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Abstract

Transport simulations and models based on cyclically time-expanded networks are two approaches to
model traffic in a time-dependent manner. They both have advantages and disadvantages: Simulation
is a powerful tool to evaluate large-scale scenarios, whereas analytical models like a program based on
a cyclically time-expanded network are more suitable for optimization purposes. This paper compares
properties of both models regarding traffic flow modeling. It is shown that user equilibria in both models
may differ arbitrarily. While using these models to design traffic policies that reduce user equilibria
travel time in reality, this differences may have large impact. It is discussed whether both models can be
combined in a way as to make one model benefit from the other’s advantages.

1 Introduction

In times were congestion levels are growing in many urban areas, there is a need to improve and refine
networks. Traffic models provide assistance with predicting traffic patterns and designing and evaluating
traffic policies. Many different modeling approaches exist. All of them have to make compromises between
capturing the reality as good as possible and keeping the model complexity at a manageable level. Because of
their simplicity, static flow models are widely used to optimize traffic management schemes like tolls, traffic
signal plans, or other network adaptions. These models’ theory is well established, e.g. in terms of the effect
of selfish users to the system welfare [12]. Despite their time independence, static flow models can be used
to model traffic of specific, fixed points in time where traffic flow can be assumed to be constant for a while,
e.g. for rush hours.

In reality, however, traffic is not time-independent and travel times and demand change over time. There
are approaches to come from static flow models to more realistic ones and capture time dependency. One
idea is to expand the network over time such that flow travels over time in a static network. This only works
for constant, i.e. flow-independent link travel times. Otherwise, the existence of links in the time-expanded
network would depend on route decisions of travellers. Constant link travel times seem to give realistic results
in urban areas, where links are short, speed limits exist, and platoons of vehicles drive with a similar speed
as single vehicles. Congestion occurs while waiting at signals or crossings and is modeled by waiting links at
nodes. Route travel times then arise as the sum of constant link travel times and waiting times which makes
them non-constant again [9]. Hence, time-expanded models can capture dynamic flows with constant link
travel times in a static network and at least some results on static flows are transferable, see e.g. [5]. The
big disadvantage of time expansion is that network size increases immensely depending on the chosen time
step size. Optimization algorithms that use a time-expanded network are, therefore, only pseudo-polynomial
regarding the original network. Still, it is possible to construct other algorithms on time-expanded networks
at least for some optimization problems [5].
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An approach to handle the size of time-expanded networks is to expand the network only for a fixed, short
time interval and cyclically combine the interval boundaries. This results in a manageable network size, but
limited time dependency. Like in static flow models only stationary demand pattern are representable. At
least, demand repeats each cycle and does not have to be constant all the time. In contrast to time-expanded
networks where link travel times have to be constant, there are also approaches for flows over time with
flow-dependent transit times. These lead to more realistic results, but also to mathematical difficulties, see
e.g. [10]. Due to the lack of well-defined analytical models for this kind of flows, few results are known for
them.

Another approach drops the analytical part and uses simulation tools. Transport simulation may capture
a lot of the complex, realistic behavior of traffic flows like time-dependent demand and travel times, spill
back to upstream parts of the network, a more detailed user behavior that includes not only route, but also
time and mode choice. This is done by an iterative approach that simulates agents traveling through the
network and performing their daily activities. The daily plans of agents are then evaluated and some agents
are allowed to re-plan their day until the iterations reach a stable state. Hence, transport simulation tools
find user equilibria for complex systems where not all relations are known in terms of closed mathematical
formulations. On the other hand, simulation tools miss the optimization potential because of the complex
system they capture.

