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Abstract

The paper presents research on large-scale microscopic simulation of taxi services in Berlin based on floating car data collected
by the Taxi Berlin fleet, the largest taxi association in Germany’s capital. Firstly, Berlin’s taxi market is shortly described and
the demand and supply data obtained from FCD analysed. Secondly, the online taxi dispatching problem formulation for this
specific case is given, followed by the definition of two real-time rule-based heuristics used to dispatch taxis dynamically within
the simulation. Finally, the simulation setup in MATSim is described, and the results obtained with both heuristics are analysed
and compared in terms of dispatching performance, proving the effectiveness of the second strategy at different demand scales.
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1. Introduction

Simulation is an indispensable tool in order to analyse and optimize complex services with dynamically changing
demand and supply, all embedded into a dynamic environment. In the case of taxi services in large cities, a reliable
simulation approach must model all these elements both at the microscopic level of detail and in the large-scale
(regional, or at least city-wide) scope. The high dynamism of taxi demand is a result of almost all requests being
immediate trips with an unspecified destination. For example, partially independent taxi drivers who can choose
which rank to wait at, reject serving a request, or decide upon their working hours, account for the limited control
over the stochastic supply side. Finally, urban traffic, being the environment for taxi services, implies stochastic
time-dependent travel times.

Once the simulation model is ready, analysis and optimization may begin, for instance, by changing the dispatch-
ing algorithm, scaling demand and supply, or relocating taxi ranks. As far as the authors know, out of many taxi
simulation models >**3_ the microscopic ones, though limited in scope, were created for Singapore ' and Mielec,
Poland®’ only. This paper presents a wide-range microscopic model covering the city of Berlin and the neighbour-
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Fig. 1: Hourly request submissions and active taxicabs

ing Brandenburg region, which is then used to assess the performance of two real-time rule-based taxi dispatching
strategies.

2. Taxi supply and demand in Berlin

Currently, the Berlin taxi market consists of some 7,600 vehicles licensed to operate in the city. They are organised
in 3000 taxi companies employing roughly 18,000 taxi drivers. To model Berlin’s taxi supply and demand, in this
paper, trajectories of Berlin’s biggest radio taxi operator, Taxi Berlin, are used. Overall, they have some 5,700 vehicles
working within their range, most of them equipped with GPS trackers that submit their current location and occupation
status in a flexible interval (depending on the vehicle’s occupation status, but at least once every 60 seconds). These
data are, among others, mainly used for travel time prediction in Berlin®. With the current occupation status of the
vehicle also being submitted, a zone-based matrix of demand for each hour can be generated and used for the demand
side of the simulation. On the supply side only the amount of vehicles logged into the system at each second is known,
not the actual length of each vehicle or driver shift. This is due to data anonymization by regular reassignment of IDs
to vehicles. Furthermore, the amount of vehicles per zone in each occupation status is known in intervals of five
minutes.

For the simulation purposes, the supply and demand data of one week (15 April - 22 April 2014) were provided,
of which the timeframe between Tuesday 4:00 am and Wednesday 4:00 am has been picked for simulation'. Figure 1
shows the amount of taxis and requests served during the timeframe investigated. Overall, 27,376 trips were registered.
The vehicle supply adjusts to the demand for taxi trips. There is a strong morning peak followed by two somewhat
smaller peaks in the afternoon and evening.

The extracted taxi demand is aggregated into 518 zones. Within the city boundaries, these zones correspond to
the city quarters defined by the city administration as Lebensweltlich orientierte Riume (LOR)°. In the outskirts,
community boundaries are used instead. The zone with the highest amount of trips starting or ending is the one

' Around 4am, taxi supply and demand is the lowest, making it an intuitive breakpoint between days
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Fig. 2: Spatial distribution of daily taxi demand Fig. 3: Average amount of idle taxis per zone

around Berlin’s major airport, Tegel. Within 24 hours, 3,799 trips to and from the airport were registered. Most other
trips are either ending or beginning in the city centre. Figure 2 shows the origin of taxi trips within the city centre. Idle
vehicles tend to aggregate at taxi ranks. Within Berlin, there are roughly 400 of them in operation. Figure 3 provides
an overview of rank locations and the average number of idle taxis in each zone. Also in this figure, the area around
Tegel airport is clearly notable for the highest amount of idle vehicles. Despite a relatively high demand, waiting
times for drivers of several hours are not uncommon there. A detailed FCD analysis is also available '°.

3. Online taxi dispatching

The formulation of the dispatching process was derived from an earlier formulation used for optimizing taxi ser-
vices in Mielec, Poland''2, The description below covers immediate requests with unknown destinations, i.e. cus-
tomers want taxis to arrive as soon as possible and they specify the destination after being picked up, which corre-
sponds to the overwhelming majority of requests in Berlin. However, this type of request is more challenging in terms
of online optimization since the provision of the demand data is maximally postponed. As for the supply side, the
formulation includes time windows, which in comparison to the original model, add complexity.

