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Abstract5

The purpose of this work is to investigate replacing travel diaries with sets of call6

detail records (CDRs) as inputs for an agent-oriented traffic simulation. We pro-7

pose constructing an agent population directly from a CDR dataset and fusing it8

with link volume counts to reduce spatio-temporal uncertainty and correct for un-9

derrepresented traffic segments. The problem of finding a set of travel plans which10

realizes a set of CDR trajectories and is consistent with a set of link volume counts11

is rephrased in terms of calibrating a choice model. This enables us to make use of12

an existing calibration scheme for agent-oriented simulations. We demonstrate our13

approach by illustrative scenarios with synthetic data.14

1 Introduction15

Traffic simulations build a virtual model for the traffic system. These models can reach16

from simple sketch planning tools to highly complex simulation systems. One class of17

complex simulation systems are microscopic simulation models, where all elements of18

the simulation such as travelers, vehicles, links, intersections, signals, etc. are resolved19

individually.20

Such simulation systems have two important inputs: A description of the transport21

network (sometimes called the supply side), and a description of the demand. The22

traditional demand description is a – possibly time-dependent – origin-destination (OD)23

matrix. Some approaches use trip tables, i.e. lists of triples, each one consisting of24

starting time, starting location, and destination location (e.g. DynusT, 2014). Yet again25

others – and these are the ones that will be considered in this paper – use full daily26

travel plans.27

The arguably most straightforward way to generate initial daily travel plans is to take28

them from a trip diary survey. Trip diaries typically record, for a given day, all trips of29

a specific individual, including locations, starting and ending times, modes of transport,30

and purposes of the activities between the trips. This can be used directly as an input31

for simulations which are based on travel plans. The process will typically look as follows32

(Balmer et al., 2006):33

1. Convert all trip information of each person into a record of the following type:34

Listing 1: Structure of a plan
<plan>35

<activity type="home" location="..." endTime="07:00" />36

<leg mode="car" />37

<activity type="work" ... />38

...39

</plan>40
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The location can either be given as a coordinate or as a reference to a network41

link.42

2. Have the simulation system fill in routes, e.g. routes that are fastest in the empty43

network.44

3. Perform a network loading by executing all plans simultaneously in a microscopic45

traffic flow simulation.46

This gives an initial set of plans together with an initial network loading, from where on47

the simulation can iteratively evolve. A choice set of alternative plans is dynamically48

generated over the iterations, each one by mutating a previous plan in one or more choice49

dimensions, such as departure time or route. In consequence, all aspects of the initial50

plan that are not modified over the iterations need to be realistic from the start. Agents51

then perform a choice between their plans, typically according to a logit model. The52

initial plan, the free choice dimensions, and the parameters of the utility model which53

determines the choice probabilities together describe the choice distribution.54

However, trip diaries are not always available. In such a situation, one can, for example,55

use behavioral models to generate initial plans (e.g. Kitamura, 1988; Bowman et al.,56

1998; Pendyala, 2004; Arentze and Timmermans, 2005; Vovsha and Bradley, 2006; Bhat57

et al., 2008; Balmer, 2007; Ziemke et al., 2014), or derive them from trip based models58

(e.g. Balmer et al., 2005; Neumann et al., 2014). An alternative approach, in line with59

“big data” or “smart city” considerations, is to use cell phone datasets, in particular call60

detail records (CDRs).61

Many investigations have used cell phone data in studies of human mobility (e.g. González62

et al., 2008; Candia et al., 2008). A frequent approach is to estimate origin/destination63

flows (Iqbal et al., 2014; Calabrese et al., 2011; Gur et al., 2009), but it is also promising64

to reconstruct locations, activity types, and transport modes from the data (Dash et al.,65

2014; Wang et al., 2010; Chen et al., 2014), i.e. to estimate a set of annotated trajectories66

from a set of raw phone traces. A driver for such an approach is that the result can67

be used to replace in part the traditional trip diary survey, thus either saving money or68

extending the sample size. The resulting activity plans can then be used in the same69

way as the traditional trip diaries as input to a travel plan based simulation.70