This paper compares two of the discussed approaches to model traffic in a time-dependent way: A
cyclically time-expanded network model and a dynamic coevolutionary transport simulation. For the time-
expanded model an approach by Köhler and Strehler at BTU Cottbus, which was developed for fixed-time
traffic signal optimization, is considered [9]. On the other side, the transport simulation MATSim is used [7].
Both models have already been coupled to optimize fixed-time traffic signal plans in a real world scenario.
For this, the scenario is provided by the transport simulation and converted into a cyclically time-expanded
network. The static model then approximates optimal fixed-time signal plans for all signalized intersections
by solving a mixed integer program (MIP) with the high performance solver CPLEX. These optimized signal
plans are given back to the transport simulation to evaluate the effect on travel times in a more realistic
model [6]. While coupling two different models like this, detailed knowledge about model differences, user
behavior and solution properties of both models helps to understand and improve the results. This paper
therefore analyzes and compares model and solution properties of the two mentioned models. Subsequently,
it is discussed how to benefit from these knowledge while designing good traffic policies.

The two models considered in this paper are introduced in the next section and compared in section 2.3.
The flow patterns found with both models are compared in section 3. Section 4 discusses how to improve the
total travel time in the transport simulation by using knowledge from the cyclically time-expanded network
model. Section 5 concludes.

2 Model properties

Both models studied in this paper - the cyclically time-expanded network model by Köhler and Strehler and
the transport simulation MATSim - are different approaches to model traffic in a time-dependent way. This
sections introduces the models and detailed compares relevant model properties.

2.1 The cyclically time-expanded network model

The model of Köhler and Strehler was developed for optimizing traffic signal coordinations and traffic assign-
ment simultaneously in an urban street network [9]. It is based on a time-expanded network, which uses the
periodicity of traffic signals to limit the time horizon. In the following, it is called the cyclically time-expanded
network model.

Time-expanded networks make it possible to model time dependency in static flows. Figure 1 illustratively
explains time-expansion by an example: Consider a static network with constant link travel times like in the
upper left part of figure 1. Choose a time step size (e.g. one second, as in figure 1) and create a copy of each
node for each time step. For every link in the static network, connect copies of the origin and destination
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Figure 1: Cyclically time-expanded network with waiting links: Expand the network over time; cyclically
combine it; add waiting links. [9]

node in the expanded network according to the constant travel time in the static network. This step can
be seen in the upper right part of figure 1. When flow travels on one link in a time-expanded network,
it automatically reaches the next node by the copy of the correct time step. In such a network, link flow
values may differ for different time steps. Also demand values do not have to be stationary anymore. But
the network size increases significantly. Therefore, the considered model limits the time horizon by taking
advantage of the periodicity of traffic signals: The network is only expanded for a time interval of the size
of the signal cycle time. Links are then added according to travel times modulo the number of time steps.
This step is visualized in the lower left part of figure 1. A disadvantage of this cyclical concatenation is that
some time dependency gets lost: Demand and link flow pattern have to be cyclically repeated. As a last
step, waiting links, which allow flow particles to wait in nodes, are added to the network. This is necessary
since there are link capacities that restrict link inflow values per time step. Waiting links in the cyclically
time-expanded network are illustrated in the lower right part of figure 1.

Although link travel times are constant, resulting route travel times of travellers are non-constantly for
increasing demand values. This is because of waiting times that grow with increasing demand. (See [9] for a
detailed study on travel times in this model.)

The traffic assignment problem in the cyclically time-expanded network is analytically formulated together
with signal coordination constraints in a corresponding mixed integer program (MIP). The program has a
linear objective function that minimizes total travel time and, therefore, results in the system optimum
(SO). To solve the mixed integer program, the high performance solver CPLEX is used. CPLEX iteratively
calculates primal and dual bounds to search for a good solution of the problem and, on the other hand, to
prove its optimality by closing the gap between primal and dual solutions. In some scenarios with many
conflicting streams and high demand values, the gap can not be closed at all by CPLEX. [9]
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Figure 2: The iterative transport simulation MATSim.

2.2 The dynamic coevolutionary transport simulation

In contrast to static models and models that are based on time-expanded networks, a dynamic transport
simulation considers not only stationary, but also time-dependent flows; i.e. traffic demand and travel times
may chance over time.

