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Abstract The paper presents research on large-scale

microscopic simulation of taxi services in Berlin and

Barcelona based on floating car data collected by local

taxi fleets. Firstly, Berlin’s and Barcelona’s taxi mar-

kets are shortly described and the demand and supply

data obtained from FCD analysed. Secondly, the online

taxi dispatching problem formulation for this specific

case is given, followed by the definition of two real-time

rule-based heuristics used to dispatch taxis dynamically

within the simulation. Finally, the simulation setup in

MATSim is described, and the results obtained with

both heuristics are analysed and compared in terms

of dispatching performance, proving the effectiveness

of the second strategy at different demand and supply

scales.
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1 Introduction

Simulation is an indispensable tool in order to ana-

lyse and optimize complex services with dynamically

changing demand and supply, all embedded into a dy-

namic environment. In the case of taxi services in large

cities, a reliable simulation approach must model all

these elements both at the microscopic level of detail

and in the large-scale (regional, or at least city-wide)

scope. The high dynamism of taxi demand is a res-

ult of almost all requests being immediate trips with

an unspecified destination. For example, partially in-

dependent taxi drivers who can choose which rank to

wait at, reject serving a request, or decide upon their

working hours, account for the limited control over the

stochastic supply side. Finally, urban traffic, being the

environment for taxi services, implies stochastic time-

dependent travel times.

Once the simulation model is ready, analysis and

optimization may begin, for instance, by changing the

dispatching algorithm, scaling demand and supply, or

relocating taxi ranks. As far as the authors know, out of

many taxi simulation models (Lee et al, 2004; Alshamsi

et al, 2009; Wang et al, 2009; Seow et al, 2010; Cheng

and Nguyen, 2011), the microscopic ones, though lim-

ited in scope, were created for Singapore (Lee et al,

2004; Seow et al, 2010), Barcelona (Salanova et al, 2013;

Salanova and Estrada, 2015) and Mielec, Poland (Ma-

ciejewski and Nagel, 2013b,a) only. This paper presents

two microscopic simulation models built for the cities

of Berlin (with the neighbouring Brandenburg region)
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and Barcelona, which are then used to assess the per-

formance of two real-time rule-based taxi dispatching

strategies on large scale.

2 Taxi supply and demand in Berlin

Currently, the Berlin taxi market consists of some 7,600

vehicles licensed to operate in the city. They are organ-

ised in 3000 taxi companies employing roughly 18,000

taxi drivers. To model Berlin’s taxi supply and demand,

in this paper, trajectories of Berlin’s biggest radio taxi

operator, Taxi Berlin, are used. Overall, they have some

5,700 vehicles working within their range, most of them

equipped with GPS trackers that submit their current

location and occupation status in a flexible interval (de-

pending on the vehicle’s occupation status, but at least

once every 60 seconds). These data are, among others,

mainly used for travel time prediction in Berlin (Ebendt

et al, 2012). With the current occupation status of the

vehicle also being submitted, a zone-based matrix of de-

mand for each hour can be generated and used for the

demand side of the simulation. On the supply side only

the amount of vehicles logged into the system at each

second is known, not the actual length of each vehicle or

driver shift. This is due to data anonymization by reg-

ular reassignment of IDs to vehicles. Furthermore, the

amount of vehicles per zone in each occupation status

is known in intervals of five minutes.

For the simulation purposes, the supply and de-

mand data of one week (15 April – 22 April 2014) were

provided, of which the timeframe between Tuesday 4:00

am and Wednesday 4:00 am has been picked for sim-

ulation1. Figure 1 shows the amount of taxis and re-

quests served during the timeframe investigated. Over-

all, 27,376 trips were registered. The vehicle supply ad-

justs to the demand for taxi trips. There is a strong

morning peak followed by two somewhat smaller peaks

in the afternoon and evening.

