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Abstract1

The ongoing urbanization process all around the globe is likely to increase negative externali-2

ties which already today can amount to a significant share of a country’s GDP (Gross Domestic3

Product). In order to mitigate the resulting efficiency losses, different strategies need to be4

developed which aim at behavioral changes of individuals. This study presents an approach5

to correct the inefficiencies emerging from two externalities, namely vehicle emissions and con-6

gestion. It investigates and compares separate pricing schemes for emissions and congestion,7

and subsequently proposes a joint internalization of both externalities while considering het-8

erogeneity in individual attributes and choice behavior. The proposed approach is applied to9

a real-world scenario of the Munich metropolitan area in Germany. On the aggregated level,10

the results indicate that pricing one externality has positive impacts on the other externality.11

Furthermore, efficiency gains are found to be most important for the joint internalization ap-12

proach. However, the necessary price levels need to be carefully determined as simply combining13

the average toll levels from the isolated pricing schemes would yield over-pricing. Additionally,14

the possible efficiency gains highly depend on the implicit price elasticity of demand, which15

again, depends on the availability of substitutes to car travel. On the disaggregated level, the16

results show that pricing emissions moves individuals to shorter distance routes, whereas pricing17

congestion pushes towards longer distance routes. That is, despite the correlation between the18

two externalities, isolated pricing strategies influence route choice behavior by tendency into19

opposite directions.20

Keywords: Air Pollution, Congestion, Vehicle Emissions, Road Pricing, Combined Pricing,21

Internalization22
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1 Introduction23

Road congestion is a widespread phenomenon across the world and in particular present in metropoli-24

tan areas where travel demand is high and capacities are naturally limited by scarce urban road25

space. The expected increase in traffic mainly resulting from urbanization processes is likely to26

increase negative externalities1 such as road congestion, damage to the environment, and human27

health (see, e.g., Weinreich et al., 1998; Maibach et al., 2008).28

The presence of negative externalities is known to result in inefficiencies unless the underly-29

ing adverse effects are internalized, i.e. considered in people’s mobility decisions. The potential30

efficiency gains amount to a considerable share of a country’s GDP (Gross Domestic Product).31

For example, the total external costs by motorized traffic in Beijing is estimated to range between32

7.5% and 15% of the city’s GDP (Creutzig and He, 2009). The total external costs in the EU-2733

is estimated to amount approximately 373 billion EUR annually – about 3% of the union’s GDP34

(Becker et al., 2012).35

One option in order to reduce the efficiency loss is to aim for behavioral changes of people.36

From the economic literature, it is known that internalizing external effects by a tax can change37

behavior and, thus, increase welfare for society (Pigou, 1920). In the literature, only few studies38

applied this principle for a simultaneous internalization of emission and congestion externalities39

(see, e.g. Wang et al., 2014; Proost and van Dender, 2001). These studies follow an analytical40

approach with static traffic flows. The former study uses a small test network and the latter uses a41

large-scale scenario of Brussels in Belgium. To the knowledge of the authors, there exist no study42

attempting a joint internalization of emission and congestion externalities in an agent-based model43

with dynamic traffic flows and activity-based demand.44

This paper attempts to close this gap. In a first step, it investigates the effect of congestion45

pricing on emission levels, and the effect of emission pricing on congestion levels. For that purpose,46

the marginal congestion pricing approach by Kaddoura and Kickhöfer (2014) and the marginal47

emission pricing approach by Kickhöfer and Nagel (2013) are applied to the a real word scenario48

of the Munich metropolitan area in Germany. In a second step, the present study combines the49

two pricing approaches from above in a combined pricing scenario to investigate the effects of the50

correlation between congestion and emission externalities on toll levels and agent behavior. The51

hypothesis is that combining the toll levels obtained from the separate pricing schemes would yield52

1 ‘Externality’ refers in this paper to ‘negative externality’ unless otherwise stated.
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toll levels above those of the economic optimum.53

Please note that this paper is an extension of a recent study by Agarwal and Kickhöfer (forth-54

coming). In contrast to that study, the present paper uses an improved scenario setup with more55

realistic price elasticities of demand. Furthermore, it provides much more detailed and disaggre-56

gated analyses of behavioral changes by different subpopulations, as well as a proper economic57

evaluation of the different pricing schemes.58

The remainder of the paper is organized as follows: Sec. 2 describes the transport simulation59

framework which is used for the study, and presents the methodology of internalizing external60

congestion and emission effects within that framework. Sec. 3 introduces the real-world scenario61

of Munich and the different pricing schemes considered in the present study. Sec. 4 analyses the62

different pricing schemes and their impact on agents’ behavior, economic performance and spatial63

effects. Finally, Sec. 5 concludes the study by summarizing the main findings and by identifying64

venues for further research.65

2 Methodology66

2.1 MATSim67

The multi-agent transport simulation framework MATSim2 is used for all simulation runs (see,68

e.g., Balmer et al., 2005, 2009; Raney and Nagel, 2004, 2006, for detailed information). MATSim69

is a framework to simulate transport systems in large-scale scenarios. Required inputs are network70

data, daily plans of individual travelers, and various configuration parameters. Every individual71

in the simulation framework is considered as an agent who learns and adapts within an iterative72

process that is composed of following three steps:73

1. Plans Execution: All selected plans of agents are executed simultaneously in the physical74

environment. In this study, a state-of-the-art queuing model (Gawron, 1998; Cetin et al.,75