The multi-agent transport simulation MATSim [7] considered in this paper belongs to the class of dynamic
coevolutionary transport simulations. It is based on a network with free-speed travel times and link lengths,
i.e. constant free-flow travel times for links like in the time-expanded network. Outflow rates are restricted by
link flow capacities. Additionally, links have storage capacities that restrict the number of vehicles that can
queue on a link. MATSim links are modeled as queues: Vehicles that enter a link queue up and are finally
allowed to exit the link when they have reached the front of the queue, their free flow link travel time is
reached and flow capacity of the current link and storage capacity of the next link are not exceeded. Agents,
i.e. synthetic travellers, depart and arrive on arbitrary links at arbitrary times which is modeled by daily
plans. Plans contain a schedule of activities, including times and locations, along with the travel modes.
Routes are also assigned to plans.

MATSim iterates between two major components: At first, the demand is simulated on the physical
network (called mobsim for mobility simulation in figure 2), i.e. every agent executes its selected plan.
Travel times and, therefore, activity durations of the executed activity travel pattern differ from times and
durations in the plan because of congestion. The second major component of the iterative process is the
mental simulation: Agents evaluate their decisions (called scoring in figure 2) and eventually replan them
(called replanning in figure 2). Plans are evaluated based on their performance, which is quantified by a
score. Scores sum up as utilities for all activity participations and times spent in traffic. Agents are allowed
to select a plan for the next iteration. A certain percentage of agents is chosen to generate a new plan by
modifying an existing plan. Possible modification strategies are e.g. route, time or mode choice. The rest of
the agents selects one of their already existing plans through probabilistic selection by a multinomial logit
model, where the selection probability of a plan is related to its score.

Over the iterations, agents intend to maximize their score, i.e. minimize their travel time. The iterative
process is repeated until agent scores do not vary anymore. If they converge, the process leads to a user
equilibrium (UE), i.e. no user may improve his score by unilaterally changing his strategie. MATSim’s learning
dynamics are very similar to the approach published by Cominetti [3], who proved that they converge almost
surely towards a stationary state, which can be then characterize as a user equilibrium.

2.3 Comparing both models

The models described in the two previous subsections – the cyclically time-expanded network model and
the dynamic coevolutionary transport simulation – both aim to predict traffic flow with more or less aspects
of time dependence, link travel times that are flow-independent and the possibility of waiting in front of
intersections. Besides these aspects, there are many differences in both models (see Table 1). While comparing
solution structures of both models and before coupling them to construct good traffic policies for real-world
scenarios, it is important to analyze how both models behave, what they assume and which possibilities they
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have. This aims at better understanding coherences and consequences of coupling both models.
The most important difference is related to the way of capturing time dependency: In the cyclically time-

expanded network, demand has to be the same for every cycle. In contrast to static flow models, at least
variations in demand can be modeled, which cause variations in waiting times because of congestion and,
therefore, variations in travel times. These variations are the same every cycle. In the dynamic coevolutionary
transport simulation, demand and therefore travel times may vary arbitrarily over the day.

Although link travel times in both models are constant and flow dependency arises by link capacities
that cause waiting in front of intersections, one can observe a small, but important difference here: Because
of the cyclic structure, waiting times for flow particles, i.e. synthetic travellers, are bounded by one cycle
length in the analytical model. The reason is that after one cycle the following copy of the synthetic traveller,
belonging to the next cycle, arrives. In MATSim, vehicles can wait unboundedly if it is necessary. Daily
plans with long waiting times are then scored poorly and users try to find better ones.

