Large-scale microscopic simulation of taxi services. Berlin and Barcelona case studies.

Michal Maciejewski \cdot Josep Maria Salanova \cdot Josepka Bischoff \cdot Miquel Estrada

Received: date / Accepted: date

Abstract The paper presents research on large-scale microscopic simulation of taxi services in Berlin and Barcelona based on floating car data collected by local taxi fleets. Firstly, Berlin's and Barcelona's taxi markets are shortly described and the demand and supply data obtained from FCD analysed. Secondly, the online taxi dispatching problem formulation for this specific case is given, followed by the definition of two real-time rule-based heuristics used to dispatch taxis dynamically within the simulation. Finally, the simulation setup in MATSim is described, and the results obtained with both heuristics are analysed and compared in terms of dispatching performance, proving the effectiveness of the second strategy at different demand and supply scales.

M. Maciejewski

Division of Transport Systems, Poznan University of Technology

Piotrowo 3, 60-965 Poznan, Poland

Department of Transport Systems Planning and Transport Telematics, TU Berlin

Salzufer 17-19, 10587 Berlin, Germany

 $\label{eq:continuous} E-mail: \\ michal.maciejewski@put.poznan.pl, \\ \\ maciejewski@vsp.tu-berlin.de$

J. M. Salanova

Center for Research and Technology Hellas (CERTH), Hellenic Institute of Transport (HIT)

6th km Charilaou-Thermi Rd, GR 57001 Thermi, Thessaloniki, Greece

J. Bischoff

Department of Transport Systems Planning and Transport Telematics, TU Berlin

Salzufer 17-19, 10587 Berlin, Germany

M. Estrada

Center for Innovation in Transport (CENIT), Barcelona Tech, Technical University of Catalonia (UPC) Jordi Girona 29 2A, Barcelona 08034, Spain Keywords online taxi dispatching \cdot dynamic vehicle routing \cdot floating car data \cdot Berlin \cdot Barcelona \cdot MATSim \cdot microscopic simulation

1 Introduction

Simulation is an indispensable tool in order to analyse and optimize complex services with dynamically changing demand and supply, all embedded into a dynamic environment. In the case of taxi services in large cities, a reliable simulation approach must model all these elements both at the microscopic level of detail and in the large-scale (regional, or at least city-wide) scope. The high dynamism of taxi demand is a result of almost all requests being immediate trips with an unspecified destination. For example, partially independent taxi drivers who can choose which rank to wait at, reject serving a request, or decide upon their working hours, account for the limited control over the stochastic supply side. Finally, urban traffic, being the environment for taxi services, implies stochastic timedependent travel times.

Once the simulation model is ready, analysis and optimization may begin, for instance, by changing the dispatching algorithm, scaling demand and supply, or relocating taxi ranks. As far as the authors know, out of many taxi simulation models (Lee et al, 2004; Alshamsi et al, 2009; Wang et al, 2009; Seow et al, 2010; Cheng and Nguyen, 2011), the microscopic ones, though limited in scope, were created for Singapore (Lee et al, 2004; Seow et al, 2010), Barcelona (Salanova et al, 2013; Salanova and Estrada, 2015) and Mielec, Poland (Maciejewski and Nagel, 2013b,a) only. This paper presents two microscopic simulation models built for the cities of Berlin (with the neighbouring Brandenburg region)

and Barcelona, which are then used to assess the performance of two real-time rule-based taxi dispatching strategies on large scale.