The extracted taxi demand is aggregated into 518

zones. Within the city boundaries, these zones corres-

pond to the city quarters defined by the city administra-

tion as Lebensweltlich orientierte Räume (LOR) (Sen-

ate Department for Urban Development and the Envir-

onment, 2015). In the outskirts, community boundaries

are used instead. The zone with the highest amount of

trips starting or ending is the one around Berlin’s ma-

jor airport, Tegel. Within 24 hours, 3,799 trips to and

from the airport were registered. Most other trips are

either ending or beginning in the city centre. Figure 2

shows the origin of taxi trips within the city centre. Idle

1 Around 4:00 am, taxi supply and demand is the lowest,
making it an intuitive breakpoint between days
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Figure 1 Hourly request submissions and active taxicabs in
Berlin

Figure 2 Spatial distribution of daily taxi demand in Berlin

vehicles tend to aggregate at taxi ranks. Within Berlin,

there are roughly 400 of them in operation. Figure 3

provides an overview of rank locations and the average

number of idle taxis in each zone. Also in this figure,

the area around Tegel airport is clearly notable for the

highest amount of idle vehicles. Despite a relatively high

demand, waiting times for drivers of several hours are

not uncommon there. A detailed FCD analysis is also

available (Bischoff et al, 2015).

3 Taxi supply and demand in Barcelona

The taxi sector in Barcelona comprises of 10,523 taxi

licenses, from which 5% belong to private companies

and the 95% to individuals. The number of taxi licenses

has been frozen since 2005 (one license per 275 inhab-

itants). However, the number of driver licenses has in-

creased significantly over the last years (13,136 in 2010,

with the rate of drivers to vehicles of 1.26, while this

rate was 1.14 in 2007). The demand for taxi services
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Figure 3 figure
Average amount of idle taxis per zone in Berlin

has been estimated by the Metropolitan Taxi Institute

(IMT) as more than 200,000 trips per day, which corres-

ponds to 1.52% of the total number of trips in the wider

area (roughly 13,000,000 trips daily). Salanova (2013)

estimates the demand for taxi trips at 60,000,000 trips

per year based on the GPS trackers collecting origin

and destination of trips during the last ten years. On

the supply side, the input data has been calculated by

Salanova (2013) based on the data provided by the IMT

surveys where all the drivers participated.

For the simulation purposes, FCD data recorded for

a subfleet of GPS-monitored taxicabs between March

2011 and December 2012 were used, giving precise spatio-

temporal information about pickups and dropoffs for

233,509 taxi trips, out of which 126,765 were inner-city

weekday (i.e. between Monday 5:00 am and Friday 5:00
am) trips. Figure 4 shows the distribution of destina-

tions for this subset of trips. Since this demand is syn-

thetic and does not represent any specific day, the sup-

ply (i.e. fleet size) was adjusted using time-dependent

(hourly) request-to-taxi ratios typical for weekdays2.

Figure 5 shows the hourly profiles of demand and sup-

ply during a weekday.

4 Online taxi dispatching

The formulation of the dispatching process was derived

from an earlier formulation used by Maciejewski (2014b,a)

for optimizing taxi services in Mielec, Poland. The de-

scription below covers immediate requests with unknown

destinations, i.e. customers want taxis to arrive as soon

as possible and they specify the destination after be-

2 The supply closely follows the demand resulting in ap-
proximately two requests being served every hour by each
working taxi.

Figure 4 Spatial distribution of destinations for weekday
inner-city taxi trips in Barcelona
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Figure 5 Hourly request submissions and active taxicabs in
Barcelona

ing picked up, which corresponds to the overwhelming

majority of requests in Berlin. However, this type of

request is more challenging in terms of online optimiz-

ation since the provision of the demand data is maxim-

ally postponed. As for the supply side, the formulation

includes time windows, which in comparison to the ori-

ginal model, add complexity.

Let N = {1, . . . , n} be the set of taxi requests (cus-

tomers). The following sequence of events is related to

serving each request i ∈ N and is illustrated in Fig-
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ure 6. Taxi customer i calls a taxi (event Ecall
i , time

τ calli ) specifying the pickup location, pi. Since only im-

mediate requests are considered, the customer’s desired

departure time is τdepi = τ calli . A selected taxi is dis-

patched towards pi at time τdispi (event Edisp
i ), and im-

mediately after arrival, the pickup starts (event Epick0
i ,

time τpick0i ). Once the passenger is picked up (event

Epick1
i , time τpick1i ), he or she specifies the destination,

di, and the taxi sets out immediately. After reaching

di, the dropoff begins (event Edrop0
i , time τdrop0i ). Once

the passenger gets out (Edrop1
i , time τdrop1i ), the taxi

is ready to serve another request. Due to the stochasti-

city of taxi dispatching, times τ calli , τdepi , τdispi , τ readyi ,

τpick0i , τpick1i , τdrop0i and τdrop1i are estimated until the

respective events take place, and are therefore subject

to change.