2003) is used.76

2. Plans Evaluation: To compare various plans, executed plans are evaluated using a utility77

function. A plan’s utility (Splan) is represented by:78

Splan =
N−1∑
q=0

Sact,q +
N−1∑
q=0

Strav,mode(q) (1)

2 See www.matsim.org
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where N is the number of activities, Sact,q is the utility from performing activity q and79

Strav,mode(q) is the (typically negative) utility for traveling to activity q. In short, the utility80

earned for performing an activity is given by3
81

Sact,q = βdur · ttyp,q · ln(tdur,q/t0,q) (2)

where tdur,q and ttyp,q are actual and typical durations of activity q, respectively. βdur is the82

marginal utility of activity duration. t0,q is the minimal duration, which essentially has no83

effect as long as dropping activities is not allowed. The simplified mode-specific utility from84

traveling by car or public transport (PT) following Nagel et al. (in preparation) is described85

by:86

Scar(q) = βtrav,car(q) · ttrav,q + βm · γd,car(q) · dtrav,q

SPT (q) = CPT (q) + βtrav,PT (q) · ttrav,q + βm · γd,PT (q) · dtrav,q
(3)

where ttrav,q and dtrav,q is the travel time and distance between activity q and q + 1. Cpt(q)87

is the Alternative Specific Constant (ASC) of public transport (PT). As will be illustrated88

in Sec. 3.2, the present study defines two different PT modes, and in consequence two PT89

constants: one for urban travelers and another one for commuters and reverse commuters.90

All behavioral parameters and the resulting Values of Travel Time Savings (VTTS) are listed91

in Tab. 1.92

3. Re-planning: For each iteration, a new plan is generated for a predefined share of agents93

by modifying an existing plan. These modifications are performed by software modules that94

can be defined arbitrarily. In the present study, route choice and mode choice modules are95

used.96

By repeatedly performing the steps from above, an iterative learning cycle is initiated which finally97

results in stabilized simulation outputs.98

2.2 Emission pricing99

The emission modeling tool was developed by Hülsmann et al. (2011) and further improved and100

extended by Kickhöfer et al. (2013). The tool is coupled with the MATSim framework. Currently,101

emissions are calculated for free flow and stop and go traffic states. Emissions consist of cold102

3 See Charypar and Nagel (2005) and Nagel et al. (in preparation), Sec. 3.2, for a more detailed description.
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Table 1: Behavioral parameters.

Parameter Value Unit

Source: Kickhöfer (2014)

Marginal utility of activity duration (βdur) + 0.96 utils/h

Marginal utility of traveling by car (βtrav,car) – 0.00 utils/h

Marginal utility of traveling by PT (βtrav,PT ) – 0.18 utils/h

Monetary distance rate by car (γd,car(q)) –0.30 EUR/km

Monetary distance rate by PT (γd,PT (q)) –0.18 EUR/km

Marginal utility of money (βm) – 0.0789942 utils/EUR

Resulting V TTScar + 12.15 EUR/h

Resulting V TTSPT + 14.43 EUR/h

Calibrated for the present study

ASC for urban PT – 0.75 utils

ASC for commuters/reverse commuters PT – 0.3 utils

emissions (during warm up phase of vehicle) and warm emissions (while driving); cold emissions es-103

sentially depend on parking duration, distance traveled, and vehicle characteristics; warm emissions104

depend on engine type, road category, and speed of the vehicle. Thus, cold and warm emissions105

for each agent on each link are calculated using the HBEFA4 database.106

Furthermore, Kickhöfer and Nagel (2013) developed a method to calculate time-dependent,107

vehicle-specific emission tolls. In this method, vehicle- and link-specific time-dependent emissions108

are converted into monetary units (emissions costs) using emission cost factors given in Tab. 2.109

In the simulation, every time an agent leaves a link, the agent consequently pays the monetary110

equivalent of the emissions produced by her. Within the iterative learning cycle (see Sec. 2.1), the111

agents learn how to react on these individual tolls by changing their behavior accordingly. This is112

referred to internalizing the external emission effect (see later in Sec. 2.4).113

4 ‘Handbook Emission Factors for Road Transport’, Version 3.1, see www.hbefa.net
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Table 2: Emission cost factors. Source: Maibach et al. (2008).