2 Taxi supply and demand in Berlin

2

Currently, the Berlin taxi market consists of some 7,600 vehicles licensed to operate in the city. They are organised in 3000 taxi companies employing roughly 18,000 taxi drivers. To model Berlin's taxi supply and demand, in this paper, trajectories of Berlin's biggest radio taxi operator, Taxi Berlin, are used. Overall, they have some 5,700 vehicles working within their range, most of them equipped with GPS trackers that submit their current location and occupation status in a flexible interval (depending on the vehicle's occupation status, but at least once every 60 seconds). These data are, among others, mainly used for travel time prediction in Berlin (Ebendt et al, 2012). With the current occupation status of the vehicle also being submitted, a zone-based matrix of demand for each hour can be generated and used for the demand side of the simulation. On the supply side only the amount of vehicles logged into the system at each second is known, not the actual length of each vehicle or driver shift. This is due to data anonymization by regular reassignment of IDs to vehicles. Furthermore, the amount of vehicles per zone in each occupation status is known in intervals of five minutes.

For the simulation purposes, the supply and demand data of one week (15 April – 22 April 2014) were provided, of which the timeframe between Tuesday 4:00 am and Wednesday 4:00 am has been picked for simulation¹. Figure 1 shows the amount of taxis and requests served during the timeframe investigated. Overall, 27,376 trips were registered. The vehicle supply adjusts to the demand for taxi trips. There is a strong morning peak followed by two somewhat smaller peaks in the afternoon and evening.

The extracted taxi demand is aggregated into 518 zones. Within the city boundaries, these zones correspond to the city quarters defined by the city administration as Lebensweltlich orientierte Räume (LOR) (Senate Department for Urban Development and the Environment, 2015). In the outskirts, community boundaries are used instead. The zone with the highest amount of trips starting or ending is the one around Berlin's major airport, Tegel. Within 24 hours, 3,799 trips to and from the airport were registered. Most other trips are either ending or beginning in the city centre. Figure 2 shows the origin of taxi trips within the city centre. Idle

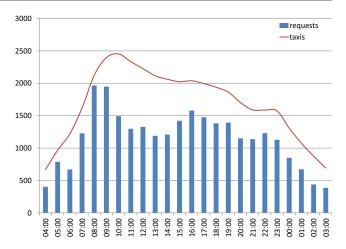


Figure 1 Hourly request submissions and active taxicabs in Berlin

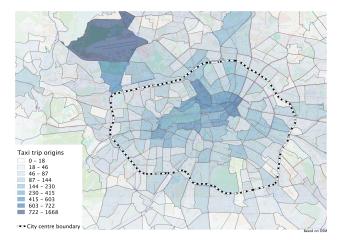


Figure 2 Spatial distribution of daily taxi demand in Berlin

vehicles tend to aggregate at taxi ranks. Within Berlin, there are roughly 400 of them in operation. Figure 3 provides an overview of rank locations and the average number of idle taxis in each zone. Also in this figure, the area around Tegel airport is clearly notable for the highest amount of idle vehicles. Despite a relatively high demand, waiting times for drivers of several hours are not uncommon there. A detailed FCD analysis is also available (Bischoff et al, 2015).

3 Taxi supply and demand in Barcelona

The taxi sector in Barcelona comprises of 10,523 taxi licenses, from which 5% belong to private companies and the 95% to individuals. The number of taxi licenses has been frozen since 2005 (one license per 275 inhabitants). However, the number of driver licenses has increased significantly over the last years (13,136 in 2010, with the rate of drivers to vehicles of 1.26, while this rate was 1.14 in 2007). The demand for taxi services

 $^{^{1}}$ Around 4:00 am, taxi supply and demand is the lowest, making it an intuitive breakpoint between days

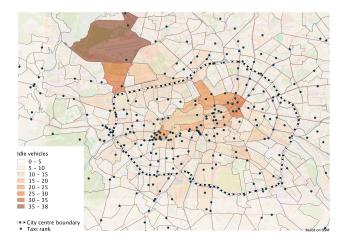


Figure 3 figure

Average amount of idle taxis per zone in Berlin

has been estimated by the Metropolitan Taxi Institute (IMT) as more than 200,000 trips per day, which corresponds to 1.52% of the total number of trips in the wider area (roughly 13,000,000 trips daily). Salanova (2013) estimates the demand for taxi trips at 60,000,000 trips per year based on the GPS trackers collecting origin and destination of trips during the last ten years. On the supply side, the input data has been calculated by Salanova (2013) based on the data provided by the IMT surveys where all the drivers participated.

