
MATSim User Guide

Development Version
last updated September 12, 2014

Marcel Rieser, Christoph Dobler, Thibaut Dubernet, Dominik Grether, Andreas Horni,
Gregor Lämmel, Rashid Waraich, Michael Zilske, Kay W. Axhausen, Kai Nagel

Note

The material found in this document was originally maintained as a collection of web pages.
Those were eventually automatically converted to latex, and incrementally cleaned up since
then.

As a result, leftovers from those web pages can still be found in the document, including lots of
links to web pages which could be replaced by internal links in the document, and links to web
pages where the material should be inlined into the document.

Originally generated 2013-06-12T12:13:34+02:00
from matsim.org/docs/userguide
but changed since then.

1

Contents

1 Introduction 5

1.1 What is MATSim? . 5

1.2 Features . 5

1.3 About this Guide . 6

2 Overview 7

2.1 The Major Stages of a MATSim Simulation . 7

2.2 The Optimization Process . 8

2.3 Mobility Simulation Events . 9

2.4 Customizability . 10

3 Terminology 11

3.1 Choice set → “plan set” of an agent . 11

3.2 Choice set generation → Time mutation/re-route/... ; ”innovation” 11

3.3 Choice set generation, choice → replanning . 11

3.4 Convergence → learning rate . 12

3.5 Mu (logit model scaling factor) → beta brain . 12

3.6 Multinomial logit → ExpBetaPlanSelector . 12

3.7 Network loading → mobsim, mobility simulation, physical simulation 12

3.8 Stationary → relaxed . 13

3.9 Utility ↔ score . 13

4 Running MATSim 14

4.1 Prerequisites . 14

4.2 Using MATSim from a Command Line . 14

5 Building New Scenarios 16

5.1 Typical Input Data Sets . 16

5.1.1 Configuration . 17

5.1.2 Network . 17

5.1.3 Demand . 18

5.1.4 Public Transport . 19

5.1.5 Counts . 22

5.2 Units and Conventions Used . 23

2

Contents Contents

5.2.1 Units . 23

5.2.2 Conventions . 23

5.3 Coordinate Systems . 23

5.3.1 Preparing Your Data in the Right Coordinate System 23

5.3.2 Telling MATSim about Your Coordinate System 24

5.4 A Minimum Example . 24

5.5 Reusing Existing Data . 24

6 The MATSim default scoring function (= utility function) 25

6.1 Illustration . 26

6.2 Mathematical version . 26

6.2.1 Performing activities . 26

6.2.2 Arriving late . 27

6.2.3 Traveling . 27

6.2.4 Utility of time as a resource (opportunity cost of time) 27

6.3 Calibration of the scoring function . 28

6.4 Default values for the Charypar-Nagel scoring function 29

6.5 Interpretation of the logarithmic ”utility of performing” 30

6.6 Outlook . 31

7 Strategy Modules 33

7.1 Introduction . 33

7.2 Selectors . 34

7.2.1 BestScore. Status: works . 34

7.2.2 ChangeExpBeta. Status: works. RECOMMENDED! 34

7.2.3 KeepLastSelected. Status: works . 34

7.2.4 SelectExpBeta. Status: works . 34

7.2.5 SelectRandom. Status: works . 34

7.3 Innovative modules . 35

7.3.1 ReRoute. Status: nearly indispensable . 35

7.3.2 TimeAllocationMutator. Status: works 35

7.3.3 ChangeSingleLegMode. Status: works . 35

7.3.4 ChangeLegMode. Status: works . 36

7.3.5 SubtourModeChoice. Status: probably works 37

8 MATSim input data (“MATSim containers”) 38

8.1 ”counts”. Status: works for vsp and ivt . 38

8.2 ”facilities”. Status: ”user” version work in progress 39

8.3 ”households”. Status: probably ready but nowhere used 40

8.4 ”network”. Status: ok . 40

8.5 ”network” (time dependent). Status: works for vsp 40

8.6 ”vehicles”. Status: probably reads the file correctly, but does nothing else 41

9 Synthetic realities (aka “mobsims”) 42

3

Contents Contents

9.1 ”qsim”. Status: works . 42

9.1.1 ”qsim” (parallel version). Status: looks promising 43

9.1.2 ”lanes”. Status: works . 43

9.1.3 ”signalsystems”. Status: works . 45

9.1.4 ”transit” (public transport). Status: works 45

9.2 ”JDEQSim”. Status: works . 46

9.3 “simulation”. Status: deprecated as of sep/2014 47

9.4 External mobsim. Status: unknown . 48

10 Other configurable modules 49

10.1 ”global”. Status: indispensable . 49

10.2 ”controler”. Status: indispensable . 49

10.3 ”parallelEventHandling”. Status: works for ivt and vsp 49

10.4 ”planCalcScore”. Status: nearly indispensible . 50

10.5 ”strategy”. Status: indispensable . 50

10.6 ”travelTimeCalculator”. Status: nearly indispensable 50

10.7 ”vspExperimental”. Status: used by VSP . 50

11 Visualization and analysis 51

11.1 Senozon Via . 51

11.2 Events analysis . 51

12 Specific applications 52

12.1 MATSim as tool for dynamic traffic assigment (DTA) 52

12.2 Including one’s own upstream module . 53

12.3 MATSim for network loading only . 54

Appendices 55

A System Requirements 56

4

Chapter 1

Introduction

Author(s) of this document: Marcel Rieser

1.1 What is MATSim?

MATSim provides a framework to implement large-scale agent-based transport simulations. The
framework consists of severel modules which can be combined or used stand-alone. Modules
can be replaced by own implementations to test single aspects of your own work. Currently,
MATSim offers a framework for demand-modeling, agent-based mobility simulation (traffic flow
simulation), re-planning, a controller to iteratively run simulations as well as methods to analyze
the output generated by the modules.

The basic set of features of MATSim can be used just by using the software as is, providing your
own input data and just modifying the configuration for the simulation. For advanced usages,
it is necessary to write your own program code that integrates with MATSim, e.g. to provide
special functionality or have your custom analysis output.

1.2 Features

The following list shows the key features of MATSim:

Agent-Based, Multi-Modal Simulation of Daily Mobility Behavior. MATSim is capa-
ble of simulating private car traffic and public transport in large detail, and is able to
support additional modes (e.g. pedestrians or cyclists) as well. Simulations typically cover
one full day, and the mobility behaviour of a large number of single persons (“agents”) is
simulated simultaneously. This allows to track single agents through their whole day, from
home to work, to leisure or shopping and back to home.

Fast, even for Large Scenarios. MATSim is able to simulate scenarios with several millions
agents on networks with hundreds of thousands of road segments. All you need is a current,
fast desktop computer with enough memory. Even in such cases, MATSim often only takes
a couple of minutes for the simulation of one complete day.

Versatile Analyses and Simulation Output. During the simulation, MATSim collects sev-
eral key values from the simulation and outputs them to give you a quick overview of the
current state of the simulation. Among other results, it can compare the simulated traffic
to real world data from counting stations, displaying the results interactively in Google
Earth. Additionally, MATSim provides detailed output from the traffic simulation, which
can easily be parsed by other applications to create your own special analyses.

5

1. Introduction
1.3. About this Guide

Modular Approach. MATSim allows for easy replacement or addition of functionality. This
allows you to add your own algorithms for agent-behavior and plug them into MATSim,
or use your own transport simulation while using MATSim’s replanning features.

Open Source & Multi-Platform. MATSim is distributed under the Gnu Public License
(GPL), which means that MATSim can be downloaded and used free of charge. Addition-
ally, you get the complete source code which you may modify within certain constraints
(see the license for more details). Written in Java, MATSim runs on all major operating
systems, including Linux, Windows and Mac OS X.

Active Development and Versatile Usage of MATSim. Researchers from several loca-
tions are currently working on MATSim. Core development takes place world wide, with
the efforts lead by the Berlin Institute of Technology (TU Berlin), the Swiss Federal In-
stitute of Technology (ETH) in Zurich, as well as Senozon, a private company founded
by two former PhD students. Additional development (as far as we are aware of) cur-
rently takes place in South Africa, Germany, Canada as well as other places around the
world. This distribution of development ensures that MATSim not only works for one
scenario/context, but can be adapted to many different scenarios.

1.3 About this Guide

This user guide should help you to get started with MATSim. It starts by giving a broad
overview of MATSim, highlighting the different parts of MATSim and how they work together
in Chpt. 2. In Chpt. 3, Terminology, some terms commonly referred to in this user guide are
explained and put into relation to terms used to describe similar concepts. After this, you’re
ready to start MATSim for the first time! Chpt. 4 shows you how to do this in a number
of different environments. If you’re interested to build your own scenario, you’ll find Chpt. 5
helpful. It explains what data and in what format is necessary to build a scenario.

TODO MR

6

Chapter 2

Overview

Author(s) of this document: Marcel Rieser

This chapter gives an overview of the major components of MATSim and how they work together,
essentially building the foundation for the MATSim framework.

2.1 The Major Stages of a MATSim Simulation

In a typical MATSim simulation, travel demand data is simulated and optimized on a given
transportation network (e.g. a road network, or a multimodal network in the case when public
transport is also considered in the simulation). The optimization of the demand data is one of
the key features of MATSim, making it suitable to be used for policy studies. In this whole
simulation and optimization process, 5 major stages can be identified:

• initial demand
• execution
• scoring
• replanning
• analysis

These 5 stages are executed in the order shown in Fig. 2.1. In the following, the responsibilities
of each stage is shortly described. The details for the stages, including what options are available
to influence the stages and how they work, are explained in separate chapters later on.

Figure 2.1: Stages of a MATSim Simulation

7

2. Overview
2.2. The Optimization Process

Initial demand: The initial demand describes the mobility behaviour to be simulated. It contains
the full list of agents, and for each agent at least one day plan. A day plan contains a list of
activities (e.g. being home, being at work) and trips (e.g. going by car to shopping) along with
temporal information (e.g. leaving home at 7:23 am, working until 5:39 pm) and additional
information (e.g. detailed route going from home to work). Plans describe the intentions of
agents. If agents calculate too optimistically, get stuck in a traffic jam or miss a bus, it might
be that their plan cannot be realized in the simulation as the agents intended to.

Execution: Often also called the mobility simulation (or just mobsim), the agents’ plans get
executed along each other in a representation of the physical world. This means that the agents
and their vehicles are moved around in the network (the infrastructure in the real world). During
this execution of the plans, agents can influence each other by taking up space in the virtual
world. If too many agents want to travel on the same road at a specific time, they generate a
traffic jam in the mobility simulation. This is why the agents’ plans only describe their intentions
for a day, but do not actually describe their day.

Scoring: Once the execution of the plans finished, the agents’ plans are evaluated based on their
experienced execution. The exact scoring function is customizable, but generally time spent at
activities increases the score, while time spent travelling decreases it. Agents stuck in a traffic
jam thus loose points, while agents with short and quick trips are able to accumulate more score
points by performing activities for a longer time period.

Replanning: As mentioned in the execution stage, agents can be influenced by others and, for
example, get stuck in a traffic jam. During the replanning stage, agents may modify their plans
(actually, they modify copies of the plans, see Sec. 2.2) in order to try to avoid situations in
the mobility simulation that lead to bad scores. Typical examples of such modifications are
the modification of activity end times, effectively changing the start time of the following trip,
changing the mode of transport for a trip, or changing the route for a trip (departure time
choice, mode choice, route choice). In MATSim, these modifications are performed by so-called
Strategy Modules.

Analysis: At the end of a complete simulation, one is often interested in some key performance
values of the simulation. Examples could be mode shares, miles travelled in total by all agents,
or average trip duration and distance per mode and hour. Such analyses could either be auto-
matically be performed at then end, or in a separate post-processing step.

The three stages Execution, Scoring and Replanning are performed iteratively in order to give
the agents multiple opportunities to adapt their plans to the plans and behaviour of the other
agents. This is why MATSim typically performs multiple iterations within one simulation run,
consisting of multiple mobility simulation, scoring and replanning executions, until the end result
is available.

MATSim provides a Controller (sadly misspelled as Controler in some places) which implements
the iteration loop as shown in Fig. 2.1. This Controller is typically the entry point for running
MATSim simulations, as it handles all aspects from loading all the required data, configuring
the whole setup according to the user’s settings, and iteratively calling the execution, scoring
and re-planning stages. Chpt. 4 shows the usage of the Controller in more detail.

2.2 The Optimization Process

As outlined above, agents can modify the plans from the initial demand to try to come up with
new variants of the plan that lead to higher scores. The main concept of the optimization process

8

2. Overview
2.3. Mobility Simulation Events

follows the principles of so-called (co-)evolutionary algorithms. Evolutionary algorithms typically
maintain a set of candidates which are evaluated using a fitness function. New candidates are
generated and evaluated. If they have a bad fitness, they are discarded. If they have a good
fitness, another candidate with a worse fitness is removed from the set of candidates and the
new candidate is added to the set. This is repeated until no new good candidates are found
after some tries.

