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Abstract 

In this paper, marginal cost pricing rules are applied to an agent-based model. User-specific 

optimal bus fares are estimated by simulating user interactions at a microscopic level. We 

consider external effects of prolonged in-vehicle and waiting times (including the effect of full 

buses on boarding denials) induced by passengers boarding vehicles. We give a new-look to the 

relationship between optimal fare and travel distance, which is found to crucially depend on the 

type of external cost that is considered when calculating fares. Conditions for optimal bus fares 

that increase or decrease as a function of trip length are numerically found. 
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1  Introduction 

In the transport sector congestion, air pollution, noise and accidents are sources of inter- or intra-

sectoral external costs leading to welfare losses and an inefficient market equilibrium (van Essen 

et al., 2008). External effects arise if marginal private user costs deviate from marginal social 

costs. Marginal social cost pricing means setting generalized prices equal to the sum of marginal 

producer costs, marginal private user costs and marginal external costs. Therefore, in the public 

transport market, the optimal fare amounts to the difference between marginal private and 

marginal social costs. By charging the optimal fare, external effects are internalized and taken 

into account by users. Thus, the right incentives are given to achieve market efficiency and 

maximize social welfare. 

Since theoretical first best conditions do not exist in reality (e.g. due to underpriced 

competing modes, difficult computation, unfeasible application), second best solutions are 

required (Verhoef, 2001; Proost and van Dender, 2001; Small and Verhoef, 2007). Insights from 

the first best solution may help to develop a second best pricing strategy. Furthermore, the first 

best solution can be used as a theoretical benchmark for the evaluation of other measures. 

In this study, general public transport marginal cost pricing rules are introduced in an agent-

based simulation (MATSim), in which passenger-specific first-best fares can be calculated even 

in large scale scenarios. To our knowledge, this is the first model that considers microscopic 

user-by-user bus fares, calculated with the objective to maximize social welfare. Accounting for 

time-dependency and queue formation allows for simulating the interaction of activity scheduling 

decisions and public transport pricing. Three sources of external delays are accounted for when 

calculating the effect of an extra passenger taking the bus: (i) delay for passengers on-board, (ii) 
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delay for passengers waiting at downstream stops and (iii) extra waiting time for passengers 

unable to board a full bus. That is, depending on these three effects, e.g. the total delay imposed 

on other passengers during a trip, for each individual a specific fare is computed. In this study, 

other externalities such as crowding costs and road congestion are excluded. The microscopic 

price differentiation is compared against the classical flat fare rule in order to analyze differences 

in terms of revenue, optimal frequency of service and social welfare. In reality, charging an 

individual-specific fare for each trip would be difficult to implement and could even be 

considered unethical. Therefore, we analyze temporal and spatial effects by calculating average 

fares for each user-specific pricing scenario, which may be used as a starting point for more 

practical (second-best) pricing schemes, for instance, charging users anonymously according to 

time of day and location of boarding (and perhaps also location of disembarking). Importantly, 

our approach is useful to analyze the relationship between optimal pricing and trip length at a 

microscopic level, an issue previously addressed with analytical models by Mohring (1972); 

Turvey and Mohring (1975); Kraus (1991), as discussed in the next section. A numerical example 

provides insights on the sensitivity of the user-specific optimal bus fare to travel distance and to 

the headway between vehicles, in which the relevance of introducing user-specific bus fares – as 

opposed to optimal flat fares – is evident. 

The rest of the paper is organized as follows. Section 2 provides a discussion of the relevant 

literature on public transport economics that serves as a background for the analysis undertaken 

in this paper, Sections 3 and 4 present the simulation approach and scenario used to obtain 

results, Section 5 describes the marginal cost pricing effects that are included in our framework, 

Section 6 provides a discussion of results and Section 7 summarizes the main conclusions of the 

study.  
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2  Literature Review 

Most studies on transport externalities focus on the private transport sector. Congestion is usually 

the largest part of all external costs in peak periods, whereas in off-peak periods other 

externalities such as pollution and accidents have been found to be at comparable levels with 

congestion (de Borger et al., 1996; Parry and Small, 2009). In the context of urban public 

transport modes, external effects among public transport users are investigated to a lesser extent 

(Maibach et al., 2008; Prud’homme et al., 2012). Nash (2003) addresses the urban rail sector and 

relates delays to the traffic volume by regression, finding delay effects to be the most significant 

external effect. A number of recent survey-based studies find that crowding externalities can be a 

substantial part of total travel costs (Wardman and Whelan, 2011; Prud’homme et al., 2012; 

Haywood and Koning, 2013). While most discomfort studies address in-vehicle crowding, some 

studies also include crowding in access-ways and platforms (Lam et al., 1999; Douglas and 

Karpouzis, 2005). Several authors have incorporated external effects in analytical models that 

usually account for delays due to capacity constraints, boarding and alighting passengers, the 

disutility of crowding and congestion effects among vehicles at bus stops or train stations (see 

e.g., Mohring (1972), Turvey and Mohring (1975), Kraus (1991), Parry and Small (2009), de 

Palma et al. (2014), Tirachini (2014), Tirachini et al. (2014)). Turvey and Mohring (1975) 

analyze delay effects induced by boarding and alighting passengers to (i) passengers inside the 

bus and (ii) passengers waiting at a transit stop who will enter the bus either further along the 

route or at the same stop behind agents who get on and off the bus. However, the authors explain, 

in case of random passenger arrival patterns at transit stops, the second effect disappears on 

average. That is because agents with shorter waiting times compensate for agents with a longer 

waiting time. The only external effect considered in Mohring (1972) are delays that boarding and 
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alighting passengers impose on passengers who are on-board vehicles. In this case, optimal fare 

increases as a function of the number of passengers on-board vehicles because those passengers 

experience an extra delay when a new passenger gets on or off a vehicle. For the case of a feeder 

route, Mohring (1972) finds marginal cost to be inversely related to the trip length because when 

buses approach the Central Business District (CBD) they increase in passenger number. 

However, Turvey and Mohring (1975) point out that this rule does not hold for the case of limited 

vehicle capacities and the probability of fully loaded buses causing passengers not to be able to 

board the first arriving bus. That is, short-distance passengers may not be able to board a bus full 

of longer-distance passengers. Along the same lines, Kraus (1991) found that when including an 

external discomfort cost, long-distance sitting passengers impose a discomfort cost on short-

distance passengers that are unable to find a seat, and therefore, are forced to stand. 

Beyond analytical models, marginal social cost pricing on public transport has not received 

much attention in activity-based simulations, which are less simplifying and more applicable to 

real-world scenarios. Analytical models usually ignore more complex user reactions, i.e. time 

adaptation, and the situation of coordinated arrival patterns in which passengers schedule their 

arrival according to a published timetable of services (see Jansson (1993) for a model with 

coordinated arrival patterns). Whereas the cost of prolonged in-vehicle times as well as the 

disutility of crowding and discomfort are addressed by several authors, external waiting cost 

resulting from boarding and alighting passengers is less intensively discussed. In Kaddoura et al. 