For the simulation purposes, FCD data recorded for a subfleet of GPS-monitored taxicabs between March 2011 and December 2012 were used, giving precise spatio-temporal information about pickups and dropoffs for 233,509 taxi trips, out of which 126,765 were inner-city weekday (i.e. between Monday 5:00 am and Friday 5:00 am) trips. Figure 4 shows the distribution of destinations for this subset of trips. Since this demand is synthetic and does not represent any specific day, the supply (i.e. fleet size) was adjusted using time-dependent (hourly) request-to-taxi ratios typical for weekdays². Figure 5 shows the hourly profiles of demand and supply during a weekday.

4 Online taxi dispatching

The formulation of the dispatching process was derived from an earlier formulation used by Maciejewski (2014b,a) for optimizing taxi services in Mielec, Poland. The description below covers immediate requests with unknown destinations, i.e. customers want taxis to arrive as soon as possible and they specify the destination after be-

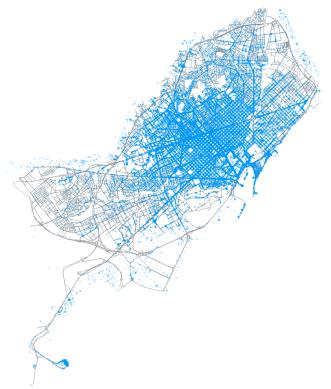


Figure 4 Spatial distribution of destinations for weekday inner-city taxi trips in Barcelona

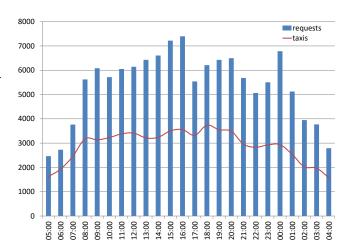


Figure 5 Hourly request submissions and active taxicabs in Barcelona

ing picked up, which corresponds to the overwhelming majority of requests in Berlin. However, this type of request is more challenging in terms of online optimization since the provision of the demand data is maximally postponed. As for the supply side, the formulation includes time windows, which in comparison to the original model, add complexity.

Let $N = \{1, ..., n\}$ be the set of taxi requests (customers). The following sequence of events is related to serving each request $i \in N$ and is illustrated in Fig-

² The supply closely follows the demand resulting in approximately two requests being served every hour by each working taxi.

Michal Maciejewski et al.

ure 6. Taxi customer i calls a taxi (event $E_i^{\rm call}$, time $\tau_i^{\rm call}$) specifying the pickup location, p_i . Since only immediate requests are considered, the customer's desired departure time is $\tau_i^{\rm dep} = \tau_i^{\rm call}$. A selected taxi is dispatched towards p_i at time $\tau_i^{\rm disp}$ (event $E_i^{\rm disp}$), and immediately after arrival, the pickup starts (event $E_i^{\rm pick0}$, time $\tau_i^{\rm pick0}$). Once the passenger is picked up (event $E_i^{\rm pick1}$, time $\tau_i^{\rm pick1}$), he or she specifies the destination, d_i , and the taxi sets out immediately. After reaching d_i , the dropoff begins (event $E_i^{\rm drop0}$, time $\tau_i^{\rm drop0}$). Once the passenger gets out $(E_i^{\rm drop1}$, time $\tau_i^{\rm drop1}$), the taxi is ready to serve another request. Due to the stochasticity of taxi dispatching, times $\tau_i^{\rm call}$, $\tau_i^{\rm dep}$, $\tau_i^{\rm disp}$, $\tau_i^{\rm ready}$, $\tau_i^{\rm pick0}$, $\tau_i^{\rm pick1}$, $\tau_i^{\rm drop0}$ and $\tau_i^{\rm drop1}$ are estimated until the respective events take place, and are therefore subject to change.