This two-step method is, however, not the only possible approach to the problem of71

initial plan generation from CDRs. In particular, the reconstruction of locations, activ-72

ity types and transport modes in general comes with uncertainties, implying that the73

constructed activity chains are not the only ones consistent with the data. Furthermore,74

calling behavior varies among individuals, and may correlate with movement behavior75

(Wesolowski et al., 2013). This indicates that it may be more appropriate to carry76

these uncertainties into the downstream processes, for example by constructing multiple77

activity chains which are all consistent with a CDR trace.78

Zilske and Nagel (2013) investigate an early version of such an approach, where it was79

simply assumed that callers leave an activity location exactly at the time when the last80

call at some location occurs, and travel directly to the location where the next call is81

registered. The approach is attractive, since one can build a traffic model based on travel82

chains using easily available road network data (e.g. from OpenStreetMap) together with83

CDRs, which are also easily available in certain situations. In particular, the approach84

promises to build initial chain-based models in areas where no other data is available,85

e.g. in developing countries.86

However, for that investigation no additional data to either verify nor further calibrate87

the approach was available. For verification, Zilske and Nagel (2014) take a calibrated88
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activity-oriented traffic model of the Berlin region, extract synthetic CDR data under89

various assumed calling patterns, and investigate the difference between the resulting90

synthetic traffic and the ground truth. The main result is that even under generous91

assumptions about the frequency of calls and even assuming a full sample, this “lower92

bound” approach loses so much car mileage that it must be compensated for.93

The present paper investigates in how far additional data, here in the form of anonymous94

traffic counts, can be used to bring such a simulation closer to reality. The motivation95

is that anonymous traffic counts either already exist or are fairly easy to procure even96

in adverse situations.97

The approach here will be based on the MATSim transport microsimulation and the98

Cadyts calibration scheme (Flötteröd, 2009; Flötteröd et al., 2011). The rest of this paper99

is organized as follows: First, MATSim is introduced. Then Cadyts and its interaction100

with MATSim is described, and how the two models together can be used to scale and101

reweigh an initial set of travel plans using link travel counts. Given this framework, we102

then discuss replacing travel plans with CDRs as the initial demand specification. Two103

scenarios are used to generate results: one is a simple illustrative loop scenario, and one104

is derived from a full activity-oriented assignment model for Berlin. The experimental105

studies are concerned in particular with the question in how far two segments which106

differ both in terms of travel behavior and in terms of calling behavior can be fused into107

a correct estimate of traffic state over time. The paper is concluded by a discussion and108

a summary.109

2 MATSim and Cadyts110

2.1 MATSim111

MATSim combines a traffic demand model based on individual daily travel plans with112

a microscopic traffic flow simulation to iteratively calculate a dynamic user equilibrium.113

Its demand model consists of a population of agents114

A1, . . . , AN (1)

Each agent has a mutable set of plans which can be understood as a choice set. The115

options are identical in the fixed dimensions (typically, the chain of activities with type116

and location), and vary in the open dimensions (typically, routes, modes of transport,117

and departure times). Every plan is assigned a mutable score, Vi, initialized to +∞.118

Often, the score can be interpreted as utility.119

Initial plans are auto-completed by the simulation as much as possible; for example,120

links are assigned to coordinates, and shortest path routes are computed if no routes are121

in the initial plans. Then, the following steps are iterated:122

• Each agent chooses from its plan set according to a random utility model, where123

the choice distribution follows P (i) = exp(Vi)/
∑
j exp(Vj).124

• The chosen plans are loaded onto the network.125

• For every chosen plan, Vi is re-calculated as a function of the plan’s performance126

during the network loading (e.g. valuing travel time negatively) and assigned to127

that plan.128

• Each agent in a random subset of the population adds a new plan to its plan set129