Emission type Cost factor (EUR/ton)

CO2 70

NMHC 1,700

NOx 9,600

PM 384,500

SO2 11,000

2.3 Congestion pricing114

The framework to compute individual delays and then to internalize those by a marginal social cost115

pricing scheme in an agent-based simulation is provided by Kaddoura and Kickhöfer (2014). This116

tool is also used along with the MATSim framework which has the ability to track routes and times117

of all agents and to calculate disaggregated delays.5 Subsequently, causing and affected agents are118

identified. The former can therefore be charged with the equivalent monetary amount of the delays119

they caused for the affected agents. Since congestion is – in contrast to emissions – inherent to road120

traffic, the behavioral parameters from Tab. 1 can directly be used to convert delays into monetary121

units. This is done using the Value of Travel Time Savings (VTTS) of the car mode.6 Again, the122

monetary payments are considered in the utility-based learning cycle of MATSim, and, hence, the123

external congestion effect is internalized.124

2.4 Internalization125

Internalization is the process by which external effects are included into the behavioral decision126

making of individuals by setting prices according to their marginal external costs. By default,127

the MATSim utility functions only incorporate marginal private costs (MPC) which correspond128

to spending time and money for traveling to planned activities (see Eq. 1 and Eq. 3). Marginal129

social costs (MSC) are the sum of MPC and marginal external costs (MEC) (see, e.g., Walters,130

5 Delay is in this study defined by the difference between the actual travel time on a link and the link’s free flow

travel time. That is, delays are calculated on a per-link basis and not for entire routes.
6 The VTTS is defined as the individual willingness-to-pay for reducing the travel time by one hour. For a linear

utility functions, it is the ratio of the marginal utility of travel time and the marginal utility of money. As mentioned

earlier, the former is the sum of the disutility for traveling (βtrav,mode(q)) and the negative utility of time as a resource

(−βdur).
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1961; Turvey, 1963). The external component can result from any of the externalities mentioned131

in Sec. 1. This study attempts to compute MEC for different pricing schemes listed in Tab. 4,132

and then correct prices accordingly in order to minimize the external effects and to improve the133

efficiency of the transport system. In the base case and the “Business As Usual” (BAU) scenario,134

no externalities are internalized. Thus, utility from traveling to an activity is given by Eq. 3. For135

all other scenarios, the MEC of emissions and/or congestion is added to the overall utility of every136

car trip:137

Scar(q) = βtrav,car(q) · ttrav,q + βm · (γd,car(q) · dtrav,q + ∆mq) , (4)

where ∆mq is the person-specific toll of the different pricing schemes listed in Tab. 4. It is called138

congestion or emission toll for the emission or congestion internalization strategies, EI and CI139

respectively, and combined toll for the joint internalization strategy (ECI).140

3 Case study : Munich141

This section illustrates the set up of the scenario and the pricing schemes for the real-world case142

study of the Munich metropolitan area in Germany.143

3.1 Inputs144

The initial scenario is taken from Kickhöfer and Nagel (2013) and modified for the present study,145

as will be described further in this section.146

Network Network data was provided by municipality of Munich (RSB, 2005) in the form of147

VISUM7 data. This is converted into a MATSim network, which contains 17’888 nodes and 41’942148

links.149

Plans A realistic activity-based demand is created using three different data sources: First, inner150

urban travel demand was synthesized using detailed survey data based on Mobility in Germany151

(MiD 2002, Follmer et al., 2004). The synthetic demand contains 1,424,520 individuals with de-152

tailed vehicle information. Second, commuters and reverse commuter trips are modeled using data153

provided by Böhme and Eigenmüller (2006), which contains about 0.5 million individuals, out of154

7 ‘Verkehr In Städten UMlegung’, see www.ptv.de
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these about 0.3 million are commuters and the remaining are reverse commuters. Third, about 0.15155

million freight trips are created (0.15 million agents with one commercial trip) from data provided156

by the German Ministry of Transport (ITP and BVU, 2007).157

In the simulation, urban travelers use car, public transport (PT), bike, walk, and ride as trans-158

port modes, whereas commuters and reverse commuters use only car or PT. Freight trips are159

assumed to only use trucks. PT, bike, walk, and ride trips are in the study assumed to run emis-160

sion free and as a without capacity constraints. Therefore, there is no emission and congestion161

externality for such trips, and thus, in the present study, such travel modes are coupled together162

as non-car travel modes.163

Overall, for computational performance reasons, 1% of total population is used for the present164

study. Agents are categorized among four subpopulations (user groups) namely urban, commuter,165

reverse commuter and freight as illustrated above and therefore, results are also discussed based166

on this classification.167

Choice dimensions As a reaction to the pricing schemes (see Sec. 3.3), new choice sets are168

generated in the iterative loop of MATSim according to the following rule: In each iteration, (1)169

15% of total agents are allowed to change their route and (2) 15% of total agents are allowed to170

change their travel mode from car to PT or from PT to car.8 The rest of the agents chose a plan171

from their existing choice set according to a multinomial logit model. After 80% of the iterations,172

the choice set is fixed and agents can only chose from that. In case of freight trips, mode choice is173

not available i.e. all freight trips use car mode only.174

3.2 Base case175

A base case is set up by running simulation for 1000 iterations. The base case in the present study176

is similar to the base case from Kickhöfer and Nagel (2013). However, that study calibrated the177

ASC for PT assuming a uniform PT speed of 25 km/h for all user groups while matching the modal178

split for urban travelers. As a consequence, the modal split for commuters and reverse commuter179

did not match the reference study (see Tab. 3, “Common PT speed (it.1000)”).180

8 An urban traveler can switch mode between car and slower PT (speed 25 KPH) and similarly, commuters and

reverse commuters can switch mode between car and faster PT (speed 50 KPH). See Sec. 3.2 for details about slower

and faster PT.
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Table 3: Modal split from reference studies, initial demand and calibrated base cases.

