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ABSTRACT 1 

An activity-based approach to transport demand modeling is considered the most behaviorally 2 

sound procedure to assess the impacts of transport policies. In this paper, it is investigated whether 3 

it is possible to transfer an estimated model for activity generation from elsewhere (the estimation 4 

context) and use local area (application context) traffic counts to develop a local area 5 

activity-based transport demand representation. Here, the estimation context is the Dallas-Fort 6 

Worth area, and the application context is Berlin, Germany. Results in this paper suggest that such 7 

a transfer approach is feasible, based on comparison with a Berlin travel survey. Additional studies 8 

in the future need to be undertaken to examine the stability of the results obtained in this paper. 9 

 10 

 11 

 12 

 13 

Keywords: Activity-based Demand Modeling, Agent-based Simulation, Transport Modeling, 14 
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1. INTRODUCTION 1 

Traffic assignment models are useful tools to predict reactions of the transport system to policy 2 

measures. Traditional assignment models are static, taking constant OD flows as input, and 3 

producing static congestion patterns as output. In order to address dynamic policy measures such 4 

as a peak hour toll or changes of the opening times of workplaces and/or shops, dynamic traffic 5 

assignment (DTA) has emerged as a useful analysis approach (1). Originally, DTA typically took 6 

time-dependent (hourly or day period) OD matrices as input; more recent approaches (e.g. 7 

TRANSIMS (2) or DynusT (3)) often take as input lists of trips where each trip is defined by the 8 

triplet of departure time, departure location, and destination location. It is clear that one can go one 9 

step further and take full daily plans as input. To the authors’ knowledge, MATSim (Multi-Agent 10 

Transport Simulation (4)) is the only model system doing this at the large (regional) scale. The 11 

advantages of using complete daily activity-travel plans as DTA inputs include that all kinds of 12 

precedence constraints, such as the fact that a person cannot leave an activity location before 13 

having arrived, are automatically resolved. Also, such a model can accommodate more behavioral 14 

realism. For example, the time pressure relief during the remainder of the day, which may lead to 15 

additional activity participation, can be included as an element in the route choice between a tolled 16 

fast and a non-tolled slow route. 17 

A question now is how the input to such an activity-chain-based traffic assignment model 18 

may be obtained? Trip diaries provide the necessary data – i.e. a sequence of departure times, 19 

mode choice decisions, and activity locations – directly. A disadvantage of using trip diaries is, 20 

however, that all information that is taken from the diaries is by definition not sensitive to policy 21 

measures. For example, if one wants to investigate departure time reactions to a policy measure, 22 

one cannot take the departure times from the trip diary. Instead, a model component needs to be 23 

built that endogenizes departure times in a meaningful way. Also, trip diaries are not available for 24 

the entire population in an area, but only for a very small fraction of the population.  25 

Another drawback is that, in Germany and the U.S. (and many other parts of the world), 26 

the geo-coding of the activity location is considered sensitive information under privacy 27 

legislation, and thus often removed from scientific use files. Informal privacy standards suggest 28 

that it should not be possible to narrow down a search to less than seven persons from the data 29 

record, which, however, can be suspected to be possible when the street addresses of home and 30 

work locations are known. Since data owners often do not know how to sufficiently blur location 31 

data to satisfy the above “rule of seven”, they prefer not to give out any location information at all.  32 

Alternatively, publicly available commuting matrices may be used. These matrices do, 33 

however, not have a high enough spatial resolution for urban areas. For example, in the publicly 34 

available German data (5) all of the city of Berlin, with 3.4 million inhabitants, is represented by 35 

exactly one zone. In the U.S., commuting matrices are typically available only at a 36 

county-to-county level. Since such location aggregation based matrices may become the rule 37 

rather than the exception in privacy-sensitive societies, this motivates the search for alternative 38 

methods. 39 

So, the question is whether high resolution origin-destination information can be 40 

generated in some other way? The standard solution would be to estimate an activity location 41 

choice model. This, however, is difficult if no trip data to estimate the model is available. OD 42 

matrix estimation studies (6) suggest that traffic counts may be used to make an initially rough OD 43 

matrix more appropriate for a region. As explained above, however, MATSim is not based on OD 44 

flows, but on full daily plans (7). Thus, the issue becomes whether there could be a source for 45 

initial full daily plans for each individual in a region, and whether there is a procedure to update 46 

these initial full daily plans using traffic counts. The latter issue may be handled using a procedure 47 
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proposed by Flötteröd et al. (8) and implemented in the software Cadyts (Calibration of Dynamic 1 