Request i ∈ N is open if it either has not been

planned yet, τdispi is not set, or is planned to be served

in the future, τdispi > τ curr, where τ curr denotes the cur-

rent time. Let L be the list of all open requests ordered

by τdepi . Each request i is inserted into L on submission,

Ecall
i , and removed from L on taxi dispatch, Edisp

i .

Let M = {1, . . . ,m} be the set of vehicles. Each

vehicle k ∈ M is available at location ok within the

time window [ak, bk). It is assumed that vehicles do not

cruise and remain at the dropoff location of the last

served customer. When no request has been assigned to

k, ok is k’s initial location and ak is the time the taxi

starts operating. Otherwise, ok is the dropoff location,

di, and ak is the time the dropoff ends, τdrop1i , of the

last request assigned to k, i. Since di remains unknown

till τpick1i , both ok and ak are unknown temporarily as

well, with the restriction that ak > τ curr. Let M I ⊆M
be the set of all idle vehicles; vehicle k ∈ M is idle if

ak ≤ τ curr < bk.

5 Rule-based heuristics

Two heuristic dispatching strategies were used to man-

age the fleet of taxis. Neither strategy uses information

about the destinations of the busy vehicles to predict

their future availability; thus, the choice of taxis to be

dispatched is limited to idle taxis, M I.

The first heuristic, called nearest-idle-taxi, mimics

the approach used by many taxi companies. It always

serves awaiting requests in the FIFO order by dispatch-

ing the nearest idle taxi, k∗ ∈M I, to the first request in

L, L[1]. By default, the nearest taxi is defined according

to the travel time criterion, that is

k∗ = arg min
k∈M I

tOk,L[1] (τ curr), (1)

where tOki(t), k ∈M, i ∈ N is the travel time from ok to

pi, given the departure time, t.

The strategy reacts to the following events:

– Ecall
i — if M I 6= �, vehicle k∗ is dispatched to re-

quest i

– Edrop1
i — if L 6= 〈〉, vehicle k, after having com-

pleted request i, is dispatched to request L[1]

This strategy does not look into the future to pre-

dict the availability of busy taxis and create sched-

ules3. Therefore, even distance-based measures, such

as straight-line distance, can be applied to determine

k∗. Being very simple, it allows fast, real-time taxi dis-

patching. However, the main drawback is its poor per-

formance under high demand; when
∣∣M I

∣∣→ 0, k∗ may

be on the opposite side of a city.

To address this problem, a demand-supply balancing

strategy was used. It classifies the system state into the

two following mutually-excluding categories: oversup-

ply (M I 6= �∧L = 〈〉) and undersupply (M I = �∧L 6=
〈〉) and handles these two situations differently. In the

former case, the requests are processed as in the first

algorithm, whereas in the latter case, vehicle k is dis-

patched to the nearest awaiting request, i∗ ∈ L. Given

the time-based distance measure, k is assigned to serve

i∗ such that

i∗ = arg min
i∈L

tOk,i (τ curr). (2)

The demand-supply balancing strategy reacts to the

following events:

– Ecall
i — if M I 6= �, vehicle k∗ is dispatched to re-

quest i

– Edrop1
i — if L 6= 〈〉, vehicle k, after having com-

pleted request i, is dispatched to request i∗

The demand-supply balancing strategy was based

on the assignment rules for scheduling of automated

guided vehicles studied by Egbelu and Tanchoco (1984).

They proposed order-initiated and vehicle-initiated as-

signment rules. The former are applied upon request

submission (here, Ecall
i ), whereas the latter are executed

upon request completion (here, Edrop1
i ). Under low de-

mand, the balancing strategy serves requests immedi-

ately as they arrive (request-initiated planning). How-

ever, in an overloaded system, the focus is shifted from

the FIFO processing order to maximizing vehicle util-

ization by dispatching vehicles that have become idle

to the nearest awaiting requests (vehicle-initiated plan-

ning). This results in increased throughput, and con-

sequently, reduces the amount of time passengers await

taxis.