Urban (Rev.) commuters

car non-car car non-car

Reference study9 26.00 74.00 67.00 33.00

Initial demand (it.0) 22.48 77.52 67.97 32.03

Common PT speed (it.1000) 20.11 79.89 96.59 3.41

Different PT speed (it.1000) 21.20 78.80 66.62 33.38

Table 4: Scenarios under consideration.

Scenario External cost(s) Internalization method

Business As Usual (BAU) none none

Emissions Internalization (EI) emission costs see Sec. 2.2

Congestion Internalization (CI) congestion costs see Sec. 2.3

Emissions and Congestion Internalization (ECI) emission and congestion costs see Sec. 2.2 and Sec. 2.3

Therefore, in the present study, PT speed (25 km/h) for urban travelers is kept, and for com-181

muters and reverse commuters, it is assumed to be 50 km/h, emulating faster trains between the182

city center and suburbs. In consequence, the base case is re-calibrated, eventually resulting in183

an ASC of −0.3 for commuter and reverse commuters. Tab. 3, “Different PT speed (it.1000)”,184

shows the results of this calibration effort. The combined modal split of commuters and reverse185

commuters is now very close to the initial plans and the reference study. Because of the decrease in186

car share for commuters and reverse commuters, there is some relief of capacities on the network.187

In consequence, the share of car trips for urban travelers increases to 21.20% which is also closer188

to the reference study.189

3.3 Pricing schemes190

After the calibration of the base case, the simulation is further continued for 500 iterations along191

with three pricing schemes (see Tab. 4). The outputs of base case after 1000 iteration are used192

as inputs for all four scenarios. As described in Sec. 2.4, different user-specific external costs are193

internalized for the scenarios listed in Tab. 4. The final iterations (1500) of the pricing schemes are194

9Follmer et al. (2004) for urban travelers and MVV (2007) for commuters and reverse commuters.
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compared with the final iteration of BAU. Emission costs, congestion costs and toll payments for195

all four scenarios are computed as follows:196

Emissions costs Time-dependent and person-specific cold and warm emissions are calculated as197

described in Sec. 2.2. These emissions are then transformed into monetary units using emissions198

costs factors (see Tab. 2). These monetary emissions costs are summed up to get total emissions199

costs in each scenario.200

Congestion costs As illustrated in Sec. 2.3, disaggregated delays are calculated on a per-link201

basis for each causing agent and then converted into monetary units using the VTTS. Afterwards,202

these values are summed up to get the total congestion costs for each scenario.203

System welfare In order to perform economic evaluation for all four scenarios, user benefits are204

calculated by converting the utility of the last executed plan of each agent into monetary terms10.205

Congestion costs and the negative perception of toll payments are both implicitly part of user206

benefits. Toll payments are, however, simply transfer payments from users to public authorities.207

Consequently, the change in system welfare is defined as the algebraic sum of changes in emission208

costs, toll payments, and user benefits.209

4 Results210

In this section, the levels of the external costs are illustrated (Sec. 4.1), and subsequently, the211

effect of the pricing schemes on system welfare is presented (Sec. 4.2). Furthermore, Sec. 4.3 and212

Sec. 4.4 demonstrate the impact of the pricing schemes on agents’ behavior. The idea behind the213

comparison of the pricing schemes is (i) to investigate the influence of internalizing one externality214

on the other externality, and (ii) to test whether the correlation between the two externalities in215

the combined internalization (ECI) yields toll levels that are lower than the algebraic sum of the216

toll levels from the individual internalization models.217

10The user benefits calculated from the utility of the last executed plan are not same as the user benefits calculated

from the logsum over all plans of an agent. The latter (also sometimes called expected maximum utility) considers

utility from heterogeneity in the choice set and is in theory the preferable figure for user benefits in MATSim (Kickhöfer

and Nagel, in preparation). However, as the authors point out, the current MATSim implementation might, under

certain conditions, yield biased choice sets. In consequence, the last executed plan is used in the present paper.
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4.1 BAU: level of externalities by user group218

Fig. 1 shows for the BAU scenario and each user group the share of persons and external costs. The219

caused emission costs11 of a user group are total costs of emissions produced by all vehicles of that220

group. Freight consists of only about 7% of the whole population, but is responsible for more than221

65% of emission costs. This is due to the fact that freight vehicles (i) emit more emissions than222

other vehicles and, (ii) have longer travel distances (mean and median trip distances are 111 km223

and 69 km, respectively).