(2014) flat bus fares are optimized applying a simulation-based grid search approach, finding 

delay effects due to passenger transfers and capacity constraints to have a major impact on the 

social welfare and optimal pricing structure. The present study takes up these findings and 

addresses the setting of optimal public transport pricing by investigating the marginal cost 

imposed by public transport users on other users, at a microscopic user-by-user level. Results in 
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terms of social welfare, distribution of optimal fares and optimal frequency of service can be used 

as a benchmark for the analysis of other pricing policies such as flat fares.  

3  Methodology 

In this research, the open-source agent-based microsimulation MATSim1 is used for the 

optimization of public transport fares. In this section a general overview of MATSim is given 

including the special characteristics of simulating public transport. For further information of the 

simulation framework MATSim, see Raney and Nagel (2006).  

3.1  MATSim Overview  

Private and public transport users are modeled as individual agents that have a mental and 

physical behavior. The iterative simulation approach consists of the following steps:  

1. Plans generation: All agents independently generate daily plans that contain the planned 

activities, departure times and transport modes for intervening trips.  

2. Traffic flow simulation: All agents simultaneously execute their selected plans and 

interact in the physical layer.  

3. Evaluating plans: All executed plans are evaluated with respect to individual utility 

functions taking into account both the activities and trips. 

4. Mutation/Selection: For the next iteration some agents generate new plans by mutating 

copies of existing plans. The remaining agents select plans depending on their differences 

in utility. 

                                                
1  Multi-Agent Transport Simulation, see www.matsim.org  
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The iterative process of coupling the physical and mental behavior enables agents to improve 

their plans and generate plausible alternatives. After disabling the mutation (see step 4) for the 

final iterations, the agents choose among their plans with respect to a multinomial logit model. 

The system’s inherent randomness determines which plan is individually chosen and as a 

consequence how the traffic behavior changes from iteration to iteration. Once the demand is 

relaxed, meaning the average utility of executed plans remains stable over several iterations, and 

assuming that the travel alternatives form valid choice sets, the system state is in an approximate 

stochastic user equilibrium (Nagel and Flötteröd, 2012). 

3.2  Public Transport in MATSim 

A transit schedule contains all transit lines, routes, stops and departures. It describes all planned 

transit vehicle operations in the system. Each vehicle is separately simulated in the traffic flow 

simulation. Depending on the vehicle type and the number of boarding and alighting passengers, 

transit vehicles can be delayed and actual departures may differ from the planned schedule. A 

parallel door operation mode allows simultaneous boarding and alighting. A serial mode gives 

alighting passengers priority. In case a vehicle is fully loaded, additional boardings are denied 

and passengers will have to wait for the next vehicle. For a detailed description of MATSim’s 

public transport dynamics, see Rieser (2010) and Neumann and Nagel (2010).  

4  Scenario: Multi-Modal Corridor 

The scenario which is used for the simulation experiments in this study is based on the setup and 

simulation approach used in Kaddoura et al. (2014).  

4.1  Setup 
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Supply For the simulation experiments a multi-modal corridor with a total length of 20 km is 

considered along which all activities are located. Between 4 a.m. and midnight the corridor is 

served in both directions by a constant number of buses that are operated by a single company. 

Capacities are set to 100 passengers per vehicle. Transit stops are placed every 500 m along the 

corridor. Assuming a walk speed of 4 km/h access and egress times depend on the beeline 

between transit stop and activity location. The minimum dwell time at each transit stop is set to 

0 sec, thus the bus only stops at transit stops if passengers intend to board or alight. Buses are 

assumed to decelerate when approaching bus stops regardless if passengers will board/alight or 

not. That is, the deceleration and acceleration time at bus stops is constant for all transit stops and 

therefore included in the average bus speed. Considering an average bus speed of 30 km/h, a 

slack time of 20 min when reaching a corridor’s endpoint and ignoring passenger transfers 

amounts to a cycle time of 2 h. As transit vehicles are delayed by passengers, actual cycle times 

and headways differ from the planned schedule. Bus door operation mode is serial so that 

alighting precedes boarding. For each vehicle the average boarding time is set to 1 sec per person 

(assuming 2 doors per vehicle and 2 sec for each person and door, obtained with a boarding 

system with contactless card fare payment (Wright and Hook, 2007)) and alighting times to 

0.75 sec per person. Delayed transit vehicles will try to follow the schedule by shortening slack 

times. For the alternative car mode, the free-flow speed is set to 50 km/h. In order to focus on 

dynamic delay effects within the public transport mode, interferences between cars and buses are 

excluded and roads are not affected from congestion. Therefore, car travel times only result from 

the distance between two activity locations and the free-flow speed.  

Demand On the demand side 20,000 travelers are considered with randomly distributed activity 

locations along the corridor. The activity patterns are split into two types: “Home-Work-Home” 
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(35% of all travelers) and “Home-Other-Home” (65% of all travelers). Initial departure times 

from activity “Home” to “Work” follow a normal distribution with mean at 8 a.m. and a standard 

deviation of 1 h. Agents are assumed to head back home 8 h after starting work. The activity type 

“Other” has an initial duration of 2 h and is uniformly distributed from 8 a.m. to 8 p.m. The 

initial modal split for all trips is 50% car and 50% bus. The overlay of peak and off-peak demand 

(both activity patterns) is shown in Fig. 1. 

  

Figure 1: Initial departure time distribution for bus users, car mode is similar 

 
4.2  Simulation Approach 
 
Choice Dimensions The iterative learning mechanism of MATSim uses a utility based approach. 

Each iteration agents choose from an existing set of daily plans with respect to a multinomial 

logit model. In order to generate plausible travel alternatives, agents are enabled to modify their 

daily plans according to the dimensions mode and time. That is, agents are enabled to switch 

between public transport and car. In this study, cars are assumed to be available for all agents. 

Additionally, agents adapt their activities’ scheduling decisions. Activities can be shifted, 
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extended or shortened with respect to activity specific opening/closing times and typical 

durations (see Tab. 1). 

Utility Functions Executed daily plans are evaluated taking into account the activity and trip 

related part of the utility:  

 

where Vplan is the total utility of a daily plan; n is the total number of activities or trips; Vact,i is the 

utility for performing activity i; and Vtrip,i is the utility of the trip to activity i. The first and the 

last activity are wrapped around the day and handled as one activity. Thus, the number of 

activities and trips is the same. The trip related utility is calculated as follows:  
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logarithmic form is applied (Charypar and Nagel, 2005; Kickhöfer et al., 2011):  
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where tact is the actual duration of performing an activity (when the activity is open), t⇤ is

an activity’s “typical” duration, and �act is the marginal utility of performing an activity at its

typical duration. In the equilibrium all activities at their typical duration are required to have

the same marginal utility, therefore, �act applies to all activities. t0,i is a scaling parameter linked

to an activity’s priority and minimum duration. In this study, t0,i is not relevant, since activities

cannot be dropped from daily plans. Activities’ opening and closing times determine in which
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duration. In the equilibrium all activities at their typical duration are required to have the same 

marginal utility, therefore, βact applies to all activities. t0,i is a scaling parameter linked to an 

activity’s priority and minimum duration. In this study, t0,i is not relevant, since activities cannot 

be dropped from daily plans. Activities’ opening and closing times determine in which time slots 

activities can be performed (see Tab. 1). Outside these time slots agents do not earn a positive 

utility, thus they are penalized by the opportunity costs of time –βact . 