3 Therefore, in the previous publications, the authors re-
ferred to it as the no-scheduling strategy (NOS).
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Figure 6 A taxi driver’s schedule and a passenger’s plan

6 Simulation setup

MATSim (Horni et al, 2015) was used as the simula-

tion platform. In general, it allows for running agent-

based transport simulations, and its primary purpose

is activity-based travel demand modelling. Due to the

growing set of extensions, MATSim’s core functionality

can be extended to serve many purposes.

To simulate taxis, the DVRP (Dynamic Vehicle Rout-

ing Problem) extension (Maciejewski, 2015) was used.

The vehicle routing model implemented in this exten-

sion covers a wide range of problem types, offering such

features as one-to-one and one-to-many (many-to-one)

topologies, multiple depots, dynamic requests, non-ho-

mogeneous requests and vehicles, time windows, time-

dependent stochastic travel times and costs, network-

based routing, and vehicle monitoring and diversion.

The DVRP extension provides the connection between

MATSim and the optimization algorithm. It listens to

simulation events, monitors the state of simulation, binds

driver behaviour to the schedules computed by the op-

timizer and coordinates interaction between drivers, pas-

sengers and dispatchers. It also facilitates optimization

by providing the functionality of least-cost path/tree

search. For a detailed description of the DVRP exten-

sion, the reader is referred to (Maciejewski, 2015).

For the simulation of taxis in Berlin, a network based

on the OpenStreetMap data is used. It represents the

road network in Berlin and the surrounding area of

Brandenburg. The network consists of 11,353 nodes and

24,350 links. Using car traffic based on an earlier simu-

lation (Neumann, 2014), time-specific link travel times

were generated without having to simulate all back-

ground traffic. This keeps the simulation runtime reas-

onable, as only taxi traffic must be considered. The ex-

tracted demand data from FCD were converted into

plans for MATSim agents. Locations for origins and

destinations within the zones were randomly distrib-

uted as were the actual departure times within each

hour. This resulted in 27,386 agent plans with exactly

one taxi trip each. With this demand, the overall stress

on the system is low. However, to accommodate a com-

parably high share of black-market rides in Berlin (30–

40% according to estimations) (Sauer, 2014), a scal-

ing factor of 1.5 for the taxi demand seems reasonable.

Moreover, taxi demand may be much higher due to bad

weather conditions, public transport breakdowns, trade

fairs or other events. For example, during a recent strike

(15 October 2014) in the overground railway system,

our data show the amount of taxi trips doubled during

the afternoon peak with the taxi supply only increasing

by about 20%. On that particular day, a scaling factor

for the original demand of 2.5 would be appropriate. To

depicture all these fluctuations, the authors decided to

scale up the demand step-wise up to 5.0 while keeping

the original spatiotemporal distribution of requests.

A similar procedure was used to create a simula-

tion scenario for taxi dispatching in Barcelona. The

Barcelona road network model was extracted from the

OpenStreetMap data. Consisting of 12,687 nodes and

23,648 links, the network is similar in size to that of

Berlin. To provide high simulation performance, time-

dependent link travel times were used instead of sim-

ulating the whole road traffic. The inner-city weekday

taxi trips (Sec. 3) were modelled as taxi legs of 126,765

MATSim’s agents, each having one taxi trip. The sup-

ply side (expressed in vehicle hours) was scaled by fac-

tors between 0.4 and 2.0, aiming at both executing a

sensibility analysis of the system performance for dif-

ferent taxi fleet sizes and determining the minimum

number of taxis needed for serving all taxi trips at a

reasonable level of service.
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Figure 7 Average wait time, TW, and pickup trip time, TP,
as a function of demand level for the nearest-idle-taxi and
demand-supply-balancing strategies in Berlin

7 Results

Out of several different performance measures proposed

by Maciejewski and Nagel (2013b), the following two

are analysed in this section:

– the average passenger wait time, representing the

customers’ perspective,

TW =
∑
i∈N

(τpick0i − τdepi )/n,

– the average pickup trip time, representing the drivers’

perspective,

TP =
∑
i∈N

(τpick0i − τdispi )/n.

Computational experiments were carried out 20 times

for each individual setting (i.e. both the strategy and

demand/supply scaling).