Figure 1: Share of persons, emission and congestion costs for different user groups for BAU scenario.

224

Congestion costs are classified into two categories, namely ‘experienced congestion costs’ and225

‘caused congestion costs’. The former are costs experienced, the latter are costs caused by the226

respective group. The share of urban travelers is more than 70% of the total population. They227

11 A recent study by Kickhöfer and Kern (2015) shows that experienced exhaust emission costs can also be calculated

in the same framework. However, in the present study, only caused emission costs are considered and referred to as

‘emission costs’ from here on.

11



experience and cause the highest congestion costs. This is expected since they perform most of228

the trips and congestion is predominant in urban areas. For urban and freight user groups, the229

experienced congestion costs are higher than the caused congestion costs, which means that these230

users are causing less congestion than they experience. On the contrary, for commuters and reverse231

commuters, agents cause more than what they experience. In marginal congestion pricing, agents232

are charged for the delays they cause to others and therefore caused congestion costs will be referred233

to as congestion costs in the remainder of the paper.234

4.2 Pricing: effects on the system level235

Absolute change in external costs, toll payments, user benefits and system welfare for whole pop-236

ulation and user groups are shown in Tab. 5 and Tab. 6 respectively.237

Table 5: Changes in emission costs, congestion costs, user benefits and system welfare with respect to BAU, and

absolute toll payments for each pricing scheme. All values are scaled to full population and in EUR.

Pricing scheme

Change in ... EI CI ECI

... emission costs – 101,076 – 166,786 – 267,938

... congestion costs – 908,261 – 3,607,735 – 3,955,052

... user benefits – 2,749,961 436,382 – 2,339,755

... system welfare 962,232 4,286,376 4,708,329

Toll payments 3,611,118 3,683,208 6,780,146

Whole population For the Munich metropolitan area, congestion costs in BAU amount to238

7,333,451 EUR which is about twice as much as the emission costs for the same scenario. Other239

studies in the literature find that congestion costs are typically higher than emission costs (see,240

e.g., Maibach et al., 2008; Parry and Small, 2005). The above finding is therefore in line with241

the literature. As shown in Tab. 5, internalizing emission costs (EI) result in 908,261 EUR less242

congestion cost and internalizing congestion costs (CI) result in 166,786 EUR less emission costs.243

Thus, pricing one externality has a positive impact on the other externality. Consequently, the244

externalities prove to be positively correlated for the case study under consideration. The positive245

correlation is also found in a study by Beevers and Carslaw (2005), who show that the London246
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congestion charging scheme reduced NOx and PM10 by 12% and 11.9% respectively between 2002247

and 2003.248

The reduction in emission costs for EI, CI and ECI pricing schemes are 2.72%, 4.49% and 7.22%249

respectively. These values are in the same order as in a previous study by Agarwal and Kickhöfer250

(forthcoming) who found reductions in emission costs of 0.57%, 1.94% and 2.48% for the same251

pricing schemes. However, that study did not account for different PT speeds (see Sec. 3.2), which252

seems to have an important effect on the price elasticity of car travel demand. The decrease in253

emission costs is for all pricing schemes more significant in the present paper which indicates that254

capturing the elasticities accurately has a major impact on the results.255

The highest reduction in emission costs is 267,938 EUR in the combined pricing scheme (ECI).256

Similarly the highest reduction in congestion costs is 3,955,052 EUR, again for the combined pricing257

scheme.12 Clearly, the combined pricing yields the lowest levels of externalities. Since congestion258

costs are significantly higher than emission cost, the ECI pricing scheme is closely followed by pricing259

congestion cost (CI). Changes in user benefits are negative for EI and ECI and positive for CI. The260

user benefits in CI are higher than in BAU, since the reduction in travel times overcompensates261

the loss from toll payments (congestion relief effect). For EI and ECI, the reduction in travel times262

is smaller than the loss from toll payments yielding a negative change in user benefits. This is263

expected since the reduction of environmental effects is – in contrast to congestion – not part of264

user benefits. Furthermore, the highest gain in system welfare realized by the combined pricing is265

4,708,329 EUR. The algebraic sum of toll payments from the isolated pricing schemes is 7,294,326266

EUR whereas the total toll payments for combined pricing is 6,780,146 EUR.267

In order to check the sensitivity of the approach, BAU, EI, CI and ECI scenarios are simulated268

again with two different random seeds13. The results from the simulation runs with different269

random seeds approve this finding. The lessons learned here are that simply combining the average270

toll payments from the isolated pricing schemes (EI and CI) for policy making will result in toll271

levels beyond those of the combined pricing scheme (ECI). Hence, as an effect of the correlation of272

12 Congestion costs can be avoided if some agents shift to non-car travel modes but emission costs can only be

avoided if all agents use non-car travel modes. Therefore, changes in congestion costs seem rather higher compared

to the changes in emission costs.
13 A random seed is used to initialize the pseudo random number generator in the MATSim . A different random

seed will generate different random number which eventually produces different simulation outcomes. For an example

of the effect of randomness on the optimal supply parameters in MATSim, see, e.g., Kaddoura et al. (2014).
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Table 6: Changes in emission costs, congestion costs, user benefits and system welfare with respect to BAU, and

absolute toll payments for each pricing scheme and user group. All values are scaled to full population and in EUR.