Let N = {1,...,n} be the set of taxi requests (customers). The following sequence of events is related to serving

each request i € N and is illustrated in Figure 4. Taxi customer i calls a taxi (event Ef', time 7$*!") specifying the

pickup location, p;. Since only immediate requests are considered, the customer’s desired departure time is T?ep = Tfa".
A selected taxi is dispatched towards p; at time T?‘Sp (event E ?'Sp), and immediately after arrival, the pickup starts (event
Efwko ?mko E?mkl f.mkl), he or she specifies the destination, d;,
rop0

,time 7; ). Once the passenger is picked up (event , time 7

and the taxi sets out immediately. After reaching d;, the dropoff begins (event E? , time T?mpo). Once the passenger

“P!time 7{"P"), the taxi is ready to serve another request. Due to the stochasticity of taxi dispatching,

. de; dis read ickO ickl _dropO dropl
times 75, 0P, 7P, 1Y AT PN TP and 1P

therefore subject to change.

Request i € N is open if it either has not been planned yet, T?isP is not set, or is planned to be served in the future,
disp

i

gets out (£
are estimated until the respective events take place, and are

> 7% where 7" denotes the current time. Let L be the list of all open requests ordered by T?ep. Each request i
is inserted into L on submission, Efa”, and removed from L on taxi dispatch, E?ISP.

Let M = {1,...,m} be the set of vehicles. Each vehicle k € M is available at location o, within the time window
[ak, b). Tt is assumed that vehicles do not cruise and remain at the dropoff location of the last served customer. When
no request has been assigned to k, oy is k’s initial location and qy, is the time the taxi starts operating. Otherwise, oy, is
the dropoff location, d;, and a; is the time the dropoff ends, T?mpl, of the last request assigned to k, i. Since d; remains
unknown till T?mkl, both oy and a; are unknown temporarily as well, with the restriction that a¢; > 7", Let M' € M
be the set of all idle vehicles; vehicle k € M is idle if a; < " < by.

T
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Fig. 4: A taxi driver’s schedule and a passenger’s plan

4. Rule-based heuristics

Two heuristic dispatching strategies were used to manage the fleet of taxis. Neither strategy uses information about
the destinations of the busy vehicles to predict their future availability; thus, the choice of taxis to be dispatched is
limited to idle taxis, M".

The first heuristic, called nearest-idle-taxi, mimics the approach used by many taxi companies. It always serves
awaiting requests in the FIFO order by dispatching the nearest idle taxi, k* € M, to the first request in L, L[1]. By
default, the nearest taxi is defined according to the travel time criterion, that is

k* = argmin t,ng (), (1)
keM!

where t]?i(t), k € M,i € N is the travel time from oy to p;, given the departure time, ¢.
The strategy reacts to the following events:

o E —if M' # @, vehicle k* is dispatched to request i
. E?mpl —if L # (), vehicle k, after having completed request i, is dispatched to request L[1]

This strategy does not look into the future to predict the availability of busy taxis and create schedules?. Therefore,
even distance-based measures, such as straight-line distance, can be applied to determine k*. Being very simple, it
allows fast, real-time taxi dispatching. However, the main drawback is its poor performance under high demand; when
|M1| — 0, k* may be on the opposite side of a city.

To address this problem, a demand-supply balancing strategy was used. It classifies the system state into the
two following mutually-excluding categories: oversupply (M' # @ A L = ()) and undersupply (M' = @ A L # ()
and handles these two situations differently. In the former case, the requests are processed as in the first algorithm,
whereas in the latter case, vehicle k is dispatched to the nearest awaiting request, i € L. Given the time-based distance
measure, k is assigned to serve i* such that

i* = argminz; (7""). )
i€l ’

The demand-supply balancing strategy reacts to the following events:

2 Therefore, in the previous publications, the authors referred to it as the no-scheduling strategy (NOS).
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. Ef*‘“ — if M' # @, vehicle k* is dispatched to request i
. E?mp " if L # (), vehicle k, after having completed request i, is dispatched to request i*
The demand-supply balancing strategy was based on the assignment rules for scheduling of automated guided

vehicles studied by Egbelu and Tanchoco'. They proposed order-initiated and vehicle-initiated assignment rules.
The former are applied upon request submission (here, Eica”), whereas the latter are executed upon request completion

(here, E{"P"). Under low demand, the balancing strategy serves requests immediately as they arrive (request-initiated
planning). However, in an overloaded system, the focus is shifted from the FIFO processing order to maximizing
vehicle utilization by dispatching vehicles that have become idle to the nearest awaiting requests (vehicle-initiated
planning). This results in increased throughput, and consequently, reduces the amount of time passengers await taxis.

5. Simulation setup

MATSim ' was used as the simulation platform. In general, it allows for running agent-based transport simulations,
and its primary purpose is activity-based travel demand modelling. Due to the growing set of extensions, MATSim’s
core functionality can be extended to serve many purposes.

To simulate taxis, the DVRP (Dynamic Vehicle Routing Problem) extension'> was used. The vehicle routing
model implemented in this extension covers a wide range of problem types, offering such features as one-to-one and
one-to-many (many-to-one) topologies, multiple depots, dynamic requests, non-homogeneous requests and vehicles,
time windows, time-dependent stochastic travel times and costs, network-based routing, and vehicle monitoring and
diversion.