While modeling vehicles that queue on a link, one usually distinguishes between models with point queues
and spatial queues. In a model with point queues, queuing vehicles do not occupy space and, thus, do not
influence whether following vehicles may enter the link or not. The cyclically time-expanded network model
introduced in section 2.1 belongs to the class of point queue models: The waiting links with unbounded
capacity exactly represent point queues at nodes; following vehicles are not influenced by the number of
vehicles on the waiting link belonging to the link. In a model with spatial queues, queuing vehicles occupy
space and can, therefore, spill back to upstream links. The transport simulation MATSim belongs to this
class of models: Link length and vehicle size result in a maximum number of vehicles that fit on a link. If
this number is reached, following vehicles have to wait on upstream links before they are allowed to enter the
observed link.

Both models respect link flow capacities in terms of flow that can be processed by a link in a time frame.
The cyclically time-expanded network model uses the capacities as an entering restriction for links while
the dynamic coevolutionary transport simulation uses them as exiting restrictions. So, in the analytical
model congestion builds up upstream of the bottleneck whereas in MATSim it occurs on the bottleneck and
upstream because of spill back effects discussed in the last paragraph.1

Another difference is related to the way traffic flow is handled physically: In the time-expanded network
model, no vehicles are considered. Flow values may split up in arbitrarily small flow particles to different
routes. To ensure flow preservation in every node, the sum of all entering flow values (from links and from
the node itself as an origin) has to be equal to the sum of all exiting flow values (to links and to the node
itself as destination). In MATSim, this condition is not required. Flow is the sum of all individual vehicles
that cannot disappear or split, but have to travel from their start to their end link.

In the time-expanded network queuing takes place at the waiting links. This separates it from the links
that cover a distance. Because of this model property, passing of vehicles becomes possible: Following
vehicles from another origin-destination pair may directly cross the intersection, while previous vehicles use
the waiting link. In MATSim, links are directly represented by queues and therefore fulfill the first-in-first-out
(FIFO) property. So, no passing is possible in the transport simulation.

A final difference in between the two models consists in the route distribution that is assumed or calculated,
respectively: The cyclically time-expanded network model finds the system optimal route distribution which
is also a user equilibrium in this model. Other user equilibria with higher travel times may exist, however.
The dynamic coevolutionary transport simulation iteratively results in a user equilibrium which does not
necessarily minimize the total travel time. This circumstance is discussed in the next section.

1One could also model inflow capacities in MATSim. In urban networks with short link lengths this will not give a structurally
different solution. This is due to the fact that MATSim simulates spill back effects. In contrary, it would result in a totally
different traffic flow pattern if one switches between inflow and outflow capacities in a scenario with long link lengths, see
e.g. [13]. The reason is, that spill back effects are disabled with long link lengths.
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KS model MATSim

Demand stationary time-dependent

Link travel times constant constant

Waiting times bounded (cycle time) unbounded

Queues point (waiting links) spatial

Capacities inflow outflow

Physical model flow preservation mass preservation

Priority passing possible FIFO

Optimum SO = UE SO ≤ UE

Table 1: Overview on similarities and differences of both models. The left column belongs to the cyclically
time-expanded network model (named KS model here), the right one to the dynamic coevolutionary transport
simulation MATSim.

3 System optima and user equilibria

Selfish user behavior does not necessarily lead to a minimal total travel time, neither in theory nor in reality.
For static flow models it has been shown that the difference of total travel time in user equilibrium and
system optimum may become arbitrarily large even in small networks [11]. Also in a more realistic transport
simulation, total travel times of user equilibrium and system optimum may differ unboundedly, see e.g. [13].
A plausible aim is to improve the travel time of user equilibria. As it is not possible to directly force the users
to follow the system optimal routes, one could try to indirectly force them by modifying the parts of the
network that cause the difference between user equilibrium and system optimum. But how to identify good
modifications? While transport simulations are efficient in evaluating user equilibria in large scale scenarios,
they lack in optimization possibilities. On the other hand, analytical formulations like the cyclically time-
expanded network model considered in this paper can be used to optimize traffic flow, but are not suitable
for large scale scenarios. By optimizing the network structure in the mathematical model and evaluating its
effect in the more realistic transport simulation, both models can benefit from each other. But what impact
does it have that optimization assumes a system optimal route distribution whereas simulation evaluates it
with the assumption of selfishly users? This section compares properties of system optima and user equilibria
in cyclically time-expanded network models and dynamic coevolutionary transport simulations.