 

Parameters Behavioral parameters for the utility functions are based on estimations for Sydney 

(Tirachini et al., 2014). Tab. 2 depicts the estimated parameters (flagged by a hat) and Values of 

Travel Time Savings (VTTS). Tab. 3 shows the adjusted parameters that are used in the present 

study and fit the activity-based approach of MATSim. As described in (Kickhöfer et al., 2011, 

2013) time related parameters are split into opportunity costs of time and a disutility of traveling. 

Since the VTTS for egress based on the estimations is implausible high and egress times are 

constant in the present paper, the egress time parameter βe,pt is set equal to the parameter for 

access βa,pt . The simulation approach does not account for parking and walking times of car 

users, agents can enter and leave their private vehicles directly at an activity location and start an 

activity straightaway. In order to compensate for that, the alternative specific constant β0 was re-

calibrated. The result is an alternative specific constant for car of β0 = –0.15 leading to 50% 
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public transport trips for a headway of 9min and a fare of $1.50. ci,car is the monetary cost 

component for car trips depending on the travel distance and a cost rate of 0.40 $/km (Australian 

Dollar [AUD], $1.00 = EUR 0.70 [July 2013]). ci,pt is the fare which is either a flat fee that has to 

be paid every time an agent boards a bus or the sum of all user-specific prices which are paid 

during a trip. 

 
 
 
 

Operator’s Profit and Social Welfare 

The operator cost model that is applied in this study follows an approach for urban regions in 

Australia ATC (2006):  

 

Table 2: Parameters and VTTS based on Tirachini

et al. (2014)

�̂tr,car �0.96 [utils/h]

�̂v,pt �1.14 [utils/h]

�̂w,pt �1.056 [utils/h]

�̂a,pt �0.96 [utils/h]

�̂e,pt �3.3 [utils/h]

�̂c �0.062 [utils/$]

�̂act n.a.

VTTS tr,car 15.48 [$/h]

VTTS v,pt 18.39 [$/h]

VTTS w,pt 17.03 [$/h]

VTTS a,pt 15.48 [$/h]

VTTS e,pt 53.23 [$/h]

Table 3: Parameters and VTTS used in the present

paper

�tr,car 0 [utils/h]

�v,pt �0.18 [utils/h]

�w,pt �0.096 [utils/h]

�a,pt 0 [utils/h]

�e,pt 0 [utils/h]

�c �0.062 [utils/$]

�act +0.96 [utils/h]

VTTS tr,car 15.48 [$/h]

VTTS v,pt 18.39 [$/h]

VTTS w,pt 17.03 [$/h]

VTTS a,pt 15.48 [$/h]

VTTS e,pt 15.48 [$/h]

Operator’s Profit and Social Welfare The operator cost model that is applied in this study

follows an approach for urban regions in Australia ATC (2006):

C = (vkm · cvkm + vh · cvh) · O + vNr · cvday , (4)

where C is the operator cost per day; vkm is the vehicle kilometers per day; cvkm is the cost

per vehicle kilometer; vh is the vehicle hours per day; cvh is the cost per vehicle hour; O is the

overhead; vNr is the total number of operating vehicles per day; and cvday is the daily capital

cost per vehicle. cvkm and cvday are obtained by linear regression, whereas cvh and O are constant

for di↵erent vehicle types (see Tab. 4). Daily operator’s revenues are calculated by multiplying

the number of public transport trips per day (Tpt) with the fare ( f ) that is payed during the trip.

Operator’s profit per day (⇧operator) is calculated as equation (5).

⇧operator = Tpt · f �C (5)

The benefits on the demand side are calculated as the Expected Maximum Utility (EMU) taking

into account all users’ choice sets.

11

Table 2: Parameters and VTTS based on Tirachini

et al. (2014)

�̂tr,car �0.96 [utils/h]

�̂v,pt �1.14 [utils/h]

�̂w,pt �1.056 [utils/h]

�̂a,pt �0.96 [utils/h]

�̂e,pt �3.3 [utils/h]

�̂c �0.062 [utils/$]

�̂act n.a.

VTTS tr,car 15.48 [$/h]

VTTS v,pt 18.39 [$/h]

VTTS w,pt 17.03 [$/h]

VTTS a,pt 15.48 [$/h]

VTTS e,pt 53.23 [$/h]

Table 3: Parameters and VTTS used in the present

paper

�tr,car 0 [utils/h]

�v,pt �0.18 [utils/h]

�w,pt �0.096 [utils/h]

�a,pt 0 [utils/h]

�e,pt 0 [utils/h]

�c �0.062 [utils/$]

�act +0.96 [utils/h]

VTTS tr,car 15.48 [$/h]

VTTS v,pt 18.39 [$/h]

VTTS w,pt 17.03 [$/h]

VTTS a,pt 15.48 [$/h]

VTTS e,pt 15.48 [$/h]

Operator’s Profit and Social Welfare The operator cost model that is applied in this study

follows an approach for urban regions in Australia ATC (2006):

C = (vkm · cvkm + vh · cvh) · O + vNr · cvday , (4)

where C is the operator cost per day; vkm is the vehicle kilometers per day; cvkm is the cost

per vehicle kilometer; vh is the vehicle hours per day; cvh is the cost per vehicle hour; O is the

overhead; vNr is the total number of operating vehicles per day; and cvday is the daily capital

cost per vehicle. cvkm and cvday are obtained by linear regression, whereas cvh and O are constant

for di↵erent vehicle types (see Tab. 4). Daily operator’s revenues are calculated by multiplying

the number of public transport trips per day (Tpt) with the fare ( f ) that is payed during the trip.

Operator’s profit per day (⇧operator) is calculated as equation (5).

⇧operator = Tpt · f �C (5)

The benefits on the demand side are calculated as the Expected Maximum Utility (EMU) taking

into account all users’ choice sets.

11



13 

where C is the operator cost per day; vkm is the vehicle kilometers per day; cvkm is the cost per 

vehicle kilometer; vh is the vehicle hours per day; cvh is the cost per vehicle hour; O is the 

overhead; vNr is the total number of operating vehicles per day; and cvday is the daily capital cost 

per vehicle. cvkm and cvday are obtained by linear regression, whereas cvh and O are constant for 

different vehicle types (see Tab. 4).  

 

Daily operator’s revenues are calculated by multiplying the number of public transport trips per 

day (Tpt) with the fare (f) that is payed during the trip. Operator’s profit per day (∏operator) is 

calculated as equation (5). 

 

The benefits on the demand side are calculated as the Expected Maximum Utility (EMU) taking 

into account all users’ choices. The sum of operator profit and user benefits determines the social 

welfare W:  

  

where β0 is the negative marginal utility of monetary cost; j is an individual agent; J is the total 

number of agents; p is a daily plan; and P is the total number of plans in the choice set. 

Simulation Procedure For the first 250 iterations of demand relaxation (see Sec. 3.1), plans are 

modified by each choice dimension (mode/time) with a probability of 10%. The size of the 

Table 4: Operator costs based on ATC (2006)

cvkm 0.006 · capacity + 0.513 [$/vkm]

cvDay 1.6064 · capacity + 22.622 [$/vday]

cvh 33 [$/vh]

O 1.21

The sum of operator profit and user benefits determine the social welfare W:
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where �c is the negative marginal utility of monetary cost; j is an individual agent; J is the total

number of agents; p is a daily plan; and P is the total number of plans in the choice set.