(identical to its other plans in the fixed choice dimensions, and distinct in the130
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open dimensions) and removing an existing one if its plan set is now greater than131

a specified maximum.132

The simulation is run until the variables on which the utility perception depends (e.g.133

dynamic link travel times) have converged to a steady state, and hence the choice dis-134

tribution has become stationary. At that point, plan set mutation is ceased, so that135

the choice distribution now strictly follows the perceived utilities, and the simulation is136

continued until it converges a second time.137

2.2 Cadyts138

Cadyts is a calibration scheme which, when applied to MATSim and a vector of link139

traffic counts y, works by directing the plan choice probabilities of the whole agent pop-140

ulation towards choices more consistent with the counts. This is achieved by calculating141

an offset to the score Vi of each chosen plan, iteration by iteration. Under certain addi-142

tional assumptions, e.g. about the error distribution of the measurements, the adjusted143

choice distribution can be shown to approximate the posterior choice distribution given y144

(Flötteröd and Liu, 2010; Flötteröd et al., 2011). It follows145

P (i|y) =
exp

(
Vi +

∑
ak∼i

yak−qak
σ2
ak

)
∑
j exp

(
Vj +

∑
ak∼j

yak−qak
σ2
ak

) (2)

where yak is the traffic count measurement on link a in time interval k, σ2ak is that146

measurement’s error variance, and qak is the simulated value corresponding to that147

measurement. The condition ak ∼ i denotes that following plan i crosses link a in time148

window k.149

Intuitively, the offset is calculated based on how much this choice of the plan contributes150

to the whole traffic system fitting to the traffic counts. Plans which traverse links where151

flow is underestimated are favored and vice versa, and σ denotes the trust level that is152

put into the measurement – high trust levels lead to small values of σ and thus to large153

correction terms.154

This calibration can be seen as reducing uncertainty about behavior in the open choice155

dimensions, but it can also be applied to adjust overall travel demand (Flötteröd and Liu,156

2010), if each agent is given an additional, synthetic plan to do nothing, disappearing157

from the scenario.158

3 From call detail records to a population of agents159

A CDR dataset consists of records of the form160

Tn := [(pn, t1, c1), . . . , (pn, tK , cK)] (3)

where pn is a person identifier, tk are timestamps, and ck are cell tower identifiers. Fig. 1161

shows some examples of the spatial information that is available at this point.162

It is now assumed that this is the only available data for initial demand generation.163

For the present study, each trace Tn is converted into a travel plan in a straightforward164

way: Calls are converted into activities. Several calls in the same cell without a call in165

a different cell between them are fused, that is, they are converted into a single activity166

that starts no later than the first call and ends no earlier than the last call in the same167

cell. No additional activities are added. Activities are connected by trips (only the car168

mode is considered here). Congestion is disregarded. It is assumed that fastest routes169
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Figure 1: Sightings for three different travellers.

Figure 2: Initial plans for three different travellers.

on the empty network are taken. The only degree of freedom considered here is the170

departure time from each activity location, which can be chosen anywhere between the171

time of the last sighting at location i and the latest possible departure time to make it172

to the next sighting location i+ 1 in time.173
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A spatial visualization of the result can be found in Fig. 2.174

Structurally, the plan at this point looks like175

Listing 2: Structure of a plan derived from a phone trace
<plan>176

<activity type="sighting" location="..." endTime="..." />177

<leg mode="car"/>178

<activity type="sighting" ... />179

...180

</plan>181

Compared to Listing 1, there are the following differences:182

• There are no activity types ("sighting" is used as a generic label).183

• The activity end time is randomly drawn within the time constraints.184

• Sightings recorded while travelling will result in additional activities on the way.185