3.1 System optima and user equilibria in the cyclically time-expanded network
model

The cyclically time-expanded network model of Strehler and Köhler assumes travellers to follow the system
optimal routes. Due to constant link travel times, this system optimum is also a user equilibrium in the
sense that no user can improve their travel time by changing their route: Consider a system optimal route
distribution and an arbitrary user that thinks of changing their route. Link travel times are independent
of the number of travellers using it. Changing the user’s route would therefore not change link travel times
and by association not improve their travel time. Otherwise, total travel time would also improve, which is
a contradiction to the system optimality of the considered distribution. Hence, no user can decrease their
travel time by changing their route [9].

Although the system optimum in this model is a user equilibrium, not every user equilibrium is system
optimal. In contrast to static models without capacity restrictions, multiple user equilibria may exist in
capacitated networks. Users can occupy links and restrict the route choice for other users. The travel time of
the worst user equilibrium can even be arbitrarily far from the best user equilibrium, i.e. the system optimum,
see [4].
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Figure 3: Example network with constant free flow travel times and capacities.

3.2 Comparing user equilibria of both models

As proved in section 3.1, the solution found by the cyclically time-expanded network model is a user equilib-
rium: Considering the set of feasible, alternative routes, no user can improve their travel time. Nevertheless,
the dynamic coevolutionary transport simulation does not necessarily find the same equilibrium as one can
see in the following example.

Consider the network shown in figure 3. Free speed travel times and flow capacities are given next to
each link. An amount of 3600 vehicle per hour travels from the left to the right. There are three possible
routes: The upper, the middle, and the lower route. If all users used the middle route, which is the fastest
with free speed travel times, the network could only handle 1800 vehicle per hour. In contrast, the network
could handle the double amount of 3600 vehicle per hour, if the users uniformly distribute to the two outer
routes.

The scenario is based on Braess’s paradox which states that removing links may improve total travel time
in user equilibria [2].2 In this study, it is mainly used to present the difference of both models regarding
capacity handling: The cyclically time-expanded network model finds the system optimum, which is the
uniform distribution to the outer routes. From the perspective of this model, the solution also represents
a user equilibrium because flow particles can not switch to saturated, i.e. occupied links. In the dynamic
coevolutionary transport simulation, agents are allowed to switch to saturated links. As a consequence,
following agents are delayed and less than 3600 vehicles arrive per hour. Selfish user behavior results in a
distribution where all agents use the middle route. From the perspective of the simulation, this situation
represents a user equilibrium for this scenario.

Therefore, both models find different user equilibria for this scenario. As discussed in section 3.1, multiple
user equilibria may exist in capacitated networks. Does this explain why both models result in different
solutions?

The route distribution found by the transport simulation does not constitute a feasible solution of the
cyclically time-expanded network model because capacities are strict and time horizon is limited due to the
cyclical expansion: If users switch to the middle route, no route will be left for other users to choose because
waiting times are bounded. The uniform distribution to the outer routes is the only feasible solution in the
cyclically time-expanded network model. On the other hand, the solution that the cyclically time-expanded
network model finds does not constitute a user equilibrium in the coevolutionary transport simulation because
users may improve their travel time by unilaterally switching to the middle route. Total travel time is higher
when users travel on the middle route, though. Both user equilibria are therefore not only different equilibria
in the set of multiple user equilibria that may exist in both models. Instead, the strategy set of possible route
distributions and therefore the models set of user equilibria is structurally different.