Pricing scheme

Change in ... User group EI CI ECI

... emission costs

Urban – 155 – 17,582 – 17,643

Commuter – 80,642 – 120,774 – 196,379

Rev. commuter – 14,426 – 26,587 – 46,787

Freight – 5,853 – 1,844 – 7,129

... congestion costs

Urban – 203,515 – 1,992,550 – 210,1719

Commuter – 655,606 – 1,303,920 – 1,507,387

Rev. commuter – 50,076 – 275,680 – 311,115

Freight 935 – 35,585 – 34,831

... user benefits

Urban 276,407 950,195 1,134,478

Commuter – 340,929 – 224,138 – 551,841

Rev. commuter – 165,558 – 149,311 – 272,556

Freight – 2,519,881 – 140,364 – 2,649,836

... system welfare

Urban 479,358 3,394,195 3,654,678

Commuter 373,055 585,450 647,491

Rev. commuter 83,779 299,882 363,952

Freight 26,039 6,849 42,208

Toll payments

Urban 202,797 2,426,418 2,502,558

Commuter 633,343 688,814 1,002,952

Rev. commuter 234,912 422,607 589,722

Freight 2,540,067 145,369 2,684,915

congestion and air pollution externalities, one would charge prices beyond the economic optimum.273

User groups Tab. 6 shows the change in external costs, toll payments, user benefits and system274

welfare for all user groups and pricing schemes. Freight trips are responsible for a major part of275

emission costs (see Fig. 1) and therefore their toll payments are highest in the EI case. Similarly,276
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toll payments are highest for urban travelers when pricing congestion. In accordance to the results277

for the whole population, (1) pricing congestion (CI) results in a decrease of emissions for all user278

groups; (2) pricing emissions (EI) yields a reduction in congestion for all user groups except freight;279

(3) the lowest levels of external costs are observed in the combined pricing scheme; (4) system280

welfare is highest for the combined pricing for all user groups. However, some observations can be281

made that are not in line with the aggregated figures for the whole population. In particular:282

1. Pricing emissions (EI) diverts freight trips on shorter (∆ average distance = −0.2 km)283

but more congested links and consequently a slight increase in congestion costs is observed284

(+935 EUR). This effect is known from a study by Yin and Lawphongpanich (2006), where285

authors experimented on a 6 node test network and found that emission internalization may286

sometimes produce less emissions but higher delays.287

2. All three pricing schemes yield a decrease in user benefits for all user groups except for urban288

travelers. For them, the gain in utility from the reduction in travel times is higher than the289

loss because of toll payments which eventually produces higher user welfare. While pricing290

congestion (CI), this gain overcompensates the losses of the other user groups and finally291

results in increased user benefits for the whole population (see Tab. 5).292

4.3 Pricing: behavioral effects293

As described in Sec. 3.1, the reduction in external costs is a combined effect of users’ reactions with294

respect to two choice dimensions, mode choice and route choice. This section presents the impact295

of all three pricing schemes on the behavior of individuals.296

Modal split Tab. 7 shows the impact of the pricing schemes on modal split, with a combined297

value for commuters and reverse commuters. For emission pricing, the share of car trips decreases298

for commuters and reverse commuters whereas it increases slightly for urban travelers. Because of299

the higher average toll for commuters and reverse commuters (see Tab. 8), a significant number of300

car users in these groups switch to PT. This reliefs some capacity and leads to an increase in the301

car share of urban travelers.302

In contrast to EI, for the CI and ECI pricing schemes, car share decreases for all three user303

groups. The average toll for urban travelers in CI and ECI is about 12 times of the average toll304

in EI (see Tab. 8). Because of this higher average toll, urban car share decreases slightly (−0.66305
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Table 7: Changes in modal split with respect to BAU for all pricing schemes.

Urban (Rev.) commuters

car non-car car non-car

EI 0.22 – 0.22 – 7.04 7.04

CI – 0.66 0.66 – 16.25 16.25

ECI – 0.48 0.48 – 23.46 23.46

Table 8: Average toll payments (EUR) per trip

Urban (Rev.) commuters Freight

EI 0.16 1.62 15.94

CI 1.94 2.88 0.92

ECI 2.00 4.12 16.84

and −0.48, respectively). One can observe that the higher the toll, the more agents switch from306

car to PT, always depending on the implicit price elasticity of demand. This, in turn, is dependent307

on substitutes, i.e. if agents are not able to switch mode because of little PT supply, pricing can308

not be used to increase the system efficiency. Daniel and Bekka (2000) have found in their models309