• The location corresponds to the phone cell. At this point, phone cells are identified186

with links.187

Clearly, this is not a behavioral plan, but rather a possible trajectory generated from a188

phone trace. In the same vein, its activities are rather waypoints, which can, but do not189

have to, be annotated with true behavioral activity types.190

The term plan is not used here to denote a behavioral concept, but the same as the191

genotype in evolutionary computation, and as such it just needs to contain a description192

that can be interpreted by the downstream modules (Goldberg, 1989; Russel and Norvig,193

2010), in this case by the traffic simulation.194

In the following, the terms “activity” and “plan” will be used like this.195

The full agent population is constructed by expanding the population generated from196

traces. Specifically, we create C agents An1, . . . , AnC per trace Tn. The agents are197

initially equipped with a random realization of the trace Tn, and over the iterations (cf.198

section 2.1), they create new random realizations, varying in time structure. In addition,199

they are given a special plan which, if chosen, lets them stay at home. Agents choosing200

the stay-at-home option are considered to be removing themselves from the simulation.201

The resulting agent population is202

A11, . . . , A1C , . . . , AN1, . . . ANC (4)

The expanded population is used as a buffer, which the calibrator uses to steer the203

demand towards matching the known link volume counts. The utility function is con-204

structed so that, for each agent, the probability of choosing one of its travel plans is205

p0nc = 1/C, and the probability of choosing the stay-at-home-plan is 1 − p0nc. In conse-206

quence, the prior expected behavior of the simulation is that the population size is N ,207

and on average one instance of each trace is realized.208

By calculating offsets to this prior utility of plans, the calibrator simultaneously adjusts209

the population size, the weights assigned to the individual traces, and the temporal210

realization of the trajectories.211

This results in a distribution of individual choices among possible trajectories and stay-212

at-home plans. In particular, we obtain posterior travel probabilities pnc. The sum over213

the posterior travel probabilities of the agents associated with trace Tn, wn =
∑C
c=1 pnc, is214

the expected number of instances of trace Tn to appear in any iteration of the calibrated215
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scenario after achieving stationarity, and (w1, . . . , wN ) is a weight vector with which the216

CDR dataset has effectively been resampled, a common concept in synthetic population217

generation, where a survey population is adjusted to fit exogeneously given marginal218

sums (e.g. Bar-Gera et al. (2009), for a survey see Müller and Axhausen (2010)), whose219

role is in the present case assumed by the traffic counts.220

The population expansion described here is a particularly straight-forward way of imple-221

menting uncertainty about the CDR sample in the MATSim-Cadyts-ensemble, because222

it reduces the estimation of weights, as well as which temporal realization of a CDR223

trace to use, to individual agent decisions.224

The expansion factor C is selected by the modeller. It needs to be large if highly225

underestimated demand segments are to be compensated for, so that there is a sufficient226

number of individuals in the population to draw from.227

4 Experiments228

4.1 Synthetic CDRs229

In order to have full control over the ground truth, for the present study the CDR data230

is – as in the preceding study (Zilske and Nagel, 2014) – synthetically generated from231

a simulated scenario. A full implementation of MATSim is used as a synthetic ground-232

truth scenario. The output of this model is a set of complete descriptions of mobility233

behavior of an agent population with labeled activities and space-time trajectories on234

the level of network links. Note that additional kinds of measurements can be taken235

from this output, in particular link traffic counts.236

For this work, a plug-in for MATSim was developed for the purpose of obtaining synthetic237

CDRs from such a scenario. The software takes two additional inputs:238

• A cell coverage, which partitions the simulated geographic area into mobile phone239

cells.240

• A mobile phone usage model. The software exploits the benefits of an agent-241

oriented simulation framework, allowing for different population segments with242

different calling habits.243

In every timestep, every agent gets to decide whether or not to make a phone call.244

When a phone call is made, the framework locates the agent within the cell coverage,245

and records a CDR. The first output of this step is a set of CDRs as specified in equation246