MATSim implements an evolutionary algorithm for each agent. As all agents are optimized using
their own evolutionary algorithm, the whole system is called a co-evolutionary algorithm. The
set of candidates corresponds to the set of plans each agent has. New candidates are generated
in the replanning stage by making a copy of an existing plan and modifying the copy. The
fitness evaluation is done by scoring the execution of the plan. Thus, the replanning stage in
MATSim corresponds to the generation of new candidates of evolutionary algorithms, while the
execution and scoring of plans corresponds to the evaluation of the fitness of the candidates.
The repetition

With each iteration, the goal is that the average score of the executed plans increase, corre-
sponding to the agents improving their plans such that they can perform their daily activities as
good as possible. Fig. 2.2 shows how the average score develops in a typical MATSim simulation
over the course of the iterations. Note that the absolute value of the scores may depend upon
the scenario. As can be nicely seen in the figure, the average executed score typically improves
very rapidly in the first few iterations, but will only improve very slightly in later iterations or
even degrade a few times.

Figure 2.2: Tpyical development of the average score of the executed plans over the iterations

2.3 Mobility Simulation Events

The mobility simulation moves the agents around in the virtual world according to their plans
and within the bounds of the “simulated reality”. The mobility simulation documents its moves
with so-called “Events”. These events are small pieces of information describing the action of
an object at a specific time. Examples of such events can be:

• An agent finishes an activity
• An agent starts a trip
• A vehicle enters a road segment
• A vehicle leaves a road segment

9

2. Overview
2.4. Customizability

• An agent bordes a public transport vehicle
• An agent arrives at a location
• An agent starts an activity

Each event has a timestamp, a type, and additional attributes required to describe the action
like the agent’s id, a link id, an activity type or other data. In theory, it should be possible to
replay the mobility simulation just by the information stored in the events. While plans describe
the agents’ plan for a day, the events describe how the agents’ day actually was (according to
the simulation).

As the events are so basic, each agent typically generates hundreds of events during one execution
of a mobility simulation. In total, the number of events generated by a mobility simulation can
easily reach a million or more, with large simulations even generating more than a billion events.
But as the events really describe all the details from the execution of the plans, it is possible
to extract mostly any kind of aggregated data one is interested in. Practically all analyses of
MATSim simulations make use of events to calculate some data. Examples of such analyses
are the average duration of an activity, average trip duration or distance, mode shares per time
window, number of passengers in specific transit lines and many more.

The scoring of the executed plans makes use of events to find out how much time agents spent
at activities or for travelling. Some replanning modules might make use of events as well: The
router for example can use the information contained in events to figure out what links are
jammed at certain times and route agents around that jam when creating new plans.

2.4 Customizability

MATSim is designed to be modular. Nearly all parts can be customized, replaced or enhanced
with custom functionality. Some customizations are easier than others. Replacing the mobility
simulation for additonal behaviour might be one of the hardest things to achieve. Changing the
replanning on the other hand is quite easy, especially as there is already a number of modules
available for different replanning needs which can be activiated and used without programming
and only by modifying the configuration file. This guide will mostly focus on functionality
available in a standard release of MATSim that can be used just by making changes to the
configuration file, and not on enhancing MATSim by programming custom functionality.

In order to work with MATSim, you should know the 5 major stages of a MATSim simulation, why
MATSim uses iterations and understand conceptually what data is contained in plans and what data
is contained in events.

10

Chapter 3

Terminology

Author(s) of this document: Kai Nagel

In many cases, MATSim uses a terminology that is different from the mainstream terminology.
In most cases, the reason is that the concepts are only similar, but not identical, and we wanted
to avoid the confusion of using the same term for aspects that are similar but not identical. The
following attempts some commented approximate ”translations” from more standard teminology
to MATSim terminology.

3.1 Choice set → “plan set” of an agent

During MATSim iterations, agent accumulate plans. This can be interpreted as building a choice
set over time. A problem is that the process that generates the choice set at this point is not
systematic.

Possible future developments: Once it has been made explicit that ”plans generation” means
”choice set generation”, the terminology may be made standard.

3.2 Choice set generation → Time mutation/re-route/... ; ”inno-

vation”

As said above, the set of MATSim plans can be seen as this agent’s choice set. MATSim generates
new plans ”on-the-fly”, i.e. while the simulation is running. We sometimes call this ”innovation”,
since agents create new plans (= add entries to the choice set), rather than choosing between
existing plans.

3.3 Choice set generation, choice → replanning

In MATSim, there is no strict separation between ”choice set generation” and ”choice”: at
the replanning step, for each agent, a replanning strategy is randomly choosen. This strategy
may consist in selecting a random plan to use to generate a new plan by mutation (”choice set
generation” part), or just to select a past plan based on the experienced score (”choice” part).

11

3. Terminology
3.4. Convergence → learning rate

3.4 Convergence → learning rate

Scores in matsim are computed as

scorenew = (1− α) · scoreold + α · scoresim ,

where scoresim is the score that is obtained from the execution of the plans (= network loading).

3.5 Mu (logit model scaling factor) → beta brain

MATSim scoring function:
BrainExpBeta ·

∑
i

βi xi

Typical logit model formulation:
µ ·
∑
i

βi xi

As is well known, µ or βi are not independently identifiable from estimation. For simulation,
they are hence somewhat arbitrary. The default value for ”BrainExpBeta” is 2 for historical
reasons, but it should be set to 1 if the parameters of the scoring function are estimated rather
than hand-calibrated.

Possible future development: Default value of BrainExpBeta should be set to 1. instead of 2..

3.6 Multinomial logit → ExpBetaPlanSelector

Comments:

• The main problem is that one needs to keep in mind how the choice set is constructed (see
above).

• In most simulations, we use ExpBetaPlanChanger instead, which is a Metropolis Monte
Carlo variant of making multinomial logit draws

Possible future developments: None of this is ideal, since, after the introduction of a policy, it
is not clear which behavioral switches are due to the policy, and which are due to sampling. In
theory, one should have unbiased samples before and after the introduction of the policy, but at
this point this is not implemented and it is also computationally considerably more expensive
than what is done now.

3.7 Network loading→ mobsim, mobility simulation, physical sim-

ulation

The standard terminology has the ”network loading” on the ”supply side”. In my (KN’s) view,
the ”simulation of the physical system” is not the supply side, but what in economics is called
”technology”. This can for example be seen in the fact that ”lane changing” is part of the
mobsim, but this is, in my view, not a ”supply side” aspect.

Possible future developments: May switch to ”network loading” if there is agreement that this
is a better name.

12

3. Terminology
3.8. Stationary → relaxed

3.8 Stationary → relaxed

“stationary” means that the probability distribution does not shift any more. However, as long
as ”innovation” is still switched in on MATSim (new routes, new times, ...), the result is not
truly stationary. Thus we avoid the word. If innovation is switched off, the result is indeed a
statinary process, but limited to the set of plans that every agent has at that point in time.

Possible future developments: not clear. Minimally, publications should be precise.

<module name="strategy" >
<!-- iteration after which module will be disabled. ... -->
<param name="ModuleDisableAfterIteration_1" value="null" />
<param name="ModuleDisableAfterIteration_2" value="950" />

<!-- probability that a strategy is applied to a given person. ... -->
<param name="ModuleProbability_1" value="0.9" />
<param name="ModuleProbability_2" value="0.1" />

<!-- name of strategy ... -->
<param name="Module_1" value="ChangeExpBeta" />
<param name="Module_2" value="ReRoute" />

<!-- maximum number of plans per agent ... -->
<param name="maxAgentPlanMemorySize" value="4" />

</module>

The above means:

• StrategyModule ”ReRoute” (= innovative Module, produces plans with new routes) is
switched off after iteration 950.

• StrategyModule ”ChangeExpBeta” (= non-innovative Module, switches between existing
plans) is never switched off.

• If an agent ever ends up with more than 4 plans, plans are deleted until she is back to
4 plans. (Deletion goes via a ”PlanSelectorForRemoval”, which affects the choice set,
and thus more thought needs to go into this. Currently, the plan with the worst score is
removed.)

3.9 Utility ↔ score
Configuration: At least when using random utility models (such as multinomial logit aka Exp-
Beta...), the score has the same function as the deterministic utility.

13

Chapter 4

Running MATSim

Author(s) of this document: Marcel Rieser

MATSim comes without any easy to use graphical interface. Instead, it uses text files for configuration
and uses a command line interface to start simulations. This chapter shows you how to start MATSim
simulations in a number of different computing environments.

4.1 Prerequisites

MATSim is written in Java, a programming language which allows to write applications that
run on a large variety of computers. As scenarios can become quite large, they may consume
large amounts of memory (RAM). Very large scenarios should be run on dedicated servers with
enough resources.

In general, to use MATSim, the following requirements must be met:

• Java SE 7 must be installed. The latest version of the Java Runtime Environment (JRE)
can be downloaded from http://java.oracle.com.
• Have at least 2 GB memory for running the examples. For larger scenarios, more memory

will be required.
• Have enough free hard drive space. The provided examples will occupy only a few

megabytes, but large scenarios can easily use multiple gigabytes of disk space.
• Last but not least, you need a version of MATSim.

This chapter assumes you are using a release (or nightly build) of MATSim which comes pre-
packaged as a jar-file. This chapter will not explain how to compile and run MATSim based on
its program source files. In the remainder of this chapter, matsim.jar will be used to refer to
the jar-file of MATSim. The actual name might differ, e.g. it might include a version number
like matsim-0.6.0.jar or matsim-20140114.jar.

4.2 Using MATSim from a Command Line

To run MATSim, one needs a configuration file and an estimation, how much memory the
simulation will consume (Don’t fear this, you’ll get used to this quite fast). As MATSim comes
without graphical user interface, it needs to be run on the command line. In Linux or Mac OS X,

14

http://java.oracle.com

4. Running MATSim
4.2. Using MATSim from a Command Line

this is typically done using a Terminal application. In Windows, the Power Shell or Command
Prompt can be used.

On the command line, type the following command, but substitute the correct paths:

java -Xmx512m -cp /path/to/matsim.jar
org.matsim.run.Controler /path/to/config.xml

Note that the commands should always be written on one line, they are shown in this tutorial
on multiple lines only for readability.

As an example, on Linux this could look like:

java -Xmx512m -cp /home/username/matsim/matsim.jar
org.matsim.run.Controler /home/user/matsim/input/config.xml

On Mac OS X, it could look like this:

java -Xmx512m -cp /Users/username/matsim/matsim.jar
org.matsim.run.Controler /Users/user/matsim/input/config.xml

On Windows, an example command could be:

java -Xmx512m -cp C:\MATSim\matsim.jar
org.matsim.run.Controler C:\MATSim\input\config.xml

Such a command exists of multiple parts:

• java tells the system that you want to run Java.

• -Xmx512m tells Java that it should use up to 512 MB of memory. This is typically enough
to run the small examples. For larger scenarios, you might need more memory: -Xmx3g
would allow Java to use up to 3 GB of memory.

• -cp /path/to/matsim.jar tells Java where to find the MATSim code.

• org.matsim.run.Controler tells Java which class (think of “entry point”) it should
start running. In most cases, the default MATSim Controler is the class you’ll need to run
simulations.

• /path/to/config.xml tells MATSim which config file is to be used.

In the case you have relative paths in your config file, make sure to start MATSim in the correct
directory. It will interpret all relative paths based on the directory where the Java process got
started, and not where the config file is located.

15

Chapter 5

Building New Scenarios

Author(s) of this document: Marcel Rieser

Starting a new scenario (our term for the application of MATSim to a region/area) can appear quite
cumbersome at the first glace, as a lot of data preparation may be required. This chapter gives
first an overview of the input data typically required for running a MATSim scenario, and then gives
examples how such data is generated for existing scenarios.

5.1 Typical Input Data Sets

MATSim uses multiple files to store the different types of data it uses for the simulation. Tab. 5.1
gives an overview over files you may typically encounter when working with MATSim.

Not all files are always required. Very simple simulations can be run only with a configuration
file and the description of the network and the population containing the agents’ plans. For
additional functionality, e.g. for the simulation of public transport, additional files might be
required.

config.xml configuration options for MATSim
network.xml description of the (road) network
population.xml the travel demand, i.e. the list of agents and their day plans
facilities.xml information about locations where activities can be performed
transitSchedule.xml information about transit stop locations and transit services
transitVehicles.xml description of the vehicles used for public transport services
counts.xml hourly volumes from real-world counting stations for comparison

Table 5.1: Files often used with MATSim

In the following, small examples of these files will be shown and the data they contain discussed.

Some of the files, especially population.xml, but also network.xml or facilities.xml,
might get quite large. To save space, MATSim supports reading and writing the data in a compressed
format. MATSim uses GZIP-compression for this. Thus, in many cases, the file names have the
additional suffix .gz, as in population.xml.gz. MATSim automatically detects if files are
compressed or should be written compressed based on the filename.

16

5. Building New Scenarios
5.1. Typical Input Data Sets

5.1.1 Configuration

Listing 5.1: An example of a config.xml

<?xml version="1.0" ?>
<!DOCTYPE config SYSTEM "http://www.matsim.org/files/dtd/config_v1.dtd">
<config>

<module name="network">
<param name="inputNetworkFile" value="example/network.xml" />

</module>

<module name="plans">
<param name="inputPlansFile" value="example/population.xml.gz" />

</module>

<module name="controler">
<param name="outputDirectory" value="./output/" />
<param name="firstIteration" value="0" />
<param name="lastIteration" value="10" />

</module>

</config>

The configuration file, often just referred to as config file or as config.xml, builds the connection
between the user and MATSim. It contains a list of settings which influence how the simulation
behaves.