Simulation Procedure For the first 250 iterations of demand relaxation (see Sec. 3.1), plans

are modified by each choice dimension (mode/time) with a probability of 10%. The size of the

agents’ choice sets are set to 6 daily plans each. After 250 iterations, the agents are assumed

to have a plausible set of plans, thus choice set generation is switched o↵. For additional 50

iterations, the agents choose among their existing daily plans according to a multinomial logit

model. The last iteration is considered as a representative day and used for analyzing travel

behavior and social welfare.

5 Agent-based Marginal Social Cost Pricing

This study enhances MATSim by implementing a marginal social cost pricing approach. On

an agent-based level external e↵ects, marginal delays and number of a↵ected users, are traced

back to their origin. These external e↵ects are internalized by charging the equivalent mone-

tary amount from the agent who is causing the delay e↵ects. Of all existing external e↵ects

(see Sec. 2) this study focuses on delay e↵ects among users within the public transport mode.
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Table 2: Parameters and VTTS based on Tirachini

et al. (2014)

�̂tr,car �0.96 [utils/h]

�̂v,pt �1.14 [utils/h]

�̂w,pt �1.056 [utils/h]

�̂a,pt �0.96 [utils/h]

�̂e,pt �3.3 [utils/h]

�̂c �0.062 [utils/$]

�̂act n.a.

VTTS tr,car 15.48 [$/h]

VTTS v,pt 18.39 [$/h]

VTTS w,pt 17.03 [$/h]

VTTS a,pt 15.48 [$/h]

VTTS e,pt 53.23 [$/h]

Table 3: Parameters and VTTS used in the present

paper

�tr,car 0 [utils/h]

�v,pt �0.18 [utils/h]

�w,pt �0.096 [utils/h]

�a,pt 0 [utils/h]

�e,pt 0 [utils/h]

�c �0.062 [utils/$]

�act +0.96 [utils/h]

VTTS tr,car 15.48 [$/h]

VTTS v,pt 18.39 [$/h]

VTTS w,pt 17.03 [$/h]

VTTS a,pt 15.48 [$/h]

VTTS e,pt 15.48 [$/h]

Operator’s Profit and Social Welfare The operator cost model that is applied in this study

follows an approach for urban regions in Australia ATC (2006):

C = (vkm · cvkm + vh · cvh) · O + vNr · cvday , (4)

where C is the operator cost per day; vkm is the vehicle kilometers per day; cvkm is the cost

per vehicle kilometer; vh is the vehicle hours per day; cvh is the cost per vehicle hour; O is the

overhead; vNr is the total number of operating vehicles per day; and cvday is the daily capital

cost per vehicle. cvkm and cvday are obtained by linear regression, whereas cvh and O are constant

for di↵erent vehicle types (see Tab. 4). Daily operator’s revenues are calculated by multiplying

the number of public transport trips per day (Tpt) with the fare ( f ) that is payed during the trip.

Operator’s profit per day (⇧operator) is calculated as equation (5).

⇧operator = Tpt · f �C (5)

The benefits on the demand side are calculated as the Expected Maximum Utility (EMU) taking

into account all users’ choice sets.
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where �c is the negative marginal utility of monetary cost; j is an individual agent; J is the total

number of agents; p is a daily plan; and P is the total number of plans in the choice set.

Simulation Procedure For the first 250 iterations of demand relaxation (see Sec. 3.1), plans

are modified by each choice dimension (mode/time) with a probability of 10%. The size of the

agents’ choice sets are set to 6 daily plans each. After 250 iterations, the agents are assumed

to have a plausible set of plans, thus choice set generation is switched o↵. For additional 50

iterations, the agents choose among their existing daily plans according to a multinomial logit

model. The last iteration is considered as a representative day and used for analyzing travel

behavior and social welfare.

5 Agent-based Marginal Social Cost Pricing

This study enhances MATSim by implementing a marginal social cost pricing approach. On

an agent-based level external e↵ects, marginal delays and number of a↵ected users, are traced

back to their origin. These external e↵ects are internalized by charging the equivalent mone-

tary amount from the agent who is causing the delay e↵ects. Of all existing external e↵ects

(see Sec. 2) this study focuses on delay e↵ects among users within the public transport mode.

12



14 

agents’ choice sets is set to 6 daily plans each. After 250 iterations, the agents are assumed to 

have a plausible set of plans, thus choice set generation is switched off. For additional 50 

iterations, the agents choose among their existing daily plans according to a multinomial logit 

model. To allow for a fast computational performance and assuming the impact of randomness, 

i.e. fluctuations from iteration to iteration, to be negligible, the last iteration is considered as a 

representative day, and the outcome of the last iteration is used for analyzing travel behavior and 

social welfare. 

5  Agent-based Marginal Social Cost Pricing 

This study enhances MATSim by implementing a marginal social cost pricing approach. On an 

agent-based level external effects, marginal delays and number of affected users, are traced back 

to their origin. These external effects are internalized by charging the equivalent monetary 

amount from the agent who is causing the delay effects. Of all existing external effects (see 

Sec. 2) this study focuses on delay effects among users within the public transport mode. That is, 

road congestion and interferences between buses and cars are excluded (see Sec. 4.1) and the 

disutility of traveling (in-vehicle time) is independent from crowding effects inside the transit 

vehicles or the seat availability (see Tab. 3). Slack times at the corridors’ endpoints are 

considered as operating hours. As slack times are used to catch up on delays, operating costs are 

constant and only depend on the number of buses. Hence, marginal operating cost per passenger 

is $0 and the optimal user-specific fare is equal to the external cost only. External effects which 

are considered in this study either prolong in-vehicle times or waiting times. Sources for 

externalities are capacity constraints and delays induced by boarding/alighting passengers. 
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Effect 1: In-vehicle time delays due to boarding and alighting passengers 

Assuming a scheduled minimum dwell time of 0 sec, transit vehicles will be delayed when agents 

are boarding or alighting. Therefore travel times, i.e. in-vehicle-times, increase with the number 

of agents who get on and off the bus. An agent who is boarding imposes a delay of his/her 

average boarding time (1 sec) on each agent inside the transit vehicle. To give an example, for 

two passengers inside a vehicle the total external effect amounts to 2 sec (see Fig. 2). Thus, the 

equivalent monetary amount that is charged to the causing agent amounts to VTTSv,pt × !
!"##

ℎ. In 

this setup bus drivers are not able to catch up on delays except during slack times at the route 

endpoints when there is no passenger inside the vehicle.  