3. The second output is a set of link traffic counts yak, the number of vehicles which247

have passed link a in time window k.248

This is considered the available data for traffic modeling in the hypothetical scenario,249

and simulation runs are based only on this data.250

The output of each iteration of the simulation is of the same form as the ground truth251

scenario. Any of its properties can be compared to the ground truth scenario to assess252

the approximation quality. In fact, since every iteration is a draw from the combined253

choice distributions of all agents, properties of the full statistical distribution of these254

draws can be used to compare with the ground truth.255

This framework allows studying this and other methods for constructing demand models256

from CDRs, and how much information from CDRs and link traffic counts is needed to257

re-approximate the state of the traffic system over time in the ground truth scenario to258

which degree. It isolates these questions from the different question of how good the259

traffic simulation model itself is at approximating reality.260

7



4.2 Illustrative loop scenario261

4.2.1 Scenario description262

Consider a simple network consisting of only one home facility, one work facility, only263

one route connecting each location with the other, and a population which is divided264

into two segments of 1000 individuals each. One segment departs for work at 7am, and265

one at 9am. The entire population leaves work and heads home at 5pm. All individuals266

make a phone call and produce a CDR precisely at the time they leave and arrive at267

their home location. Most individuals also use their phone at work and place calls when268

they arrive and when they leave, but members of the early-rising population segment do269

so only with a probability of 70%. This condition is designed to reflect the real-world270

case where a certain calling behavior is associated with certain kinds of travel behavior.271

In the traffic demand reconstructed directly from the resulting CDRs, the non-calling272

sub-segment of the early-rising population will effectively stay at home, because their273

travel plan is constructed from an undersampled trace without a sighting at the work274

location. It does not contain a trip. This leads to an initial underestimation of the275

traffic demand from the home location to the work location at 7am to 700 travelling276

individuals, and from the work location to the home location to 1700 individuals.277

4.2.2 Results278

Once adding a traffic measurement with the reference volume of y = 1000 during hour 8279

(ranging from 7:00:00 to 7:59:59), the observed population segment which leaves at 7am is280

scaled up by the calibrator to fit that number, compensating for those unobserved early-281

risers who do not use their phone at work (Fig. 3 top left). The validation measurement282

in the opposite direction at hour 18 follows (Fig. 3 top right): The approach is capable283

of improving the simulation away from the measurement because of the all-day time284

structure in the phone data.285

If y = 2000 at hour 18 (and no measurement at hour 8) is chosen as the calibration286

measurement instead (Fig. 3 bottom row), meaning that only the total number of trav-287

ellers is known but nothing from which relative population weights could follow, both288

population segments are scaled up proportionally.289

4.3 Berlin scenario290

4.3.1 Scenario description291

As a more realistic scenario, a travel demand model generated from real data is used. It292

is created from a 1998 household survey which contains complete trip diaries from one293

specific day of 2% of the Berlin population. The survey is not publicly available, but294

has been used before (Scheiner, 2005; Moyo Oliveros and Nagel, 2012, 2013). It contains295

activity locations, activity types, activity start and end times, and modes of transport296

for each trip. It does not contain any route information. For the present study, only297

individuals who only travel by car are considered, which produces 18 377 individuals.298

The network contains 61 920 links, of which a random 5% are chosen to collect volume299

counts in hourly time windows. Disregarding the spatial uncertainty of sightings, each300

link is associated with its own phone cell. We also disregard capacity constraints in301

the traffic network, i.e. for the present study there is no traffic congestion. Every agent302

chooses fastest routes with respect to free-speed travel time. A total travelled distance303

of about 878 000 km is obtained.304

Agents place calls randomly at an individual daily call rate. Deliberately constructing305

a strong correlation between phone usage and travel behavior, we partition the agent306
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Figure 3: Simulated link volume over iterations, at hours 8, 10 and 18. The red lines,
dashed and solid, denote the real value. The calibration target (solid red lines) is the
measurement at hour 8 (top) or hour 18 (bottom).