Traffic Simulations (9)). Cadyts (Section 2.3) is a procedure to update initial estimates of any 2 

arbitrary choice dimension of individual-level travel behavior based on real-world measurements. 3 

Cadyts has already been applied to update route choice predictions, both for car (10) and for public 4 

transit (11). However, it has not been used to update daily full activity-travel plans, as it is done in 5 

this paper. The former issue – a means to generate initial complete daily plans for individuals in a 6 

region – is addressed in this paper using the Comprehensive Econometric Microsimulator for 7 

Daily Activity-Travel Patterns (CEMDAP (12)). In particular, the model parameters of CEMDAP, 8 

as estimated for the Dallas-Fort Worth region (the estimation context) are retained, and then used 9 

to generate the initial plans for individuals in Berlin (the application context in the current paper). 10 

Subsequently, Cadyts is used to update these initial plans using Berlin traffic count data. The main 11 

advantage of CEMDAP over other activity-based model (ABM) systems for the generation of the 12 

initial plans is that CEMDAP generates full daily activity-travel plans, which is exactly what 13 

MATSim expects as input. Similar attempts with other ABM systems would be considerably more 14 

difficult since, although possibly having daily plans internally, their output consists of hourly OD 15 

matrices (13) or of tours (14). Also, they do often sample full individuals but rather provide 16 

activity chains with fractional weights (14). 17 

In summary, the objective of this study is to create an activity-plan-based MATSim 18 

transport model for Berlin that is policy-sensitive, but at the same time only based on CEMDAP 19 

predictions of initial activity plans combined with Berlin traffic count data. Essentially, it is 20 

investigated whether it is possible to transfer an estimated model for activity generation from 21 

elsewhere (the estimation context), and use local area (application context) traffic counts to 22 

develop a local area activity-based transport demand representation. At a broad level, this may be 23 

viewed as transferability with updating, except that the updating operates on the initial full daily 24 

activity plans rather than on specific model parameters as in traditional transfer updating. In more 25 

technical terms, the approach is the following: 26 

 A synthetic population is generated in the application context, where each member has 27 

the attributes age, gender, employment status, being a student or retired. For the present 28 

study, only people of 18 years or older are considered. 29 

 For each working/studying member of the synthetic population, a workplace/university 30 

location is randomly selected according to the coarse commuting matrix. 31 

 If the large Berlin zone is designated as the workplace/school location, several possible 32 

workplaces/school locations are assigned to each person. 33 

 Next, the ABM system CEMDAP (12) generates a full possible daily activity-travel 34 

pattern for each possible person-workplace/school combination. This means that the 35 

synthetic persons who are working/studying in the Berlin zone now have multiple 36 

activity-travel plans, which are quite different from each other because they all have 37 

different work/school locations.  38 

 Finally, the MATSim transport simulation is run in connection with Cadyts in an iterative 39 

loop, where Cadyts is used to select plans which are consistent with traffic counts. 40 

This approach is parallel to OD matrix estimation. However, instead of increasing and decreasing 41 

entries in the OD matrix to match traffic counts, the weights of multiple possible activity-travel 42 

plans of each synthetic person are increased or decreased to match traffic counts. 43 

 44 

 45 



Ziemke, Nagel, Bhat   5 

 

2. TOOLS 1 

2.1. CEMDAP 2 

Two major approaches to activity-based demand modeling can be distinguished (15): (1) Models 3 

based on random utility theory that consist of systems of equations to capture relationships among 4 

activity and travel attributes and to predict the probability of decision outcomes (15) and (2) 5 

models based on rule-based approaches (also referred to as computational process models), which 6 

employ psychological decision rules in the form of condition-action pairs that specify how the 7 

solution to a given task is found (15). 8 

Here, the Comprehensive Econometric Microsimulator for Daily Activity-Travel Patterns 9 

(CEMDAP) is used, which is a software implementation of a system of random-utility-based 10 

models that represent the decision-making behavior of individuals (12)(15). Since CEMDAP 11 

requires input information on individual level which is mostly only available at an aggregate level, 12 

usually, synthetic population generation (SPG) (17) needs to be applied as a pre-process. 13 

