #20 i
i

i
i

i
i

Figure 8: Changes in the morning workplace accessibility by car because of a morn-
ing cordon toll of 5 Eu in the Brussels area. The tolled links are marked in blue; the
freeway ring is fully inside the cordon area.

7 Computational issues

With the case study set-up for Brussels, one MATSim run with 100 iterations took
about 40 min on a regular desktop computer. Fig. 9 gives the breakdown between
different modules, over the iterations. The accessibility computation itself is not
contained in that breakdown, but takes about 2 min of computing time for a problem
of this size (Nicolai & Nagel in press).

Compared to UrbanSim, which only needs a couple of minutes per simulated
year, these 40 min per run were already a significant burden, and in consequence
MATSim was only run for 3 different UrbanSim years. Keeping all other things
constant, the computation time of a MATSim run scales roughly linearly in the
number of links. Doubling or quadrupling the number of links, leading to MATSim
computation times of 80 or 160 minutes, was not an option for the present study.
Warm or hot start acceleration was not used since it had some isssues in conjunction
with the matrix-based pt, and there was no time to resolve them.

20



i
i

“chapter3-2” — 2013/12/10 — 21:05 — page 21 — #21 i
i

i
i

i
i

0:00:00	  

0:00:09	  

0:00:17	  

0:00:26	  

0:00:35	  

0:00:43	  

0:00:52	  

0:01:00	  

0	   5	   10
	  

15
	  

20
	  

25
	  

30
	  

35
	  

40
	  

45
	  

50
	  

55
	  

60
	  

65
	  

70
	  

75
	  

80
	  

85
	  

90
	  

95
	  

10
0	  

!m
e	  
[h
r:m

in
:s
ec
]	  

other	  

mobsim	  

dump	  all	  plans	  

replanning	  

Figure 9: Computational performance of a typical MATSim run within the Brussels
case study over the iterations. The machine had additional loads, which explains the
fluctuations.

8 Discussion and outlook for the SustainCity project

This chapter discusses a so-called agent-based model as travel model plugin, as op-
posed to a trip-based model which will be discussed in Ch. ?? of the book. The
most important difference is that the agent-based approach keeps the simulated per-
son intact throughout the day. This allows, for example, to consider the effect of a
morning toll on the afternoon mode choice, or the effect of a morning delay on the
afternoon schedule.

In principle, agent-oriented coupling should be very natural between MATSim
and UrbanSim, because both are person-centric models. And indeed, one set of
quantities that is fed back from MATSim to UrbanSim is person-centric.

Notwithstanding these statements, coupling Java-based MATSim with
Python/C/C++-based UrbanSim, as was done here, remains problematic. The cou-
pling between MATSim and UrbanSim was achieved using the traditional method
of writing and reading regular files. This does, however, not allow to directly call
one software from the other. In particular, it is impossible for “persons” in Urban-
Sim to query the MATSim model directly concerning, say, how easy or difficult it
is to reach the workplace from a considered housing location. This reinforces the
assessment that there are currently separate streams of software that will remain
difficult to integrate fully until technology improves.

In contrast, the computation of high resolution accessibilities proved to be rather

21



i
i

“chapter3-2” — 2013/12/10 — 21:05 — page 22 — #22 i
i

i
i

i
i

fruitful. As anticipated, it is quite feasible to compute accessibilities on a 100m ×
100m grid, while taking into account congestion. This provides better insights and
thus also better modelling input to UrbanSim than conventional accessibility com-
putations that aggregate over zones. It is intended to use this in the future for various
scenarios and also for other activity types besides work. This should, for example,
help with the identification of regions with poor access to certain services.

References

Babin, A., Florian, M., James-Lefebvre, L. & Spiess, H. (1982), ‘EMME/2: In-
teractive graphic method for road and transit planning’, Transportation Research
Record 866, 1–9.

Balmer, M. (2007), Travel demand modeling for multi-agent transport simula-
tions: Algorithms and systems, PhD thesis, Swiss Federal Institute of Technology
(ETH) Zürich, Switzerland.

Balmer, M., Raney, B. & Nagel, K. (2005), Adjustment of activity timing and dura-
tion in an agent-based traffic flow simulation, in H. Timmermans, ed., ‘Progress
in activity-based analysis’, Elsevier, Oxford, UK, pp. 91–114.

Balmer, M., Rieser, M., Meister, K., Charypar, D., Lefebvre, N., Nagel, K. & Ax-
hausen, K. (2009), MATSim-T: Architecture and simulation times, in A. Baz-
zan & F. Klügl, eds, ‘Multi-Agent Systems for Traffic and Transportation’, IGI
Global, pp. 57–78.

Ben-Akiva, M. & Lerman, S. R. (1985), Discrete choice analysis, The MIT Press,
Cambridge, MA.