population into two segments called workers and non-workers, where a worker is defined307

as an individual stating at least one work-related activity in the survey. The traffic308

demand from these population segments is markedly distinct (Fig. 6 top vs. bottom,309

solid lines). The call rate of the workers is fixed at 50 calls per day (frequent callers),310

and that of the non-workers at 5 calls per day (infrequent callers).311

The original plans underlying Fig. 1 are shown in Fig. 4. As one can see, the orange312

plan is a plan that contains a work activity, thus corresponding to a frequent caller (see313

Fig. 1). While the original plan gives the traveller the freedom of many routes around314

and through the city, the sightings (Fig. 1) effectively pin one of the trips to the northern315

route. The two plans in blue do not contain a work activity, and are in consequence not316

sampled frequently. Many activities and related travel are missed (compare Fig. 4 with317

Fig. 1). In fact, the light blue CDR trace does not even result in a round trip any more.318

4.3.2 Results319

With any mobile phone data set in hand, the modeller has to decide on a threshold how320

many calls per day are necessary for a trace so that it can be meaningfully included in321

the model input.322

Using the binary-distributed synthetic data, we compare two options:323

• Leave the sparse traces out of the simulation. This effectively means accepting a324

lower sample size and possibly introducing a bias towards a traffic pattern associ-325
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Figure 4: The original plans underlying Fig. 1.

ated with frequent callers.326

• Include the sparse traces even though their spatio-temporal resolution is such that327

they contain only limited information.328

Fig. 5 shows network load over time for the initial situation where the population con-329

structed from the available traces is simulated without adjusted weights, for the final330

estimation where the weights are adjusted towards fitting the link counts, and for the331

ground truth.332

The first scenario shows the full effect of removing non-workers from the sample. In the333

initial estimation, there is too little traffic, but especially the load during mid-day is too334

small. In the final estimation, this gap is partly compensated for. In turn, the morning335

peak is overestimated, because there are only well-sampled traces of workers, which are336

mostly morning commuters, to draw from: In order to reduce the underprediction of337

mid-day load, the morning peak load has to be overestimated.338

In the scenario where the traces of the non-workers, sampled at a low rate, are included,339

the final estimation has a closer fit to the ground truth (Fig. 5 bottom). In the initial340

estimation, the demand share generated from the undersampled non-worker traces is341

not only too low, but diffused over time (Fig. 6 bottom): Possible trajectories through342

few sightings have more temporal freedom than those through many sightings. In the343

final estimation, while still too low, its time structure more closely resembles the ground344

truth: The temporal uncertainty of the CDR data is reduced by taking the link counts345

into account. Intuitively, the sparsely sampled trajectories are fitted to that share of the346

measured volumes which is not accounted for by well-sampled trajectories. The overall347

final demand estimation is better because it now contains this time-adjusted non-worker348

demand as a component.349

Considering the all-day travel distance distribution (Fig. 7) reveals that it is distorted350

in both cases.351
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Figure 5: Network load over time of day where one demand segment (”non-workers”)
is missing (Scenario 1, top) or represented by undersampled trajectories (Scenario 2,
bottom).
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Figure 6: Network load over time of day for Scenario 2, separated by demand segments.

In the first scenario, where the infrequent callers are excluded, the number of individuals352

travelling little is underestimated. There are at least two independent causes for this.353

The first is that workers travel more than non-workers, and traces of non-workers are354

missing by construction. Secondly, the estimation process itself is in this case biased355
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Figure 7: All-day travel distance distribution where sparse traces were removed (Scenario
1, top) or kept (Scenario 2, bottom).

towards far-travelling individuals: When the initial demand is too low overall, the con-356

tribution of most links to the Cadyts score correction (equation 2) is positive, so the357

utility offset of a plan is the larger the more links it crosses. In consequence, far-travelling358

agents will on average end up with a higher probability of travelling. This effect is ab-359

sent when the initial demand is a priori scaled to the known change in sample size. But360

an alternative interpretation of this experiment is that a population segment is missing361

from the sample altogether, without this fact or indeed the true size of the travelling362

population being known to the modeller, so the initial demand was left unchanged here.363