CEMDAP’s output consists of the complete daily activity-travel patterns of each individual of the 14 

synthetic population (15)(12)(16) and outlines the sequence of activities (and corresponding 15 

travel) that a person undertakes during the day. This knowledge is the foundation for transport 16 

modeling. As in any market, however, demand is dependent on supply. So, the interaction of 17 

supply and demand needs to be modeled. 18 

 19 

2.2. MATSim 20 

In order to maintain the disaggregate view on the individual travelers throughout the whole 21 

modeling process a specific model is needed for the modeling of the interaction of supply and 22 

demand on the network. MATSim (Multi-Agent Transport Simulation (4)) is used for this task. 23 

MATSim constitutes an agent-based transport simulation consisting of two major components. 24 

First, the demand for transport is simulated on the physical network (Physical simulation in Figure 25 

1; also referred to as traffic (flow) simulation, mobility simulation (mobsim), network loading or 26 

execution). Second, the choice processes (decision making) that travelers undertake in reaction to 27 

what they experience while traveling are simulated (Mental simulation in Figure 1).  28 

 29 
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 1 
 2 

FIGURE 1  Methodology 3 

 4 

 5 

Conforming with the microsimulation paradigm, the software objects representing travelers 6 

(agents) are retained during the whole simulation process. Each agent takes independent decisions 7 

and keeps a record of her/his decisions in a plan, which contains the agent’s schedule of activities, 8 

including times and locations, along with the travel modes.  9 

In the physical simulation, the selected plans of all agents are simulated simultaneously 10 

based on a queue model (18). A directed graph is used, where every roadway segment (link) is 11 

modeled as a first-in-first-out (FIFO) queue and has the following attributes: Free-flow speed, link 12 

length, flow capacity, number of lanes, and allowed modes. 13 
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In every time step of the simulation, the state of each queue is updated. The agent at its 1 

head is put into the FIFO queue of the next link of her/his route and assigned with a time stamp, if 2 

the agent has spent at least the free-flow travel time on the link, the flow capacity has not been 3 

exceeded in this time step, and the next link on the agent’s route has free storage capacity. In the 4 

next time step, this procedure is repeated. 5 

Each plan is evaluated based on its performance, which is quantified by a score based on 6 

the notion of utility. The according utility function (19) encompasses the agents’ activity 7 

participation and their travel performance:  8 

 9 

 10 

 


ntrav ntravmact mperf VV = iV ,,)(        (1) 11 

 12 

where Vperf,m is the utility of activity m and Vtrav,n is the utility of travel leg n. New scores are only 13 

calculated for the most recently selected plan. 14 

Next, the agents decide which plan to execute in the traffic simulation of the next 15 

iteration. They may either generate a new plan by applying modifications to a copy of one 16 

randomly selected plan from their existing plans. Modifications may be done with respect to 17 

various choice dimensions (e.g. routing or time choice) through (innovative) strategy modules. If a 18 

new plan is created, this plan is marked as the agent’s selected plan for the next iteration. 19 

Alternatively, agents may select one of their already existing plans through probabilistic 20 

selection and execute it. To do so, a choice among their existing plans is performed by a 21 

multinomial logit model, where the selection probability P(i) of a given plan i is related to the 22 

plan’s score V(i): 23 

 24 

 25 
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 27 

The optimization process in MATSim adheres to the concept of evolutionary algorithms. A plan 28 

may perform differently in different iterations as it is dependent on the behavior of other agents 29 

that steadily adapt their plans as well. This process may also be regarded as a genetic algorithm – 30 

an extremely flexible, though computationally inefficient optimization method inspired by biology 31 

(19). In contrast to discrete choice models, which enumerate all possible alternatives, genetic 32 

algorithms do not find a globally optimal solution, but one good solution (19). 33 

In the genetic algorithm, transport demand adapts itself to transport supply over the 34 

course of iterations. It is, thus, possible to start the simulation procedure with little initial 35 

assumptions and have the evolutionary algorithm take care of adequate adaptation. Depending on 36 

how elaborate the representation of transport demand is at startup, MATSim itself can, thus, be 37 

regarded an (activity-based) demand generation module. Specifically, Balmer (20) shows how 38 

MATSim’s iterative simulation process leads to an improvement in an agent’s plans by including a 39 

module specific to each choice dimension that comprises an individual’s daily plan. If these 40 

modules represent the corresponding behaviors correctly, the properties of the corresponding 41 

choice dimensions will converge to realistic values even if the original values are not appropriate. 42 