Figure 7 presents the results obtained for the Ber-

lin case at different levels of demand. Up to the scaling

factor of 2.5 both approaches have comparable perform-

ance in terms of TW and TP. This is because at low

demand only the request-initiated assignments are car-

ried out, i.e. the nearest idle taxi is dispatched to each

newly submitted request (the same behaviour in both

strategies). However, when the system is overloaded,

only vehicle-initiated planning takes place, which leads

to significant differences in the performance of both

methods, as the balancing strategy uses a different rule

and tries to minimize the pickup trip times instead of

serving requests in the FIFO order. As a result, the

nearest-idle-taxi strategy fails for the tripled demand

(TW increases to almost 50 minutes), whereas the balan-

cing approach efficiently handles even the quadrupled

demand (TW is below 10 minutes).

The results obtained at different taxi supply levels

for the Barcelona case are shown in Fig. 8. For the
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Figure 8 Average wait time, TW, and pickup trip time, TP,
as a function of supply level for the nearest-idle-taxi and
demand-supply-balancing strategies in Barcelona

scaling factor of 1.0 and above, the results for both

strategies are comparable. However, the reduction of

the fleet size by only 20% causes noticeable differences

in dispatching performance. At the scaling factor of 0.6,

the nearest-idle-taxi strategy does not provide a suffi-

cient level of service (TW exceeds 50 minutes), whereas

the other approach preforms reasonably well even when

half of the fleet is in service (TW is about 10 minutes).

In general, under high load, the first strategy is ex-

tremely myopic as it dispatches vehicles only by look-

ing at the first request in the queue, even though the

selected vehicle could be utilized more effectively if dis-

patched to another request. On the other hand, the

other strategy takes into account all awaiting requests

and sends the idle vehicle to the closest request which

reduces TP and consequently increases the system through-

put. Since τ calli = τdepi ≤ τdispi , i ∈ N , TP is a compon-

ent of TW, thus, achieving relatively small TP generally

leads to smaller TW. This relation may be observed in

Figures 7 and 8, where keeping TP below 5 minutes en-

ables the balancing strategy to serve much higher de-

mand. Interestingly, TP drops at high undersupply (the

demand scaling of 5.0 in the Berlin case, and the supply

scaling of 0.45 in the Barcelona case) and is expected to

drop even further as the undersupply grows. This is due

to the fact that as undersupply deepens, L lengthens,

hence the distance to the nearest open request drops

on average. Moreover, the balancing strategy instant-

aneously switches between the dispatching rules, even

during short interleaving periods of undersupply and

oversupply; hence, reducing the risk of getting into lar-

ger undersupply.

The results also show that regardless of the dis-

patching strategy, the fleets are oversized in both cities.

The FCD analysis revealed the demand-to-supply ratio

to be around 0.7 requests per vehicle hour for Berlin
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(most likely due to numerous taxi rides being unre-

gistered, as mentioned Sec. 6), and 1.8 for Barcelona.

Figure 9 shows a high quality of service (i.e. TW < 5.0

min) is attainable even at the ratio of 2.2 requests per

vehicle hour for Berlin and 3.3 for Barcelona. Despite

the similarities between both case cities (e.g. the size

of both networks), the differences in the dispatching

performance are quite visible. This is mainly the effect

of scale: as the average distance from a given request

to the nearest idle taxi, and from a given taxi to the

nearest waiting request, drops with the growing number

of idle taxis and waiting requests, respectively.

8 Conclusions

Dispatching a fleet of thousands of vehicles in order to
serve tens or hundreds of thousands of requests daily,

poses a challenging optimization problem. The prob-

lem is inherently dynamic, as almost all requests are

immediate and without pre-specified destinations.

By means of large-scale microscopic simulation run

in MATSim, and the dynamic routing functionality offer-

ed by the DVRP module, a realistic simulation model

of the taxi services in Berlin and Barcelona was de-

veloped. This allowed a detailed benchmarking of two

rule-based dispatching strategies to be carried out, out

of which the second was able to efficiently serve both

low and high demand.

Combining both simplicity and efficiency, rule-based

dispatching is a very attractive and, thus, overwhelm-

ingly popular approach for management of a fleet of

taxis in the real world. However, their apparent dis-

advantage is the limited planning horizon; the selected

decision is the best among all possible single moves,

without considering potential sequences of moves. There-

fore, the authors plan to use the microscopic taxi model

of Berlin and Barcelona to study in detail other, more

sophisticated dispatching algorithms, the best of which

could be later applied to managing a real fleet. The

results of the microscopic model will be also useful for

providing guidelines to the taxi policy decision makers

in both cities about the number of taxis operating in

each city.
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