 

Figure 2: External effect 1 

 

 

Effect 2: Waiting time delays due to boarding and alighting passengers  

As referred to in Sec. 2 another external effect is discussed in context of passengers who get on 

and off buses. In case travelers’ arrival patterns at transit stops are coordinated, meaning the users 

try to reach the stop shortly before a bus arrives, there may be users with prolonged waiting times 

due to other passengers who are boarding or alighting. As we assume agents to adapt to the 

schedule, this effect doesn’t cancel out on average as is the case for random passenger arrivals in 

Turvey and Mohring (1975). Nevertheless, the agents’ adaptation to bus departures is not perfect 
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and some agents will also benefit from delayed buses. These positive external effects are ignored 

in this approach. Therefore, the calculation of waiting time delays due to boardings/alightings is 

an upper limit of the actual delays. If an agent delays the bus by 1 sec and for instance three 

agents are waiting at a transit stop further along the route, the total external effect amounts to 

3 sec (see Fig. 3). Hence, the external cost which is charged to the causing agent amounts to 

VTTSw,pt × !
!"##

ℎ. However, agents are able to adapt their arrival times at transit stops according 

to the delay of transit vehicles. To give an example, 600 boarding agents delay a vehicle by 

10 min. The waiting time of a passenger further along the route may be less than the delay of the 

arriving bus, for instance 1 min. In that case, the external effect imposed on that passenger 

amounts to the waiting time only. The causing agents do not have to pay for the total delay of the 

transit vehicle but only for the external effect. Therefore, the actual waiting time is divided by the 

vehicle delay to derive a factor ( !  !"#
!"  !"#

= 0.1) to calculate the delay effect that each causing agent 

has to pay for. 

 

 Figure 3: External effect 2 

Effect 3: Waiting time delays due to capacity constraints 

If transit vehicles are fully loaded and boardings are denied, the passengers’ waiting times 

increase. In this case, the agents inside the transit vehicle impose a negative external effect on the 

agent(s) who are not able to enter the bus. The external delay effect depends on when the next 
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transit vehicle is arriving at the transit stop. For example, if the next transit vehicle arrives 

600 sec later, the total external effect amounts to 600 sec (see Fig. 4). The passengers of the 

vehicle that denied boarding have to pay VTTSw,pt × !""
!"##

ℎ in total. Assuming all agents in the 

transit vehicle cause this externality, each agent in the bus is charged an equal partial amount. In 

case boarding is denied a second time, the agents in the second bus pay for the interval until the 

third bus arrives at the transit stop, and so forth. In case of bus bunching, overtakings may cause 

a positive external effect since left behind passengers are able to get on a bus that is faster than 

the previous bus. In this setup, buses do not overtake each other. 

 

Figure 4: External effect 3 

 

Simulation Experiments In a first experiment prices are set according to the cost resulting from 

prolonged in-vehicle times only (effect 1). The other external effects described above exist in the 

simulation but are excluded from calculating marginal cost fares. In a second experiment 

prolonged waiting times due to boarding/alighting passengers are included: prices are set 

according to the external in-vehicle and waiting cost resulting from boarding and alighting 

passengers (effect 1 and 2). Externalities due to capacity constraints exist but are not considered 

when setting prices. In a third experiment, all three external effects are included in calculating the 

optimal fare (effect 1, 2, and 3). Unless explicitly stated, marginal cost pricing means the 

inclusion of all three effects. To validate the results in terms of social welfare and external delay 
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effects, a grid search approach is used to identify the optimal fare where all users are charged by 

the same amount. The grid search is implemented as introduced in Kaddoura et al. (2014). The 

relaxation of the initial demand (see Sec. 3.1) is embedded into an external loop in which the flat 

fare is systematically varied between $0 and $3.0 (in steps of $0.025). The marginal social cost 

pricing requires a single simulation run, whereas the grid search requires one simulation run for 

each possible public transport fare. Hence, in terms of performance the marginal social cost 

pricing approach is much faster than the grid search optimization approach. Both pricing 

strategies, user-specific and flat fares, are run for different levels of transport supply. Scheduled 

headways are increased by 2 min between 3 min and 13 min. 

6  Results 

6.1  Social Welfare 

Fig. 5 depicts the absolute welfare level obtained for each headway and pricing rule. As a 

benchmark to evaluate the effectiveness of different pricing rules we also consider a free service 

with public transport fares that amount to $0 per trip (no pricing), yielding the lowest social 

welfare for all simulated headways. Charging the optimal flat fares which are found to be greater 

than $0 raises social welfare, especially for larger headways and binding vehicle capacity 

constraints. User-specific pricing leads to an even higher social welfare than charging an 

optimized flat fare. That is true for all three cases, even though some of the existing externalities 

are excluded from setting marginal cost fares in experiment 1 and 2. Internalizing effect 1 and 2 

yields a higher welfare than only internalizing effect 1, especially for larger headways and a 

higher average waiting time. However, for headways with passengers who are not able to board a 
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bus due to capacity constraints, the inclusion of effect 3 has the most significant effect on social 

welfare. 

Analyzing the distribution of bus trips over time reveals that peaks are flattened in the user-

specific pricing scheme compared to the flat-pricing strategy. Since user-specific fares are higher 

during peak times (see later in Sec. 6.2) and commuters as well as non-commuters can choose 

their activity start and end times within wide time spans, bus users are able to shift their trip 

departure times in order to avoid peak periods. That is, by forcing some users to either depart off-

peak or to switch to the alternative (uncongested) car mode, the efficiency within the transport 

system increases. Benefits from shorter in-vehicle and waiting times within the public transport 

mode overcompensates for lower benefits resulting from users switching to car or arriving earlier 

or later at the activity location. Therefore, setting user-specific prices raises the social welfare if 

these external effects are taken into account. 

A scheduled headway of 5 min is observed to be the optimal headway for all pricing rules 

except the one including external waiting cost due to fully loaded transit vehicles. When setting 

fares equal to all existing external effects (internalization of effect 1, 2 and 3) an overall welfare 

optimum is found for a headway of 9 min. That is, the pricing rule has an effect on the optimal 

level of public transport supply.  
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Figure 5: Welfare for each headway and pricing rule 

The observations of different welfare levels depending on headway and pricing rule are related to 

the number of boarding denials. Delay effects due to capacity constraints become significant for 

headways starting from 7 min, for smaller headways they are not significant. All pricing schemes 

reduce the number of boarding denials, especially when considering waiting time delays due to 

capacity constraints (internalization of effect 1, 2 and 3). The maximum waiting cost related to 

capacity constraints is found for a headway of 9 min. As more users will switch to the alternative 

car mode for larger headways the number of boarding denials decreases. Hence, for pricing 

strategies that do not explicitly account for capacity constraints, the welfare optimum is the 

largest headway without a significant number of boarding denials (5 min). However, in case the 

pricing strategy explicitly accounts for capacity constraints the welfare maximum is found for a 

headway yielding the maximum occurrence of boarding denials (9 min). A headway of 3 min 

leads to no occurrence of boarding denials, whereas for a headway of 9 min a maximum number 

of boarding denials is obtained. Therefore, these two headways are now analyzed in more detail. 

Fig. 6 depicts the distribution of waiting times for a 3 min and a 9 min headway applying 

marginal social cost pricing (internalization of all effects). Waiting times that exceed the 
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scheduled headway due to delayed vehicles or capacity constraints are not displayed. For both 

headways, the passengers’ arrival patterns at transit stops tend to be coordinated. There are more 

trips with waiting times shorter than the half of the headway. However, for some trips, waiting 

times are observed to be longer than the half of the headway and even nearly as long as the 

scheduled headway. For a 3 min headway 4000 trips have a waiting time between 150 sec and 

180 sec. For a 9 min headway almost 2000 trips are observed with a waiting time between 

450 sec and 540 sec. For a detailed investigation of passenger arrival patterns at transit stops 

depending on the headway and service reliability, see Neumann et al. (2013).  