Request $i \in N$ is open if it either has not been planned yet, τ_i^{disp} is not set, or is planned to be served in the future, $\tau_i^{\text{disp}} > \tau^{\text{curr}}$, where τ^{curr} denotes the current time. Let L be the list of all open requests ordered by τ_i^{dep} . Each request i is inserted into L on submission, E_i^{call} , and removed from L on taxi dispatch, E_i^{disp} .

Let $M = \{1, \ldots, m\}$ be the set of vehicles. Each vehicle $k \in M$ is available at location o_k within the time window $[a_k, b_k)$. It is assumed that vehicles do not cruise and remain at the dropoff location of the last served customer. When no request has been assigned to k, o_k is k's initial location and a_k is the time the taxi starts operating. Otherwise, o_k is the dropoff location, d_i , and a_k is the time the dropoff ends, τ_i^{drop1} , of the last request assigned to k, i. Since d_i remains unknown till τ_i^{pick1} , both o_k and a_k are unknown temporarily as well, with the restriction that $a_k > \tau^{\text{curr}}$. Let $M^{\text{I}} \subseteq M$ be the set of all idle vehicles; vehicle $k \in M$ is idle if $a_k \leq \tau^{\text{curr}} < b_k$.

5 Rule-based heuristics

Two heuristic dispatching strategies were used to manage the fleet of taxis. Neither strategy uses information about the destinations of the busy vehicles to predict their future availability; thus, the choice of taxis to be dispatched is limited to idle taxis, $M^{\rm I}$.

The first heuristic, called nearest-idle-taxi, mimics the approach used by many taxi companies. It always serves awaiting requests in the FIFO order by dispatching the nearest idle taxi, $k^* \in M^{\rm I}$, to the first request in L, L[1]. By default, the nearest taxi is defined according to the travel time criterion, that is

$$k^* = \underset{k \in M^{\mathrm{I}}}{\operatorname{arg\,min}} t_{k,L[1]}^{\mathrm{O}} (\tau^{\mathrm{curr}}), \tag{1}$$

where $t_{ki}^{O}(t), k \in M, i \in N$ is the travel time from o_k to p_i , given the departure time, t.

The strategy reacts to the following events:

- $-E_i^{\text{call}}$ if $M^{\text{I}} \neq \emptyset$, vehicle k^* is dispatched to request i
- $-E_i^{\text{drop1}}$ if $L \neq \langle \rangle$, vehicle k, after having completed request i, is dispatched to request L[1]

This strategy does not look into the future to predict the availability of busy taxis and create schedules³. Therefore, even distance-based measures, such as straight-line distance, can be applied to determine k^* . Being very simple, it allows fast, real-time taxi dispatching. However, the main drawback is its poor performance under high demand; when $|M^1| \to 0$, k^* may be on the opposite side of a city.

To address this problem, a demand-supply balancing strategy was used. It classifies the system state into the two following mutually-excluding categories: oversupply $(M^{\rm I} \neq \oslash \land L = \langle \rangle)$ and undersupply $(M^{\rm I} = \oslash \land L \neq \langle \rangle)$ and handles these two situations differently. In the former case, the requests are processed as in the first algorithm, whereas in the latter case, vehicle k is dispatched to the nearest awaiting request, $i^* \in L$. Given the time-based distance measure, k is assigned to serve i^* such that

$$i^* = \operatorname*{arg\,min}_{i \in L} t_{k,i}^{\mathrm{O}} \left(\tau^{\mathrm{curr}} \right). \tag{2}$$

The demand-supply balancing strategy reacts to the following events:

- E_i^{call} if $M^{\text{I}} \neq \emptyset$, vehicle k^* is dispatched to request i
- $-E_i^{\text{drop1}}$ if $L \neq \langle \rangle$, vehicle k, after having completed request i, is dispatched to request i^*