Carey, M. & Watling, D. (2003), ‘Introduction to a special issue “Dynamic Traffic
Assignment II”’, Networks and Spatial Economics 3, 403–406.

Cetin, N., Burri, A. & Nagel, K. (2003), A large-scale agent-based traffic microsim-
ulation based on queue model, in ‘Proceedings of the Swiss Transport Research
Conference (STRC)’, Monte Verita, Switzerland. Earlier version, with inferior
performance values: Transportation Research Board Annual Meeting 2003 paper
number 03-4272.
URL: http://www.strc.ch

Charypar, D. & Nagel, K. (2005), ‘Generating complete all-day activity plans with
genetic algorithms’, Transportation 32(4), 369–397.

de Jong, G., Daly, A., Pieters, M. & van der Hoorn, T. (2007), ‘The logsum as
an evaluation measure: Review of the literature and new results’, Transportation
Research Part A: Policy and Practice 41(9), 874–889.

22



i
i

“chapter3-2” — 2013/12/10 — 21:05 — page 23 — #23 i
i

i
i

i
i

Gawron, C. (1998), ‘An iterative algorithm to determine the dynamic user equilib-
rium in a traffic simulation model’, International Journal of Modern Physics C
9(3), 393–407.

Geurs, K. & Ritsema van Eck, J. (2001), Accessibility measures: review and appli-
cations, Technical report, National Institut of Public Health and the Environment,
RIVM, P.O. Box 1, 3720 BA Bilthoven.

Grether, D., Chen, Y., Rieser, M. & Nagel, K. (2009), Effects of a simple mode
choice model in a large-scale agent-based transport simulation, in A. Reggiani
& P. Nijkamp, eds, ‘Complexity and Spatial Networks. In Search of Simplicity’,
Advances in Spatial Science, Springer, chapter 13, pp. 167–186.

GTFS www pages (2012), ‘General transit feed specification’. Accessed April 2013.
URL: https://developers.google.com/transit/gtfs/

Jepp www pages (2013), ‘Jepp – Java Embedded Python’. Accessed December
2013.
URL: http://jepp.sourceforge.net/

JPype www pages (2013), ‘JPype – Java to Python integration’. Accessed June
2013.
URL: http://jpype.sourceforge.net/

Kickhöfer, B., Grether, D. & Nagel, K. (2011), ‘Income-contingent user preferences
in policy evaluation: application and discussion based on multi-agent transport
simulations’, Transportation 38, 849–870.

Kickhöfer, B. & Nagel, K. (2013), ‘Towards High-Resolution First-Best Air Pollu-
tion Tolls’, Networks and Spatial Economics pp. 1–24.

Lefebvre, N. & Balmer, M. (2007), Fast shortest path computation in time-
dependent traffic networks, in ‘Proceedings of the Swiss Transport Research Con-
ference (STRC)’, Monte Verita, Switzerland.
URL: http://www.strc.ch

Liang, S. (1999), The Java Native Interface: Programmer’s Guide and Specifica-
tion, Addison-Wesley Java series, Addison-Wesley.

MATSim extensions www page (2013). Accessed December 2013.
URL: http://matsim.org/extensions

Nagel, K. (2008), Towards simulation-based sketch planning: Some results con-
cerning the Alaskan Way viaduct in Seattle WA, VSP Working Paper 08-22, TU
Berlin, Transport Systems Planning and Transport Telematics. See www.vsp.tu-
berlin.de/publications.

23



i
i

“chapter3-2” — 2013/12/10 — 21:05 — page 24 — #24 i
i

i
i

i
i

Nagel, K. (2011), Towards simulation-based sketch planning, part II: Some re-
sults concerning a freeway extension in Berlin, VSP Working Paper 11-18, TU
Berlin, Transport Systems Planning and Transport Telematics. See www.vsp.tu-
berlin.de/publications.

Nagel, K. & Flötteröd, G. (2012), Agent-based traffic assignment: Going from trips
to behavioural travelers, in R. Pendyala & C. Bhat, eds, ‘Travel Behaviour Re-
search in an Evolving World – Selected papers from the 12th international con-
ference on travel behaviour research’, International Association for Travel Be-
haviour Research, chapter 12, pp. 261–294.

Nagel, K., Grether, D., Beuck, U., Chen, Y., Rieser, M. & Axhausen, K. (2008),
Multi-agent transport simulations and economic evaluation, Vol. 228 of Jour-
nal of Economics and Statistics (Jahrbücher für Nationalökonomie und Statistik),
pp. 173–194.

Nicolai, T. W. (2012), Using MATSim as a travel model plug-in to UrbanSim, VSP
Working Paper 12-29, TU Berlin, Transport Systems Planning and Transport
Telematics. Also VSP WP 12-29, see www.vsp.tu-berlin.de/publications.