that potential welfare gains decrease with a decrease in the elasticity of demand. The results in310

the present paper support this finding.311

Route choice In order to investigate changes in agents’ behavior, differences in route distance312

distributions for car and non-car modes are plotted in Fig. 2. For shorter distance routes, non-313

car (•) travel modes decrease slightly in all three pricing schemes. For longer distance routes,314

agents switch to non-car in order to avoid the toll. The combined pricing scheme leads to the most315

important modal shift from car (+) to non-car (•). As mentioned before in Sec. 4.2, congestion316

costs are about two times of the emission costs, and therefore, the ECI scheme exhibits a similar317

pattern as the congestion internalization alone.318

Average trip time and distance Fig. 3 shows the change in average trip time and trip distance319

for mode switchers and retainers. From Fig. 3a, one can observe that the average trip time is320

decreased significantly for agents who retain their car as transport mode, as well as for agents who321

change from non-car to car: the toll in the car mode improves car travel times. On the other322
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Figure 2: Changes in mode distance distribution over all trips.

hand, travel time is increased for the agents who switch to non-car mode from car. These agents323

are better off by shifting to longer non-car travel mode than paying toll on shorter routes (also324

see, Fig. 3b). Interestingly, with CI pricing scheme, agents who retain their car are shifting to less325

congested but longer routes in order to dampen their toll. In contrast, agents who switch from326

non-car to car prefer to pay toll and this toll is compensated by significant reduction in travel time327

and travel distance.328

4.4 Pricing: spatial effects329

To understand the agents’ behavior under different pricing schemes in more detail, this section330

presents highly disaggregated spatial plots. For the visual presentations, a Gaussian distance331

weighting function is used to smooth emissions and delays throughout the area of Munich and332

surroundings. Uniform hexagonal cells of size 500 m are taken for this purpose. The smoothing333

radius is assumed as 500 m (Kickhöfer, 2014).334
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(a) Average trip time (b) Average trip distance

Figure 3: Changes for mode switchers and retainers.

Absolute external costs The spatial dimension of external costs in the BAU scenario is shown335

in Fig. 4 for emissions and delays, respectively. Time-dependent and person-specific link emissions336

are calculated and thereafter processed by spatial averaging. Similarly, link-based individual delays337

are calculated and processed by spatial averaging. Fig. 4a shows absolute NO2 emissions14 and338

Fig. 4b shows the absolute delays for the BAU scenario. It can be observed that emissions are339

most important on primary roads (inner and middle ring road, main arterials, and the tangential340

motorway in the north-west of Munich). In contrast, congestion is evident on almost all roads341

inside the city area, but not as important on the tangential motorway (see Fig. 4b).342

Comparison of the pricing schemes Fig. 5 shows the changes in NO2 emission and change in343

delay from 6:00 to 8:00 p.m. The change in emission is shown in colors, and the change in delays is344

depicted by transparency. For the EI case, Fig. 5 shows that agents are re-routing towards shorter345

distance routes. This is indicated by an increase of emissions and delays in the inner city (dark red,346

opaque hexagons). In consequence, NO2 emissions are decreased in particular on the north-west347

tangential motorway and other long-distance routes, basically wherever NO2 emission was high348

in BAU (see, Fig. 4a). In the CI case, Fig. 5 shows that agents re-route from congested links to349

14 All important pollutants are considered for pricing. For illustration purposes, the emission plot only shows NO2.
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(a) Absolute NO2 emission in [g] (b) Absolute delay in [h]

Figure 4: Absolute emissions and delays. Values are scaled to full population.

non-congested and longer distance routes (also see Fig. 3a). Thus, NO2 emissions and delays are350

decreased significantly inside the central areas of Munich (transparent green hexagons). On the351

contrary, NO2 emissions and delays are increased on parts of the tangential motorway (red, opaque352

hexagons) where NO2 emission was already high in BAU scenario (Fig. 4a). The lessons learned353

here is that for congested regimes, the two pricing schemes (EI and CI) affect the route choice354

behavior of agents by tendency into opposite direction: EI on shorter distance routes, increasing355

congestion; CI on longer distance routes, increasing emissions.356

The effect of combined pricing on a spatial level is shown in Fig. 5. As mentioned before in357

Sec. 4.2, congestion costs dominate emission costs, and therefore agents’ behavior in ECI is similar358

to that of CI. However, the combined pricing yields a decrease in NO2 emissions and delays in359

most areas of the city.360

5 Conclusion and outlook361

This study investigated and compared separate pricing strategies for emissions and congestion, and362

proposed a joint internalization approach for both externalities. It applied the marginal emission363

pricing approach by Kickhöfer and Nagel (2013) and the marginal congestion pricing approach by364

Kaddoura and Kickhöfer (2014) to a real-world scenario of the Munich metropolitan area.365

First, the impact of emission pricing on congestion levels was analyzed and vice versa. It366

was found that pricing one externality reduces the other external externality as well since both367
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(a) EI (b) CI