All configuration parameters are simple pairs of a parameter name and a parameter value. The
parameters are grouped into logical groups. For example, there is a group with settings related
to the Controler like the number of iterations, or there is another group with settings related to
the simulation, e.g. the end time of the simulation. Listing 5.1 shows a very short example of
a configuration file which specifies the network and travel demand data to be used along with
some settings for the Controler.

The list of available parameters and valid parameter values may vary from release to release.
Although we try to keep this stable, due to changes in the software, most notably by new
features, settings may change. To get a list of all available settings currently available, run the
following command:

java -cp matsim.jar org.matsim.run.CreateFullConfig fullConfig.xml

This command will create a new config file fullConfig.xml which contains the full list of
available parameters along with their default values. This makes it easy to see what settings are
available. To use and modify certain settings, the lines with the corresponding parameters can
be copied to the config file specific for the scenario to be simulated and the parameter values be
modified in that file.

5.1.2 Network

The network describes the infrastucture on which the agents (or the vehicles, respectively), can
move around. The network consists of nodes and links (in graph theory, these are typically
called vertices and edges). Listing 5.2 shows an example of a simple description of a network in
MATSim’s XML data format.

Each element has an identifier id. Nodes are described by an X and a Y coordinate value. Links
have more attributes: The from and to attribute reference nodes and describe the geometry of
the network. Additional attributes describe the traffic-related aspects of the network:

• the length of the link, typically in meters (see Sec. 5.2).
• the flow capacity of the link, i.e. the number of vehicles that can pass the link, typically

in vehicles per hour.

17

5. Building New Scenarios
5.1. Typical Input Data Sets

Listing 5.2: An example of a network.xml

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE network SYSTEM "http://www.matsim.org/files/dtd/network_v1.dtd">

<network name="example network">
<nodes>

<node id="1" x="0.0" y="0.0"/>
<node id="2" x="1000.0" y="0.0"/>
<node id="3" x="1000.0" y="1000.0"/>

</nodes>
<links>

<link id="1" from="1" to="2" length="3000.00" capacity="3600"
freespeed="27.78" permlanes="2" modes="car" />

<link id="2" from="2" to="3" length="4000.00" capacity="1800"
freespeed="27.78" permlanes="1" modes="car" />

<link id="3" from="3" to="2" length="4000.00" capacity="1800"
freespeed="27.78" permlanes="1" modes="car" />

<link id="4" from="3" to="1" length="6000.00" capacity="3600"
freespeed="27.78" permlanes="2" modes="car" />

</links>
</network>

• the freespeed is the maximum speed at which vehicles are allowed to travel along the link,
typically in meters per seconds.
• the number of lanes (permlanes) available in the direction specified by the from and to

nodes.
• the list of modes allowed on the link. This is a comma-separated list, e.g.
modes="car,bike,taxi".

Note that all links are uni-directional. If a road can be travelled in both directions, two links
have to be defined with alternating to and from attributes (see links with id 2 and 3 in the
example given in Listing 5.2). Thus, the network can be seen as a directed graph.

5.1.3 Demand

The travel demand for MATSim is described by the agents’ day plans. The full set of agents is
typically the population, hence the filename population.xml. Alternatively, plans.xml is
also commonly used in MATSim, as the population file essentially contains a list of day plans.

The population contains the data in a hierarchical structure, as shown in Listing 5.3:

• The population contains a list of persons.
• Each person contains a list of plans.
• Each plan contains a list of Activities and Legs.

Exactly one plan per person is marked as selected. The selected plan of each agent is the plan
that gets executed by the mobility simulation. During the replanning stage, a different plan
might get marked as being selected. A plan can contain a score as attribute. The score gets
calculated and stored in the plan during the scoring stage, after the plan was executed by the
mobility simulation.

The list of activities and legs in each plan describe the planned actions by each agent. Activities
have a type assigned and have—except for the last activity in a day plan—an end time defined
(There are some exceptions where activities have a duration instead of an end time. Such
activities are often automatically generated by routing algorithms and are thus not described
in this guide). To describe the location where an activity takes place, the activity is either
assigned a coordinate by giving an x and y attribute value, or has a link assigned which describes
from which link the activity can be reached. As the simulation requires the link attribute, the
Controler calculates the nearest link for a given coordinate in the case the attribute is missing
and only an x and y coordinate value is given or any activity.

18

5. Building New Scenarios
5.1. Typical Input Data Sets

Listing 5.3: An example of a population.xml

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE population SYSTEM "http://www.matsim.org/files/dtd/population_v5.dtd">
<population>

<person id="1">
<plan selected="yes" score="93.2987721">

<act type="home" link="1" end_time="07:16:23" />
<leg mode="car">

<route type="links">1 2 3</route>
</leg>
<act type="work" link="3" end_time="17:38:34" />
<leg mode="car">

<route type="links">3 1</route>
</leg>
<act type="home" link="1" />

</plan>
</person>
<person id="2">

<plan selected="yes" score="144.39002">
\ldots

</plan>
</person>

</population>

Legs describe how agents plan to travel from one location to the next one. Each leg must have
a transport mode assigned. Optionally, legs may have an attribute trav time which describes
the expected travel time for this leg. For a leg to be simulated, it must contain a route. The
format of a route depends on the mode of a leg. For car-legs, the route lists the links that the
agent has to travel along in the given order, while for transit-legs information about the stop
locations and expected transit services are stored.

An agent starts a leg directly after the previous activity (or leg) has ended. Depending on the
mode, the mobility simulation might handle the agent differently. By default, car- and transit-
legs are well-supported by the mobility simulation. If the mobsim encounters a mode it does not
know, it defaults to teleportation: In this case, the agent is removed from the simulated reality,
and after the leg’s expected travel time has passed, re-inserted at the agent’s target location.

The population data format is one of the most central data structures in MATSim and might
be a bit overwhelming at first. Luckily, to get started, only a small subset must be known of
it. Listing 5.4 shows how a minimal population file could look like. Most notably, the following
simplications can be made:

• Each person needs exactly one plan.
• The plan does not need to be selected or have a score.
• Activities can be located just by their coordinates.
• Activities should have a somewhat meaningful end-time.
• Legs only need a mode, but no routes.

When a simulation is started, MATSim’s Controler will load such a file and then automatically
assign the nearest linnk to each activity and calculate a suitable route for each leg. This makes
it easy to get started quickly.

5.1.4 Public Transport

To simulate public transport in MATSim, two additional input files are necessary: One describes
the schedule, i.e. that lines, their routes, which stops they serve and the departure times. The
other describes the vehicles which serve the lines: are they big busses, small buses, trains or
light rail vehicles, and describes how many passengers each vehicle can transport.

19

5. Building New Scenarios
5.1. Typical Input Data Sets

Listing 5.4: Minimal population.xml required to start MATSim

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE population SYSTEM "http://www.matsim.org/files/dtd/population_v5.dtd">
<population>

<person id="1">
<plan>

<act type="home" x="5.0" y="8.0" end_time="08:00:00" />
<leg mode="car">
</leg>
<act type="work" x="1500.0" y="890.0" end_time="17:30:00" />
<leg mode="car">
</leg>
<act type="home" x="5.0" y="8.0" />

</plan>
</person>
<person id="2">

...
</person>

</population>

The description of public transport vehicles itself can be split into two parts: In a first part,
vehicle types have to be described, specifying how many passengers such a vehicle can transport
(Note that the term ”vehicle” can refer to multiple vehicles in reality, e.g. a train with several
wagons should be specified as one long vehicle with a high number of seats). In the second
part, actual vehicles have to listed. Each vehicle has an identifier and is of a previously specified
vehicle type. Listing 5.5 shows an example of a such a file, describing one vehicle type and two
vehicles of that type.

Listing 5.5: An example of transitVehicles.xml

<?xml version="1.0" encoding="UTF-8"?>
<vehicleDefinitions xmlns="http://www.matsim.org/files/dtd"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.matsim.org/files/dtd

http://www.matsim.org/files/dtd/vehicleDefinitions_v1.0.xsd">
<vehicleType id="1">

<description>Small Train</description>
<capacity>

<seats persons="50"/>
<standingRoom persons="30"/>

</capacity>
<length meter="50.0"/>

</vehicleType>
<vehicle id="tr_1" type="1"/>
<vehicle id="tr_2" type="1"/>

</vehicleDefinitions>

The public transport schedule, often referred to as transitSchedule.xml only, is a rather complex
file. It contains information about stop facilities (these can be bus stops, train stations or other
stop locations) and transit services.

In the first part, the stop facilities need to be defined, giving each one a coordinate, an identifier
and a reference to a link in the network. The stop can only be served by vehicles driving on
that specified link. Optionally, it is possible to specify a name for the stop and if other vehicles
are blocked when a transit vehicle is waiting at a stop. This last attribute is useful to model
e.g. the difference of bus stops, where one bus stop has a bay, while at another stop, the bus
has to stop on the actual road.

After the stop facilities, the transit lines, their routes and schedules are described. This is
a hierarchical data structure: Each line can have one or more routes, each route has a route
profile, a network route and a list of departures. Listing 5.6 has an example of a minimalistic
but complete transit schedule.

Each transit line must have a unique id. Each transit route has an id which must be unique

20

5. Building New Scenarios
5.1. Typical Input Data Sets

within that one line, so the same route id can be used with different lines. The transportMode
describes on which links in the network the line runs (Actually, this is currently not yet enforced.
It would be possible to let a bus run on train links in the simulation. It might be enforced in
the future).

The routeProfile describes the stops this route serves, while route itself describes the series
of links in the network the transit vehicle’s driver has to drive along (thus often referred to as
network route. Note that the complete route, i.e. all links the vehicle drives along, must be listed
in the route, and not only the ones where stops are located. All the specified stops should occur
along this route in the specified order. The time offsets given for each stop in the routeProfile
describe the relative time offset to an actual departure time. If a bus is to depart at 7 o’clock
in the morning, and stop 2 has a departureOffset of 00:03:00, this must be read that the bus
is expected to depart at 07:03 at the specific stop. All stops in the route profile must have a
departure offset definded, except the last one. All stops, except the first one, can optionally
have an arrival offset defined. This is mostly useful for large trains that stop for several minutes
at a station to help the routing algorithm to find connecting services at the correct time, namely
the expected arrival time of the train.

As last part of the description of a transit route, the list of departures should be given. Each
departure has an id, which must be unique within the route, and gives the departure time at the
first stop of the specified route profile. In addition, the departure specifies with which vehicle
the service should be run. This vehicle must be defined in the aforementioned list of transit
vehicles.

Listing 5.6: An example of a schedule.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE transitSchedule SYSTEM "http://www.matsim.org/files/dtd/transitSchedule_v1.dtd">
<transitSchedule>

<transitStops>
<stopFacility id="1" x="990.0" y="0.0" name="Adorf"

linkRefId="1" isBlocking="false"/>
<stopFacility id="2" x="1100.0" y="980.0" name="Beweiler"

linkRefId="2" isBlocking="true"/>
<stopFacility id="3" x="0.0" y="10.0" name="Cestadt"

linkRefId="3" isBlocking="false"/>
</transitStops>
<transitLine id="Blue Line">

<transitRoute id="1">
<description>Just a comment.</description>
<transportMode>bus</transportMode>
<routeProfile>

<stop refId="1" departureOffset="00:00:00"/>
<stop refId="2" arrivalOffset="00:02:30" departureOffset="00:03:00"

awaitDeparture="true"/>
<stop refId="3" arrivalOffset="00:05:00" awaitDeparture="true"/>

</routeProfile>
<route>

<link refId="1"/>
<link refId="2"/>
<link refId="3"/>

</route>
<departures>

<departure id="1" departureTime="07:00:00" vehicleRefId="12"/>
<departure id="2" departureTime="07:05:00" vehicleRefId="23"/>
<departure id="3" departureTime="07:10:00" vehicleRefId="34"/>

</departures>
</transitRoute>

</transitLine>
</transitSchedule>

Because of its complexity, transit schedules often contain little mistakes that will return in an
error when the simulation runs. Typical examples include that the network route is missing a
link, or that the network route does not pass at all the defined stops in the right order. To
make sure a schedule does not have any such issues before the simulation is started, a special

21

5. Building New Scenarios
5.1. Typical Input Data Sets

validation routine is available:

java -Xmx512m -cp /path/to/matsim.jar
org.matsim.pt.utils.TransitScheduleValidator
/path/to/transitSchedule.xml /path/to/network.xml

If run, this validator will print out a list of errors or warnings, if any are found, or show a
message that the schedule appears to be valid.

5.1.5 Counts

MATSim provides funtionality to compare traffic volumes from your simulation to real world
values. The Counts infrastructure allows to compare the traffic volumes on links on an hourly
basis. Listing 5.7 shows an example of a counts.xml input file required to do traffic count
comparisons. It starts with a header containing general descriptive information about the counts,
including a year to describe how current the data is. Next, for each link having real world counts
data, the hourly volumes can be specified. The network-link is referenced by the loc id attribute,
in the example, it’s link 2. The attribute cs id (counting station identifier) can be used to store
an arbitrary description of the counting station. Most often it is used to note the original real
word counting station to simplify future data comparison. The hourly volumes, specified by the
hour of the day (counting starts with hour ”1”) and its value, are optional: That is, not for
every hour a value must be given. If for a counting station data is only available for certain
hours of the day (e.g. only during peak hours) it is possible to omit the other hours from the
XML listing.