Nicolai, T. W. (2013), Investigating the MATSim warm and hot start capability,
VSP Working Paper 13-06, TU Berlin, Transport Systems Planning and Transport
Telematics. See www.vsp.tu-berlin.de/publications.

Nicolai, T. W. & Nagel, K. (2010), Coupling MATSim and UrbanSim: Software
design issues, VSP Working Paper 10-13, TU Berlin, Transport Systems Planning
and Transport Telematics. See www.vsp.tu-berlin.de/publications.

Nicolai, T. W. & Nagel, K. (2012), Sensitivity tests with high resolution accessi-
bility computations, VSP Working Paper 12-22, TU Berlin, Transport Systems
Planning and Transport Telematics. See www.vsp.tu-berlin.de/publications.

Nicolai, T. W. & Nagel, K. (in press), High resolution accessibility computa-
tions, in A. Conde co, A. Reggiani & J. Gutiérrez, eds, ‘Accessibility and
spatial interaction’, Edward Elgar. Also VSP WP 13-02, see www.vsp.tu-
berlin.de/publications.

Nicolai, T. W., Wang, L., Nagel, K. & Waddell, P. (2011), Coupling an urban simu-
lation model with a travel model – A first sensitivity test, in ‘Computers in Urban
Planning and Urban Management (CUPUM)’, Lake Louise, Canada. Also VSP
WP 11-07, see www.vsp.tu-berlin.de/publications.

OPUS User Guide (2011), The Open Platform for Urban Simulation and UrbanSim
Version 4.3, University of California Berkeley and University of Washington.
URL: http://www.urbansim.org

24



i
i

“chapter3-2” — 2013/12/10 — 21:05 — page 25 — #25 i
i

i
i

i
i

Ortúzar, J. d. D. & Willumsen, L. (2001), Modelling transport, 3. edn, John Wiley
Sons Ltd, Chichester.

PTV AG (2009a), VISUM 11.0 Benutzerhandbuch, 76131 Karlsruhe.

PTV AG (2009b), VISUM 11.0 Grundlagen, 76131 Karlsruhe.

Raney, B. & Nagel, K. (2006), An improved framework for large-scale multi-agent
simulations of travel behaviour, in P. Rietveld, B. Jourquin & K. Westin, eds, ‘To-
wards better performing European Transportation Systems’, Routledge, London,
pp. 305–347.

Rieser, M. (2010), Adding transit to an agent-based transportation simulation con-
cepts and implementation, PhD thesis, TU Berlin. Also VSP WP 10-05, see
www.vsp.tu-berlin.de/publications.

Rieser, M., Dobler, C., Dubernet, T., Grether, D., Horni, A., Lämmel, G., Waraich,
R., Zilske, M., Axhausen, K. W. & Nagel, K. (2013), ‘MATSim user guide’.
Accessed 2013.
URL: http://www.matsim.org/userguide

Rieser, M. & Nagel, K. (2009), Combined agent-based simulation of private car
traffic and transit. Also VSP WP 09-11, see www.vsp.tu-berlin.de/publications.

Röder, D., Cabrita, I. & Nagel, K. (2013), Simulation-based sketch planning, part
III: Calibration of a MATSim-model for the greater Brussels area and investi-
gation of a cordon pricing for the highway ring, VSP working paper 13-16, TU
Berlin, Berlin, Germany. See www.vsp.tu-berlin.de/publications.

Thunig, T. & Nicolai, T. W. (2013), Spatial interpolation of accessibilities, VSP
Working Paper 13-07, TU Berlin, Transport Systems Planning and Transport
Telematics. Also VSP WP 13-07, see www.vsp.tu-berlin.de/publications.

Train, K. (2003), Discrete choice methods with simulation, Cambridge University
Press.

van der Vlist, E. (2002), XML Schema., 1st edn, O’Reilly.

W3C (2008), eXtensible Markup Language (XML), World Wide Web Consortium
(W3C). See www.w3.org/XML.

Wegener, M. (2004), Overview of land-use transport models, in K. Hensher,
D.A.; Button, ed., ‘Transport Geography and Spatial Systems’, number 5 in
‘Handbook in Transport’, Pergamon/Elsevier Science, pp. 127–146.

25


	Introduction
	MATSim
	MATSim process structure
	Agents and plans
	Iterative demand optimization process
	Evaluation of the performance of a plan with the scoring function
	An illustration

	Special MATSim features used for the case studies
	Public transit
	Road pricing

	Integration approach to use MATSim as a travel model plugin to UrbanSim
	MATSim4UrbanSim at a glance
	Different options to couple UrbanSim with MATSim
	MATSim4Urbansim configuration
	Cold, warm and hot start

	Access and accessibility indicators
	Zone-to-zone impedance matrix
	Agent-based performance
	Accessibility computation

	Some accessibility results
	Computational issues
	Discussion and outlook for the SustainCity project