In this respect, it is fundamental to distinguish fixed from unfixed choice dimensions, because only 43 

those (fixed) choice dimensions whose properties do not undergo any modifications in MATSim’s 44 

iterative procedure have to be initially correct (20). 45 
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2.3. Cadyts 1 

Microsimulations have become an important tool for transport modeling (21). They offer a 2 

behaviorally more sound representation of the transport system than aggregate models. A 3 

drawback of microsimulation is, however, that they – in contrast to analytical models – do not have 4 

an explicit mathematical specification (10). 5 

Cadyts (Calibration of dynamic traffic simulations) overcomes this drawback through its 6 

calibration procedure in a Bayesian setting (9). It updates estimates of arbitrary choice dimensions 7 

of individual-level travel behavior based on real-world measurements (e.g. traffic counts) (9)(10). 8 

As stated in section 2.2, the probability P(i) of choosing plan i is determined in MATSim 9 

on the basis of the scores of the plans. Equation 2 can be called the a priori choice probability to 10 

choose plan i, indicating that this is the plan’s choice probability prior to considering how the 11 

choice probability changes when, additionally, real-world observation data are taken into account. 12 

In order to update the plan selection of the synthetic persons, Cadyts combines this a priori choice 13 

distribution P(i) with available traffic counts into an a posteriori choice probability P(i|y) (10). 14 

As shown by Flötteröd (22), the application of the a posteriori choice distribution 15 

requires nothing but adding a plan-specific utility correction (also referred to as utility correction, 16 

utility offset, or linear plan effect) to every considered plan of each synthetic person. Notably, 17 

Cadyts does not change the parameters of the choice model that generate the a priori choice 18 

probabilities P(i). 19 

The plan-specific utility corrections are composed of link- and time-additive correction 20 

terms ΔVa(k). In case congestion can be assumed to be light and traffic counts are independently 21 

and normally distributed, these link- and time-additive correction terms become (10) 22 

 23 

 24 
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 26 

where ya(k) is the real-world traffic count, qa(k) is the simulated traffic count, and σ2
a(k) is the 27 

variance of the traffic count at location a for time bin k. The utility correction of a given 28 

activity-travel plan of an agent is calculated as the sum of all ΔVa(k) that are covered by the plan 29 

(10). With this, the a posteriori choice probability of plan i of agent n becomes 30 

 31 
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 36 

where Pn(i) is the a priori choice probability of plan i of agent n, and Vn(i) is the a priory score of 37 

a plan i of agent n as calculated with Equation 1. Intuitively, if the simulation value, qa(k), is 38 

smaller than the measurement from reality, ya(k), an increase in score and thus an increase in 39 

choice probability results. σa(k) denotes how much one should trust that specific measurement – a  40 

large σa(k) implying a large variance and thus a low trust level. 41 
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A discussed in section 2.2, the mental simulation of MATSim (Figure 1) consists of the 1 

two steps of plan scoring and plan selection. In the original version of Cadyts, the utility correction 2 

is used to modify the (a priori) plan choice probability by adding the utility correction to the 3 

considered plan’s score in the logit model (Equation 4). Thus, plan selection becomes a function of 4 

real-world measurements (e.g. traffic counts) in addition to being dependent on plan scores. This 5 

has, however, the disadvantage that the utility correction is only temporarily calculated and applied 6 

once in the plan selection step. 7 

An alternative approach is to embed the Cadyts utility offset as an extra component into 8 

the compound MATSim scoring function (Equation 1) next to activity scoring and travel leg 9 

scoring (23). Equation 1 is, thus, modified to 10 

 11 

)()( ,, kVwVV= iV aiakntravntravmperfmact        (6) 12 

 13 

where w is the weight of Cadyts utility correction. This procedure constitutes a novel approach of 14 

coupling MATSim with Cadyts and is first presented and applied by Moyo Oliveros and Nagel 15 

(11). 16 

Conceptually and mathematically, Equation 4 stems from Bayesian statistics, i.e. it is a 17 

linearized version of the mathematically necessary correction of the behavioral choice 18 

probabilities once measurements are available. As one can see, the correction itself behaves as an 19 

agent-specific alternative-specific constant (10). 20 

 21 

3. INPUT DATA 22 

3.1. Scenario and Network 23 

The scenario considered in this study consists of the two German federal states of Berlin and 24 