In the second scenario, where the infrequent callers are now included, the number of364

individuals travelling little is overestimated. Since the initial overall travelled distance365

is much closer to the truth, the calibration signal and hence the bias towards longer366

trips introduced by the plan correction is not as strong. It is dominated by an effect in367

the opposite direction which is created by the plan creation itself: Since the travelled368

distance of each plan is by construction at the lower bound of what is consistent with369

the sightings, the distance distribution is shifted to the left.370

5 Discussion371

The starting point for this paper was the assumption that within CDR data, some traces372

may have a sufficient number of data points for full trajectory reconstruction, while373

others may not. In this situation, the statistically worst case is that the frequent callers374

belong to a different demand segment than the infrequent callers. The computational375

experiments show that even in this situation, a data fusion with anonymous traffic counts376
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enriches the information in such a way that the resulting traffic is much closer to reality.377

That is, even trajectories with too few calls for reconstruction are useful as building378

material for a data fusion procedure.379

Call rates While average phone call rates of 50 calls per day are certainly not realistic,380

these cases are still worth considering even outside of illustrative scenarios, because in381

practice, data points similar to CDRs need not be caused by actual phone calls, but can382

also appear as a consequence of, for instance, internet usage or recorded cell handovers.383

We consider the terms CDR, call rate, and cell, to be interchangeable with corresponding384

concepts in other current or future technologies which produce trajectories.385

Additional or other measurements Cadyts is a quite flexible tool, allowing to adjust386

against arbitrary measurements that can be extracted from the simulation. This works387

since it takes each plan’s contribution to each individual measurement from the simula-388

tion and builds an internal model around this. One alternative data source that comes389

to mind are link speed measurements, often also provided from cell phone data, but, be-390

cause of fewer privacy restrictions, often available in much larger quantities. If available,391

it is also possible to add aggregate data to the process, such as the distribution of daily392

travel distance. These can be directly fused into the model, taking the same role as the393

link counts.394

Activity types The approach discussed in the present paper does not add activity types395

to the trajectories. It is clear that this would be desirable, e.g. for planning purposes.396

Much work exists to attach activity types to trajectories (e.g. Chen et al., 2014). If397

such work is available for a certain scenario, its output can just be directly used as398

input to MATSim, including its Cadyts calibration approach (Flötteröd et al., 2012). If,399

however, such work is not available for a given scenario, it is our experience that such400

information reconstruction algorithms need further adaptation to a specific scenario.401

With our Ivory Coast scenario (Zilske and Nagel, 2013) in mind, we target scenarios402

where such additional information is not available.403

Uncertainty in interpretation Also, our philosophy here is to retain the uncertainty that404

is in the data as long as possible throughout the process. For that reason, we just keep405

the actual sightings as fixed, while everything else in a plan is open to adjustment. An406

upstream method that assigns activity types or transport modes to sightings could be put407

into the simulation loop, enhancing the simple plan generation algorithm described in408

section 3, to generate possible activity chains consistent with the trace (cf. Ziemke et al.,409

2014, for a similar approach). Optimally, these would come together with levels of cer-410

tainty or probabilities per activity chain from the perspective of the upstream algorithm,411

which can be used as initial plan choice probabilities. Cadyts would then concentrate412

on the most probable combination of plans consistent with the measurements.413

Sightings “en route” Such an approach would make better use of sightings recorded414

during travel. Recall that in the present approach, sightings are identified with possible415

activity locations. If, say, a traveller made phone calls right at the end of the previous416

and at the beginning of the following true activity, this leaves no time for the additional417

activity corresponding to that en route sighting, and it will just serve as an additional418

constraint in the sense that the routing has to go through it. On the other hand, if there419

are no tight constraints caused by the previous and following sightings, then without420

additional information in fact we do not know if a certain sighting was generated en421

route or not. Again, an upstream method could generate multiple options here, possibly422

again with prior weights attached, and Cadyts would select the one most consistent with423

the measurements. Additionally, one could, if available, feed aggregated distributions424
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such as the number of trips per person, into Cadyts as additional measurement.425