The DVRP extension provides the connection between MATSim and the optimization algorithm. It listens to
simulation events, monitors the state of simulation, binds driver behaviour to the schedules computed by the optimizer
and coordinates interaction between drivers, passengers and dispatchers. It also facilitates optimization by providing
the functionality of least-cost path/tree search. For a detailed description of the DVRP extension, the reader is referred
to!.

15

For the simulation in MATSim, a network based on the OpenStreetMap data is used. It represents the road network
in Berlin and the surrounding area of Brandenburg. The network consists of 11,353 nodes and 24,350 links. Using car
traffic based on an earlier simulation ', time-specific link travel times were generated without having to simulate all
background traffic. This keeps the simulation runtime reasonable, as only taxi traffic must be considered. The extracted
demand data from FCD were converted into plans for MATSim agents. Locations for origins and destinations within
the zones were randomly distributed as were the actual departure times within each hour. This resulted in 27,386
agent plans with exactly one taxi trip each. With this demand, the overall stress on the system is low. However, to
accommodate a comparably high share of black-market rides in Berlin (30-40% according to estimations)!”, a scaling
factor of 1.5 for the taxi demand seems reasonable. Moreover, taxi demand may be much higher due to bad weather
conditions, public transport breakdowns, trade fairs or other events. For example, during a recent strike (15 October
2014) in the overground railway system, our data show the amount of taxi trips doubled during the afternoon peak
with the taxi supply only increasing by about 20%. On that particular day, a scaling factor for the original demand of
2.5 would be appropriate. To depicture all these fluctuations, the authors decided to scale up the demand step-wise up
to 5.0 while keeping the original spatiotemporal distribution of requests.

6. Results

Out of several different performance measures proposed in®, the following two are analysed in this section:

. . _ pickO
o the average passenger waiting time, Tw = Xen(7;  —

pick0

i

d . .
T, “P)/n, representing the customers’ perspective

e the average pickup trip time, Tp = ) ;cn(T T;ﬁsP) /n, representing the drivers’ perspective

Computational experiments were carried out 20 times for each individual setting (i.e. both the strategy and demand
scaling). Figure 5 presents the results obtained at different levels of demand. Up to the scaling factor of 2.5 both
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Fig. 5: Average waiting time, T, and pickup trip time, Tp, as a function of demand level for the nearest-idle-taxi and demand-supply-balancing
strategies

approaches have comparable performance in terms of Tw and Tp. This is because at low demand only the request-
initiated assignments are carried out, i.e. the nearest idle taxi is dispatched to each newly submitted request (the same
behaviour in both strategies). However, when the system is overloaded, only vehicle-initiated planning takes place,
which leads to significant differences in the performance of both methods, as the balancing strategy uses a different
rule and tries to minimize the pickup trip times instead of serving requests in the FIFO order. As a result, the nearest-
idle-taxi strategy fails for the tripled demand (7w increases to almost 50 minutes), whereas the balancing approach
efficiently handles even the quadrupled demand (7w is below 10 minutes).

In general, under high load, the first strategy is extremely myopic as it dispatches vehicles only by looking at the
first request in the queue, even though the selected vehicle could be utilized more effectively if dispatched to another
request. On the other hand, the other strategy takes into account all awaiting requests and sends the idle vehicle to the
closest request which reduces 7p and consequently increases the system throughput. Since ‘rfa” = T?EP < T?lsp ,1 €N,
Tp is a component of Ty, thus, achieving relatively small Tp generally leads to smaller Tyw. This relation may be
observed in Figure 5, where keeping Tp below 5 minutes enables the balancing strategy to serve much higher demand.
Interestingly, Tp drops for the demand scaling factor of 5.0 and is expected even further as the demand grows. This
is caused by the fact that as demand grows, L lengthens, hence the distance to the nearest open request drops on
average. Moreover, the balancing strategy instantaneously switches between the dispatching rules, even during short
interleaving periods of undersupply and oversupply; hence, reducing the risk of getting into larger undersupply.

7. Conclusions

Dispatching a fleet of over 5,000 vehicles in Germany’s capital city, Berlin, in order to serve several dozens of
thousands of requests daily, poses a challenging optimization problem. The problem is inherently dynamic, as almost
all requests are immediate and without pre-specified destinations.

By means of large-scale microscopic simulation run in MATSim, and the dynamic routing functionality offered by
the DVRP module, a realistic simulation model of the taxi services in Berlin was developed. This allowed a detailed
benchmarking of two rule-based dispatching strategies to be carried out, out of which the second was able to efficiently
serve both low and high demand.
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Combining both simplicity and efficiency, rule-based dispatching is a very attractive and, thus, overwhelmingly

popular approach for management of a fleet of taxis in the real world. However, their apparent disadvantage is the
limited planning horizon; the selected decision is the best among all possible single moves, without considering
potential sequences of moves. Therefore, the authors plan to use the microscopic taxi model of Berlin to study in
detail other, more sophisticated dispatching algorithms, the best of which could be later applied to managing a real

fleet.
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