Brandenburg. Transport supply consists of a roadway network, which was created based on data 25 

from OpenStreetMap (24)(25). After simplification, the network consists of 11,345 nodes and 26 

24,335 single-direction car-only links. 27 

 28 

3.2. Synthetic Population 29 

The synthetic population is based on commuter data provided by the German Federal Employment 30 

Agency (5). These data yield the home and workplace municipalities of that part of the working 31 

population that is subject to social insurance contributions.
1
 32 

Berlin consists of only one municipality, which accommodates 3,375,222 inhabitants (26) 33 

and hosts 1,105,037 socially-secured workers (5). Because their home and workplace locations are 34 

not specified any more detailed than at the municipality level, inside Berlin so-called LORs
2
 are 35 

used. Amongst other criteria, LORs are spatially defined so that one LOR’s population does not 36 

fall below or exceed a certain minimum or maximum, respectively (27). Thus, real-world 37 

settlement patterns can be approximated by selecting LORs randomly for each member of a 38 

synthetic population. 39 

Scalings are used to account for the respective shares of socially-secured workers, adults, 40 

employment status, age, gender, and being retired or being a student (28).
3
 Based on this 41 

information, a 1%-sample of the relevant population is created. 42 

                                                      
1 Persons subject to social insurance contributions (sozialversicherungspflichtige Beschäftigte) are working persons who are not 

self-employed and whose income exceeds a minimum threshold. 
2 Lebensweltlich orientierte Räume, a neighborhood-oriented zone system. 
3 In future studies, statistically more sophisticated approaches should be used, such as by Pendyala et al. (17).  



Ziemke, Nagel, Bhat   10 

 

3.3. Counts 1 

For updating the scoring of activity-travel plans, 8,304 hourly count values for 346 count station, 2 

collected by the Berlin Traffic Management Center (Verkehrsmanagementzentrale) are used. 3 

 4 

4. METHODOLOGY 5 

4.1. Approach 6 

The main objective of this research is to connect the ABM system (CEMDAP, Section 2.1), the 7 

DTA system (MATSim, Section 2.2), and the calibration package (Cadyts, Section 2.3) in a novel 8 

approach to transfer an activity-based transport demand model. As pointed out in section 1, the 9 

main idea is to generate a set of several possible daily activity-travel plans for each agent using 10 

CEMDAP whose parameters have been estimated for another regional context (i.e. the Dallas-Fort 11 

Worth region). Then, Cadyts is used to update the scoring of daily activity-travel plans so that 12 

those plans are more frequently picked by the agents that are most consistent with measurements 13 

from the application context (i.e. the Berlin-Brandenburg region). This is achieved by running the 14 

following two steps multiple times: 15 

1. First, for each member of the synthetic population, a workplace is selected with 16 

probabilities according to the commuting matrix. If the workplace falls into the Berlin 17 

zone, one of Berlin’s LORs (Section 3.2) is selected randomly. The same is done for 18 

school locations (only persons of 18 years or older are considered). 19 

2. Second, CEMDAP is run with the above input. 20 

Thus, a set of several possible daily activity-travel plans for each agent is created. As CEMDAP’s 21 

output is fully disaggregated to the individual-traveler level, it is a perfect match with the 22 

requirements of the input plans for MATSim. Only some data structural rearrangement is 23 

necessary to use the daily activity-travel patterns created by CEMDAP as input for MATSim (28). 24 

Technically, all CEMDAP activity-travel output plans of a given synthetic person are combined 25 

into a set of multiple daily plan options of that same person for the MATSim simulation. From this 26 

point, MATSim’s iterative simulation procedure (Central, circular part of Figure 1) is executed as 27 

described in section 2.2. 28 

 29 

4.2. Discussion of Methodology 30 

As pointed out in section 2.2, the consideration of choice dimensions is central to this process. 31 

Only those choice dimensions that cannot be modified during the simulation have to be 32 

represented correctly at the start of the simulation. Choice dimensions whose properties are subject 33 

to modification, by contrast, do not need to be initially correct. 34 

Since only automobile traffic is considered in this study, transport mode choice is fixed. 35 