 

Figure 6: Distribution of waiting times (Internalization of all external effects) 

That indicates that for both headways there are travelers who miss a bus by a few seconds. If a 

bus had arrived later, these passengers would benefit from the delay since they would be able to 

catch the bus they would have otherwise missed. As described in Sec. 5 these positive 

externalities are ignored in the present paper and only the negative effect is accounted for when 

setting the prices. The distribution of waiting times confirm what was indicated by the positive 

effect on social welfare when including effect 2. That is, the negative effect of prolonged waiting 

headway 4000 trips have a waiting time between 150 sec and 180 sec. For a 9 min headway

almost 2000 trips are observed with a waiting time between 450 sec and 540 sec. That indicates
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Figure 6: Distribution of waiting times (Internalization of all external e↵ects)

that for both headways there are travelers who miss a bus by a few seconds. If a bus had arrived

later, these passengers would benefit from the delay since they would be able to catch the bus

they would have otherwise missed. As described in Sec. 5 these positive externalities are ig-

nored in the present paper and only the negative e↵ect is accounted for when setting the prices.

The distribution of waiting times confirm what was indicated by the positive e↵ect on social

welfare when including e↵ect 2. That is, the negative e↵ect of prolonged waiting times due to

passengers getting on and o↵ a bus outweighs the positive e↵ect of shortened waiting times.

6.2 External Delay Cost

In Tab. 5 the average fare per public transport trip and day is shown for each pricing rule and

a headway of 3 min and 9 min. For the optimal flat pricing scheme the average fare is the flat

amount that has to be paid for each bus trip. Whereas, for the user-specific pricing scheme, the

average fare amounts to the average external delay cost which is charged for a public transport

trip. As expected, the more e↵ects are included in setting the user-specific fares the higher the

average external cost per trip. As there are no occurrences of boarding denials for a 3 min
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times due to passengers getting on and off a bus outweighs the positive effect of shortened 

waiting times.  

6.2  External Delay Cost 

In Tab. 5 the average fare per public transport trip is shown for each pricing rule and a headway 

of 3 min and 9 min, considering all trips performed during the day. For the optimal flat pricing 

scheme the average fare is the flat amount that has to be paid for each bus trip. Whereas, for the 

user-specific pricing scheme, the average fare amounts to the average external delay cost which is 

charged for a public transport trip. As expected, the more effects are included in setting the user-

specific fares the higher the average fare per trip. As there are no occurrences of boarding denials 

for a 3 min headway, the average internalized external cost remains unaltered when including 

effect 3. For a 3 min headway, the optimal flat fare amounts to $0.73, setting prices according to 

the total external cost (internalization of all existing effects) yields an average fare of only $0.53 

(standard deviation: $0.21). Charging all passengers the same optimal amount overprices public 

transport and results in a lower number of public transport users than applying marginal social 

cost pricing. However, for a 9 min headway, transit vehicle load factors and delay effects among 

public transport users are higher which leads to an optimal flat fare of $0.78 and an average user-

specific fare of $1.69 with a standard deviation of $1.79. For this headway, optimal flat pricing 

seems to underprice public transport service which results in more public transport users 

compared to the user-specific pricing scheme. 
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Total internalized external delay costs for a headway of 3 min amount to $20,245, for a headway 

of 9 min to $46,443. Excluding the delay cost caused by capacity constraints the external cost for 

a 9 min headway amounts to $28,509. Computing the externalities for the flat pricing strategy 

shows that, compared to the user-specific pricing strategy, the average external delay costs are 

higher, in particular during peak times. 

Depending on the number of affected users, average internalized external delay cost (all 

effects) range from $0 to $1.68 per trip for a 3 min headway and from $0 to $8.89 for a 9 min 

headway. Fig. 7a shows the distribution of marginal social cost fares (Internalization of all 

effects) for a 9 min headway, leading to a total of 27,444 public transport trips; and a 3 min 

headway with a total of 37,898 bus trips. For a 9 min headway, marginal social cost fares are 

higher because users have to wait for later vehicles due to buses operating at maximum capacity. 

For more than 16% of all public transport trips, passengers have to pay more than $2.0. For the 

distribution of fares between $2.0 and $8.9, see Fig. 7b.  

tion: $0.21). Charging all passengers the same optimal amount overprices public transport and

results in a lower number of public transport users than applying marginal social cost pricing.

However, for a 9 min headway, transit vehicle load factors and delay e↵ects among public trans-

port users are higher which leads to an optimal flat fare of $0.78 and an average user-specific

fare of $1.69 with a standard deviation of $1.79. For this headway, optimal flat pricing seems

to underprice public transport service which results in more public transport users compared

to the user-specific pricing scheme. Total internalized external delay costs for a headway of

Table 5: Optimal flat fare and average user-specific fare (per bus trip; considering all trips per day)

3 min headway 9 min headway

Optimal flat pricing $0.73 $0.78

Internalization of e↵ect 1 $0.31 $0.62

Internalization of e↵ect 1 and 2 $0.53 $1.04

Internalization of e↵ect 1, 2 and 3 $0.53 $1.69

3 min amount to $20,245, for a headway of 9 min to $46,443. Excluding the delay cost caused

by capacity constraints the external cost for a 9 min headway amounts to $28,509. Computing

the externalities for the flat pricing strategy shows that, compared to the user-specific pricing

strategy, the average external delay costs are higher, in particular during peak times.

Depending on the number of a↵ected users, average external delay cost (all e↵ects) range

from $0 to $1.68 per trip for a 3 min headway and from $0 to $8.89 for a 9 min headway. Fig. 7a

shows the distribution of marginal social cost fares (Internalization of all e↵ects) for a 9 min

headway, leading to a total of 27,444 public transport trips; and a 3 min headway with a total

of 37,898 bus trips. For a 9 min headway, marginal social cost fares are higher because users

have to wait for later vehicles due to buses operating at maximum capacity. For more than 16%

of all public transport trips, passengers have to pay more than $2.0. For the distribution of fares
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Figure 7: Distribution of marginal social cost fares (Internalization of all effects) 

During peak times more users are affected than off-peak. Hence, average peak prices exceed 

average off-peak fares as well as the obtained averages per day (see Tab. 5): For trips starting 

between 2 p.m. and 4 p.m the average internalized external delay cost is $0.60 for a scheduled 

headway of 3 min and $2.94 for a headway of 9 min. Whereas, trips after 8 p.m. cause an average 

effect of only $0.21 for a 3 min headway and $0.42 for a 9 min headway. A higher pricing during 

peak periods increases social welfare by causing users to switch to the alternative car mode or to 

adapt their activity scheduling in order to avoid peak periods (see Sec. 6.1). 