The demand-supply balancing strategy was based on the assignment rules for scheduling of automated guided vehicles studied by Egbelu and Tanchoco (1984). They proposed order-initiated and vehicle-initiated assignment rules. The former are applied upon request submission (here, E_i^{call}), whereas the latter are executed upon request completion (here, E_i^{drop1}). Under low demand, the balancing strategy serves requests immediately as they arrive (request-initiated planning). However, in an overloaded system, the focus is shifted from the FIFO processing order to maximizing vehicle utilization by dispatching vehicles that have become idle to the nearest awaiting requests (vehicle-initiated planning). This results in increased throughput, and consequently, reduces the amount of time passengers await taxis.

³ Therefore, in the previous publications, the authors referred to it as the *no-scheduling* strategy (NOS).

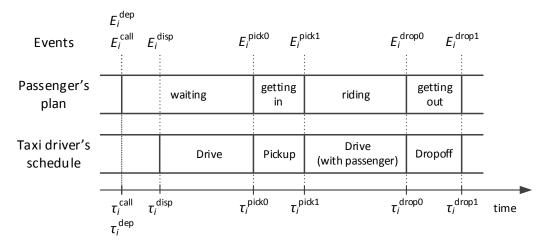


Figure 6 A taxi driver's schedule and a passenger's plan

6 Simulation setup

MATSim (Horni et al, 2015) was used as the simulation platform. In general, it allows for running agent-based transport simulations, and its primary purpose is activity-based travel demand modelling. Due to the growing set of extensions, MATSim's core functionality can be extended to serve many purposes.

To simulate taxis, the DVRP (Dynamic Vehicle Routing Problem) extension (Maciejewski, 2015) was used. The vehicle routing model implemented in this extension covers a wide range of problem types, offering such features as one-to-one and one-to-many (many-to-one) topologies, multiple depots, dynamic requests, non-homogeneous requests and vehicles, time windows, time-dependent stochastic travel times and costs, network-based routing, and vehicle monitoring and diversion.

The DVRP extension provides the connection between MATSim and the optimization algorithm. It listens to simulation events, monitors the state of simulation, binds driver behaviour to the schedules computed by the optimizer and coordinates interaction between drivers, passengers and dispatchers. It also facilitates optimization by providing the functionality of least-cost path/tree search. For a detailed description of the DVRP extension, the reader is referred to (Maciejewski, 2015).

For the simulation of taxis in Berlin, a network based on the OpenStreetMap data is used. It represents the road network in Berlin and the surrounding area of Brandenburg. The network consists of 11,353 nodes and 24,350 links. Using car traffic based on an earlier simulation (Neumann, 2014), time-specific link travel times were generated without having to simulate all background traffic. This keeps the simulation runtime reasonable, as only taxi traffic must be considered. The extracted demand data from FCD were converted into

plans for MATSim agents. Locations for origins and destinations within the zones were randomly distributed as were the actual departure times within each hour. This resulted in 27,386 agent plans with exactly one taxi trip each. With this demand, the overall stress on the system is low. However, to accommodate a comparably high share of black-market rides in Berlin (30-40% according to estimations) (Sauer, 2014), a scaling factor of 1.5 for the taxi demand seems reasonable. Moreover, taxi demand may be much higher due to bad weather conditions, public transport breakdowns, trade fairs or other events. For example, during a recent strike (15 October 2014) in the overground railway system, our data show the amount of taxi trips doubled during the afternoon peak with the taxi supply only increasing by about 20%. On that particular day, a scaling factor for the original demand of 2.5 would be appropriate. To depicture all these fluctuations, the authors decided to scale up the demand step-wise up to 5.0 while keeping the original spatiotemporal distribution of requests.