TODO MR: Where are the config-options explained?

Listing 5.7: An example of a counts.xml

<?xml version="1.0" encoding="UTF-8"?>
<counts xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://matsim.org/files/dtd/counts_v1.xsd"
name="test" desc="test counting stations" year="2014">

<count loc_id="2" cs_id="005">
<volume h="1" val="10.0"></volume>
<volume h="2" val="1.0"></volume>
<volume h="3" val="2.0"></volume>
<volume h="4" val="3.0"></volume>
<volume h="5" val="4.0"></volume>
<volume h="6" val="5.0"></volume>
<volume h="7" val="6.0"></volume>
<volume h="8" val="7.0"></volume>
<volume h="9" val="8.0"></volume>
<volume h="10" val="9.0"></volume>
<volume h="11" val="10.0"></volume>
<volume h="12" val="11.0"></volume>
<volume h="13" val="12.0"></volume>
<volume h="14" val="13.0"></volume>
<volume h="15" val="14.0"></volume>
<volume h="16" val="15.0"></volume>
<volume h="17" val="16.0"></volume>
<volume h="18" val="17.0"></volume>
<volume h="19" val="18.0"></volume>
<volume h="20" val="19.0"></volume>
<volume h="21" val="20.0"></volume>
<volume h="22" val="21.0"></volume>
<volume h="23" val="22.0"></volume>
<volume h="24" val="23.0"></volume>

</count>
</counts>

22

5. Building New Scenarios
5.2. Units and Conventions Used

5.2 Units and Conventions Used

5.2.1 Units

MATSim tries to make as few assumptions about actual units as is possible, but at some locations
it cannot be done without any. In general, MATSim expects similar values (e.g. all distances)
to be in the same unit wherever they are used. In the following, the most important (expected)
units are listed in a short overview.

Distance Distance units are most prominently used in links’ length. They should be specified in
the same unit that the coordinate system uses. This allows MATSim to use simple triangulation,
e.g. with the nodes’ coordinates, to calculate beeline distances. As most of the typically used,
projected coordinate systems (see Sec. 5.3) use meters as unit of distance, this is the most
common used unit of distance in MATSim.

Time While MATSim supports an hour:minute:second notation in several places, internally it
uses seconds as the default time unit. This implies that for example link speeds must be specified
in distance per second, typically m/s.

One noteable exception from this rule are scoring parameters, where MATSim expects values
per hour. This is due to the fact that most behavioral parameters like value of time are typically
estimated per minute or hour, and that the corresponding values for seconds are very small and
thus errorprone to be configured.

5.2.2 Conventions

MATSim makes heavy uses of identifiers, short Ids. This Ids can be arbitrary strings, with the
following exceptions: Ids should not contain any spaces (incl. tabs, new lines, etc) or commas,
as those characters are typically used for separating different Ids from each other in Id lists.

5.3 Coordinate Systems

5.3.1 Preparing Your Data in the Right Coordinate System

In several input files, you need to specify coordinates, e.g. for the nodes of the network. It is
strongly suggested not to use WGS84 coordinates (i.e. GPS coordinates, or any other kind of
spherical coordinates; coordinates ranging from -180 to +180 in west-east direction, and from
-90 to +90 in south-north direction). MATSim needs to calculate distances between two points
in several places of the code. The calculation of distances between spheric coordinates is very
complex and potentially slow. Instead, MATSim uses the simple Pythagoras’ theorem, but this
requires the coordinates to be in a Cartesian coordinate system. Thus is is stronlgy advised to
use a Cartesian coordinate system along with MATSim, preferably one where the distance unit
corresponds to one meter.

Many countries and regions have custom coordinate system defined, optimized for usages in
their apropriet areas. It might be best to ask some GIS specialists in your region of interest
what the most commonly used local coordinate system is and use that as well for your data.

If you don’t have any clue about what coordinate system is used in your region, it might be best
to use the Universal Transverse Mercator coordinate system. This coordinate system divides the
world into multiple bands, each six degrees width and separated into a northern and southern
part, which it calls UTM zones (see http://en.wikipedia.org/wiki/UTM_zones#UTM_
zone for more details). For each zone, an optimized coordinate system is defined. Choose the

23

http://en.wikipedia.org/wiki/UTM_zones#UTM_zone
http://en.wikipedia.org/wiki/UTM_zones#UTM_zone

5. Building New Scenarios
5.4. A Minimum Example

UTM zone which covers your region (Wikipedia has a nice map showing the zones) and use its
coordinate system.

5.3.2 Telling MATSim about Your Coordinate System

In some places, MATSim requires to know which coordinate system your data is in. You have
multiple ways to specify the coordinate system you use. The easiest one is to use the so-called
“EPSG codes”. Most of the commonly used coordinate systems got standardized and numbered.
The EPSG code uniquely identifies a coordinate system and can be directly used by MATSim.
As an alternative, MATSim can also parse the description of a coordinate system in the so-called
WKT format. As the WKT format is much more error-prone it is suggested to use EPSG codes
whenever possible.

To find the correct EPSG code for your coordinate system (e.g. for one of the UTM zones), the
website http://www.spatialreference.org is of great use. Search on this website for
your coordinate system, e.g. for “WGS84 / UTM Zone 8N” (for the northern-hemisphere UTM
Zone 8) to find a list of matching coordinate systems along with their EPSG codes.

For some operations, MATSim must know the coordinate system your data is in. Some analyses
may create output to be visualized in Google Earth for example, where the coordinates need to
be converted back to WGS84. The coordinate system used by your data can be specified in the
config file:

<module name="global">
<param name="coordinateSystem" value="EPSG:32608" />

</module>

This allows MATSim to work with your coordinates and convert them whenever needed.

5.4 A Minimum Example

TODO MR

5.5 Reusing Existing Data

Data from other modelling tools like PTV Visum or EMME can be partially reused. Converting
the network topology is often possible with little work. For Visum, some code exists that
converts the network into MATSim’s format. But note that this only converts the network
topology (location of nodes, and links with a limited set of attributes). Due to the different
working of other modelling tools (e.g. the use of capacity constraint functions to describe links),
attributes might be differently interpreted by MATSim (e.g. link capacities are hard limits in
MATSim, vs. part of a CPR function in other tools), leading to manual edits being needed after
the initial conversion. TODO MR: check CPR and capacity constraints

Reusing demand data is typically more complex. If you have the output of an agent-based
and activity-based demand generation process, you might convert the data agent by agent to
the MATSim format. If only aggregated data in the form of origin-destination matrices, or
attraction matrices, is available, a simple conversion to complex agent plans is not possible and
the demand must be regenerated using other data sources.

24

http://www.spatialreference.org
http://matsim.org/javadoc/org/matsim/visum/package-summary.html

Chapter 6

The MATSim default scoring function (= utility
function)

Author(s) of this document: Kai Nagel

MATSim contains at its core a co-evolutionary algorithm which continuously generates new alterna-
tives (continuous choice set generation). The actual choice from that set is based on the scoring
function.

What is called “score” in MATSim is called “fitness” in evolutionary computing and “utility” in
transport economics. If you are, say, looking for a mode choice model in MATSim, this is realized
by the scoring function (this section) together with the plan selectors (Sec. 7.2).

This section contains information that pertains to the so-called “Charypar-Nagel scoring func-
tion”.

In many situations, it should be sufficient to just read Sec. ??. However, if you are working on
departure time choice, or related issues such as peak hour pricing, you need to read on beyond
that.

time

travel

workplace opening time

@home @workplace @lunch

Figure 6.1: Example of scoring function.

25

6. The MATSim default scoring function (= utility function)
6.1. Illustration

6.1 Illustration

Synthetic travelers normally receive rewards (positive utility) for performing activities, and
penalties (negative utility) for traveling.

Fig. 6.1 provides an example of a typical scoring function. Time increases to the right. The
agent first is at home, then travels to the workplace, then travels to lunch, etc. The workplace
opening time is different from the time span during which the agent is at the workplace. The
distance of the blue dots to the zero line is what the synthetic persons receive at the end of each
stage:

• a positive utility from the “home” activity

• a negative utility from travelling to work

• “nothing” from waiting until the workplace opens

• a positive utility from the “work” activity

• a negative utility from travelling to lunch

• etc.

One can observe the following:

• extending an activity increases the utility

• however, the marginal increase of utility decreases with increasing utility duration

• “doing nothing” brings neither reward nor penalty

• travelling incurrs negative utility

6.2 Mathematical version

The mathematical version of the scoring function is

V =
∑
i

(V perf
i + V late

i) +
∑
j

V leg
j .

6.2.1 Performing activities

The (normally positive) reward of performing activity i is

V perf
i = βperf · ttyp,i · ln(tperf/t0,i) for tperf ≥ t0,i ,

where

• tperf is how long the agent performed the activity,

• ttyp,i is its typical duration (e.g. 8 hours for “work”, 12 hours for “home”), and

• βperf is a slope.

• t0,i is more confusing than it looks, and has less influence than one may think, and therefore
we ignore it for the time being.

26

6. The MATSim default scoring function (= utility function)
6.2. Mathematical version

6.2.2 Arriving late

The (normally negative) penalty of arriving late is

V late
i = βlate · tlate ,

where tlate is the amount of time the agent arrived late, and βlate is a (normally negative) slope.

6.2.3 Traveling

The (normally negative) penalty of traveling is

V leg
j = βtrav,mode · ttrav + βm ·mtrav + (βdist,mode + βm · γdist,mode) · dtrav + Vtransfer

where

• ttrav is the time spent traveling

• βtrav,mode is a (normally negative or zero, see below) slope

• mtrav is the change of the monetary position caused by the travel (normally negative, e.g.
a toll or a fare)

• βm is a (normally positive) slope; this is the marginal utility of money

• dtrav is the distance of the leg

• βdist,mode is a (normally negative) slope

• γdist,mode is a (normally negative) distance cost rate

• Vtransfer is a transfer penalty e.g. incurred in public transit systems

The negative effects of distance can be included both directly as a marginal disutility and
indirectly as a distance cost rate. The first is presumably more applicable for a mode with
mostly physical exercise, such as walk, whereas the latter is presumably more applicable for a
mechanical mode, such as car. Bicycle may incur both.

The notation deliberately uses “leg” and not trip, since this allows to decompose a trip into
multiple legs, all with separate scoring contributions.

6.2.4 Utility of time as a resource (opportunity cost of time)

Most utility-based models in travel behavior research, such as typical logit mode choice models,
use partial utility functions: These utility functions do not describe the full utility of the person,
but just those parts that are affected by the choice.

Since MATSim gives a score/utility to the full day, this does not work in the same way any more.
It most importantly shows up with time, where reducing the time spent traveling does not only
lead to a reduction of the penalty of traveling, but also (barring opening time constraints) to an
extension of the activity following the travel.

The first effect is described marginally by

− ∂

∂ttrav
V leg = −βtrav,mode ,

the minus stems from the fact that we are reducing the travel time.

27

6. The MATSim default scoring function (= utility function)
6.3. Calibration of the scoring function

The second effect is described marginally by

∂

∂tperf
V perf
i = βperf · ttyp,i ·

1

tperf
≈ βperf ,

where the approximation holds when the actual activity duration tperf is close to its typical
duration, ttyp,i. This is also the justification why ttyp,i is called the typcical duration, and βperf
the marginal utility of performing.

The marginal utility of travel time savings needs to consider both:

mUTTS =

(
−βtrav,mode + βperf ·

ttyp,i
tperf

)
≈ −βtrav,mode + βperf .

In consequence, βtrav,mode is only an offset to the marginal utility of time as a resource. If
travelling is considered more pleasant than “doing nothing”, it may actually be positive. Even
when it is positive, the overall marginal utility of travel time (= −mUTTS) can still remain
negative.

The better known (marginal) value of travel time savings is obtained by dividing these values
by the marginal utility of money:

V TTS =
mUTTS

βm
=

(
βperf ·

ttyp,i
tperf

− βtrav,mode

)
βm

≈ βperf − βtrav,mode

βm
.

6.3 Calibration of the scoring function

A possible approach is as follows:1

1. Set βscale ≡ BrainExpBeta to 1.0. (This is the default.)

This is normally a positive value.

2. Set βmoney ≡ marginalUtilityOfMoney to whatever is the prefactor of your monetary
term in your mode choice logit model.

If you do not have a mode choice logit model, set to 1.0.

This is normally a positive value (since having more money normally increases utility).

3. Set βperf ≡ performing to whatever is the prefactor of car travel time in your mode
choice mode (probably with a sign change, see below).

If you do not have a mode choice logit model, set to +6.0.

This is normally a positive value (since performing an activity for more time normally
increases utility).

4. Set βtt,car ≡ traveling to 0.0.

It is important to understand this: Even if this value is set to zero, traveling by car will be
implicitly punished by the so-called opportunity cost of time: If you are traveling by car,
you cannot perform an activity, and thus you are (marginally) losing βperf . Sometimes
also called the “utility of time as a resource”.

5. Set all other marginal utilities of travel time by mode relative to the car value.

E.g. if your logit model says something like

...− 6/h · ttcar − 7/h · ttpt...,
1Different groups have different systems, this is mine, although I took ideas from Michael Balmer.

28

6. The MATSim default scoring function (= utility function)
6.4. Default values for the Charypar-Nagel scoring function

then
βperf = 6 , βtt,car = 0 , and βtt,pt = −1 .