Beside temporal aspects externalities are analyzed focusing on spatial effects. Fig. 8a depicts 

average bus trip fares dependent on the location of boarding in one direction for a 9 min 

headway. The average internalized external cost per boarding location depends on which external 

effects are considered. Beginning with the first experiment, the internalization of external effect 1 

only, shows that average trip fares increase for passengers who board at the middle of the 

corridor. That is because at the beginning and the end of a transit route transit vehicle load factors 

are lower and thus, the probability to affect agents inside a vehicle is lower, too. Including 

effect 2 significantly raises the average internalized external cost per trip for agents boarding at 

of 37,898 bus trips. For a 9 min headway, marginal social cost fares are higher because users

have to wait for later vehicles due to buses operating at maximum capacity. For more than 16%

of all public transport trips, passengers have to pay more than $2.0. For the distribution of fares

between $2.0 and $8.9, see Fig. 7b.
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Figure 7: Distribution of marginal social cost fares (Internalization of all e↵ects)

During peak times more users are a↵ected than o↵-peak. Hence, average peak prices exceed

average o↵-peak fares as well as the obtained averages per day (see Tab. 5): For trips starting

between 2 p.m. and 4 p.m the average external delay cost is $0.60 for a scheduled headway of

3 min and $2.94 for a headway of 9 min. Whereas, trips after 8 p.m. cause an average e↵ect

of only $0.21 for a 3 min headway and $0.42 for a 9 min headway. A higher pricing during

peak periods increases social welfare by causing users to switch to the alternative car mode or

to adapt their activity scheduling in order to avoid peak periods (see Sec. 6.1).

Beside temporal aspects externalities are analyzed focusing on spatial e↵ects. Fig. 8a de-

picts average bus trip fares dependent on the location of boarding in one direction for a 9 min

headway. The average external cost per boarding location depend on which external e↵ects are

considered. Beginning with the first experiment, the internalization of external e↵ect 1 only,

shows that average trip fares increase for passengers who board at the middle of the corridor.
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bus stops along the first half of the transit route. That is explained by a higher number of 

following transit stops and therefore passengers who are affected further along the corridor. The 

same trend is observed for different headways, also for 3 min where delay effects due to capacity 

constraints (effect 3) are not present. As clearly shown in Fig. 8a adding effect 3 has a significant 

impact on the average internalized external cost induced by agents boarding at the first 24 transit 

stops. For agents who board up until transit stop 14, the average external cost-based fare 

increases. External cost induced by passengers boarding at the following transit stops decrease 

the later they get on a bus. For transit stops in the second half of the route there are fewer or no 

agents that cannot board a bus because of capacity constraints. 

Fig. 8b shows the average fare per travel distance for all three experiments. Internalized 

external cost resulting from effect 1 first slightly increases for short distances and then 

significantly decreases for distances larger than half of the corridor. A similar tendency is 

observed from Mohring (1972) for feeder routes as passengers with longer trips board earlier and 

delay fewer passengers in the bus. Including effect 2 flattens decreasing average trip fares for 

long distance trips since passengers who board at early transit stops affect all passengers that will 

be entering the same transit vehicle along the route. Adding effect 3 and computing the marginal 

social cost fares based on all existing external delays inverts the results obtained without the 

capacity constraints in place: For trip distances up until 12.5 km average fares significantly 

increase with the trip length. For longer distances average fares fluctuate and slightly decrease, 

whereas for the maximum trip length of 20 km the maximum average fare is obtained. Long-

distance passengers occupy seats for longer than short-distance passengers. This is in line with 

findings from Kraus (1991) who observes the same effect when including the disutility of 

discomfort and from Turvey and Mohring (1975) who consider fully loaded vehicles. Since the 

vehicle load factor is the crucial variable, the disutility of prolonged waiting times due to 
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boarding denials and the disutility of discomfort resulting from crowding have conceptually a lot 

in common. As crowding costs increase for longer distances, the inclusion of crowding would 

increase the effect observed for the internalization of boarding denial costs. That is, the average 

fare would increase in an even steeper  way as a function of trip distance than displayed in Fig 8b 

(Internalization of effect 1, 2 and 3). 

 

Figure 8: Average trip fare dependent on distance and boarding location (9 min headway) 
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Figure 8: Average trip fare dependent on distance and boarding location (9 min headway)

7 Conclusion

In this study, the agent-based simulation MATSim was successfully used for the optimization of

public transport fares. MATSim was enhanced by implementing a marginal social cost pricing

approach: External delay e↵ects among public transport users are internalized by charging the

equivalent monetary amount from the causing agent. As sources for external cost, this study

considers the e↵ect of boarding/alighting passengers on in-vehicle time (e↵ect 1), waiting time

without an active capacity constraint (e↵ect 2) and waiting time induced by an active capacity

constraint (e↵ect 3).

As expected, marginal social cost pricing yields a higher social welfare than charging an
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without an active capacity constraint (effect 2) and waiting time induced by an active capacity 

constraint (effect 3).  

As expected, marginal social cost pricing yields a higher social welfare than charging an 

optimized flat fare. Starting from effect 1, we find that including more external effects increases 

the social welfare gain of applying optimized user-specific bus fares. As passengers’ waiting 

times indicate a coordinated arrival at transit stops (following the arrival of buses), it is crucial to 

include the external effect of prolonged waiting times due to boarding and alighting passengers 

(effect 2). Adding this effect to the external effect of prolonged in-vehicle times (effect 1) 

increases the level of social welfare and also affects the relationship between average optimal 

fare and travel distance: Since passengers who board at early transit stops affect all passengers 

that are or will be waiting for the same vehicle along the route, average external costs are higher 

for early boardings. Thus, for a longer trip length, the average optimal fare decreases to a lesser 

extent as a function of trip distance. Once passengers are not able to board the first arriving 

transit vehicle due to limited capacities, social welfare rises most significantly when internalizing 

these delays by charging the extra waiting cost to the passengers inside the vehicle (effect 3). 

Including that effect increases average external cost-based prices for long distance trips and early 

boarding locations along the transit route. In this setup, explicitly accounting for this externality 

when setting user-specific fares, changes the welfare optimal headway from 5 min to 9 min. 

During peak periods average external cost-based fares are observed to be higher than off-peak. 

As a consequence, users are priced out. They either reschedule their activities and shift their trip 

departure times to periods with less demand or they switch to the alternative transport mode car. 

Benefits from a higher efficiency within the public transport sector (shorter in-vehicle and 

waiting times) overcompensate for lower benefits of users that are priced out. 
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In future research studies, we plan to isolate each choice dimension’s contribution to the 

overall improvement of social welfare. Further steps are to extend our approach to a real-world 

transport network (e.g. Berlin (Neumann et al., 2014)) and include more effects associated with 

public transport users (e.g., crowding). Furthermore, we will carry out an integrated study in 

which the methodology presented in this paper is coupled with pricing approaches that account 

for additional external effects, namely road congestion (Lämmel and Flötteröd, 2009; Kaddoura 

and Kickhöfer, 2014) and environmental effects, such as air pollution (Kickhöfer and Nagel, 

2013). 

References 

ATC (2006): ‘National Guidelines for Transport System Management in Australia’, Technical 

Report, Australian Transport Council. 