A similar procedure was used to create a simulation scenario for taxi dispatching in Barcelona. The Barcelona road network model was extracted from the OpenStreetMap data. Consisting of 12,687 nodes and 23,648 links, the network is similar in size to that of Berlin. To provide high simulation performance, timedependent link travel times were used instead of simulating the whole road traffic. The inner-city weekday taxi trips (Sec. 3) were modelled as taxi legs of 126,765 MATSim's agents, each having one taxi trip. The supply side (expressed in vehicle hours) was scaled by factors between 0.4 and 2.0, aiming at both executing a sensibility analysis of the system performance for different taxi fleet sizes and determining the minimum number of taxis needed for serving all taxi trips at a reasonable level of service.

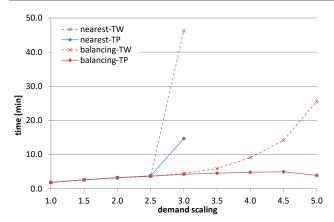


Figure 7 Average wait time, $T_{\rm W}$, and pickup trip time, $T_{\rm P}$, as a function of demand level for the nearest-idle-taxi and demand-supply-balancing strategies in Berlin

7 Results

Out of several different performance measures proposed by Maciejewski and Nagel (2013b), the following two are analysed in this section:

- the average passenger wait time, representing the customers' perspective,

$$T_{W} = \sum_{i \in N} (\tau_i^{\text{pick0}} - \tau_i^{\text{dep}})/n,$$

 the average pickup trip time, representing the drivers' perspective,

$$T_{\rm P} = \sum_{i \in N} (\tau_i^{\rm pick0} - \tau_i^{\rm disp})/n.$$

Computational experiments were carried out 20 times for each individual setting (i.e. both the strategy and demand/supply scaling).

Figure 7 presents the results obtained for the Berlin case at different levels of demand. Up to the scaling factor of 2.5 both approaches have comparable performance in terms of $T_{\rm W}$ and $T_{\rm P}$. This is because at low demand only the request-initiated assignments are carried out, i.e. the nearest idle taxi is dispatched to each newly submitted request (the same behaviour in both strategies). However, when the system is overloaded, only vehicle-initiated planning takes place, which leads to significant differences in the performance of both methods, as the balancing strategy uses a different rule and tries to minimize the pickup trip times instead of serving requests in the FIFO order. As a result, the nearest-idle-taxi strategy fails for the tripled demand $(T_{\rm W} \text{ increases to almost 50 minutes})$, whereas the balancing approach efficiently handles even the quadrupled demand ($T_{\rm W}$ is below 10 minutes).

The results obtained at different taxi supply levels for the Barcelona case are shown in Fig. 8. For the

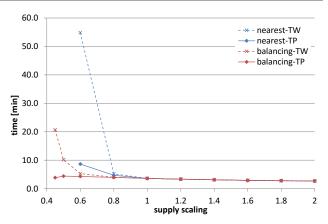


Figure 8 Average wait time, $T_{\rm W}$, and pickup trip time, $T_{\rm P}$, as a function of supply level for the nearest-idle-taxi and demand-supply-balancing strategies in Barcelona

scaling factor of 1.0 and above, the results for both strategies are comparable. However, the reduction of the fleet size by only 20% causes noticeable differences in dispatching performance. At the scaling factor of 0.6, the nearest-idle-taxi strategy does not provide a sufficient level of service ($T_{\rm W}$ exceeds 50 minutes), whereas the other approach preforms reasonably well even when half of the fleet is in service ($T_{\rm W}$ is about 10 minutes).