If you do not have a mode choice logit model, set all βtt,mode ≡ travelingXxx values to
zero (i.e. same as car).

6. Set the distance cost rates monetaryDistanceCostRateXxx to plausible values if you
have them.

For the time being, this needs to be negative (which is not entirely plausible but it is the
way it is).

7. Use the alternative-specific constants Cmode ≡ constantXxx to calibrate your modal
split.

(This is, however, not completely simple: One needs to run iterations and look at their
end, and especially for modes with small shares one needs to have innovation switched off
early enough near the end of the iterations.)

If you end up having your modal split right but its distance distribution not, you probably need
to look at the different mode speeds. In our experience this works better than using the βtt,mode

for this.

Calibrating schedule-based pt currently goes beyond what can be provided here; recommenda-
tions:

• Stay away from schedule-based pt until you really understand what you are doing.

• Treat schedule-based pt as a “mechanical” model which just transports people. For this,
completely switch off mode choice.

• Make a support contract with senozon.

• Write a joint funding proposal with the MATSim group in Berlin (or in Zurich, but I
haven’t asked them). This needs to provide funding for us that is large enough to do
research and not just support.

6.4 Default values for the Charypar-Nagel scoring function

As explained here, the MATSim scoring function has, under some circumstances (actual dura-
tions near ”typical” durations”), some similarity to the Vickrey scenario.

The ”typical” parameters of the Vickrey scenario are

β̂early = −6 , β̂travel = −12 , and β̂late = −18 .

For MATSim, as explained in Sec. 6.2.4, this translates into

βperf = 6 , βtravel = −6 , and βlate = −18 .

These are the parameters that were, for a lack of estimated parameters, introduced into (the
precursor of) MATSim approximately in 2006.

These parameters are multiplied with the beta brain parameter, which can be seen as a sepa-
rately configurable logit scale parameter. A useful setting for this parameter was determined
via systematic tests concerning the stability of the iterations, see here.

As a next step, an infrastructure to compare MATSim simulations with real world traffic counts
was set up. Only after that infrastructure was there, an attempt to calibrate the MATSim
parameters from a survey was made. This is documented here, unfortunately in German. Two
results were

29

http://matsim.org/node/650
https://svn.vsp.tu-berlin.de/repos/public-svn/publications/vspwp/2004/04-03/
https://svn.vsp.tu-berlin.de/repos/public-svn/publications/vspwp/2009/09-10/

6. The MATSim default scoring function (= utility function)
6.5. Interpretation of the logarithmic ”utility of performing”

• The estimated parameters all have the same order of magnitude as the MATSim default
parameters (the ”Vickrey” parameters).

• The results with respect to traffic counts were not considerably different from before.

6.5 Interpretation of the logarithmic ”utility of performing”

The so-called ”Charypar-Nagel scoring function” is used in many MATSim studies. It is called
that way because there is an ancient paper where this scoring function was introduced.

It uses a logarithmic utility of time for activities: U = β · ttyp · ln(x/t0) . I sometimes call ttyp
the “typical duration”.

The first derivative of U is beta at the typical duration:

• dU

dx
= β · ttyp/x

• dU

dx

∣∣∣∣
x=ttyp

= β

Interpretation: marginal utility of duration at ”typical duration” is indep of activity type. (*)

The second derivative of U at the typical duration is

• d2U

dx2
= −β · ttyp/x2

• d2U

dx2

∣∣∣∣∣
x=ttyp

= −β/ttyp

An important consequence of this is that there is no separate free parameter to calibrate the
curvature (= 2nd derivative) at the typical duration: β needs to be the same across all activities,
and ttyp is given by (*).

A second consequence is that t0 is largely irrelevant. It shifts the function up and down, i.e. it
determines how much you lose if you drop an activity completely.

In the original paper (and in most of MATSim), t0 is set to ttyp · exp(−10h/ttyp) . This has
the (intended) consequence that all activities have the same utility contribution at their typical
duration:

U = β · ttyp · ln(x/ttyp/ exp(−10h/ttyp)) = β · ttyp · [ln(x/ttyp) + 10h/ttyp]

which is, at x = ttyp,
= β · ttyp · [0 + 10h/ttyp] = β · 10h .

With our usual β = 6Eu/h, this results in 60Eu per activity.

The slope at U = 0, i.e. at x = t0, is

(β · ttyp/ttyp) · exp(10h/ttyp) = β · exp(10h/ttyp)

which decreases with increasing ttyp. This means that activities with larger typical duration are
easier to drop completely.

In the end, this makes sense: Since the additional score of any activity is the same, the score
per time is smallest for activities with long typical durations. Therefore, it makes sense to drop
them first.

But practically, this is probably not desired behavior, since it would first drop the home activity
from a daily plan.

30

6. The MATSim default scoring function (= utility function)
6.6. Outlook

Overall, therefore: In my opinion, the current utility function does not work for activity dropping.

—

An alternative, never tested since activity dropping was never tested with this utl fct, would
be to recognize that U ′(t0) = β · ttyp/t0 , i.e. increasing slope with decreasing t0. That is, high
priority activities should have t0 such that ttyp/t0 is large (large slope = hard to drop). Activities
of the same priority should have t0 such that ttyp/t0 is the same between those activities. Overall,
something like

weight ∝ ttyp/t0
or

t0 ∝ ttyp/weight

where large weight implies a large importance of the activity.

This was, as said, never tried, since activity dropping was never systematically tried. It also
does not fix the problem, discussed later, that different activities might have different resistance
against making them shorter; since this is U”, this is -beta/t x with the above utl fct: activities
are shortened proportional to their typical duration.

—

To make matters worse, there is currently the convention that negative values of U are set to
zero. This is done since we need useable values for negative durations (since they may happen
at the ”stitching together” of the last to the first activity of a day), and if we give those a ”very
negative” score, then the utl at t=0 cannot be even smaller than this.

This has, however, the unfortunate consequence that the “drift direction” of the adaptive algo-
rithm, once an activity duration has gone below t0, goes to zero duration.

The above was modified in nov’13, see https://matsim.atlassian.net/browse/
MATSIM-191. It now takes the slope at t = t0 and extends it with that slope to the left.

6.6 Outlook

Outlook: What would we want for our next generation utl function? Some wishes from my
perspective:

• Curvature at typical duration can be calibrated

• Slope at U = 0 can be calibrated

• Utl function extends in meaningful way to negative durations (this would fix the arbitrary
handling that we currently employ)

In my view, a polynomial of second degree would be worth trying.2

2As usual, there are several ways to set this up. One way is to expand around the typical duration:

U(ttyp + ε) = U(ttyp) + ε · U ′(ttyp) + ε2 ∗ U ′′(ttyp)/2

or
U(x) = U(ttyp) + (x− ttyp) · U ′(ttyp) + (x− ttyp)2 ∗ U ′′(ttyp)/2

with ttyp = typical duration, U ′(ttyp) = β = marg utl at typ dur, U ′′(ttyp) = curvature at typ dur (“priority”),
and U(t x) = “base value of act” (which could be something like β · ttyp).
—
Another way (having the parabola going through (0,0)) would be

U(x) = −ax(x− c) = −ax2 + acx

U ′(x) = −2ax+ ac

prio = U ′(x = 0) = ac, i.e. c = prio/a.

β = U ′(x = ttyp) = −2attyp + prio, i.e. a = (prio− β)/2ttyp

31

https://matsim.atlassian.net/browse/MATSIM-191
https://matsim.atlassian.net/browse/MATSIM-191

6. The MATSim default scoring function (= utility function)
6.6. Outlook

There is other work (e.g. by Joh) that should be looked at.

32

Chapter 7

Strategy Modules

Author(s) of this document: Kai Nagel

Strategies describe how agent plans’ are modified and are thus an important part of MATSim’s
evolutionary optimization algorithm.

7.1 Introduction

Strategy Modules can be configured in the configuration file via the following syntax:

<module name="strategy" >
<param name="ModuleProbability_1" value="0.1" />
<param name="Module_1" value="ChangeLegMode" />
<param name="ModuleProbability_2" value="0.1" />
<param name="Module_2" value="TimeAllocationMutator" />

</module>

In the configuration file, strategy modules are numbered. Also, each module is given a weight
which determines the probability by which the course of action represented by the module is
taken. In this example, each person stands a chance of 1/2 that their transport mode is changed,
and a chance of 1/2 that their time allocation is changed. (The weights are renormalized so that
they add up to one.)

A strategy module is, in the code, always a combination of a plan selector and zero or more
strategy module elements. There are two cases, which are handled differently:

• If there are zero strategy module elements, the chosen plan is made ”selected” for the
person, and the method returns.

• If there is at least one strategy module element, the chosen plan is copied, that copy
is added to the persons’s set of plan, and the new plan is made ”selected”. That new
plan is then given to the strategy module elements for modification. These latter strategy
modules, with at least one strategy module element, are sometimes called ”innovative”.

The strategy modules that are understood by MATSim are defined in the class PlanStrategyReg-
istrar. In addition, you can program your own strategy modules; see tutorial.programming in
matsim/src/main/java for examples.

Unfortunately, the naming in the code is different from the naming in the config file:

33

http://www.matsim.org/xref/org/matsim/core/controler/PlanStrategyRegistrar.html
http://www.matsim.org/xref/org/matsim/core/controler/PlanStrategyRegistrar.html

7. Strategy Modules
7.2. Selectors

• ”strategy” in config file → StrategyManager (or ”set of strategies”) in code

• ”strategy module” in config file → PlanStrategy in code

• There is a PlanStrategyModule in the code; it corresponds to what was called strategy
module element in the description above.

It is not clear which combinations of these modules can be used together. Depending on required
features, special variants sometimes need to be used. This has not yet been sorted out. Also see
here.

7.2 Selectors

Selectors are pure plan selecting (i.e. non-innovative) strategy module.

7.2.1 BestScore. Status: works

Will select the plan with the highest score. The score will be updated after execution of the
mobsim.

Disadvantage: Will never try again plans that obtained a bad score from a fluctuation (e.g. a
rare traffic jam). It is therefore recommended to either use this in conjunction with a small
probability for RandomPlanSelector, or to use ChangeExpBeta.

7.2.2 ChangeExpBeta. Status: works. RECOMMENDED!

Choice model between plans that converges to a logit distribution.

The scores Si are taken as utilities; the betaBrain parameter from the config file is taken as the
scale parameter. As equation:

pi =
exp(βbrain ∗ Si)∑
j exp(βbrain ∗ Sj)

.

7.2.3 KeepLastSelected. Status: works

Pure plan selecting (i.e. non-innovative) strategy module.

Will keep the selected plan selected. This may be necessary since every person will have to
undergo plans selection.

7.2.4 SelectExpBeta. Status: works

Multinomial logit model choice between plans.

The scores Si are taken as utilities; the betaBrain parameter from the config file is taken as the
scale parameter. As equation:

pi =
exp(βbrain ∗ Si)∑
j exp(βbrain ∗ Sj)

.

7.2.5 SelectRandom. Status: works

Pure plan selecting (i.e. non-innovative) strategy module.

Will select a random plan.

34

http://matsim.org/node/690

7. Strategy Modules
7.3. Innovative modules

7.3 Innovative modules

Sec. 7.2 was about strategy modules which would just select between plans.

This section is about innovative modules which modify plans.

Note that innovative modules first copy a plan and then modify it, i.e. they increase the choice
set. Pure selectors do not do this.

7.3.1 ReRoute. Status: nearly indispensable
Maintainer(s): Marcel Rieser, Thibaut Dubernet

All routes of a plan are recomputed.

The module is called by inserting the following lines into the ”strategy” module:

<module name="strategy" >
<param name="ModuleProbability_XXX" value="0.1" />
<param name="Module_XXX" value="ReRoute" />
...

</module>

The corresponding configuration module unfortunately has a different name:

<module name="planscalcroute" >
<param name="beelineDistanceFactor" value="1.3" />
<param name="bikeSpeed" value="4.166666666666667" />
<param name="ptSpeedFactor" value="2.0" />
<param name="undefinedModeSpeed" value="13.88888888888889" />
<param name="walkSpeed" value="0.8333333333333333" />

</module>

This works pretty reliably for car.

It also works for other modes, as ”pseudo”-mode, in the following way:

• Travel times for these other modes are not obtained from true routing on the corresponding
network, but by some estimates. These are configured by the parameters above, but no
guarantee that they work consistently.

• The mobsim will not execute such routes on the network, but ”teleport” them.

• The scoring works quite normally, since it just takes the time from leg start to leg end by
mode.

It is possible to route such legs on the network, by using a different router.

It is not possible to ”physically” execute a leg in the mobsim if it has not been routed before.
That is, the capability of the router needs to be ≥ the capability of the mobsim. (Makes sense,
if one thinks about it.)

7.3.2 TimeAllocationMutator. Status: works

Simple module that shifts activity end times randomly. (”Good” time shifts will be selected
through the matsim plans selection mechanism.)

The maximum extent of the shifts can be configured; see the config section of the log file.

The usage of the module is configured in the “strategy” section.