Accordingly, the number of motorists needs to be initially correct. Route choice is enabled as a 36 

choice dimension with a corresponding strategy module in the MATSim transport simulation, i.e. 37 

all agents are able to iteratively create and try out new routes. Location choice and time choice are 38 

regarded as fixed from the perspective of the transport simulation, i.e. agents cannot create new 39 

travel options in terms of timing or location choice during the transport simulation. The special 40 

feature of the approach in this study is, however, that agents are still able to adjust their timing or to 41 

switch locations among the alternatives they have been provided with by the initial demand 42 

suggestions generated by CEMDAP. This constitutes a novel compromise between fixed and 43 

unfixed choice dimensions. On the one hand, no innovative strategy modules of MATSim (Section 44 
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2.2) for these choice dimensions are used. On the other hand, the output of CEMDAP can be used 1 

as effectively as possible, since the decisions concerning these choice dimensions are already 2 

conducted by CEMDAP. 3 

Via the mental simulation of the agents’ decision making, the demand optimizes itself 4 

with respect to supply utilization. Cadyts (Section 2.3)  ties in with the plan scoring process in the 5 

mental layer of the MATSim transport simulation and makes those options prevail that are both 6 

reasonable from a behavioral perspective (determined by the activity and leg scoring) and, at the 7 

same time, reproduce expected travel patterns (according to real-world measurements). As the 8 

influence which Cadyts can exert is obviously dependent on the variety of plans each agent 9 

possesses, CEMDAP is run multiple times and each output is considered one potential solution. 10 

An analogous approach is employed by Moyo Oliveros and Nagel (11)(23) who generate 11 

randomized routes of public transport riders. Moyo Oliveros (23) argues that “random routes 12 

generation might seem inadequate from the classical assignment models perspective [and that] it 13 

would be impractical if it were implemented as a stand-alone module for route choice model”. 14 

Since, however, “the search of candidate solutions is combined with a selection mechanism, […] 15 

where new alternatives for each agent are evaluated and the worst are discarded, this coupling 16 

constitutes a composite co-evolutionary algorithm that directs the choice distribution to a count 17 

match convergence” (23). While the suggested routes may (just like the suggested activity plans in 18 

this study) not be regarded as correct solutions to the problem initially, the connection of the 19 

simulation with the updating procedure leads to the selection of those potential solutions which 20 

constitute valid final solutions to the problem of finding a transport demand representation. 21 

 22 

5. RESULTS AND VALIDATION 23 

As explained in section 1, the goal of this study is to find a demand representation with a model fit 24 

and validity as good as possible while adhering to the premise to use only easily available data as 25 

inputs. More than 100 simulation runs have been undertaken to find the best configuration to meet 26 

these criteria with the following results: 27 

 Four initial plans seem to be sufficient. 28 

 The maximum number of plans (a MATSim configuration parameter) should be about 29 

twice as high as the number of initial plans. 30 

 Using demand elasticity (i.e. giving each agent an additional initial plan where the agent 31 

stays at home all day) is found beneficial to allow the calibration more freedom. 32 

 A flow capacity of 0.02 (i.e. the double of the population scaling value) was found 33 

reasonable, based on indicators such as average trip duration (Table 1). 34 

 For the setup of this study, a Cadyts scoring weight of w=15.0 should be chosen. Lower 35 

values are detected to be not influential enough; higher values show first indications of 36 

overfitting. 37 

 In contrast to the work of Flötteröd et al. (10), where Cadyts was applied only for the 38 

hours between 6am and 8pm, in the present study Cadyts is applied to all 24 hours of the 39 

day. Setting the period to 6am through 8pm showed no discernible differences. 40 

Table 1 depicts the settings and results of the preferred parameter combination (Column “With 41 

Cadyts”) next to a respective run without Cadyts updating and reference values. 42 

 43 

 44 
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TABLE 1 Settings and Results of Simulation without/with Cadyts 1 
 2 

 Parameter Without Cadyts With Cadyts Reference 

Demand Elasticity Yes Yes n/a 

Number of Plans 10 10 n/a 

Number of Initial Plans 4 4 n/a 

Flow Capacity Factor 0.02 0.02 n/a 

Cadyts Scoring Weight 0 15 n/a 

Calibration Time n/a 0 – 24h n/a 

 Normalized 

Log-Likelihood 

−219 −23 −10 (22) 

 Car Trips 3.98m 2.92m 3.2m (28) 

Car Trips/Person 3.9 3.4 3.4 (28) 

Avg. Trip Distance [km] 12.0 11.0 9.5 (28) 