(c) ECI

Figure 5: The effect of pricing schemes on NO2 emissions from 6:00 to 8:00 p.m. Additionally, transparent colors

denote a reduction in congestion whereas opaque colors show an increase in congestion. Values are scaled to full

population.
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externalities are positively correlated.368

Second, it was demonstrated that the combined pricing yields the lowest level of emission and369

congestion externalities for whole population as well as for individual user groups. It also yields the370

highest level of system welfare. Furthermore, it was found that the sum of tolls from the individual371

pricing schemes is higher than the tolls from the combined pricing scheme. Thus, simply combining372

toll levels from the two separate pricing schemes would eventually depreciate the system efficiency.373

The potential efficiency gains can only be obtained when the implicit price elasticities of car travel374

demand are captured in an accurate way, i.e. by carefully modeling substitutes to the car mode.375

Without substitutes, pricing can not unfold its full power and contribute to a meaningful reduction376

in transport-related externalities.377

Third, the impact of different pricing schemes on agents’ behavior was investigated with the378

help of spatial plots. It was shown that pricing emissions steers agents on shorter distance routes379

and pricing congestion pushes agents on shorter travel times routes and potentially longer distance380

routes. Thus, it can be concluded that for congested areas, route choice behavior of agents is by381

tendency affected into opposite direction by the two pricing schemes.382

Finally, from the findings above, it can be concluded that with the help of the proposed method-383

ology, efficient toll levels for multiple externalities can be derived for policy design purposes. In384

future studies, the authors aim to incorporate emission exposure (Kickhöfer and Kern, 2015), noise385

exposure (Kaddoura et al., 2015), and accidents in the same model. Furthermore, the authors wish386

to investigate how the simulated price levels relate to so-called backcasting approaches (Geurs and387

van Wee, 2004; IWW et al., 1998) which can be used to achieve a politically desired reduction of388

transport-related externalities.389
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S. Böhme and L. Eigenmüller. Pendlerbericht Bayern. Technical report, IAB, 2006.411

N. Cetin, A. Burri, and K. Nagel. A large-scale agent-based traffic microsimulation based on412

queue model. In Proceedings of the Swiss Transport Research Conference (STRC), Monte Verita,413

Switzerland, 2003. URL http://www.strc.ch.414

D. Charypar and K. Nagel. Generating complete all-day activity plans with genetic algorithms.415

Transportation, 32(4):369–397, 2005. ISSN 0049-4488. doi:10.1007/s11116-004-8287-y.416

F. Creutzig and D. He. Climate change mitigation and co-benefits of feasible transport demand417

policies in Beijing. Transportation Research Part D: Transport and Environment, 14(2):120–131,418

2009. ISSN 13619209. doi:10.1016/j.trd.2008.11.007.419

J. I. Daniel and K. Bekka. The environmental impact of highway congestion pricing. Journal of420

Urban Economics, 47:180–215, 2000. doi:10.1006/juec.1999.2135.421

R. Follmer, U. Kunert, J. Kloas, and H. Kuhfeld. Mobilität in Deutschland – Ergebnisbericht.422

Technical report, infas/DIW, 2004. URL www.kontiv2002.de.423

22

http://dx.doi.org/10.1016/j.procs.2015.05.165
http://dx.doi.org/10.1016/j.atmosenv.2004.10.001
http://www.strc.ch
http://dx.doi.org/10.1007/s11116-004-8287-y
http://dx.doi.org/10.1016/j.trd.2008.11.007
http://dx.doi.org/10.1006/juec.1999.2135
www.kontiv2002.de


C. Gawron. Simulation-based traffic assignment. PhD thesis, University of Cologne, Cologne,424

Germany, 1998.425

K. Geurs and B. van Wee. Backcasting as a tool for sustainable transport policy making: the426

environmentally sustainable transport study in the Netherlands. European Journal of Transport427

Infrastructure Research, 4(1):47–69, 2004.428

F. Hülsmann, R. Gerike, B. Kickhöfer, K. Nagel, and R. Luz. Towards a multi-agent based modeling429

approach for air pollutants in urban regions. In Proceedings of the Conference on “Luftqualität430

an Straßen”, pages 144–166. Bundesanstalt für Straßenwesen, FGSV Verlag GmbH, 2011. ISBN431

978-3-941790-77-3. Also VSP WP 10-15, see http://www.vsp.tu-berlin.de/publications.432

ITP and BVU. Prognose der deutschlandweiten Verkehrsverflechtungen 2025. Technical report,433

Intraplan Consult GmbH, Beratergruppe Verkehr+Umwelt GmbH, 2007. URL http://daten.434

clearingstelle-verkehr.de/220/.435
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B. Kickhöfer and K. Nagel. Microeconomic interpretation of MATSim for benefit-cost analy-458

sis. In A. Horni, K. W. Axhausen, and K. Nagel, editors, The Multi-Agent Transport Sim-459

ulation MATSim, chapter 38. in preparation. URL http://ci.matsim.org:8080/view/All/460

job/MATSim-Book/ws/main.pdf.461
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