7.3.3 ChangeSingleLegMode. Status: works
Maintainer(s): Marcel Rieser

35

7. Strategy Modules
7.3. Innovative modules

This replanning module randomly picks one of the plans of a person and changes the mode
of transport of one single leg. The leg is picked randomly. For changing the mode of
transport for all legs use ChangeLegMode (Sec. 7.3.4). In contrast to ChangeLegMode,
ChangeSingleLegMode allows for multiple modes in one plan. By default, the supported
modes are driving a car and using public transport. Also, this module is able to (optionally)
respect car-availability.

Note that the configuration is done by <module name="changeLegMode"> and not by
<module name="changeSingleLegMode">. The replanning module is configured like this
using the very same configuration module as ChangeLegMode:

<module name="changeLegMode">
<param name="modes" value="car,pt,bike,walk" />
<param name="ignoreCarAvailability" value="false" />

</module>

Add the module to the replanning strategy like this:

<param name="Module_X" value="ChangeSingleLegMode" />
<param name="ModuleProbability_X" value="0.1" />

Replace the ’X’ with the number you assign to this module. For some more details on the syntax
of this section, see Sec. 7.1.

By default, the simulation will handle legs with modes different from “car” by using a delayed
teleportation. If another behavior is requested (e.g. detailed simulation of public transport),
this needs to be manually configured for the simulation.

7.3.4 ChangeLegMode. Status: works
Maintainer(s): Michael Zilske

This replanning module randomly picks one of the plans of a person and changes its mode of
transport. By default, the supported modes are driving a car and using public transport. Only
one mode of transport per plan is supported. For using different modes for sub-tours on a single
day see the ”SubtourModeChoice” module. Also, this module is able to (optionally) respect
car-availability.

The replanning module is configured like this, where the value parameter lists the modes of
transport from which the module randomly chooses:

<module name="changeLegMode">
<param name="modes" value="car,pt,bike,walk" />
<param name="ignoreCarAvailability" value="false" />

</module>

Add the module to the replanning strategy like this:

<param name="Module_X" value="ChangeLegMode" />
<param name="ModuleProbability_X" value="0.1" />

Replace the ’X’ with the number you assign to this module. For some more details on the syntax
of this section, see here.

By default, the simulation will handle legs with modes different from ”car” by using a delayed
teleportation. If another behavior is requested (e.g. detailed simulation of public transport),
this needs to be manually configured for the simulation.

This module can be used with the detailed simulation of public transport by changing the line

<param name="Module_X" value="ChangeLegMode" />

to

<param name="Module_X" value="TransitChangeLegMode" />

36

http://matsim.org/node/478

7. Strategy Modules
7.3. Innovative modules

Reference

M. Rieser, D. Grether, K. Nagel;Adding mode choice to a multi-agent transport simu-
lation; TRB’09

7.3.5 SubtourModeChoice. Status: probably works
Maintainer(s): Michael Zilske

In contrast to ”ChangeLegMode”, which changes all legs of a plan to a different mode, this
module changes the modes of sub-tours separately.

For example, somebody might take the car to work, walk to lunch and back, and take the car
back home.

”chainBasedModes” means modes where a vehicle (car, bicycle, ...) is parked and in consequence
needs to be picked up again.

<module name="subtourModeChoice" >
<param name="chainBasedModes" value="car, bike" />
<param name="modes" value="car, bike, pt, walk" />

</module>

The module is called by inserting the following lines into the ”strategy” module:

<module name="strategy" >
<param name="ModuleProbability_XXX" value="0.1" />
<param name="Module_XXX" value="SubtourModeChoice" />
...

</module>

For modes other than car, travel time and travel distance are computed according to some
heuristics, which are configured in the router.

37

Chapter 8

MATSim input data (“MATSim containers”)

Sorted alphabetically.

8.1 ”counts”. Status: works for vsp and ivt

Maintenance and Questions:

A. Horni, IVT (horni at IVT.baug.ethz.ch)

Javadoc:

www.matsim.org/javadoc/org/matsim/counts/package-summary.html

Config Parameters

www.matsim.org/javadoc/org/matsim/counts/package-summary.html#counts parameters

In Brief:

MATSim can compare the simulated traffic volumes to traffic counts from the real world. Counts
is the module that allows to

• read some external file with traffic flow counts

• compare them automatically to the counts generated inside the matsim simulation

• submit the result to a kmz file which can be displayed inside google earth

There is a feature to re-scale the counts before comparison (for example if you are running the
simulations with a 10% sample).

Comparison Data

Prepare a file containing the real-world traffic counts. The file, e.g. named counts.xml, must
follow the xml-format defined in counts v1.xsd. An example of such a file can be found in
MATSim at examples/equil/counts100.xml.

The file contains the following information:

38

http://www.matsim.org/javadoc/org/matsim/counts/package-summary.html
http://www.matsim.org/javadoc/org/matsim/counts/package-summary.html#counts_parameters
http://matsim.org/files/dtd/counts_v1.xsd
http://matsim.svn.sourceforge.net/viewvc/matsim/matsim/trunk/examples/equil/counts100.xml?content-type=text%2Fplain

8. MATSim input data (“MATSim containers”)
8.2. ”facilities”. Status: ”user” version work in progress

• For each link in the network for which traffic count information is available, a count-element
must exist. The count-element specifies the link it refers to in its attribute loc id. In
addition, an optional cs id can be stored that may, for example, refer to the original id
of the counting station (for tracking back the origin of the data).

• In each count-element, 1 to 24 volume-elements can appear. Each volume-element contains
the measured traffic count (attribute ” val”) for an hour of the day (attribute ” h”,
numbered from 1 to 24; 1 = 00:00-00:59, 2 = 01:00-01:59, etc). It is not necessary that
traffic counts are available for all 24 hours of a day.

Enabling Comparison in Configuration File

Add the following lines to your configuration file:

<module name="counts">
<param name="inputCountsFile" value="/path/to/counts.xml" />
<param name="outputformat" value="txt,html,kml" />

</module>

The comparison is automatically generated every 10th iteration. Generated output is located in
the output-directory of the iteration (usually something like output/ITERS/it.10/).

Configuring the Counts Comparison

The counts-module offers the following config-parameters:

• <param name="outputformat" value="txt,html,kml" />
The output format specifies in which format the comparison results are written to disk.
It can be any combination of txt, html and kml. Multiple formats can be specified
separated by commas. txt writes simple text-tables containing the values to a file. It is
most useful to create custom graphs, e.g. in Excel. html creates a directory containing
several html files, allowing to browse the results interactively. kml creates a file to be
displayed in Google Earth. This last option only works if the correct coordinate system is
set.

• <param name="countsScaleFactor" value="1.0" />
If you only simulate a sample of your population, the simulated traffic volumes are likely
lower than the real-world traffic counts. In order to allow useful comparison, one can
specify a factor by which the simulated traffic volumes are multiplied. For example, if you
simulate a 25% sample of your full population, specify a countsScaleFactor of 4.

• <param name="distanceFilterCenterNode" value="2386" />
<param name="distanceFiler" value="30000.0" />
If the traffic counts cover a larger area than the area being simulated, the traffic counts
outside your area will result in a bad comparison. Instead of removing the traffic counts
from the counts.xml, you can specify a filter to only include some traffic counts from the
file in the comparison. To activate the filter, specify the id of a node that acts as the
center of a circle. The circle has the radius specified in ” distanceFilter”, the unit
being the same unit as the length of links (i.e. usually meters).

8.2 ”facilities”. Status: ”user” version work in progress

Maintainer: Andreas Horni

One may, or may not, use a separate file that contains ”facilities” – essentially some kind of land
use information.

39

http://www.matsim.org/node/405
http://www.matsim.org/node/405

8. MATSim input data (“MATSim containers”)
8.3. ”households”. Status: probably ready but nowhere used

The prototype for this is fairly old. But the final design is somewhat different, and has not been
fully executed. So I (kn) do not know if this can currently be used as a non-developer.

8.3 ”households”. Status: probably ready but nowhere used

Maintainer: Christoph Dobler

An option to read a households file into matsim.

I (kn) don’t know the exact status.

8.4 ”network”. Status: ok

8.5 ”network” (time dependent). Status: works for vsp

Maintenance: G. Lämmel, VSP

MATSim provides the opportunity to model time dependent aspects of the network explicitly.
For each link in the network basic parameters (i.e. freespeed, number of lanes and flow capacity)
can be varied over the time. So it is possible to model accidents or the like. One particular
area for this technique is the modeling of evacuation scenarios. In the case of an evacuation
simulation the network has time dependent attributes. For instance, large-scale inundations
or conflagrations do not cover all the endangered area at once. In MATSim this time varying
aspects are modeled as network change events. A network change event modifies parameters of
links in the network at predefined time steps. The network change events have to be provided
in a XML file to MATSim.

A sample network change event XML file could look like:

<?xml version="1.0" encoding="UTF-8"?>
<networkChangeEvents xmlns="http://www.matsim.org/files/dtd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.matsim.org/files/dtd
http://www.matsim.org/files/dtd/networkChangeEvents.xsd">}

<networkChangeEvent startTime="03:06:00">
<link refId="12487"/>
<link refId="12489"/>
<link refId="12491"/>
<freespeed type="absolute" value="0.0"/>

</networkChangeEvent>

</networkChangeEvents>

This change event would set the freespeed of the links 12487, 12489, 12491 to 0 m/s at
03:06 am (all values have to be provided in SI units). These values are valid until the next
network change event (if there is any) changes the freespeed of link 12487, 12489, 12491
again. In this example the freespeed would be set to an absolute value. It is also possible to
take the old freespeed value and multiply it by a factor. For dividing the old freespeed
value by 2, the corresponding line of the network change event XML file would look like:
<freespeed type="scaleFactor" value="0.5"/>
Besides changing the freespeed, one could also change the number of lanes:
<lane type="absolute" value="2.0"/>
Or the flow capacity:
<flowCapacity type="absolute" value="0.0"/>

To make use of the network change events one has to define it in the MATSim config file.
Therefore the following two lines have to be added in the network section of the config file:
<param name="timeVariantNetwork" value="true" />

40

8. MATSim input data (“MATSim containers”)
8.6. ”vehicles”. Status: probably reads the file correctly, but does nothing else

<param name="inputChangeEventsFile" value="path to
change events file" />

Now one has just to start the controller with this config file and the network change events
will be applied automatically.

It seems that the “absolute” version of this module was never tested (and may not work) with
freespeeds other than zero. kai, oct’10

8.6 ”vehicles”. Status: probably reads the file correctly, but does

nothing else

Maintainer: Michael Zilske (within limits of DFG/MUC project; possibly pt project)

41

Chapter 9

Synthetic realities (aka “mobsims”)

This chapter is partially deprecated, e.g.:

• “qsim” is now the default mobsim; the others need to be specifically called for in the
controler section of the config file. It is also the most used and therefore probably the
most reliable of the three variants.

9.1 ”qsim”. Status: works

If you do not put a ”qsim” section into the config file, the system will use the default ”simulation”
(look there).

”qsim” is what we use for new features such as public transit or signalsystems. ”New features”
implies ”unstable”. Use only if you have to.

Also see http://ci.matsim.org:
8080/job/MATSim_M2/javadoc/org/matsim/core/mobsim/qsim/QSim.html.

Some calibration hints, especially when the main mode is not ”car”

The (exit) flow capacity of a link is:

capacity_value_of_link / capacity_period_of network * flow_capacity_factor

where

• the capacity value of the link is given by the link entry in the network file

• the capacity period of the network is given at the beginning of the ”links” section in the
network file. Normally set to one hour

• the flow capacity factor is given in the qsim config group

The storage capacity of a link is:

(length_of_link * number_of_lanes_of_link / effective_cell_size) * storage_capacity_factor

where

• the length of the link is given by the link entry in the network file

• the number of lanes of the link is given by the link entry in the network file

42

http://ci.matsim.org:8080/job/MATSim_M2/javadoc/org/matsim/core/mobsim/qsim/QSim.html
http://ci.matsim.org:8080/job/MATSim_M2/javadoc/org/matsim/core/mobsim/qsim/QSim.html

9. Synthetic realities (aka “mobsims”)
9.1. ”qsim”. Status: works

• the effective cell size is given at the beginning of the ”links” section in the network file.
Normally set to 7.5m

• the storage capacity factor is given in the qsim config group

• There is also an effective lane width, also at the beginning of the ”links” section in the
network file, normally set to 3.75m. See below for its use.

This is most useful if you have something else than cars, for example pedestrians. Let us assume
an effective lane with of 0.4m and an effective cell size also of 0.4m. This would lead to a
maximum density of 0.4*0.4=0.16persons/m2, not totally unrealistic.

If, now, a link has an area of 200m2 and a length of 50m, then it would obtain

number_of_lanes = area / length / effective_lane_width = 200 / 50 / 0.4 = 10

Note that, in the end, the lane width is not used by the dynamics; all the meaning is subsumed
in the number of lanes. The storage capacity comes out as

storage_capacity = number_of_lanes * length / effective_cell_size

in the above example

= 10 * 50 / 0.4 = 1250 .

This is, naturally, the same as dividing the 200m2 of the link by the 0.16 persons/m2.

The effective lane width might be used by the visualization (unclear if this is the case).

9.1.1 ”qsim” (parallel version). Status: looks promising
Main author(s) of the code: C. Dobler, IVT

Maintainer(s): C. Dobler, IVT
Author(s) of this document: C. Dobler, IVT

Analysis of performance and structure of (non parallel) QueueSim shows:

• Simulation of movement on links and over nodes is most time consuming.