Avg. Trip Duration [min] 27.0 22.0 22.3 (28) 

 3 

To assess the model fit, normalized log-likelihood values were compared to respective values from 4 

Flötteröd (22). The log-likelihood L is computed as the average value over all counting stations a 5 

and time slots k as 6 

 7 

 8 
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          (7) 9 

 10 

It is found that the fit to the counts (−23) is nearly as good as in the reference simulation (−10), and 11 

clearly much better than without calibration. 12 

Figure 2 depicts the error graphs of the runs outlined in Table 1. It can be seen that the run 13 

with updating of plan scoring (Figure 2(b)) shows significantly lower mean relative errors (MRE; 14 

depicted in red with squares) with regard to real-world traffic counts. During daytime, the MREs 15 

are somewhat higher than 20%, which means that on average the amount of simulated traffic 16 

diverges from the amount of measured traffic by a bit more than 20% over all count stations. Mean 17 

absolute biases (depicted in blue with points) are significantly lower in the case with 18 

traffic-count-based updating (note the different scales). 19 

  20 

 21 
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 1 
 2 

FIGURE 2  Error Graphs of Simulation without/with Cadyts: (a) Without Cadyts, (b) With 3 

Cadyts 4 

 5 

 6 

A validation (based on data that have not been used to create the model) is particularly important to 7 

detect potential overfitting. Specifically, in case the weight of the Cadyts scoring component is 8 

overly high, the procedure may produce a good model fit, but override the behavioral components 9 

of the scoring function.  To assess the characteristics of the generated travel patterns, the average 10 

values of table 1 were calculated from the travel survey SrV 2008
4
 weekday travel survey for 11 

Berlin (29), which encompasses 107,065 trips altogether. As most of the values used for validation 12 

are neither contained in the published report of the SrV travel survey nor in the public-use files, 13 

they were calculated with the SrV scientific-use files (28). The distribution of trips by time of day 14 

and the distributions of trip distances, trip durations, average trip speeds, and activity participation 15 

at trip ends are depicted in Figure 3. 16 

 17 

                                                      
4
 System of Representative Travel Surveys (German: System repräsentativer Verkehrsbefragungen).  
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 1 
 2 

FIGURE 3  Comparison of Simulation and Survey: (a) Departure Times, (b) Trip Distances, 3 

(c) Trip Durations, (d) Average Trip Speeds, (e) Activity Types at Trip Ends 4 

 5 

 6 

Figure 3(a) shows that the simulation has somewhat more traffic during daytime and a bit less 7 

traffic in the evening, which may be explained as follows: 8 

 The mid-day drop in the survey data does not correspond to common wisdom from Berlin 9 

and is not contained in traffic counts – neither in those used for the present study nor in 10 

known others. Possibly, the survey population behaves differently from the full system. 11 
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For example, the important demand segment of commercial car traffic is not included in 1 

the survey. Presumably, the calibration procedure replaces that missing demand segment 2 

by plans that are as close as possible to the missing demand segment.  3 

 The evening drip in the simulation results from the arguably lower number of evening 4 

activities between in Dallas/Fort Worth compared to Berlin. If this speculation is correct, 5 

the updating procedure does not have enough suitable plans to converge to observed 6 

traffic volumes. 7 

Trip distances (Figure 3(b)) are very similar, with somewhat more medium-length trips in the 8 

survey and slightly more long trips in the simulation. Trip durations behave similarly (Figure 3(c)), 9 

where the steps result from survey participants tending to state “catchy” numbers. Similarly, figure 10 

3(d) shows that speed are similar, with somewhat more medium-speed trips in the survey. The 11 

distribution of activities at trips ends is met quite well (Figure 3(e)). Notably, there is no specific 12 

mechanism in the simulation-calibration process that caters for the correct shares of activity types. 13 

 14 

6. DISCUSSION 15 

The flow capacity factor was set to 0.02 while the population was only a 1% sample. While the 16 

flow capacity factor and the population sample factor should normally be the same in MATSim, it 17 

may be necessary to balance adverse effects. Here, the generated demand may, in fact, be too large. 18 

Berlin employees probably have more vacation and possibly also more sick leave than their 19 