In general, under high load, the first strategy is extremely myopic as it dispatches vehicles only by looking at the first request in the queue, even though the selected vehicle could be utilized more effectively if dispatched to another request. On the other hand, the other strategy takes into account all awaiting requests and sends the idle vehicle to the closest request which reduces $T_{\rm P}$ and consequently increases the system throughput. Since $\tau_i^{\text{call}} = \tau_i^{\text{dep}} \leq \tau_i^{\text{disp}}, i \in N, T_P$ is a component of $T_{\rm W}$, thus, achieving relatively small $T_{\rm P}$ generally leads to smaller $T_{\rm W}$. This relation may be observed in Figures 7 and 8, where keeping $T_{\rm P}$ below 5 minutes enables the balancing strategy to serve much higher demand. Interestingly, $T_{\rm P}$ drops at high undersupply (the demand scaling of 5.0 in the Berlin case, and the supply scaling of 0.45 in the Barcelona case) and is expected to drop even further as the undersupply grows. This is due to the fact that as undersupply deepens, L lengthens, hence the distance to the nearest open request drops on average. Moreover, the balancing strategy instantaneously switches between the dispatching rules, even during short interleaving periods of undersupply and oversupply; hence, reducing the risk of getting into larger undersupply.

The results also show that regardless of the dispatching strategy, the fleets are oversized in both cities. The FCD analysis revealed the demand-to-supply ratio to be around 0.7 requests per vehicle hour for Berlin

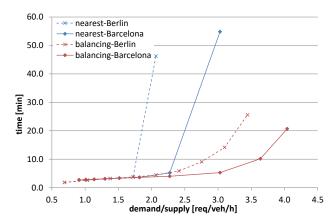


Figure 9 Average wait time, $T_{\rm W}$, as a function of the demand-to-supply ratio for the nearest-idle-taxi and demand-supply-balancing strategies in Berlin and Barcelona

(most likely due to numerous taxi rides being unregistered, as mentioned Sec. 6), and 1.8 for Barcelona. Figure 9 shows a high quality of service (i.e. $T_{\rm W} < 5.0$ min) is attainable even at the ratio of 2.2 requests per vehicle hour for Berlin and 3.3 for Barcelona. Despite the similarities between both case cities (e.g. the size of both networks), the differences in the dispatching performance are quite visible. This is mainly the effect of scale: as the average distance from a given request to the nearest idle taxi, and from a given taxi to the nearest waiting request, drops with the growing number of idle taxis and waiting requests, respectively.

8 Conclusions

Dispatching a fleet of thousands of vehicles in order to serve tens or hundreds of thousands of requests daily, poses a challenging optimization problem. The problem is inherently dynamic, as almost all requests are immediate and without pre-specified destinations.

By means of large-scale microscopic simulation run in MATSim, and the dynamic routing functionality offered by the DVRP module, a realistic simulation model of the taxi services in Berlin and Barcelona was developed. This allowed a detailed benchmarking of two rule-based dispatching strategies to be carried out, out of which the second was able to efficiently serve both low and high demand.

Combining both simplicity and efficiency, rule-based dispatching is a very attractive and, thus, overwhelmingly popular approach for management of a fleet of taxis in the real world. However, their apparent disadvantage is the limited planning horizon; the selected decision is the best among all possible single moves, without considering potential sequences of moves. Therefore, the authors plan to use the microscopic taxi model

of Berlin and Barcelona to study in detail other, more sophisticated dispatching algorithms, the best of which could be later applied to managing a real fleet. The results of the microscopic model will be also useful for providing guidelines to the taxi policy decision makers in both cities about the number of taxis operating in each city.

Acknowledgements This paper was co-funded by the Einstein Foundation Berlin, Germany, and the National Centre for Research and Development, Poland (grant PBS1/A6/11/2012). The paper was supported by the Project ENTROPIA from the Spanish "Ministerio de Economa y Competitividad". Proyectos de Investigacin Fundamental No Orientada. CO-DIGO: TRA2012-39466-C02-01 for the Barcelona case.