Spatial uncertainty The present paper assumes that each CDR can be unequivocally426

assigned to a link. Clearly, this it not true in reality; first, phone cells are larger than427

this, and second, CDRs may wander between cells without the phone actually physically428

moving (Chen et al., 2014). Our intention is to address this in future work in the same429

way as the other uncertainties, i.e. to assume that we actually do not know the exact430

position of each call. Again, optimally an upstream algorithm would provide us with431

multiple plans which are all consistent with the data, and the Cadyts approach could432

then be used to select between them according to additional measurements such as traffic433

counts.434

Behavioral priors In general, also behavioral priors can be added. In fact, the original435

formulation of Cadyts (Flötteröd et al., 2011) does exactly that: It assumes that there436

is a behavioral prior which results in prior choice probabilities, and Cadyts computes437

posterior probabilities after the measurements (also cf. Eq. (2)). For the present paper,438

the weight of the behavioral prior was essentially set to zero. Once it will be possible439

to have activity types, as discussed earlier, then those behavioral priors, in the shape440

of all-day scoring or utility functions, can also be used, assuming that sufficient data is441

available to estimate such utility functions for the scenario under consideration. This442

could then even include the effect of, say, joint activities (Dubernet and Axhausen, 2013)443

or car sharing (Ciari et al., 2013).444

Sensitivity to policy The output of the described process is the estimation of a traffic445

state over time. It could be used, for instance, to identify users of a certain link or446

intersection, to compute emissions (Kickhöfer and Nagel, 2011), or as embedding scenario447

for a human-in-the-loop simulation. It is, at this point, clearly not useful as an input to448

policy analysis. The only behavioral investment is that drivers use fastest paths between449

sightings, and even that cannot be used as a choice dimension since some of the routes450

are pinned to certain links by sightings on these links obtained while driving. A step451

towards a behavioral model, reactive to changes in the environment and thus to policy452

measures, would be, again, to make draws from a larger space of feasible activity-trip-453

chains when realizing a CDR trace. This would work towards the goal in two ways at454

once: Agents with many calls would no longer be pinned to their routes by sightings455

while travelling, allowing them to re-route around disturbances, and the properties of456

the expanded population would not automatically be biased by the call rate distribution457

of the CDR input towards less travel activity than in reality.458

6 Summary459

We formulated the problem of fusing CDRs with traffic counts as a reduction to the cali-460

bration of individual travel choice probabilities in an iterated dynamic travel assignment461

scheme. The approach thus inherits known properties from the mobility simulation and462

from the calibrator.463

A simple loop scenario illustrates our main argument for using an agent-based demand464

model even in the absence of activity diaries, with CDRs as an alternative input. CDR465

traces have an all-day structure, which a trip-based demand model does not capture.466

In the illustrative scenario, only one link count is needed to influence traffic in both467

directions.468

The Berlin scenario illustrates two cases:469

• When a large population segment is missing or removed from the CDR sample470

because of its low daily call rate, the remaining sample is scaled up and reweighed471
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in the process to fit link counts.472

• When the same population segment is kept in the sample, represented by sparse473

traces generated by only 5 calls per day, the process is able to reduce the resulting474

temporal diffusion by producing trajectories which are more consistent with the475

traffic counts. This case yields a better fit to the real traffic flow.476

Overall, the results demonstrate that even a heavily biased cell phone dataset, together477

with anonymous traffic measurements, can be used to re-construct the traffic state over478

time quite well. Any algorithm which attaches behavioral interpretation to a CDR trace479

can be used in the plan generation step to enrich the model.480
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