• Within a timestep actions on nodes and links can be simulated on parallel threads with
low additional synchronization effort.

The parallel QueueSim is based on the existing QueueSim and can be used by just adding a new
parameter to a scenario configuration file (see below).

First performance measurements show promising results.

Working paper will be published in Q2 2010.

The config option presumably is:

<module name="qsim">
...
<param name="numberOfThreads" value="5"/>

</module>

Any number of threads larger than 1 triggers the use of the parallel version.

9.1.2 ”lanes”. Status: works
Author(s) of this document: Dominik Grether

Maintainer(s): Dominik Grether
Main author(s) of the code: Dominik Grether

Make sure you read
http://svn.vsp.tu-berlin.de/repos/public-svn/publications/vspwp/2012/12-03/
before you use the lanes module to understand effects on the queue model.

43

http://svn.vsp.tu-berlin.de/repos/public-svn/publications/vspwp/2012/12-03/

9. Synthetic realities (aka “mobsims”)
9.1. ”qsim”. Status: works

Figure 9.1: Design of the parallel qsim

Configuration

To use lanes make sure that the following parameters are set

<module name="controler" >
...
<param name="enableLinkToLinkRouting" value="true" />
<param name="mobsim" value="qsim" />
...

</module>

<module name="qsim" >
...
<param name="numberOfThreads" value="1" />
...

</module>

<module name="scenario" >
...
<param name="useLanes" value="true" />
...

</module>

<module name="network" >
...
<param name="laneDefinitionsFile" value="PATH TO FILE" />
...

</module>

Capacity interpretation of lanes

In principle a lane is similar to the representation of a link in the queue model.

The (exit) flow capacity of a lane is:

capacity_value_of_lane / flow_capacity_factor

where

• the capacity value of the lane is given in the laneDefinitions v2.0.xsd compatible input file

44

9. Synthetic realities (aka “mobsims”)
9.1. ”qsim”. Status: works

• the flow capacity factor is given in the qsim config group

The storage capacity of a lane is

(length_of_lane * no_of_represented_lanes / effective_cell_size) * storage_capacity_factor

where

• the length of the lane is calculated by the value of the <startsAt meterFromLinkEnd=10 />
element within the <lane> element of the laneDefinitions v2.0.xsd file format.

– If the lane ends at the end of the link, its length is simply the meterFromLinkEnd value

– If the lane leads to other downstream lanes, its length is calculated from the distance between
the position on the link the downstream lanes start from and the meterFromLinkEnd value
of the lane.

• the number of represented lanes is the value of the number attribute of the <representedLanes>
element of the laneDefinitions v2.0.xsd file format.

• the storage capacity factor is given in the qsim config group

9.1.3 ”signalsystems”. Status: works
Main author(s) of the code: Dominik Grether

Maintainer(s): Dominik Grether

Author(s) of this document: Dominik Grether

The signal systems module provides functionality to simulate traffic lights with MATSim. It is recom-
mended to use a nightly build that is younger than 04-19-2011, i.e. revision 15081.

Have a look at the tutorial at http://matsim.org/node/732.

The starting point of the technical documentation is

• http://www.matsim.org/javadoc/org/matsim/signalsystems/package-summary.html

Note that there are links to continuative documentation at the bottom of the package-summary.html
www page.

MATSim ships with a tutorial that shows you how to set up a traffic light scenario. The network and
traffic light configuration of the turorial is shown in the slides attached to this page. The network and
code can be found in the folder tutorial/unsupported/example90TrafficLights in the nightly build. The
code examples are divided into several classes:

• CreateSimpleTrafficSignalScenario.java: Uses traffic signals without lanes and creates the traffic
lights at nodes 3, 4, 7 and 8.

• CreateTrafficSignalScenarioWithLanes.java: Uses traffic signals with lanes and creates the traffic
lights at nodes 2 and 5.

Publications using this module:

• https://svn.vsp.tu-berlin.de/repos/public-svn/publications/vspwp/2008/08-24/

• https://svn.vsp.tu-berlin.de/repos/public-svn/publications/vspwp/2011/11-12/

• https://svn.vsp.tu-berlin.de/repos/public-svn/publications/vspwp/2011/11-08/

This documentation is missing an explanation of the ”lanes” option. Please ask if you need this (separate
”lanes” for separate turning movements).

9.1.4 ”transit” (public transport). Status: works
Main author(s) of the code: Marcel Rieser

Maintainer(s): Marcel Rieser

Author(s) of this document: Marcel Rieser

45

http://matsim.org/node/732
http://www.matsim.org/javadoc/org/matsim/signalsystems/package-summary.html
https://svn.vsp.tu-berlin.de/repos/public-svn/publications/vspwp/2008/08-24/
https://svn.vsp.tu-berlin.de/repos/public-svn/publications/vspwp/2011/11-12/
https://svn.vsp.tu-berlin.de/repos/public-svn/publications/vspwp/2011/11-08/

9. Synthetic realities (aka “mobsims”)
9.2. ”JDEQSim”. Status: works

A public transport system is simulated and integrated on a fine scale with both the traffic simulation and
the behavior of the artificial population.

Agents who use transit determine a route to their destination based on the transit schedule. Transit
vehicles are moved on the road network in accordance with the traffic flow model, i.e. they may get stuck
in congestion and fail to keep their schedule. Agents getting on and off transit vehicles cause realistic
delays.

A transport mode decision model is implemented which allows agents to switch their choice of driving a
car or using transit based on the relative utility of the two modes. The disutility of travel time, which
this model takes into account, is based on actual travel times taken from the simulation.

See the tutorial. This requires quite some additional input.

Reference

M. Rieser, K. Nagel; Combined agent-based simulation of private car traffic and transit; IATBR
2009

9.2 ”JDEQSim”. Status: works
Main author(s) of the code: Rashid Waraich

Maintainer(s): Rashid Waraich

Author(s) of this document: Rashid Waraich

Overview

JDEQSim (Java Deterministic Event Driven Queue Based Simulation) has the following properties and
features:

• it is based on a discrete event simulation model

• traffic simulation is based on a queue model for streets (FIFO: first in first out)

• deadlock prevention is achieved by squeezing vehicles

• gaps generated at front of queue propagate backwards with a speed called ’gapTravelSpeed’ result-
ing in a more realistic traffic model

Usage

Insert a new module called ’JDEQSim’ into the config XML file. All parameters are optional and have
default values (shown below), never the less it could be helpful to know their meaning and physical units.

<module name="JDEQSim">
<param name="endTime" value="00:00:00" />
<param name="flowCapacityFactor" value="1.0" />
<param name="storageCapacityFactor" value="1.0" />
<param name="minimumInFlowCapacity" value="1800" />
<param name="carSize" value="7.5" />
<param name="gapTravelSpeed" value="15.0" />
<param name="squeezeTime" value="1800" />

</module>

The mobsim type now also needs to be defined in the controler section of the config file. See comments
in config dumps in logfiles.

The ’endTime’ defines the time of the last event of the simulation. If it is set to ’00:00:00’, no end time
is defined and the simulation will stop, when the last event of the simulation has been processed. The
(scaling) parameters ’flowCapacityFactor’ and ’storageCapacityFactor’ can be used as with mobSim and
have no unit. The ’minimumInFlowCapacity’ defines for all roads the minimum number of cars, which
could enter the road per hour, for the congestion less case. The ’carSize’ parameter allows to set the
size of a car in meters. The ’gapTravelSpeed’ parameter defines the speed of gaps in [m/s]. Finally the
’squeezeTime’ is used for deadlock prevention and defines, how long a car should wait at maximum for
entering the next road before deadlock prevention is turned on (unit: seconds).

46

http://matsim.org/docs/tutorials/transit

9. Synthetic realities (aka “mobsims”)
9.3. “simulation”. Status: deprecated as of sep/2014

The ’minimumInFlowCapacity’ is a parameter, which was not published in the C++ DEQSim, but only
used interally and was hardcoded to the value 1800 vehicles per hour. This value was estimated from
literature assuming that independently from the speed limit of a road the minimum interval between
two vehicles is 2 seconds (inverse of 1800 vehicles per hour). This factor does not need to be changed,
when the ’flowCapacityFactor’ is changed, as the scaling is automatically done internally. The reason for
publishing this factor is to make it possible for users to adapt this factor, if they want to use a different
minium inflow capacity based on their model estimations.

Hints

• You might consider turning on the module ’parallelEventHandling’ when using JDEQSim, as often
JDEQSim can make much better use of this module than QueueSim (as JDEQSim is faster).

• If you are getting lots of breakdowns, consider using smaller squeezeTime (e.g. 10 seconds or lower)

Requirements for the Plans XML File

• For each person the ’end time’ of the first act must be defined (’dur’ is ignored).

• For the other acts of a person either ’dur’ or ’end time’ needs to be defined

• If both ’dur’ and ’end time’ are defined, then only the one which occurs earlier is considered

Differences between MobSim and JDEQSim

• QueueSim uses a simulation approach called ’fixed-increment time advance’ instead of ’next-event
time advance’, which makes it much slower than JDEQSim for high resolution networks.1

• JDEQSim models gap travel times more realistically than QueueSim, where this feature is missing.

Further Reading

This implementation is based on the micro-simulation described in the following paper:

Charypar, D., K. Nagel and K.W. Axhausen (2007) An event-driven queue-based microsimulation of
traffic flow, Transportation Research Record, 2003, 35-40.Order here.

Some Java specific implementation aspects and performance tests of JDEQSim and parallelEventHandling
are described in the following paper:

Waraich, R., D. Charypar, M. Balmer and K.W. Axhausen (2009) Performance improvements for large
scale traffic simulation in MATSim, paper presented at the 9th Swiss Transport Research Conference,
Ascona, September 2009. Download from here.

9.3 “simulation”. Status: deprecated as of sep/2014

This was essentially the production of the queue simulation until Nov/2010. The ”qsim” was then forked
out for further development. Unfortunately, this fork was done somewhat too late, so ”simulation” is
not exactly the stable version that was used over many years, but something that is already somewhat
modified, and was not used very much after that. (Please let us know if you have problems.)

Note that you will get a ”simulation” section in the log file even if you have selected a different mobsim
(such as qsim or jdqsim).

1I am sceptic if this statement is correct: QSim goes through all active links, which means that short empty
link are also not considered by the QSim. I would instead expect that the difference is rather for long links (=
low resolution networks), in conjunction with few vehicles (e.g. small sample sizes). kai, oct’13

47

http://trb.metapress.com/content/j2118065485r4611/?p=4f63e25a261d48d99eeebea19b494e24&pi=0
http://www.ivt.ethz.ch/vpl/publications/reports/ab565.pdf

9. Synthetic realities (aka “mobsims”)
9.4. External mobsim. Status: unknown

9.4 External mobsim. Status: unknown
Main author(s) of the code: Marcel Rieser

Author(s) of this document: Kai Nagel

There used to be an option to start an external mobsim. This still seems to be there but the syntax is a
bit awkward:

<module name="controler" >
...
<param name="mobsim" value="null" />

</module>
<module name="simulation" >

<param name="externalExe" value="<path-to-executable>" />
</module>

I.e. you need to specify that you are not using the (queue)Simulation, but then set a parameter inside
the (queue)Simulation config block.

I (kn, oct’13) cannot say if this is still working.

48

Chapter 10

Other configurable modules

Modules are loosely defined by their corresponding entry in the config file.

They are also sorted in the same sequence (which is done by the machine, not by content).

Note that individual config options are often explained inside the config section of the log file.

Config file modules that just define files/directories are, as a tendency, not explained here.Note that
strategy modules (such as ReRoute, Planomat) are described in a separate section.

Maintainers are mentioned as far as possible, but they are not responsible for answering arbitrary service
requests.

10.1 ”global”. Status: indispensable
Maintainer(s): Marcel Rieser

”Global” information. Arguably should be merged with ”controler” section.

10.2 ”controler”. Status: indispensable
Main author(s) of the code: Marcel Rieser

Maintainer(s): Marcel Rieser

Author(s) of this document: Marcel Rieser

Javadoc

www.matsim.org/javadoc/org/matsim/core/controler/package-summary.html

Config Parameters

www.matsim.org/javadoc/org/matsim/core/controler/package-summary.html#controler parameters

In Brief

Central module to run matsim. Specifies, for example, the number of iterations.

10.3 ”parallelEventHandling”. Status: works for ivt and vsp
Main author(s) of the code: Rashid Waraich

Maintainer(s): Rashid Waraich

49

http://www.matsim.org/javadoc/org/matsim/core/controler/package-summary.html
http://www.matsim.org/javadoc/org/matsim/core/controler/package-summary.html#controler_parameters

10. Other configurable modules
10.4. ”planCalcScore”. Status: nearly indispensible

see details here.

10.4 ”planCalcScore”. Status: nearly indispensible
Maintainer(s): Marcel Rieser

This module contains the definitions for the utility function.

Some help for it should be in the tutorials.

There is also some description in the ”scoring function” section of the documentation.

10.5 ”strategy”. Status: indispensable
Maintainer(s): Marcel Rieser

See here.

10.6 ”travelTimeCalculator”. Status: nearly indispensable
Maintainer(s): Marcel Rieser

”router” and ”travelTimeCalculator” are separate in matsim, so that they can be configured separately.
They refer to each other, though.