Charypar, D. and K. Nagel (2005): ‘Generating complete all-day activity plans with genetic 

algorithms’, Transportation, 32, 369-397. 

de Borger, B., I. Mayeres, S. Proost, and S. Wouters (1996): ‘Optimal pricing of urban passenger 

transport: A simulation exercise for Belgium’, Journal of Transport Economics and Policy, 

30, 31-54. 

de Palma, A., M. Kilani and S. Proost (2014): ‘Discomfort in mass transit and its implication for 

scheduling and pricing’, Working paper, KU Leuven, Center for economic studies. 

Douglas, N. and G. Karpouzis (2005): ‘Estimating the cost to passengers of station crowding’, 

28th Australasian Transport Research Forum (ATRF), Sydney. 

Haywood, L. and M. Koning (2013): ‘Estimating crowding costs in public transport’, Discussion 

Paper 1293, DIW Berlin. 



29 

Jansson, K (1993): ‘Optimal Public Transport Price and Service Frequency’, Journal of 

Transport Economics and Policy, 27, 33-50. 

Kaddoura, I. and B. Kickhöfer (2014): ‘Optimal Road Pricing: Towards an Agent-based 

Marginal Social Cost Approach’, Working Paper 14-1, TU Berlin, Transport Systems 

Planning and Transport Telematics. 

Kaddoura, I., B. Kickhöfer, A. Neumann, and A. Tirachini (2014): ‘Agent-based optimisation of 

public transport supply and pricing: Impacts of activity scheduling decisions and simulation 

randomness’, Transportation, forthcoming. 

Kickhöfer, B., D. Grether, and K. Nagel (2011): ‘Income-contingent user preferences in policy 

evaluation: application and discussion based on multi-agent transport simulations’, 

Transportation, 38, 849-870. 

Kickhöfer, B., F. Hülsmann, R. Gerike, and K. Nagel (2013): ‘Rising car user costs: comparing 

aggregated and geo-spatial impacts on travel demand and air pollutant emissions’, in 

Vanoutrive, T. and A. Verhetsel (eds.) Smart Transport Networks: Decision Making, 

Sustainability and Market structure, NECTAR Series on Transportation and 

Communications Networks Research, Edward Elgar Publishing Ltd, pages 180-207. 

Kickhöfer, B. and K. Nagel (2013): ‘Towards High-Resolution First-Best Air Pollution Tolls’, 

Networks and Spatial Economics, 1-24. 

Kraus, M (1991): ‘Discomfort externalities and marginal cost transit fares’, Journal of Urban 

Economics, 29, 249-259. 

Lam, W. H. K., C.-Y. Cheung and C. F. Lam (1999): ‘A study of crowding effects at the Hong 

Kong light rail transit stations’, Transportation Research Part A, 33, 401-415. 



30 

Lämmel, G. and G. Flötteröd (2009): ‘Towards system optimum: Finding optimal routing 

strategies in time-tependent networks for large-scale evacuation problems’, in Mertsching, 

B.; M. Hund & Z. Aziz (eds.) Advances in Artificial Intelligence, Springer, pages 532-539. 

Maibach, M., D. Schreyer, D. Sutter, H. van Essen, B. Boon, R. Smokers, A. Schroten, C. Doll, 

B. Pawlowska, and M. Bak (2008): ‘Handbook on estimation of external costs in the 

transport sector’, Technical report, CE Delft. 

Mohring, H (1972): ‘Optimization and Scale Economics in Urban Bus Transportation’, American 

Economic Review, 62, 591-604. 

Nagel, K. and G. Flötteröd (2012): ‘Agent-based traffic assignment: Going from trips to 

behavioural travelers’, in Pendyala, R. and C. Bhat (eds.) Travel Behaviour Research in an 

Evolving World – Selected papers from the 12th international conference on travel 

behaviour research, International Association for Travel Behaviour Research, chapter 12, 

pages 261-294. 

Nash, C (2003): ‘UNITE (UNIfication of accounts and marginal costs for Transport Efficiency)’, 

Final Report for Publication, Funded by 5th Framework RTD Programme. Technical report. 

Neumann, A. and K. Nagel (2010): ‘Avoiding bus bunching phenomena from spreading: A 

dynamic approach using a multi-agent simulation framework’, Working Paper 10-08, TU 

Berlin, Transport Systems Planning and Transport Telematics. 

Neumann, A., M. Balmer, and M. Rieser (2014): ‘Converting a Static Macroscopic Model Into a 

Dynamic Activity-Based Model for Analyzing Public Transport Demand in Berlin’, in 

Roorda, M. and E. Miller (eds.) Travel Behaviour Research: Current Foundations, Future 

Prospects, International Association for Travel Behaviour Research (IATBR), Toronto, 

Canada, chapter 7, pages 151-176. 



31 

Neumann, A.; Kaddoura, I. & Nagel, K (2013): ‘Mind the gap – Passenger arrival patterns in 

multi-agent simulations’, presented at the Conference on Agent-Based Modeling in 

Transportation Planning and Operations. 

Parry, I. W. H. and K. A. Small (2009): ‘Should urban transit subsidies be reduced?’, American 

Economic Review, 99, 700-724. 

Proost, S. and K. van Dender (2001): ‘The welfare impacts of alternative policies to address 

atmospheric pollution in urban road transport’, Regional Science and Urban Economics, 31, 

383-411. 

Prud'homme, R., M. Koning, L. Lenormand and A. Fehr (2012): ‘Public transport congestion 

costs: The case of the Paris subway’, Transport Policy, 21, 101-109. 

Raney, B. and K. Nagel (2006): ‘An improved framework for large-scale multi-agent simulations 

of travel behaviour’, in Rietveld, P.; B. Jourquin and K. Westin (eds.) Towards better 

performing European Transportation Systems, Routledge, pages 305-347. 

Rieser, M (2010): ‘Adding transit to an agent-based transportation simulation concepts and 

implementation’, PhD thesis, TU Berlin, Transport Systems Planning and Transport 

Telematics. 

Small, K. A. and E. T. Verhoef (2007): The economics of urban transportation, Routledge. 

Tirachini, A. (2014): ‘The economics and engineering of bus stops: Spacing, design and 

congestion’, Transportation Research Part A, 59, 37-57. 

Tirachini, A., D. A. Hensher, and J. M. Rose (2014): ‘Multimodal pricing and optimal design of 

public transport services: the interplay between traffic congestion and bus crowding’, 

Transportation Research Part B, 61, 33-54. 



32 

Turvey, R. and H. Mohring (1975): ‘Optimal Bus Fares’, Journal of Transport Economics and 

Policy, 9, 280-286. 

van Essen, H., B. Boon, A. Schroten, M. Otten, M. Maibach, C. Schreyer, C. Doll, P. Jochem, 

M. Bak, and B. Pawlowska (2008): ‘Internalisation measures and policy for the external cost 

of transport’, Technical report, CE Delft. 

Verhoef, E. (2001): ‘Marginal Cost Based Pricing in Transport. Key Implementation Issues from 

the Economic Perspective’, paper presented at Seminar One of IMPRINT-EUROPE. 

Wardman, M. and G. Whelan (2011): ‘Twenty years of rail crowding valuation studies: Evidence 

and lessons from British experience’, Transport Reviews, 31, 379-398. 

Wright, L. and W. Hook (2007): ‘Bus Rapid Transit Planning Guide’, Technical report, ITDP, 

Institute for Transportation and Development Policy, New York. 