2Braess’s paradox was originally developed for static flow models. For a study how this paradox behaves in the dynamic
coevolutionary transport simulation MATSim, see [13].
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Figure 4: Results of a MATSim run with a signal at node 4 optimized by the cyclically time-expanded
network model as discussed in section 4.1.

4 Improving the user equilibrium

This section considers how to use the knowledge about model differences to let the models benefit from each
other and design traffic policies to improve total travel time in reality. The improvement is evaluated with
the dynamic coevolutionary transport simulation since it captures more aspects of traffic in reality than
the cyclically time-expanded network model (see section 2.3). Because system optima can not exactly be
calculated in the transport simulation, one can think of using information about the system optimum given
by an analytical approach like the cyclically time-expanded network model discussed in this paper. Although
user equilibria are different in both models, the route distribution that results from the cyclically time-
expanded network model is better in terms of system welfare than the route distribution that results from the
coevolutionary transport simulation. In the example presented in section 3.2, the route distribution resulting
from the cyclically time-expanded network model even corresponds to the system optimal route distribution
in the transport simulation. But how to use this information to improve the user equilibrium? Since one
can not simply force the travellers to use the system optimum routes, one may apply an appropriate traffic
policy to make them more attractive for selfish travellers. There are many different possible management
strategies, e.g. traffic signals, tolls, speed limits, environmental zones, traffic calming, road closures; and
many different approaches to design them. This section discusses two different approaches, an analytical and
a algorithmic approach to design traffic signals and tolls, respectively. The first approach results from the
analytical model, the second from the simulation model. The approaches are compared based on the scenario
depicted in figure 3 as this is an example in which user equilibria in both models differ structurally.

4.1 Improving the user equilibrium with signal optimization

Traffic signals may privilege system optimal routes and delay others. So, they are an intuitive way to guide
traffic. There are different categories of traffic signals and different ways to design them. Traffic-actuated
and adaptive signals react to current traffic flows. As such, they do not take long-term route changes due
to signal control into account and, additionally, tend to privilege routes that many travellers use instead of
supporting the system optimal routes. Hence, traffic-actuated and adaptive signals are suited for unpredicted
events, e.g. changes in demand patterns because they can react to them. Fixed-time signals, on the other
hand, have more possibilities regarding network design in advance because they are pre-timed.

The cyclically time-expanded network model presented in section 2.1 constitutes such a model that can
be used to optimize fixed-time signal plans based on an analytically formulation. It calculates signal plans
such that system-optimal total travel time is minimized. Because the system optimum constitutes a user
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Figure 5: Results of a MATSim run with congestion pricing designed by the transport simulation itself as
discussed in section 4.2.

equilibrium in this model (see section 3.1), it is speculated that this also minimizes total travel time of selfish
travellers. But as shown in section 3.2, user equilibria in different models may differ a lot and, thus, also differ
from reality. Using this approach, one has to keep in mind possible shortcomings, e.g. based on the model
differences presented in section 2.3. This section mainly focuses on the structure of the resulting management
strategy that can differ a lot between the approaches.

To illustrate this, consider again the example from section 3.2 in figure 3, but this time with a fixed
demand of 3600 vehicles in total, i.e. one hour of departures. Signalizing the intersection at node 4 such that
the conflicting streams of the middle and the lower route can not pass simultaneously, makes it possible to
privilege or delay the middle route compared to the lower one. Optimizing the signal plans with the cyclically
time-expanded network model, results in the shortest possible green phase for the middle link, which is 1
second every cycle of 60 seconds in this scenario. From the perspective of the cyclically time-expanded
network, this allows as many travellers as possible on the lower route – still not more than on the upper
route.

Using the optimized signal plans in the transport simulation also results in a near to system-optimal route
distribution, see figure 4a. Flow distributes almost uniformly to the outer routes and only a few travellers
still use the middle route (see the green dots in the lower part of figure 4a). It is not trivial to reach the
system optimum with signal optimization because there is no monotonicity in user equilibrium travel times
regarding link capacities: Continuing reducing the capacity of the middle link would at first increase total
travel time of the user equilibrium. Only when the travel time of the middle route exceeds the travel times
on the outer routes, selfish travellers will switch their route and user equilibria total travel time decreases
again.