10.7 ”vspExperimental”. Status: used by VSP
Main author(s) of the code: Kai Nagel

Maintainer(s): Kai Nagel

Author(s) of this document: Kai Nagel

This section defines switches that are used at VSP or when collaborating with VSP. There are experi-
mental and may we withdrawn without notice.

50

http://matsim.org/node/238
http://matsim.org/node/478

Chapter 11

Visualization and analysis

There are two visualizers available for MATSim. The original, open source visualizer is OTFVis, which
is a MATSim extension. It requires current OpenGL drivers. The source code is available, so you can
add your own information visualization code. On the other hand, there is currently little support for it
from our part.

Then there is Via, a commercial visualizer developed by Senozon. It has more features, a better UI, and
it is more stable. On the other hand, it visualizes output files from simulation runs, whereas OTFVis
runs in the same VM as MATSim and can peek into the running simulation.

The supported way of programming your own data analysis or visualization code is to analyze MATSim
output in the form of Events, either reading in the events.xml file, or writing an EventHandler and
receiving Events programmatically.

11.1 Senozon Via

Via can be obtained from the Senozon website. While the application is commercial, a limited version
is available freely from the website. A brief introduction to using Senozon Via is part of the ”Learning
MATSim in 8 Lessons” tutorial in the Getting Started lesson.

Via is able to visualize most of MATSim’s data (network, agent plans, transit schedule, facilities, counts)
along additional data (e.g. shape files, GPS traces). It allows to analyze and visualize the outcome of
MATSim simulations by loading the generated events-file.

On the relation between Senozon (a private company), Senzon Via (a commercial software), MATSim
(an open source project/software) and MATSim OTFVis (an open source software):

• Historically, MATSim is open source. An important reason for this was that multiple teams
contribute, and we wanted to make progress rather than sorting out the intellectual property.

• However, this community is unable to provide support for any and all requests that may come up.
As a result, the commercial company Senozon was founded by two long-time MATSim developers,
which provides commercial support for such situations.

• Senozon also helps significantly with the development and maintenance of the MATSim core. The
open source community and Senozon have a shared interest in a functional and robust MATSim
core: Both our academic research and Senozon’s commercial success depend on this.

• In addition, Senozon has developed the MATSim visualization and analysis software Via. OTFVis
remains available but maintenance is limited. In particular, please understand that we are unable
to provide support for specific hardware configurations or specific query requests.

11.2 Events analysis

In order to write MATSim events handlers, some amount of Java programming is necessary. Material
can thus found in the api-users section of the documentation, see here.

51

http://matsim.org/docs/extensions/otfvis
http://senozon.com/products/via
http://www.matsim.org/docs/tutorials/8lessons/getting-started
http://www.senzon.com/
http://senozon.com/products/via
http://www.matsim.org/node/17

Chapter 12

Specific applications

Author(s) of this document: Kai Nagel

A discussion of policy measures that can be investigated with matsim is under matsim.org/policy-
measures . It is not in the user section but in the developer section of the documentation since, at
this point, many of those measures need additional coding.

Clearly, something like adding or removing lanes or links can be investigated without any coding. Ex-
amples for use cases and policy measures that can be investigated without coding can be found in the
following.

12.1 MATSim as tool for dynamic traffic assigment (DTA)

A typical MATSim use case is the use as dynamic traffic assignment (DTA) tool. In DTA, trips are
given by departure time, departure location, and destination, and the task of DTA is to find routes. The
task is typically solved by iterating between network loading and routing; possible outcomes are a Nash
equilibrium (no traveller can improve its score/utility by switching to a different route) or SUE (so-called
stochastic user equilibrium).

In order to use MATSim for this, one needs to convert each trip into a pseudo-person. I call this “pseudo”-
person since it does not correspond to a real person; rather, it is probably that multiple trips belong to
one person. The input file would look something like

<population>
<person>

<plan>
<act type="dummy" x="<dp loc x>" y="<dp loc y>" endTime="<dp time>" />
<act type="dummy" x="<dest x>" y="<dest y>" />

</plan>
</person>
<person>
...
</population>

where

dummy arbitrary activity type, see below
<dp time> starting time of trip
<dp loc x> x coordinate of departure location

<dest x> x coordinate of destination

Alternatively, one can use link ids for departure locations and destinations:

<population>
<person>

<plan>
<act type="dummy" link="<link id>" endTime="<dp time>" />
<act type="dummy" link="<link id>" x="<dest x>" y="<dest y>" />

</plan>

52

http://matsim.org/policy-measures
http://matsim.org/policy-measures

12. Specific applications
12.2. Including one’s own upstream module

</person>
<person>
...
</population>

Note that MATSim trips start on links, not at nodes. You somehow have to convert this.

This file, together with the appropriate network file and an appropriate config file, will serve as input to
MATSim. The config file will look something like

<module name="network" >
<param name="inputNetworkFile" value="..." />

</module>
<module name="plans" >

<param name="inputPlansFile" value="..." />
</module>
<module name="controler" >

<param name="firstIteration" value="0" />
<param name="lastIteration" value="100" />

</module>
<module name="planCalcScore" >

<param name="activityType_0" value="dummy" />
<!-- (same activity type as used in plans file) -->

</module>
<module name="strategy" >

<param name="Module_1" value="ChangeExpBeta" />
<param name="ModuleProbability_1" value="0.9" />

<param name="Module_2" value="ReRoute" />
<param name="ModuleProbability_2" value="0.1" />

</module>

The overall calling syntax is something like

java -cp matsim.jar -Xmx2000m org.matsim.run.Controler config.xml

There is a corresponding example in recent releases; it should run (in the release directory) with

java -cp matsim-0.5.0.jar org.matsim.run.Controler examples/tutorial/config/example5-config.xml

-Xmx2000m needs to be added when the scenario gets larger.

12.2 Including one’s own upstream module

There is the possibility to call one’s own upstream plans modification module. The config is something
like

<module name="strategy" >
<param name="Module_1" value="ChangeExpBeta" />
<param name="ModuleProbability_1" value="0.9" />

<param name="Module_2" value="ReRoute" />
<param name="ModuleProbability_2" value="0.1" />

<param name="ModuleProbability_3" value="0.1" />
<param name="ModuleExePath_3" value="<some executable>" />

</module>

where

<some executable> is the (unix) call of some external executable, e.g. a shell script

The external executable will be called with a config file as an argument. The config file will contain, e.g.,
the iteration number, the full path name to the input plans file, the full path name to the output plans
file, and the full path name to the (txt) events file.1 The input plans file are the plans that come from
MATSim. The output plans is the place where the modified plans file should be written to The events
are the information on which the external module can base its computations.

1If you would prefer the xml events here, please let us know, this is easy to change, in particular when someone
else tries it out.

53

12. Specific applications
12.3. MATSim for network loading only

12.3 MATSim for network loading only

Maybe one wants to use MATSim only for the network loading. In this case, the plans file needs to look
something like

<population>
<person>

<plan>
<act type="dummy" x="<dp loc x>" y="<dp loc y>" endTime="<dp time>" />
<leg mode="car">

<route> 18 24 45 </route>
</leg>
<act type="dummy" x="<dest x>" y="<dest y>" />

</plan>
</person>
<person>
...
</population>

where the route section needs to contain the route information. [[chk plans v5 fmt kai]]

The config file will be something like

<module name="network" >
<param name="inputNetworkFile" value="..." />

</module>
<module name="plans" >

<param name="inputPlansFile" value="..." />
</module>
<module name="controler" >

<param name="firstIteration" value="0" />
<param name="lastIteration" value="0" />

</module>

<!-- don’t know if the following is necessary: -->
<module name="planCalcScore" >

<param name="activityType_0" value="dummy" />
<!-- (same activity type as used in plans file) -->

</module>

The overall calling syntax is again something like (*)

java -cp matsim.jar -Xmx2000m org.matsim.run.controler config.xml

There are two obvious options how this can be used:

• There is some external mechanics, e.g. some external script, which keeps calling MATSim from the
command line as in (*), and then takes the output events in order to update plans.

• One uses the MATSim iteration mechanics, as described in Sec. 12.2, to call an external module,
which also modifies routes.

54

Appendices

55

Appendix A

System Requirements

Author(s) of this document: Marcel Rieser

Software

MATSim runs on any machine that has the Java Platform, Standard Edition (SE) 6 or newer installed
(commonly referred to as ”Java 6” or newer).

Hardware

Smaller scenarios (e.g. the examples included in the tutorials, 5%- or 10%-samples of large scenarios)
can be run on common desktop or laptop computers.

To simulate large scenarios (several hundreds of thousands of agents, networks with ten-thousands of
links and nodes), high end computers with a large amount of memory (RAM) may be required to keep
the agents’ data in memory. The description of agents’ plans and the simulation output can take several
Gigabytes of hard disk space. To store the data for several scenarios and / or output of simulation runs,
large amounts of disk space may thus be needed. MATSim can read and write compressed files to reduce
the amount of required disk space, but this aspect still shouldn’t be underestimated. MATSim can make
use of multiple CPUs or CPU cores that share common memory (”shared memory machine”) during the
replanning-phase.

Running large scenarios for a high number of iterations can take several hours, up to a few days. Thus it
may be advisable to have a dedicated machine running MATSim if you plan to simulate many different
scenarios.

Recommendations

• To try MATSim out:
Any modern laptop or desktop computer with 1GB RAM and 500MB free disk space should be
suitable.

• To run a large scenario (100 000+ agents, networks with 50 000+ links):
A high-end desktop computer with at least 4GB RAM and 200 GB free disk space.

• To run many large scenarios, so they can be compared against each other:
Multiple high-end desktop computers or servers with at least 4GB RAM that share a common
storage disk (at least 1TB).

The high numbers for free disk space result from the fact that the simulation writes quite a lot of data to
the disk during a run. For analysis, usually only the last version of the data is required, and data from
earlier iterations can be deleted, freeing space up again.

56

http://java.sun.com/javase/downloads/index.jsp

A. System Requirements

What we use

Currently, we simulate most of our scenarios on machines with 16 or 32 GB RAM, having 2 dual- or quad-
core processors. The amount of memory allows us to run 2 scenarios at the same time on the machines.
A RAID array is used as storage backend, offering about 4 TB of hard disk space. This huge disk space
is able to store the results of hundreds of simulations and will suit us for the next few years. Computers
and RAID are regular components used in data centers, nowadays available at moderate prices.

57

http://en.wikipedia.org/wiki/RAID

	Introduction
	What is MATSim?
	Features
	About this Guide

	Overview
	The Major Stages of a MATSim Simulation
	The Optimization Process
	Mobility Simulation Events
	Customizability

	Terminology
	Choice set ``plan set'' of an agent
	Choice set generation Time mutation/re-route/... ; "innovation"
	Choice set generation, choice replanning
	Convergence learning rate
	Mu (logit model scaling factor) beta_brain
	Multinomial logit ExpBetaPlanSelector
	Network loading mobsim, mobility simulation, physical simulation
	Stationary relaxed
	Utility score

	Running MATSim
	Prerequisites
	Using MATSim from a Command Line

	Building New Scenarios
	Typical Input Data Sets
	Configuration
	Network
	Demand
	Public Transport
	Counts

	Units and Conventions Used
	Units
	Conventions

	Coordinate Systems
	Preparing Your Data in the Right Coordinate System
	Telling MATSim about Your Coordinate System

	A Minimum Example
	Reusing Existing Data

	The MATSim default scoring function (= utility function)
	Illustration
	Mathematical version
	Performing activities
	Arriving late
	Traveling
	Utility of time as a resource (opportunity cost of time)

	Calibration of the scoring function
	Default values for the Charypar-Nagel scoring function
	Interpretation of the logarithmic "utility of performing"
	Outlook

	Strategy Modules
	Introduction
	Selectors
	BestScore. Status: works
	ChangeExpBeta. Status: works. RECOMMENDED!
	KeepLastSelected. Status: works
	SelectExpBeta. Status: works
	SelectRandom. Status: works

	Innovative modules
	ReRoute. Status: nearly indispensable
	TimeAllocationMutator. Status: works
	ChangeSingleLegMode. Status: works
	ChangeLegMode. Status: works
	SubtourModeChoice. Status: probably works

	MATSim input data (``MATSim containers'')
	"counts". Status: works for vsp and ivt
	"facilities". Status: "user" version work in progress
	"households". Status: probably ready but nowhere used
	"network". Status: ok
	"network" (time dependent). Status: works for vsp
	"vehicles". Status: probably reads the file correctly, but does nothing else

	Synthetic realities (aka ``mobsims'')
	"qsim". Status: works
	"qsim" (parallel version). Status: looks promising
	"lanes". Status: works
	"signalsystems". Status: works
	"transit" (public transport). Status: works

	"JDEQSim". Status: works
	``simulation''. Status: deprecated as of sep/2014
	External mobsim. Status: unknown

	Other configurable modules
	"global". Status: indispensable
	"controler". Status: indispensable
	"parallelEventHandling". Status: works for ivt and vsp
	"planCalcScore". Status: nearly indispensible
	"strategy". Status: indispensable
	"travelTimeCalculator". Status: nearly indispensable
	"vspExperimental". Status: used by VSP

	Visualization and analysis
	Senozon Via
	Events analysis

	Specific applications
	MATSim as tool for dynamic traffic assigment (DTA)
	Including one's own upstream module
	MATSim for network loading only

	Appendices
	System Requirements