American counterparts. Also, a significant number of employees in Berlin work part-time, 20 

meaning that they might travel outside peak hours. Overall, this needs to be investigated in more 21 

detail. Preferably, a portable solution should be found rather than another solution that only works 22 

for the study area. 23 

The approach currently selects a sub-zone (LOR) within the large Berlin zone randomly. 24 

It is, however, plausible to assume that there is in reality some gravity model, i.e. longer distances 25 

are less probable than shorter distances. Also, the destination-side supply constraints are currently 26 

not observed. Both issues could be addressed without having to resort to scenario-specific 27 

approaches. 28 

The approach currently updates plan selection only against traffic counts; the updating 29 

against average trip time was done manually. It should be possible to include such aspects directly 30 

into the Cadyts calibration procedure, preferable not only as an average trip time but rather as a trip 31 

time distribution. An early version of this was done by Wagner and Nagel (30). 32 

In this study, no feedback from MATSim to CEMDAP is considered. So, location choice 33 

and time choice (according options being provided via CEMDAP initially) are not dependent on 34 

network conditions. This may be improved by the introduction of some feedback loop from 35 

MATSim to CEMDAP in potential follow-up studies. 36 

 37 

7. CONCLUSION 38 

The commuting matrix, either as input to the generation of an origin-destination matrix or as input 39 

to the generation of an activity-based demand, is often not available or not available without high 40 

enough spatial resolution. So, destination choice models are often used, which are, however, 41 

associated with problems like lack of suitable input data. In both cases (with or without a 42 

destination choice model) it is common to use traffic counts to further calibrate the OD matrices.  43 

When assignment models are not driven by OD matrices, but by synthetic individual 44 

travelers with individual plans, the OD estimation technique is not directly useable. It is, however, 45 
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possible to generate multiple plans per person, each having different activity locations, and then to 1 

use a Bayesian correction scheme in order to influence the plan choice probabilities towards 2 

measurement data. The procedure was developed and implemented by Flötteröd (31)(8), but has so 3 

far only been applied to route choice, both for car (10) and for public transit (11). In this paper, it is 4 

now for the first time applied to activity plan choice, which includes activity location choice. 5 

To attain a set of possible activity-travel plans of each synthetic individual, CEMDAP 6 

(Section 2.1) was used in this study. Multiple CEMDAP outputs, generated by varying the 7 

workplace and school locations in the input files, are created and fed into the MATSim transport 8 

system simulation. To facilitate the application of CEMDAP, it is used with the minimally 9 

necessary input data, and on the basis of a readily estimated parameter set for the Dallas/Fort 10 

Worth region. The members of the set of activity-travel plans of each synthetic traveler are 11 

considered a set of potential solutions to the problem of finding a valid transport demand 12 

representation. A calibration algorithm (Cadyts, Section 2.3) is used to ensure that those initial 13 

suggestion of potential daily plans are selected that contribute to reproducing real-world traffic 14 

patterns. The procedure of feeding the output of a ABM model into a dynamic traffic simulation in 15 

interaction with a calibration algorithm that manages the adequate selection of initial suggestions 16 

is novel and increases the transferability of transport demand models from one region (the 17 

estimation context) to another region (the application context). 18 

The model created in this study validated very well. MREs for volumes of traffic are 19 

around 20% during daytime hours (“With Cadyts” in Table 1 and Figure 2). The performance in 20 

terms of model fit is, thus, comparable to models based on travel diaries. 21 

An independent validation, undertaken based on data from the Berlin 2008 SrV (29) travel 22 

survey, was successful concerning all considered properties. These properties encompass the total 23 

amount of car trips, the distributions of departure times, trip duration, trip distance, and average 24 

trips speeds as well the distribution of activity participation at trip ends. 25 

To conclude, our results suggest that it may be possible for a model estimated for a 26 

different geographical region to be transferred to another region. On the basis of publicly available 27 

input data of the new region and in interaction with a traffic-count-based updating of 28 

activity-travel plan scoring (Cadyts), an evolutionary simulation (MATSim) may be able to 29 

generate a representative travel demand for the new region. Overall, the proposed approach 30 

appears quite encouraging in terms of developing policy-sensitive transport models for application 31 

contexts based on an estimated ABM model in an estimation context combined with traffic count 32 

data from the application context. Future studies need to investigate whether this holds true for 33 

other situations too, though it is important to point out that it is difficult to think of two contexts 34 

much more different than the Dallas-Fort Worth area in the U.S. and the Berlin area in Germany. 35 

  36 
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