Instead of directly punishing the use of the middle link and, thus, the use of the middle route as in this
example (see figure 4b; higher delay is depicted in red, no delay in green) there are also indirect management
strategies that improve selfish behavior, see the next section.

4.2 Improving the user equilibrium with tolls

An alternative to the traffic management strategy discussed in section 4.1, is to introduce tolls on the network
links for all travellers or a group of travellers. In static, i.e. time-independent flow models with non-negative,
non-decreasing and continuous travel time functions, the potential of tolls are well-studied: By using marginal
costs as link travel times, the new user equilibrium will be system optimal. Marginal costs increase link travel
times depending on their derivatives, which can easily be calculated in static flow models. [1]

In time-dependent traffic models, by contrast, the concept of marginal costs is not as simple. For example,
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Model & Scenario Total travel time [s] #up #mid #low

KS model SO 2383200 1800 0 1800

MATSim UE 7133291 0 3600 0

MATSim UE with tolls 3117286 1394 257 1949

MATSim UE with signals 2514324 1801 34 1765

Table 2: Travel times and route distributions in the scenario from figure 3 including management strategies
of congestion pricing and traffic signals discussed in section 4.

in transport simulations link travel time functions are usually not known; travel times depend on constant
free flow travel times and waiting times. Also in time-expanded networks, marginal costs loose their effect:
Link travel times are constant so that marginal costs do not change them and, therefore, do not identify links
that should be tolled in reality to improve the user equilibrium.

A more promising approach for time-dependent models is, to determine marginal costs in the simulation
model. MATSim provides some congestion pricing approaches to compute agent specific tolls. They all
behave similar in the example of figure 3. The analysis presented in this study is based on the congestion
pricing approach of Kaddoura [8]. Applying this congestion pricing approach to the example of figure 3 results
in an improved user equilibrium. Flow distributes almost uniformly to the outer, system-optimal routes (see
figure 5a). Analyzing total tolls paid per link gives high toll values on the two links that are included in two
routes each, i.e. links 2 3 and 4 5 (see figure 5b; high toll values are depicted in red, almost no toll values in
green and low toll values in yellow). This tolls indirectly punish traveling on the middle route because the
middle route includes high tolls twice. System-optimal outer routes include high tolls only once.

Although the congestion pricing approach punishes traveling on structural different links than the signal
control approach, they both lead to similar traffic flow pattern and total travel time. Table 2 gives an overview
on travel times and route distributions of the different scenarios discussed in this paper.

To sum up, there is not only one solution to improve the user equilibrium. Especially, there is no need of
knowing the system optimum to be able to improve the user equilibrium. Even so, comparing user equilibria
and management strategies resulting from different models may help to find the best traffic policy to transfer
into reality. As a result, both considered traffic models may benefit from each other despite and because of
all model differences.

5 Conclusion

In this study, two different approaches to model traffic in a time-dependent way have been considered: An
analytical approach based on a cyclically time-expanded network that gives time-dependent aspects although
it is based on static flow theory and a simulation approach based on a coevolutionary, iterative learning
algorithm and a queue-based representation of the network. Properties of both models, as well as user
equlibria that result as route distributions of travellers have been compared. It has been shown that both
models differ in many aspects regarding time-dependent traffic flow. Also, the user equilibria found by them
may differ significantly.

Additionally, the impact and structure of selected traffic management strategies in both models have been
compared by an example where the set of user equilibria differ in both models. By that, the potential of
combining both models has been discussed.

Summarizing, both models can benefit from each other on the way to improve the user equilibrium as
long as one keeps in mind that user equilibria may differ arbitrarily in the models and might cause situations
where the expected improvement of the analytical model is not reached in the transport simulation.
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