References

Alshamsi A, Abdallah S, Rahwan I (2009) Multiagent self-organization for a taxi dispatch system. In: 8th International Conference on Autonomous Agents and Multiagent Systems, pp 21–28

Bischoff J, Maciejewski M, Sohr A (2015) Analysis of Berlin's taxi services by exploring GPS traces, accepted for MT-ITS 2015

Cheng S, Nguyen T (2011) Taxisim: A multiagent simulation platform for evaluating taxi fleet operations. In: Proceedings of the 2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology-Volume 02, IEEE Computer Society, pp 14–21

Ebendt R, Sohr A, Touko-Tcheumadjeu L, Wagner P (2012) Dynamische Neuplanung der Touren von Express Trucks unter Einbeziehung einer FCD-basierten Verkehrslage. In: Multikonferenz Wirtschaftsinformatik 2012: Tagungsband der MKWI 2012, pp 124–136

Egbelu PJ, Tanchoco JM (1984) Characterization of automatic guided vehicle dispatching rules. The International Journal of Production Research 22(3):359–374

Horni A, Nagel K, Axhausen KW (eds) (2015) The Multi-Agent Transport Simulation MATSim. (forthcoming)

Lee D, Wang H, Cheu R, Teo S (2004) Taxi dispatch system based on current demands and real-time traffic conditions. Transportation Research Record: Journal of the Transportation Research Board 1882(-1):193–200

Maciejewski M (2014a) Benchmarking minimum passenger waiting time in online taxi dispatching with exact offline optimization methods. Archives of Transport 30(2):67–75

Michal Maciejewski et al.

Maciejewski M (2014b) Online taxi dispatching via exact offline optimization. Logistyka 3:2133–2142

8

- Maciejewski M (2015) Dynamic transport services. In: Horni et al (2015), p forthcoming
- Maciejewski M, Nagel K (2013a) A microscopic simulation approach for optimization of taxi services. In: Albrecht T, Jaekel B, Lehnert M (eds) Proceedings of the 3rd International Conference on Models and Technologies for Intelligent Transportation Systems 2013, TUDpress, pp 1–10
- Maciejewski M, Nagel K (2013b) Simulation and dynamic optimization of taxi services in MATSim. VSP working paper, TU Berlin, Transport Systems Planning and Transport Telematics, see http://www.vsp.tu-berlin.de/publications
- Neumann A (2014) A paratransit-inspired evolutionary process for public transit network design. PhD thesis, Technische Universität Berlin
- Salanova JM (2013) Modeling of taxi cab fleets in urban environment. PhD thesis, Universitat Politècnica de Catalunya
- Salanova JM, Estrada M (2015) Agent based modelling for simulating taxi services (case study in barcelona). Procedia Computer Science 52:902 907, DOI http://dx.doi.org/10.1016/j.procs.2015.05.162, URL http://www.sciencedirect.com/science/article/pii/S187705091500962X, the 6th International Conference on Ambient Systems, Networks and Technologies (ANT-2015), the 5th International Conference on Sustainable Energy Information Technology (SEIT-2015)
- Salanova JM, Estrada M, Mitsakis E, Stamos I (2013) Agent based modeling for simulation of taxi services. Journal of Traffic and Logistics Engineering 1(2):159–163
- Sauer S (2014)Wie mindestlohn der das veraendert. Bertaxi-gewerbe liner http://www.berliner-Zeitung URL zeitung.de/wirtschaft/mindestlohn-2015-indeutschland-wie-der-mindestlohn-das-taxi- gewerbeveraendert,10808230,29405460.html
- Senate Department for Urban Development and the Environment (2015)Lebensweltlich orientierte Raeume (LOR) inBerlin. http://www.stadtentwicklung.berlin.de/index_en. shtml
- Seow K, Dang N, Lee D (2010) A collaborative multiagent taxi-dispatch system. Automation Science and Engineering, IEEE Transactions on 7(3):607–616
- Wang H, Lee D, Cheu R (2009) PDPTW based taxi dispatch modeling for booking service. In: Natural Computation, 2009. ICNC'09. Fifth International Conference on, IEEE, vol 1, pp 242–247